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Abstract

The reduction of the number of samples is a key issue in signal
processing for mobile applications. We investigate the link between
the smoothness properties of a signal and the number of samples that
can be obtained through a level crossing sampling procedure. The al-
gorithm is analyzed and an upper bound of the number of samples
is obtained in the worst case. The theoretical results are illustrated
with applications to fractional Brownian motions and the Weierstrass
function.
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1 Introduction

Autonomy, size and weight are very important issues in the design of mo-
bile systems. One possibility to reduce the power consumption of signal
processing systems is the reduction of the number of samples. Non uniform
sampling is a way to have few samples for a large class of signals, espe-
cially sporadic signals, while still describing correctly the active parts of the
signal. This leads to a smaller number of samples compared to Nyquist
sampling [10, 15, 16, 19]. Specific system architectures, such as event-driven
architectures, allow the implementation of this specific sampling. These ar-
chitectures take samples each time some specific event occurs, e.g. specific
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voltage levels are crossed. Simple, low power, analog circuits can be designed
to acquire information, possibly at high speed.

In this paper we want to relate the signal regularity to the number of non
uniform samples obtained via a level crossing technique. Indeed, intuitively,
the more the signal is oscillating the more often the signal is sampled. This
is of course a local property: the number of samples at the neighborhood
of some point may then be related to the local smoothness of the signal,
or more precisely to its Hölder regularity. This relationship will be tested
on signals whose smoothness properties are perfectly known at each point.
This can be useful to predict the processing complexity of e.g. biological
signals such as EEG signals or fMRI data which are well-known to be both
highly irregular and non stationary.

We introduce here an algorithm which is slightly different from the usual
level crossing technique. In [1] the amplitudes are selected thanks a M -bit
asynchronous analog-to-digital converter (AADC) that corresponds to 2M

predefined levels in the voltage range. Level crossing sampling consists in
taking a sample each time the predefined levels are crossed. Each amplitude
has to be associated to a time. More precisely we store a delay elapsed since
the last sample was taken, the local clock that enables this is then reset
to zero and ready to measure the next delay. In Figure 1 we display the
case when the captured time is that of the next clock tick. The sample is
displayed with disks, and the value of the signal at the capture times with
circles (Figure 1, left). This leads to a few number of samples, especially for
sporadic signals. This procedure is refined decimating the samples by keep-
ing only the last one when a level has been crossed many times successively
(Figure 1, right).

Our goal here is not to study the approximation of the signal but the
number of non uniform samples, given the regularity of the signal, the clock
precision and the level quantum. We introduce another sampling algorithm
which is slightly different from the AADC, but easier to analyze mathemati-
cally, and which yields essentially the same number of samples. In Section 2,
we describe this sampling algorithm and rephrase it in mathematical terms.
In Section 3 we define the functions that we will use in the numerical ex-
periments of Section 4. These functions are chosen because we are able to
control exactly their Hölder regularity.
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Figure 1: Non uniform sampling with an AADC [1]. Left: the disks corre-
spond to the samples and the circle to the values at the clock ticks. Right:
the disks are the only samples that are kept after decimation.

2 Algorithm and mathematical interpretation

2.1 Step 1: Generation of an oversampled signal

Even in event-driven systems, where the signal is not sampled at each clock
tick, there are clocks that measure time, and specifically the time elapsed
since the last event. These clocks have a certain precision, and all measured
times are multiples of some basis time tb. Up to some re-scaling of time we
suppose that tb = 2−j , for some j ∈ N. We never have a complete knowledge
of the original signal f(t), but only its samples fj,k = f(k2−j), for all k ∈ Z

(Figure 2).

Figure 2: Regular sampling of the input signal (Step 1).
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Let Vj be the space of continuous functions, which are linear on intervals

Ij,k = [k2−j , (k + 1)2−j [ for all k ∈ Z.

The Faber–Schauder hierarchical basis, defined in [7], yields a natural basis
of Vj . Let ϕ(x) = max{0, 1 − |x|}. The functions ϕj,k = ϕ(2j · −k), for all
k ∈ Z, form the Faber–Schauder basis. We can uniquely define the linear
interpolation fj ∈ Vj of f at scale 2−j by imposing fj(k2

−j) = fj,k, for all
k ∈ Z, and

fj =
∑

k∈Z

fj,kϕj,k. (1)

In the sequel we suppose that f is compactly supported in [0, 1] and therefore
k = 0, . . . , 2j − 1 in Equation (1).

2.2 Step 2: Level crossing

We consider that levels are uniformly spaced by some quantum 2−M . In
applications where the range of the signal is [0, 1], the sample can then be
stored with a M -bit register. The second step consists in approximating the
samples fj,k by the nearest level below (Figure 3).

Figure 3: Reduction to predefined levels (Step 2). Samples from Step 1 are
disks and the new samples are the circles.

We denote ⌊x⌋ the integer part of x, namely ⌊x⌋ = sup{n ∈ N, n ≤ x}.
The function f̃j ∈ Vj which coincides with the new samples is uniquely
defined by

f̃j =

2j−1
∑

k=0

2−M
⌊

2Mf(k2−j)
⌋

ϕj,k.
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2.3 Step 3: Decimation

Next, we decimate the samples so as to keep only one sample when consec-
utive samples have the same amplitude. We choose to keep the last sample
to be compatible with the causality principle (Figure 4).

Figure 4: Non uniform samples after decimation (Step 3).

We are interested in the number of samples after the three steps. Com-
paring Figures 1 (right) and 4, we notice that the number of final samples
(the disks in both figures) are comparable. This is a generic situation. In
fact the differences are mainly due to the extreme upper and lower levels.

From the mathematical point of view, decimation consists in keeping a
subsequence of k = 0, . . . , 2j − 1, defined by induction: k0 = 0 and

ki+1 = min{k ≥ 1 + ki/
⌊

2Mf(k2−j)
⌋

6=
⌊

2Mf(ki2
−j)

⌋

}.

We only store the couples (δti, ai) where δti = (ki − ki−1)2
−j , i ≥ 1 is the

delay since the last sample, and ai = 2−M
⌊

2Mf(ki2
−j)

⌋

) is the amplitude
of the sample. Step 3 leads to a reduction of the number of samples, but
does not introduce any approximation.

3 Application to monoHölderian functions

Our goal is to relate the number of non uniform samples to the regularity
of the signal. In particular, we address the Hölderian regularity.

3.1 MonoHölderian functions

Before introducing the Hölderian regularity, we first recall a few definitions.
They allow a weaker definition of pointwise smoothness. The final goal is to
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define strongly monoHölderian functions, a notion that formalizes the idea
of a function which has the as uniformly as possible regularity.

Let x0 ∈ R and r > 0, for all 0 ≤ h ≤ r we define

Bh(x0, r) = {x : [x, x+ h] ⊂ B(x0, r)},

where B(x0, r) is the ball of center x0 and radius r, and denote, as usual,
the oscillation of a function f : R → R at x0 on the ball B(x0, r) as

Osc(f)(x0, r) = sup
|h|≤r

‖f(x+ h)− f(x)‖L∞(Bh(x0,r)).

Definition 1 Let f : R → R be a locally bounded function, let x0 ∈ R and
α ∈ (0, 1). The function f is Hölderian of exponent α at x0 (f ∈ Cα(x0)) if
there exist C and R > 0 such that

Osc(f)(x0, r) ≤ Crα, ∀r ≤ R. (2)

A function f is uniformly Hölderian of exponent α (f ∈ Cα(R)) if C and R
in Equation (2) are uniform in x0 ∈ R.

The irregularity of a function can be studied through the notion of anti-
Hölderianity.

Definition 2 Let f : R → R be a locally bounded function, let x0 ∈ R

and α ∈ (0, 1). The function f is anti-Hölderian of exponent α at x0 (f ∈
Iα(x0)) if there exist C and R > 0 such that

Osc(f)(x0, r) ≥ Crα, ∀r ≤ R. (3)

Let us notice that the statement (3) is stronger than just negating the
Hölderian regularity. Indeed such a negation only yields the existence, for
any C > 0, of a subsequence (rn)n (depending on C) for which

Osc(f)(x0, rn) ≥ Crαn .

Strongly monoHölderian functions naturally arise in the study of the reg-
ularity of mappings such as Weierstrass-type or random processes (see e.g.
[9, 12]). Indeed, many results only hold for such mappings.

Definition 3 Let α ∈ (0, 1). A function f : R → R is strongly monoHölderian
of exponent α (f ∈ SMα(R)) if f ∈ Cα(R) ∩ Iα(R), i.e. if there exists C
and R > 0 such that, for any x0 ∈ R,

rα/C ≤ Osc(f)(x0, r) ≤ Crα ∀r ≤ R. (4)
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3.2 Approximation properties

As already mentioned, only Steps 1 and 2 lead to approximations. To state
our approximation results, we need some preliminary definitions. According
to our application, we now restrict to functions defined on [0, 1]. For any
continuous function f on [0, 1], we define its uniform regularity modulus by

ωf (r) = sup
|h|≤r, x/[x,x+h]⊂(0,1)

|f(x+ h)− f(x)|.

The function ωf is a modulus of continuity in the sense that ωf (0) = 0 and
that there exists some C > 0 such that ωf (2r) ≤ Cωf (r) (see [13]).

In what follows we need the notion of strong modulus of continuity in-
troduced in [3, 13]. The modulus of continuity θ is said to be strong if there
exists C > 0 such that for any positive integer J one has

J
∑

j=0

2jθ(2−j) ≤ C2Jθ(2−J) and

∞
∑

j=J

θ(2−j) ≤ Cθ(2−J).

It is well-known [13] that if there exists some strong modulus of continuity
θ such that

ωf (2
−j) ≤ Cθ(2−j),

then
‖f − fj‖L∞ ≤ Cθ(2−j),

where fj is defined by Equation (1). In particular if f ∈ Cα(0, 1) there exists
some C > 0 such that for any j ≥ 0

ωf (2
−j) ≤ Cθ(2−j),

with θ(2−j) = 2−jα, and then there exists a constant C (which depends on
f but not on the scale j) such that

‖f − fj‖L∞ ≤ C2−jα.

Assume now that in addition

ωf (2
−j) ≥ θ(2−j)/C,

then, following [3, 5], there exists a constant C and β > 1 (which depend on
f but not on the scale j) such that

‖f − fj‖L∞ ≥ j−βθ(2−j)/C.
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In particular, applying these results with the strong modulus of continuity
θ(r) = rα, we deduce that if the function f is assumed to be uniformly
monoHölderian with exponent α there exist some C > 0 and β > 1 such
that

2−jαj−β/C ≤ ‖f − fj‖L∞ ≤ C2−jα.

This yields estimates on the error due to Step 1. The approximation made
at Step 2 clearly does not depend on the regularity of function f , and we
have

‖fj − f̃j‖L∞ ≤ 2−M .

3.3 Theoretical number of samples in the case of a monotonous

function

If f is a monoHölderian function with exponent α, by definition there exists
C1, C2 > 0 and for any scale j ≥ 0 and 0 ≤ k ≤ 2j − 1

C12
−jα ≤ sup

(x,h)/[x,x+h]⊂
[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)| ≤ C22
−jα.

If the function is additionally supposed to be monotonous, we further have
exactly

sup
(x,h)/[x,x+h]⊂

[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)| =

∣

∣

∣

∣

f

(

k + 1

2j

)

− f

(

k

2j

)
∣

∣

∣

∣

.

Hence

C12
j(1−α) ≤ |f(1)− f(0)| =

2j−1
∑

k=0

∣

∣

∣

∣

f

(

k + 1

2j

)

− f

(

k

2j

)∣

∣

∣

∣

≤ C22
j(1−α).

A monoHölderian signal crosses equi-spaced levels with quantum 2−M at
most C22

M+(1−α)j times. The worst case is that of monotonous signals.

Besides, initial sampling (Step 1) takes exactly 2j samples. This is hence
the first natural upper bound for the number of samples. Together with
monoHölderianity we know that the number of samples is less than the
minimum of these two bounds. For large values of M (or small values of α),
we indeed keep almost all of the 2j samples. Otherwise we can expect some
reduction of the number of samples. For C = 1, the threshold is M ≃ αj.
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Observe that the proof is based on the fact, that in the monotonous case,
we can estimate in a very simple way the oscillations

sup
(x,h)/[x,x+h]⊂

[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)|

of the function. Of course in the general case, the situation can be much
more complicated. Nevertheless, generic results in the sense of prevalence
as stated in [4] are expected to hold. In what follows, we illustrate through
numerical simulations what happens in two cases.

4 Numerical simulations

4.1 Fractional Brownian motion and the Weierstrass func-

tion

We test level crossing on two toy models: sample paths of fractional Brown-
ian motion BH and the Weierstrass function WH , which are indexed by the
Hurst index H ∈ (0, 1). The choice of these two cases is guided by the fact
that their smoothness properties are related to the Hurst index.

The fractional Brownian motion (fBm) BH is the unique Gaussian
H-self-similar process with stationary increments. It is defined from its
covariance function

E
[

BH(x)BH(y)
]

= 1
2

(

|x|2H + |y|2H − |x− y|2H
)

for all (x, y) ∈ [0, 1]2. The classical Brownian motion corresponds to H =
1/2. The sample paths of fBm are well-known to be almost surely contin-
uous. Further, its Hurst index H is directly related to the roughness of
its sample paths. More precisely the classical law of the iterated logarithm
ensures that

BH ∈ CH−ε([0, 1]) ∩ IH+ε([0, 1]) almost surely.

Roughly speaking, a.s. for all (x, y) ∈ [0, 1]2,

sup
(u,v)∈[x,y]2

|BH(u)−BH(v)| ∼ |x− y|H .

Figure 5 presents three realizations of sample paths of fractional Brownian
motions for H = 0.5, H = 0.7, H = 0.9, and j = 10 (1024 samples).
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Figure 5: Three realizations of fractional Brownian motions for H = 0.5,
H = 0.7, and H = 0.9 (from left to right).

The Weierstrass function WH is a classical example of monoHölderian
function with exponent H as proved in [11]. It is defined as

WH(x) =
∞
∑

j=0

2−jH cos(2jx),

and, for all (x, y) ∈ [0, 1]2,

sup
(u,v)∈[x,y]2

|WH(u)−WH(v)| ∼ |x− y|H .

Figure 6 presents the graphs of the Weierstrass functions for H = 0.5, H =
0.7, H = 0.9, and j = 10 (1024 samples).

Figure 6: The Weierstrass function for H = 0.5, H = 0.7, and H = 0.9
(from left to right).
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4.2 Tests

The tests are performed within the SPASS Matlab toolbox [2] (Signal Pro-
cessing for ASynchronous Systems toolbox). It has been originally designed
to treat non uniform signals produced by asynchronous systems, but can be
used for a large variety of signals. To generate fractional Brownian motions,
we make use of the genFBMJFC.m function [6].

We use two values of j (10 and 13) and two values of M (4 and 5).
These small values of M are sufficient for most mobile applications. Our
output is the number of samples after decimation (Step 3). For the fractional
Brownian motion, we perform 1000 realizations and average the number of
samples obtained for each realization to obtain an average number n. We
perform the same tests on the Weierstrass function (deterministic function,
only one realization).

We perform this for values of the Hurst number H in the (0, 1) range and
obtain the plots (in semi-log scale, with log-basis 2) in Figures 7 and 8 for
j = 10 and 13 respectively. We also plot the number of samples computed
in the worst case (monotonous function i.e. maximum total variation) for
C = 1: Nworst = min(2j , 2M+(1−H)j) = 2j min(1, 2M−Hj).

Figure 7: Number n of samples in terms of the Hurst number in the log
scale for j = 10, and M = 4 (left) and M = 5 (right). Solid lines correspond
to the averaged number for the fractional Brownian motion, the dashed
lines to the Weierstrass function, and the dotted lines to the worst case
j +max(1,M −Hj).

We distinguish two regimes: below some value of the Hurst number
H ∼ M/j the algorithm more or less keeps all the original samples, above
this value the decimation is efficient and yields a significant reduction of the
number of samples. For the different curves these ”critical” values of H are
given in Table 1.
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Figure 8: Number n of samples in terms of the Hurst number in the log scale
for j = 13, and M = 4 (left) and M = 5 (right). Same plotting conventions
as Figure 7.

M = 4 M = 5

j = 10 0.4 0.5

j = 13 ∼ 0.3 ∼ 0.4

Table 1: ”Critical” values of the Hurst number.

The plots associated to fBm are much more regular than those associ-
ated to the Weierstrass function because they are obtained by an averaging
procedure. Besides, for the Weierstrass function, the constant involved in
Equation (4) is a priori not equal to 1 and indeed depends on H. It can be
explained using the range of the fractional derivative of order H of Weier-
strass function WH which is not reduced to a constant and depends on H
([14, 18, 21] for more details).

5 Conclusion

We have predicted for monoHölderian functions and shown numerically that
there is a strong relationship between the smoothness properties of a sig-
nal and the number of samples that can be obtained by the crossing level
algorithm presented in this paper. This is rigorously proved in the case of
monotonous monoHölderian functions. The next step, which will be the
purpose of a forthcoming paper, will then be to consider signals whose regu-
larity may change from point to point such as multifractional or multifractal
signals.
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