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Abstract

The reduction of the number of samples is a key issue in signal process-
ing for mobile applications. We investigate the link between the smooth-
ness properties of a signal and the number of samples that can be obtained
through a level crossing sampling procedure. The algorithm is analyzed
and an upper bound of the number of samples is obtained in the worst
case. The theoretical results are illustrated with applications to fractional
Brownian motions and the Weierstrass function.
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1 Introduction

Autonomy, size and weight are very important issues in the design of mobile
systems. One possibility to reduce the power consumption of signal processing
systems is the reduction of the number of samples. Non uniform sampling is
a way to have few samples for a large class of signals, especially sporadic sig-
nals, while still describing correctly the active parts of the signal. This leads
to a smaller number of samples compared to Nyquist sampling [10, 15, 16, 19].
Specific system architectures, such as event-driven architectures, allow the im-
plementation of this specific sampling. These architectures take samples each
time some specific event occurs, e.g. specific voltage levels are crossed. Simple,
low power, analog circuits can be designed to acquire information, possibly at
high speed.
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In this paper we want to relate the signal regularity to the number of non
uniform samples obtained via a level crossing technique. Indeed, intuitively,
the more the signal is oscillating the more often the signal is sampled. This
is of course a local property: the number of samples at the neighborhood of
some point may then be related to the local smoothness of the signal, or more
precisely to its Hölder regularity. This relationship will be tested on signals
whose smoothness properties are perfectly known at each point. This can be
useful to predict the processing complexity of e.g. biological signals such as EEG
signals or fMRI data which are well-known to be both highly irregular and non
stationary.

We introduce here an algorithm which is slightly different from the usual
level crossing technique. In [1] the amplitudes are selected thanks a M -bit asyn-
chronous analog-to-digital converter (AADC) that corresponds to 2M predefined
levels in the voltage range. Level crossing sampling consists in taking a sample
each time the predefined levels are crossed. Each amplitude has to be associ-
ated to a time. More precisely we store a delay elapsed since the last sample
was taken, the local clock that enables this is then reset to zero and ready to
measure the next delay. In Figure 1 we display the case when the captured
time is that of the next clock tick. The sample is displayed with disks, and the
value of the signal at the capture times with circles (Figure 1, left). This leads
to a few number of samples, especially for sporadic signals. This procedure is
refined decimating the samples by keeping only the last one when a level has
been crossed many times successively (Figure 1, right).

Figure 1: Non uniform sampling with an AADC [1]. Left: the disks correspond
to the samples and the circle to the values at the clock ticks. Right: the disks
are the only samples that are kept after decimation.

Our goal here is not to study the approximation of the signal but the number
of non uniform samples, given the regularity of the signal, the clock precision
and the level quantum. We introduce an other sampling algorithm which is
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slightly different from the AADC, but easier to analyze mathematically, and
which yields essentially the same number of samples. In Section 2, we describe
this sampling algorithm and rephrase it in mathematical terms. In Section 3 we
define the functions that we will use in the numerical experiments of Section 4.
These functions are chosen because we are able to control exactly their Hölder
regularity.

2 Algorithm and mathematical interpretation

2.1 Step 1: Generation of an oversampled signal

Even in event-driven systems, where the signal is not sampled at each clock tick,
there are clocks that measure time, and specifically the time elapsed since the
last event. These clocks have a certain precision, and all measured times are
multiples of some basis time tb. Up to some time re-scaling we suppose that
tb = 2−j , for some j ∈ N. We never have a complete knowledge of the original
signal f(t), but only its samples fj,k = f(k2−j), for all k ∈ Z (Figure 2).

Figure 2: Regular sampling of the input signal (step 1).

Let Vj be the space of continuous functions, which are linear on intervals

Ij,k = [k2−j , (k + 1)2−j [ for all k ∈ Z.

The Faber–Schauder hierarchical basis, defined in [7], yields a natural basis of
Vj . Let ϕ(x) = max{0, 1 − |x|}. The functions ϕj,k = ϕ(2j · −k), for all k ∈ Z

form the Faber–Schauder basis. We can uniquely define the linear interpolation
fj ∈ Vj of f at scale 2−j by imposing fj(k2

−j) = fj,k, for all k ∈ Z, and

fj =
∑

k∈Z

fj,kϕj,k. (1)

In the sequel we suppose that f is compactly supported in [0, 1] and therefore
k = 0, . . . , 2j − 1 in Equation (1).
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2.2 Step 2: Level crossing

We consider that levels are uniformly spaced by some quantum 2−M . In appli-
cations where the range of the signal is [0, 1], the sample can then be stored with
a M -bit register. The second step consists in approximating the samples fj,k by
the nearest level below (Figure 3).

Figure 3: Reduction to predefined levels (step 2). Samples from step 1 are disks
and the new samples are the circles.

We denote ⌊x⌋ the integer part of x, namely ⌊x⌋ = sup{n ∈ N, n ≤ x}. The
function f̃j ∈ Vj which coincides with the new samples is uniquely defined by

f̃j =
2j−1
∑

k=0

2−M
⌊

2Mf(k2−j)
⌋

ϕj,k.

2.3 Step 3: Decimation

Next, we decimate the samples so as to keep only one sample when consecutive
samples have the same amplitude. We choose to keep the last sample to be
compatible with the causality principle (Figure 4).

We are interested in the number of samples after the three steps. Comparing
Figures 1 (right) and 4, we notice that the number of final samples (the disks in
both figures) are comparable. This is a generic situation. In fact the differences
are mainly due to the extreme upper and lower levels.

From the mathematical point of view, decimation consists in keeping a sub-
sequence of k = 0, . . . , 2j − 1, defined by induction: k0 = 0 and

ki+1 = min{k ≥ 1 + ki/
⌊

2Mf(k2−j)
⌋

6=
⌊

2Mf(ki2
−j)

⌋

}.

We only store the couples (δti, ai) where δti = (ki − ki−1)2
−j , i ≥ 1 is the delay

since the last sample, and ai = 2−M
⌊

2Mf(ki2
−j)

⌋

) is the amplitude of the
sample. There is no approximation in Step 3, we only do not store redundant
data.
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Figure 4: Non uniform samples after decimation (step 3).

3 Application to monoHölderian functions

Our goal is to relate the number of non uniform samples to the regularity of the
signal. In particular, we address the Hälderman regularity.

3.1 MonoHölderian functions

Before introducing the Hölderian regularity, we first recall a few definitions.
They allow a weaker definition of pointwise smoothness. The final goal is to
define strongly monoHölderian functions, a notion that formalizes the idea of a
function which has the as uniformly as possible regularity.

Let x0 ∈ R and r > 0, for all 0 ≤ h ≤ r we define

Bh(x0, r) = {x : [x, x+ h] ⊂ B(x0, r)},

where B(x0, r) is the ball of center x0 and radius r, and denote, as usual, the
oscillation of a function f : R → R at x0 on the ball B(x0, r) as

Osc(f)(x0, r) = sup
|h|≤r

‖f(x+ h)− f(x)‖L∞(Bh(x0,r)).

Definition 1 Let f : R → R be a locally bounded function, let x0 ∈ R and
α ∈ (0, 1). The function f is Hölderian of exponent α at x0 (f ∈ Cα(x0)) if
there exist C and R > 0 such that

Osc(f)(x0, r) ≤ Crα, ∀r ≤ R. (2)

A function f is uniformly Hölderian of exponent α (f ∈ Cα(R)) if C and R in
Equation (2) are uniform in x0 ∈ R.

The irregularity of a function can be studied through the notion of anti-
Hölderianity.
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Definition 2 Let f : R → R be a locally bounded function, let x0 ∈ R and
α ∈ (0, 1). The function f is anti-Hölderian of exponent α at x0 (f ∈ Iα(x0)) if
there exist C and R > 0 such that

Osc(f)(x0, r) ≥ Crα, ∀r ≤ R. (3)

Let us notice that the statement (3) is stronger than just negating the
Hölderian regularity. Indeed such a negation only yields the existence, for any
C > 0, of a subsequence (rn)n (depending on C) for which

Osc(f)(x0, rn) ≥ Crαn .

Strongly monoHölderian functions naturally arise in the study of the regularity
of mappings such as Weierstrass-type or random processes (see e.g. [9, 12]).
Indeed, many results only hold for such mappings.

Definition 3 Let α ∈ (0, 1). A function f : R → R is strongly monoHölderian
of exponent α (f ∈ SMα(R)) if f ∈ Cα(R) ∩ Iα(R), i.e. if there exists C and
R > 0 such that, for any x0 ∈ R,

rα/C ≤ Osc(f)(x0, r) ≤ Crα ∀r ≤ R. (4)

3.2 Approximation properties

As already mentioned, only Steps 1 and 2 lead to approximations. To state our
approximation results, we need some preliminary definitions. According to our
application, we now restrict to functions defined on [0, 1]. For any continuous
function f on [0, 1], we define its uniform regularity modulus by

ωf (r) = sup
|h|≤r, x/[x,x+h]⊂(0,1)

|f(x+ h)− f(x)|.

The function ωf is a modulus of continuity in the sense that ωf (0) = 0 and that
there exists some C > 0 such that ωf (2r) ≤ Cωf (r) (see [13]).

In what follows we need the notion of strong modulus of continuity introduced
in [3, 13]. The modulus of continuity θ is said to be strong if there exists C > 0
such that for any positive integer J one has

J
∑

j=0

2jθ(2−j) ≤ C2Jθ(2−J) and
∞
∑

j=J

θ(2−j) ≤ Cθ(2−J).

It is well-known [13] that if there exists some strong modulus of continuity θ
such that

ωf (2
−j) ≤ Cθ(2−j),
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then
‖f − fj‖L∞ ≤ Cθ(2−j),

where fj is defined by Equation (1). In particular if f ∈ Cα(0, 1) there exists
some C > 0 such that for any j ≥ 0

ωf (2
−j) ≤ Cθ(2−j),

with θ(2−j) = 2−jα, and then there exists a constant C (which depends on f
but not on the scale j) such that

‖f − fj‖L∞ ≤ C2−jα.

Assume now that in addition,

ωf (2
−j) ≥ θ(2−j)/C,

then, following [3, 5], there exists a constant C and β > 1 (which depends on f
but not on the scale j) such that

‖f − fj‖L∞ ≥ j−βθ(2−j)/C.

In particular, applying these results with the strong modulus of continuity θ(r) =
rα, we deduce that if the function f is assumed to be uniformly monoHölderian
with exponent α there exist some C > 0 and β > 1 such that

2−jαj−β/C ≤ ‖f − fj‖L∞ ≤ C2−jα.

This yields estimates on the error due to Step 1. The approximation made at
Step 2 clearly does not depend on the regularity of function f , and we have

‖fj − f̃j‖L∞ ≤ 2−M .

3.3 Theoretical number of samples in the case of a monotonous

function

If f is a monoHölderian function with exponent α, by definition there exists
C1, C2 > 0 and for any scale j ≥ 0 and 0 ≤ k ≤ 2j − 1

C12
−jα ≤ sup

(x,h)/[x,x+h]⊂
[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)| ≤ C22
−jα.

If the function is additionally supposed to be monotonous, we further have
exactly

sup
(x,h)/[x,x+h]⊂

[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)| =

∣

∣

∣

∣

f

(

k + 1

2j

)

− f

(

k

2j

)∣

∣

∣

∣

.
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Hence

C12
j(1−α) ≤ |f(1)− f(0)| =

2j−1
∑

k=0

∣

∣

∣

∣

f

(

k + 1

2j

)

− f

(

k

2j

)∣

∣

∣

∣

≤ C22
j(1−α).

A monoHölderian signal crosses equi-spaced levels with quantum 2−M at most
C22

M+(1−α)j times. The worst case is that of monotonous signals.

Besides, initial sampling (Step 1) takes exactly 2j samples. This is hence the
first natural upper bound for the number of samples. Together with monoHölder-
ianity we know that the number of samples is less than the minimum of these
two bounds. For large values of M (or small values of α), we indeed keep almost
all of the 2j samples. Otherwise we can expect some reduction of the number of
samples. For C = 1, the threshold is M ≃ αj. Observe that the proof is based
on the fact, that in the monotonous, we can estimate in a very simple way the
oscillations

sup
(x,h)/[x,x+h]⊂

[

k

2j
, k+1

2j

]

|f(x+ h)− f(x)|

of the function. Of course in the general case, the situation can be much more
complicated. Nevertheless, generic results in the sense of prevalence as stated
in [4] are expected to hold. In what follows, we illustrate through numerical
simulations what happens in two cases.

4 Numerical simulations

4.1 Fractional Brownian motion and the Weierstrass function

We test level crossing on two toy models: sample paths of fractional Brownian
motion BH and the Weierstrass function WH , which are indexed by the Hurst
index H ∈ (0, 1). The choice of these two cases is guided by the fact that their
smoothness properties are related to the Hurst index.

The fractional Brownian motion (fBm) BH is the unique Gaussian H-
self-similar process with stationary increments. It is defined from its covariance
function

E
[

BH(x)BH(y)
]

= 1
2

(

|x|2H + |y|2H − |x− y|2H
)

for all (x, y) ∈ [0, 1]2. The classical Brownian motion corresponds to H =
1/2. The sample paths of fBm are well-known to be almost surely continuous.
Further, its the Hurst index H is directly related to the roughness of its sample
paths. More precisely the classical law of the iterated logarithm ensure that

BH ∈ CH−ε([0, 1]) ∩ IH+ε([0, 1]) almost surely.



LEVEL CROSSING SAMPLING 9

Roughly speaking, a.s. for all (x, y) ∈ [0, 1]2,

sup
(u,v)∈[x,y]2

|BH(u)−BH(v)| ∼ |x− y|H .

Figure 5 presents three realizations of sample paths of fractional Brownian mo-
tions for H = 0.5, H = 0.7, H = 0.9, and j = 10 (1024 samples).

Figure 5: Three realizations of fractional Brownian motions for H = 0.5, H =
0.7, and H = 0.9 (from left to right).

The Weierstrass function WH is a classical example of monoHölderian
function with exponent H as proved in [11]. It is defined as

WH(x) =
∞
∑

j=0

2−jH cos(2jx),

and, for all (x, y) ∈ [0, 1]2,

sup
(u,v)∈[x,y]2

|WH(u)−WH(v)| ∼ |x− y|H .

Figure 6 presents the graphs of the Weierstrass functions for H = 0.5, H = 0.7,
H = 0.9, and j = 10 (1024 samples).

4.2 Tests

The tests are performed within the SPASS Matlab toolbox [2] (Signal Process-
ing for ASynchronous Systems toolbox). It has been originally designed to treat
non uniform signals produced by asynchronous systems, but can be used for a
large variety of signals. To generate fractional Brownian motions, we make use
of the genFBMJFC.m function [6].

We use two values of j (10 and 13) and two values ofM (4 and 5). These small
values ofM are sufficient for most mobile applications. Our output is the number
of samples after decimation (Step 3). For the fractional Brownian motion, we
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Figure 6: The Weierstrass function for H = 0.5, H = 0.7, and H = 0.9 (from
left to right).

perform 1000 realizations and average the number of samples obtained for each
realization to obtain an average number n. We perform the same tests on the
Weierstrass function (deterministic function, only one realization).

We perform this for values of the Hurst number H in the (0, 1) range and
obtain the plots (in semi-log scale, with log-basis 2) in Figures 7 and 8 for
j = 10 and 13 respectively. We also plot the number of samples computed in
the worst case (monotonous function i.e. maximum total variation) for C = 1:
Nworst = min(2j , 2M+(1−H)j) = 2j min(1, 2M−Hj).

Figure 7: Number n of samples in terms of the Hurst number in the log scale
for j = 10, and M = 4 (left) and M = 5 (right). Solid lines correspond to the
averaged number for the fractional Brownian motion, the dashed lines to the
Weierstrass function, and the dotted lines to the worst case j+max(1,M−Hj).

We distinguish two regimes: below some value of the Hurst numberH ∼ M/j
the algorithm more or less keeps all the original samples, above this value the
decimation is efficient and yields a significant reduction of the number of samples.
For the different curves these ”critical” values of H are given in Table 1.

The plots associated to fBm are much more regular than those associated to
the Weierstrass function because there are obtained by an averaging procedure.
Besides, for the Weierstrass function, the constant involved in Equation (4) is a
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Figure 8: Number n of samples in terms of the Hurst number in the log scale
for j = 13, and M = 4 (left) and M = 5 (right). Same plotting conventions as
Figure 7.

M = 4 M = 5

j = 10 0.4 0.5

j = 13 ∼ 0.3 ∼ 0.4

Table 1: ”Critical” values of the Hurst number.

priori not equal to 1 and indeed depends on H. It can be explained using the
range of the fractional derivative of order H of Weierstrass function WH which
is not reduced to a constant and depends on H ([14, 18, 21] for more details).

5 Conclusion

We have predicted for monoHölderian functions and shown numerically that
there is strong relationship between the smoothness properties of a signal and the
number of samples that can be obtained by the crossing level algorithm presented
in this paper. This is rigorously proved in the case of monotonous monoHölderian
functions. The next step, which will be the purpose of a forthcoming paper, will
then be to consider signals whose regularity may change from point to point
such as multifractional or multifractal signals.
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