
HAL Id: hal-00905177
https://hal.science/hal-00905177v1

Submitted on 13 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Schemes for Computing α-tree Representations
Jiří Havel, François Merciol, Sébastien Lefèvre

To cite this version:
Jiří Havel, François Merciol, Sébastien Lefèvre. Efficient Schemes for Computing α-tree Representa-
tions. International Symposium on Mathematical Morphology, ISMM 2013, 2013, Uppsala, Sweden.
pp.111-122, �10.1007/978-3-642-38294-9_10�. �hal-00905177�

https://hal.science/hal-00905177v1
https://hal.archives-ouvertes.fr

Efficient Schemes for Computing α-tree
Representations

Jiří Havel1, François Merciol2, and Sébastien Lefèvre2

1 Brno University of Technology, Czech Republic
ihavel@fit.vutbr.cz

2 Université de Bretagne-Sud, IRISA, France
{francois.merciol,sebastien.lefevre}@univ-ubs.fr

Abstract. Hierarchical image representations have been addressed by various
models by the past, the max-tree being probably its best representative within the
scope of Mathematical Morphology. However, the max-tree model requires to
impose an ordering relation between pixels, from the lowest values (root) to the
highest (leaves). Recently, the α-tree model has been introduced to avoid such
an ordering. Indeed, it relies on image quasi-flat zones, and as such focuses on
local dissimilarities. It has led to successful attempts in remote sensing and video
segmentation. In this paper, we deal with the problem of α-tree computation, and
propose several efficient schemes which help to ensure real-time (or near-real
time) morphological image processing.
Key words: α-tree; Quasi-Flat Zones; Image Partition; Hierarchies; Efficient Al-
gorithms.

1 Introduction

Mathematical morphology has long been a provider of interesting hierarchical image
representations, mainly by trees, e.g. component tree [4], min and max-tree [9], binary
partition tree [8], etc. The max-tree (and its respective counterpart, min-tree) has been
widely used due to its nice properties as well as the availability of efficient algorithms
to first compute the tree from an image, and second process the tree (e.g. with a filtering
to remove irrelevant nodes), thus leading to the processing of the underlying image.

Recently, a new image model, namely the α-tree [6], has been introduced to avoid
relying on an ordering relation among image pixels. This model is a hierarchical repre-
sentation of the quasi-flat zones of an image, and as such, relies on local dissimilarities
α. While this model already led to successful attempts in exploration of remote sensing
data [5] and image/video segmentation [3], it still requires some efficient computing
schemes in order to be widely disseminated and to address a large scope of problems.
In this paper, we focus on computational issues of the α-tree model, and propose new
efficient algorithms to build this α-tree.

The rest of this paper is organized as follows. Section 2 provides necessary back-
ground on quasi-flat zones and α-tree. Various schemes for computing efficiently the
α-tree are discussed in Section 3. Section 4 is devoted to the presentation of experimen-
tal results, while concluding remarks are given in Section 5.

2 Background

The α-tree image model is a multiscale representation of an image through its α-zones.
We recall here the notions of flat zones, quasi-flat zones (including α-zones) and finally
the recent α-tree model.

In the following, we will use the notations used in [6]. We will denote by I a digital
image andE its definition domain. Let us recall that an image segmentation is a partition
P of E, i.e. a mapping x → P(x) from E into P(E) such that ∀x ∈ E ⇒ x ∈ P(x)
and ∀x, y ∈ E ⇒ P(x) = P(y) or P(x) ∩ P(y) = ∅, with P(x) indicating a cell
of P containing a point x ∈ E. We thus have

⋃
x∈E P(x) = E. Moreover, we will

write π(x ; y) a path of length N between any two elements x, y ∈ E, i.e. a chain
of pairwise adjacent elements 〈x = x0, x1, . . . , xN−1 = y〉. Finally, let Π 6= ∅ be the
set of all possible paths between x and y. The minimum dissimilarity metric between x
and y is defined as

d̂(x, y) =
∧
π∈Π

 ∨
i∈[0,...,N−1]

{
d(xi, xi+1) | xi, xi+1 ∈ Π

} (1)

with d(x, y) a predefined dissimilarity measure between attributes of x and y (i.e. pixel
intensities).

In a digital image, flat zones are defined as connected sets of pixels sharing the same
value. Formally, the flat zone of x is defined as

Z(x) = {x} ∪ {y | ∃π(x; y) :

∀xi ∈ π(x; y) ∧ xi 6= y ⇒ d(xi, xi+1) = 0}. (2)

In the field of Mathematical Morphology, flat zones have been shown to be elements
with nice properties [10]. Indeed, the partition of an image into its flat zones most
often includes any relevant image segmentation, since objects edges are located between
neighboring pixels with different values, i.e. belonging to different flat zones. However,
the practical usage of flat zones is limited since it leads to an extreme oversegmentation,
flat zones being made of only a few pixels. To counter this problem, softer definitions
have been introduced under the name quasi-flat zones. A recent survey related to quasi-
flat zones is provided by Soille in [11].

The simplest and most widely used definition of quasi-flat zones is called α-zone.
For a given pixel x, its α-zone noted α-Z(x) is made of all pixels reachable from x
through a path with intermediary steps not higher than α. Using the previous definitions,
we have

α-Z(x) = {x} ∪ {y | ∃π(x; y) :

∀xi ∈ π(x; y) ∧ xi 6= y ⇒ d(xi, xi+1) ≤ α}, (3)

the specific case of α = 0 leading to standard flat zones. Let us observe that α-
zones define a partition or segmentation, i.e.

⋃
x∈E α-Z(x) = E and ∀x, y ∈ E :

α-Z(x) ∩ α-Z(y) 6= ∅ =⇒ α-Z(x) = α-Z(y). The main drawback of α-zones is

their purely local behavior, which can lead to an artifact called chaining effect. This
is observed when the successive steps in a path π(x ; y) are low (w.r.t α) while the
dissimilarity measure between x and y is high, for instance in the case of a gradual
transition from black to white. This limitation was addressed by Soille [11], and later
Soille and Grazzini [12], who added another constraint that prevented the uncontrolled
α-zone from growing.

Another way to use the α-zones has been recently reported by Ouzounis and Soille
in [6]. In this seminal work, they introduce the concept of α-tree based on a partition
pyramid. Since the α zones can be ordered by inclusion relation, it is possible to con-
struct a tree of α-zones. The root of the tree is a zone covering the whole image. Every
parent node contains a zone, that is a superset of zones contained in its children.

Every level of the α-tree contains all zones for a specific value of α. The α-tree
contains all possible image segmentations based on α-zones. Every cut through the α-
tree selects an image segmentation. To benefit from this powerful image representation,
efficient computation schemes are required.

3 Computing the α-tree

3.1 Basic Principles

In the previous section, we have introduce the α-tree reusing its standard notations [6].
Let us observe that the α-tree can also be defined through graphs. We will use this latter
representation to introduce efficient computation scheme. Thus, let us also denote an
image by a graph (V, E , I), where V are the image pixels, E are the edges between
them and I ⊆ V × E is the incidence relation between vertices and edges, i.e. for edge
e, that connects v1 and v2, v1Ie and v2Ie. The α is a weight of the edges of the graph.

The α-tree can be constructed as a min-tree built over an edge graph, as outlined by
Soille and Najman in [13]. An edge graph for a graph (V, E , I) is a graph (V ′, E ′, I ′),
with edges and vertices exchanged (V ′ = E , E ′ = V), while the incidence is preserved
(eI ′v = vIe). Using this definition, the edge graph is actually a multigraph, i.e., for
a 4-connected image the edges connect up to four vertices. The min-tree of the edge
graph can be then transformed in an α-tree. As Soille and Najman mention in [13], this
indirect construction is unnecessary, but their paper does not provide a direct algorithm.

It is possible to build the α-tree directly by a modification of Tarjan’s union-find
algorithm [14]. Tarjan’s algorithm was initially defined to identify connected compo-
nents, it has been later used for construction of different component trees, e.g. in [4].
The union-find method processes a list of graph edges sorted by increasing alpha. For
each edge it finds two largest connected components, the edge connects, and merges
them. Since the algorithm works with sorted edges, the α-tree is built bottom-up from
fine to coarse subdivision of the image.

An edge of the image graph connects two neighboring pixels. Algorithm 1 shows
the basic α-tree construction. The parameters of an edge are its two endpoints and the
corresponding α. The tree is built bottom-up by subsequent merges of partial trees. For
every edge, the two partial trees that contain the edge endpoints are found and then
merged. When a pixel is not yet linked to a leaf node, the node is created and linked

from the leaf array. Due to the ordered edges, the nodes will be merged only in the
active layer. It is the layer of the tree with α being equal to the α of the processed edge.
The levels of the tree below the active level are never changed again.

To ensure, that each path from a root to a leaf contains at most one node per α-level,
there are four possibilities of merging the subtrees. If both tree roots have α less than
the processed edge, a new node with both trees as children is created. If only one tree
root has α less than the processed edge, then this tree is attached as a child to the other
tree root. Finally if both roots have α equal to the processed edges, then the two root
nodes are merged (i.e. their children attached to one of them and the other marked for
removal)

Algorithm 1 Algorithm for α-tree construction
Require: Image I
Ensure: Array leaves[height(I), width(I)] of Node pointers

leaves[i, j] := null, ∀i, j
E = edges(I)
sort E by ascending α
for e = e1 → e|E| do

p1, p2 = points(e)
n{1,2} = findRoot(p{1,2})
if ni = null then

leaves[pi] = ni = makeNode(pi, α(e))
end if
if n1 6= n2 then

if α(n1) = α(n2) = α(e) then
merge(n1, n2)

else if α(n1) < α(e) and α(n2) < α(e) then
makeNode(n1, n2, α(e))

else if α(n1) = α(e) and α(n2) < α(e) then
attach n2 to n1

else if α(n1) < α(e) and α(n2) = α(e) then
attach n1 to n2

end if
end if
Update path compression cache

end for

When the α is a small integer, the edges can be ordered in O(E) time using the
bucketsort algorithm. This algorithm first calculates a histogram of edge alphas. Calcu-
lating the prefix sum converts the histogram to a list of offsets to an output array. The
reordering is then done in the following pass.

Finding the root of a subtree for a given pixel contains potentially lengthy bottom-
up tree traversal. The traversal can be optimized by path compression. During the tree
construction, a cache exists, that links tree nodes to the subtree roots. After each pro-
cessed edge, this cache is updated. Because the number of affected pixels is large and
a full update would be costly, only portion of the affected nodes is updated. Thus, the

cache does not remove the bottom-up tree traversal, but can significantly shorten it. On
the other hand, nodes can’t be deleted during the merge process, because the cache can
still link to them. It is necessary to retain a list of such nodes and delete them after the
cache is no longer needed.

As this algorithm is based on union-find, the time complexity is pseudolinear if
bucketsort can be used or O(N logN) (N is the edge count, in case of the images also
the pixel count) otherwise. However there is one important limitation. The node merge
must be done in constant (or potentially logarithmic) time, with a (pseudo)linear (or
linearithmic) postprocessing step.

Compared to other connected component tree algorithms based on union-find, this
original algorithm guarantees that each path from a tree leaf to the root contains at most
one node for each possible value of α. This is important for distance functions such as
the one used by [3] where the α is discrete with known upper bound. This reduces the
traversal cost to an amortized constant time, independent of the tree size. This speeds
up the tree construction at the expense of more complicated tree structure with larger
memory footprint.

3.2 C++ Implementation

The common implementation of a component tree is an array of parent indices. This
representation is very memory efficient, as the tree requires only 4wh bytes of memory.
However this representation allows easily only bottom-up tree traversal. Here we used
more complex representation for tree nodes.

Every node of the tree consists of a link to a parent node, a set of links to children
and a set of leaf pixels. Additionally, the node contains the α value of the edge that
created it. The parent pointer of a root node is NULL. The sets of children and pixels
allow for very simple iteration over the pixels of a connected component. The set of all
pixels of a subtree is a recursive union of pixels of a node and all of its children. The
sets are represented by linked lists:

s t r u c t Node
{

u i n t 8 _ t a l p h a ;
Node ∗ p a r e n t ;
Node ∗ f i r s t _ c h i l d , ∗ l a s t _ c h i l d ,
Node ∗ n e x t _ s i b l i n g , ∗ p r e v _ s i b l i n g ;
Leaf ∗ f i r s t _ l e a f , ∗ l a s t _ l e a f ;

} ;

Children and leaves are represented by doubly linked lists (node removal and list
merge have O(1) complexity).

The leaf structure does not contain any data yet. All leaves are stored in an array
and the position in the array encodes the pixel position.

s t r u c t Leaf
{

Node ∗ p a r e n t ;
Leaf ∗ n e x t _ s i b l i n g , ∗ p r e v _ s i b l i n g ;

} ;

Compared to an array of parent indices, this representation requires more compli-
cated merging of tree nodes, but the resulting tree is as flat as possible so the tree traver-
sal is shorter. Also, tree balancing is not necessary. Figure 1 shows a sample α-tree and
the related linked structure.

0

1

alpha

Parent

Siblings

Parent

Children

Leaves

Siblings

Parent

Children

Leaves

Siblings

Parent

Children

Leaves

Siblings

Parent

Siblings

Parent

Siblings

Parent

Siblings

Parent

Siblings

Fig. 1: Sample tree shape and corresponding simplified set of Nodes, Leaves and con-
necting pointers (for the sake of clarity, only a subset of pointers has been shown).

The maximal height of the tree depends on the datatype of α. In the case of discrete
α it is at most the number of α levels that appear in the input image (i.e., at most 256 in
case of uint8_t). If α is continuous, it is at most wh when the tree degrades to a simple
list. The tree depth of this tree will be always less or equal to the depth of a binary tree
implemented by an array of parent links. The cost is lower cache coherence because of
dynamic allocation and larger node size.

Two practical strategies for path compression cache are possible:

– Root is cached per node. Cache of nodes visited during tree traversal get updated.
This strategy is closer to original Tarjan’s paper [14]. However every node needs
another pointer that is unused after tree construction. When the node size is not a
limiting factor, then this approach has the best results.

– Root is cached per leaf. Only the edge endpoints are updated. Each vertex is usually
visited by four edges, so it is a viable strategy, when the node size should be kept
as low as possible.

Because merging of two nodes includes transfer (and reconnection) of child nodes
and leaf pixels, it hasO(N) complexity. Therefore the actual merge must be deferred to
the postprocessing step at the end of the algorithm. Since the removal of the nodes must
be done in the postprocessing step anyway, it does not introduce new data structure or
steps. The node members for the linked list of children are used for a linked list of nodes
marked for removal.

3.3 Extension to Multi-threading

Although the previous algorithm is effective, it is inherently single threaded. The only
easily parallelizable part is the extraction of edges and their ordering. The tree levels
must be processed sequentially. Even in one level, the parallelization would require
synchronization of a large portion of the algorithm.

It is however possible to subdivide the input image into multiple parts, build partial
trees for them and then merge the resulting trees by a more complicated algorithm that
does not need the edges ordered. When the input image is subdivided into regions as
square as possible, the number of edges between the subtrees is very low compared
to the amount of edges for each subtree. This is the parallelization strategy for other
component trees too [2].

The connecting edges are processed sequentially. For both pixels of the connecting
edge, the path from the leaf to the tree root is traversed and nodes are found. Contrary
to the previous algorithm (where only a subtree root was searched), two tree nodes are
required. First node has α less or equal to the connecting edge and the other has α
greater than the connecting edge. First nodes are detached and merged in the same way
as described by Algorithm 1. Second nodes start two paths to the tree root that need to
be merged in a zipper way.

First has α less or equal to the alpha of the connecting edge. These two nodes will
be merged in the same way as in the Algorithm 2. The other nodes are the direct parents
of the previous nodes, so they have α greater than the connecting edge. These nodes
start two paths to tree roots, that will be merged in a way similar to a zipper. This is
shown by Algorithm 2.

Algorithm 2 starts by creation of a common root node. This greatly simplifies the
zipping process, since the first zip merges the tree roots and subsequent zips merge
only inner paths of the tree. The common root is created by merging of roots of T1
and T2 when their α is equal or by attaching one to the other. In an unlike case, when
all connecting edges have α greater than the roots, a new root node is created and no
zipping is done.

4 Experiments

We present here a set of experiments aiming to assert the performance of the proposed
computation schemes for building the α-tree. We first present the dataset we are relying
on and how we deal with color images, before addressing the respective cases of single
and multi-threading. After comparing with [3], this section ends with a discussion about
the possibility of processing only partially the tree to lower the computational cost.

4.1 Dataset

We have measured the performance of the proposed algorithms on a few different image
datasets. The first is made of the test images of Berkeley segmentation dataset [1] (300
images of size 481 × 321 pixels). The second dataset has been manually built from 8
wallpaper images of size 1920 × 1080 pixels (see Figure 2 for a visual composition).

Algorithm 2 Algorithm for merging of two partial α-trees
Require: Trees T1, T2; Connecting edges E
Ensure: Merged tree T

Create common root node.
for all e ∈ E do

p1, p2 = points(e)
n{1, 2} = findNode(p{1, 2},≤ α(e))
a = findNode(p1, > α(e))
b = findNode(p2, > α(e))
Detach n1, n2 from a, b
n = merge(n1, n2)
if α(a) > α(b) then

swap(a, b)
end if
Attach n to a
while a 6= b do

if α(a) = α(b) then
n = merge(a, b)
a = parent(a)
b = parent(b)

else
a = parent(a)

end if
if α(a) > α(b) then

Detach n from a
swap(a, b)
Attach n to a

end if
end while

end for

Since the segmentation dataset images were too small for a reliable time measurement,
we only present here the results obtained with the second dataset. For extra large im-
ages, we also used a selection of aerial and satellite photos from mapart.com, namely
the 10m SPOT image, Pictometry and DigitalGlobe photos.

Let us mention that images considered here are RGB images, while the definition of
the α-tree has been provided only for grayscale images. We have used here the method
proposed in [3] to apply the α-tree on RGB images, and we measure the local dissim-
ilarity between neighboring pixels with the Chebyshev distance. Let us consider two
colors c = (r, g, b) and c’ = (r′, g′, b′), the Chebyshev distance between c and c′ is
given by max(|r− r′|, |g− g′|, |b− b′|). Since the Chebyshev distance is the L∞ norm
of the absolute difference vector |c − c′|, the range of possible distance values is kept
low and similar to the input range of each color component (i.e. 256 for an 8-bit image).
On the opposite, Manhattan or (worst) Euclidean distance lead to a range respectively
equal to 3× 256 and 2563 possible distance values. Since this range is to be compared
with the various α values, we prefer to set the depth of the α-tree using A = 256 rather
than A = 16, 777, 216 for practical reasons related to computation time. Let us note,

however, that further options might be explored and that extension of α-tree to color
and multivariate images will most probably be a direction of future work.

Fig. 2: A visual composition of the wallpaper dataset showing the 8 wallpaper images
used in our experiments.

4.2 Single-threading

We first evaluate the performance of α-tree computation using a single-thread strategy.
When the α-tree is built, the average build time is 32ms (15-47ms) for the segmentation
dataset and 0.63s (0.44-0.8s) for the wallpapers. According to the program profiling,
almost 50% of the build time is spent on bottom-up tree traversal and on updates of the
links for path compression. These are the inner loops of the algorithm. All other parts
of the algorithm are significantly less time-consuming. The extraction and sorting of
edges takes only 10% of the time.

The detailed graphs in Figure 3 shows the detailed timings, number of nodes and
rough memory requirements. The construction time increases approximately linearly
with the increasing number of the nodes of the tree. The linear dependency is even
more significant for larger images as shown on the right graph of this figure. The timing
for smaller images is more noisy and contain an outlier probably because of differences
in tree structure that turn unimportant with larger input sizes.

4.3 Multi-threading

Performance of parallel tree construction process was measured on a Core i7 2670 CPU
with 8 GB of RAM. This processor contains four hyperthreading cores, so it has eight
virtual cores. The Figure 4 shows the performance of the parallel construction using
multiple threads. The tree construction is mostly memory intensive, so the performance
is limited by the memory throughput and not by the raw computation power.

Since the L3 cache and the memory interface is shared between all four cores on
Core i7, the memory intensive tree traversal could cause the scaling to stop at a different
value than the number of physical or virtual cores. We suspect, that the performance
drop for five and more threads is caused by saturation of the L2 cache throughput.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 400 500 600 700 800 900 1000 1100 1200 1300

ti
m

e
[s

]

nodes (k)

 45

 50

 55

 60

 65

 70

 75

 400 500 600 700 800 900 1000 1100 1200 1300

m
em

o
ry

[M
iB

]

nodes (k)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2000 4000 6000 8000 10000 12000 14000

ti
m

e
[s

]

nodes (k)

Fig. 3: Dependency of tree construction time [s] (left) and the memory consumption
[MiB] (middle) on the number of nodes of the resulting tree, and of tree construction
time [s] for large sized images (right).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8

ti
m

e
[s

]

threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4 4.5 5

ti
m

e
[s

]

threads

Fig. 4: The average tree build time for increasing thread number. Left: Wallpaper
dataset. Right: Satellite+Aerial dataset.

4.4 Comparison with Related Work

In order to assert the efficiency of our algorithm, we compare it with the only available
implementation, i.e. [3] which does not rely on the union-find strategy. While our ap-
proach requires to collect edges and compress paths, the solution proposed in [3] relies
on an insertion process with late merging.

For the sake of comparison, both algorithms have been implemented in Java with the
same data structure and compared using two different hardware environments, respec-
tively based on a standard laptop and on a high-performance cluster. This processing
environment raises some artifacts (and in particular the influence of the Java garbage
collector process) which have been lowered when relevant by computing average times
from 10 executions per image (using a trimmed mean to avoid outliers). The processing
times given in Table 1 measure the time required to compute the α-tree on the Berkeley
Segmentation Dataset (the average time over 300 images is provided), a HD wallpaper
image (1920×1080 pixels), and a larger satellite image (> 20 Mpixels). In this context,
the focus has to be put rather on the relative times of one algorithm w.r.t. the others than
on the absolute time measurement.

From the results given in Table 1, we can see that, while [3] (line 2) improves com-
putation time over the standard union-find strategy (line 1) especially with large images.
In order to achieve a fairer comparison, we have developed several extensions of the
method proposed [3]. First, we have combined its advantages with the ones offered by

the union-find strategy, leading to better results (line 3) on very large images. Second,
we have designed a multithreaded version of [3] to be compared with the multithreaded
version of our algorithm presented in this paper. We can see that this multithreaded ex-
tension of [3] (line 4) naturally better exploits the availability of a parallel machine w.r.t
its singlethreaded counterpart. Finally, our method achieves the best results on small
images for its singlethreaded version (line 5) which is penalized by the garbage collec-
tor process on large images (not observed in the C++ version), and performs best on all
images and environments for its multithreaded version (line 6).

Let us observe however that sometimes the algorithm from [3] and its extensions
may lead to relatively close results to ours. This comes from the fact that these two
approaches are complementary since their optimizations occur at different steps. This
will probably motivate for designing a joint algorithm to achieve further optimization.

Algorithm (1) (2) (3) (4)
Standard implementation with union-find strategy 560 459 158 004 —

Standard implementation of [3] 371 546 7 801 154 595
[3] using union-find strategy 398 556 8 173 77 256

Multithreaded extension of [3] 301 305 4 555 130 286
Proposed singlethreaded version 351 369 11 297 1 098 163
Proposed multithreaded version 229 183 3 327 76 866

Table 1: CPU time comparison with [3] for the different steps of α-tree computation
(in milliseconds): (1) average on 300 Berkeley Images (154 401 pixels) with Intel Core
Duo T9600 @ 2.80GHz; (2) average on 300 Berkeley Images (154 401 pixels) with 12
Intel Xeon L5640 @ 2.27GHz; (3) Wallpaper HD (2 073 600 pixels) with 12 Intel Xeon
L5640 @ 2.27GHz; (4) satellite image (23 403 033 pixels) with 12 Intel Xeon L5640
@ 2.27GHz.

5 Conclusion

Among hierarchical image representations proposed in the scope of mathematical mor-
phology, the recent α-tree model [6] has already shown great interest in image analysis,
e.g. in remote sensing or in video processing. In order for this model to be used in
real-time or near real-time context, some efficient computing schemes are required.

In this paper, we address this problem and propose several strategies to achieve an
efficient computation of the α-tree model. We compare between single-threaded and
multi-threaded architectures and show how the α-tree can be built in a reasonable time.
Some preliminary experimental results are provided to illustrate the benefits from our
algorithms over existing implementations [3].

The main difference of the method presented here from the other connected compo-
nent algorithms is a more complex tree structure that allows to construct the tree with
minimal depth. For certain distance functions, this significantly lowers the traversal
time during the construction. The cost is larger memory consumption of the tree.

Future work will deal with the introduction of more global constraints over the tree,
namely the ω dissimilarity or other elements of constrained connectivity [11]. More-
over, we would like to build upon these first results in order to offer a wide range of
efficient algorithms for computing tree representations, from the max (or min) tree to
more recent hyperconnected trees [7]. We believe this is necessary to disseminate these
models within the image processing and computer vision communities.

References

1. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In: Proceedings of the 8th International Conference on Computer Vision. vol. 2, pp. 416–425.
Vancouver, Canada (July 2001)

2. Matas, P., Dokladalova, E., Akil, M., Georgiev, V., Poupa, M.: Parallel hardware implemen-
tation of connected component tree computation. In: Field Programmable Logic and Appli-
cations (FPL), 2010 International Conference on. pp. 64 –69 (31 2010-sept 2 2010)

3. Merciol, F., Lefèvre, S.: Fast image and video segmentation based on α-tree multiscale rep-
resentation. In: International Conference on Signal Image Technology Internet Systems.
Naples, Italy (November 2012)

4. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transac-
tions on Image Processing 15(11), 3531–3539 (2006)

5. Ouzounis, G., Syrris, V., Gueguen, L., Soille, P.: The switchboard platform for interactive
image information mining. In: Soille, P., Iapaolo, M., Marchetti, P., Datcu, M. (eds.) Proc. of
8th Conference on Image Information Mining. pp. 26–30. ESA-EUSC-JRC (October 2012)

6. Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: In-
ternational Symposium on Mathematical Morphology. pp. 108–119. Verbania-Intra, Italy
(2011)

7. Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Hyperconnections and hierarchical representa-
tions for grayscale and multiband image processing. IEEE Transactions on Image Processing
21(1), 14–27 (January 2012)

8. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image pro-
cessing, segmentation, and information retrieval. IEEE Transactions on Image Processing
9(4), 561–576 (2000)

9. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and
sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)

10. Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R. (ed.) Mathematical Mor-
phology in Image Processing", chap. 13, pp. 483–523. Marcel Dekker, New York (1993)

11. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (July
2008)

12. Soille, P., Grazzini, J.: Constrained connectivity and transition regions. In: International
Symposium on Mathematical Morphology. pp. 59–69. Groningen, The Netherlands (August
2009)

13. Soille, P., Najman, L.: On morphological hierarchical representations for image processing
and spatial data clustering. Lecture Notes in Computer Science 7346, 43–67 (2012)

14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22,
215–225 (1975)

