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Abstract –In a reaction-diffusion system, fluctuations in both diffusion and reaction events, have
important effects on the steady-state statistics of the system. Here, we argue through extensive
lattice simulations, mean-field type arguments, and the Doi-Peliti formalism that the collision
duration statistics – i.e., the time two particles stay together in a lattice site – plays a leading role
in determining the steady state of the system. We obtain approximate expressions for the average
densities of the chemical species and for the critical diffusion coefficient required to sustain the
reaction.

Reaction-diffusion systems are fundamental in model-
ing nonequilibrium processes arisen naturally in chemistry,
physics, biology and ecology. They also provide a concep-
tual basis for many phenomena such as pattern forma-
tion and wave propagation [1]. A reaction-diffusion sys-
tem is typically studied from the perspective of a set of
partial differential equations in which fluctuations in par-
ticle diffusion and reactions are ignored. Although such
an approach is undoubtedly applicable to a wide range of
systems, it has also been realized that when the concen-
trations of the reacting agents are low, fluctuations can
render the deterministic classical picture qualitatively in-
correct [2–6]. To incorporate these fluctuations into the
analysis, a number of popular methods have been em-
ployed that include van Kampen’s system size expansion
[7], Kramers-Moyal approximation scheme [7], and the
Doi-Peliti (DP) field-theoretic method [3]. In addition,
heuristic approaches have also been successfully applied
to study the A+B → C reaction-diffusion system [8–10].
Among these theoretical tools, approximations as the ones
involved in the van Kampen and Kramers-Moyal method
are adequate when the densities of the reacting agents
are not too small [4], while the DP method has been em-
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ployed to study extensively the dynamics of extinction in
reaction-diffusion systems [3, 5, 6, 12, 14], and to some de-
gree the corresponding steady state values [11]. In this pa-
per, we focus on how fluctuations modify the steady-state
picture of the underlying reaction-diffusion system, which
is currently under intense investigation [13,16–21]. Specif-
ically, we contribute to the subject by investigating numer-
ically and analytically how fluctuations affect the steady
state of a chemical reaction with an absorbing phase. We
take as example of such type of chemical reaction a well-
known reaction-diffusion model, the Susceptible-Infected-
Recovered-Susceptible (SIRS) epidemic model [15]. We
begin by introducing the SIRS model and we argue quali-
tatively why slow diffusion will drive the disease to extinc-
tion in the low density limit of the SIRS model. We then
perform extensive lattice simulations in two dimensions to
elucidate the relationships between steady-state densities,
the diffusion constant, and the infection rate. To gain fur-
ther physical insight into the behavior of the system, we
study analytically how the reaction rate is modified by i)
analysing the collision duration of a pair of particles, and
ii) by employing an approximation scheme based on the
DP method. We show that both methods lead to quali-
tatively good agreements with our numerical results. Our
findings led us to speculate that the fluctuations in colli-
sion duration are the most relevant mechanism to consider
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in order to predict the steady-state behavior of a popula-
tion of reacting chemical species diffusing in space.

SIRS model. – We take as example of chemical re-
action the SIRS model, which is a standard model for the
spreading of an infectious disease. In this model, the total
number of agents N is conserved and there are three types
of individuals: susceptible (S), infected (I), and recovered
(R). In terms of chemical reactions, the dynamics of the
system can be described by the following scheme:

S + I
α
→ 2I, I

β
→ R, R

γ
→ S , (1)

where α, β, and γ are the reaction rates. In the mean-
field limit, i.e, when spatial heterogeneity is neglected,
the above chemical reaction scheme is soluble and exhibits
two steady states or phases, the so-called absorbing phase,
characterized by the extinction of types I and R, and the
active phase, where all three types co-exist. In the active
phase, the steady-state density of the susceptible individ-
uals is

ρS(t→ ∞) = ρ∗S =
β

α
, (2)

while the densities for the infected and recovered are
ρ∗I = [γ/(γ + β)][1 − ρ∗S ] and ρ∗R = [β/(γ + β)][1 − ρ∗S ]
respectively, with

∑

k={S,I,R} ρ
∗
k = ρ0 and ρ0 being the

overall density of individuals in the system. The absorb-
ing phase is then defined by Eq. (2) with ρS/ρ0 = 1. Let
us now go a bit further and imagine that particles move
in a two-dimensional space, with particle motion being
Brownian and characterized by a diffusion coefficient D.
For pedagogical reasons, let us look at the inadequate (but
often useful) conventional reaction-diffusion equations em-
ployed to describe these systems [15]:

∂tρS = D∇2ρS − αρIρS + γρR (3a)

∂tρI = D∇2ρI + αρIρS − βρI (3b)

∂tρR = D∇2ρR + βρI − γρR . (3c)

Note that by performing linear stability analysis of Eq. (3)
around the absorbing phase (i.e., by setting ρS ≈ ρ0 +
ǫeλt+ix·k, etc), we find the dispersion relation λ = −Dk2+
(ρ0α − β). This means that even though we have added
the diffusion terms, the stability of the absorbing phase
does not depend on the diffusion coefficient D. This is not
what is observed in our simulations, and constitutes one
example of the well known phenomenon that fluctuations
can make predictions from conventional reaction-diffusion
equations qualitatively incorrect [2–6].

Intuitive argument. – We now present an intuitive
argument, along the lines of [2], to illustrate why the dif-
fusion constant magnitude should have a drastic effect on
determining the phase of the system: At the low density
limit and close to disease extinction, the infected individ-
uals can be assumed to be far apart as their numbers are
small. Each infected individual has a life time in the or-
der of 1/β as they will recover from the disease after this

Fig. 1: (color online) An infected agent can roam around an
area of D/β before recovering. If the density is so low that
there is not even one susceptible agent inside this area, then
the epidermic will die out irrespective of how high the infection
rate is.

time. Within such a time frame, the infected agent can
roam around an area of size D/β (see Fig. 1), and within
this area, the number of susceptible agents is ρ0D/β where
we have assumed that ρs ∼ ρ0 as we are close to disease
extinction. For the disease to persist at the steady state,
each infected individual has to infect a susceptible indi-
vidual before recovering. Therefore, even if the infection
rate α is infinite, ρ0D/β has to be of order one. In other
words, if ρ0 < β/D, one expects that the disease will go
extinct irrespective of how high the infection rate α is.
This is indeed qualitatively verified by our lattice simula-
tions (Fig. 2) and by our analytical argument (Eq. (8)).
Of course, this simple argument is not enough to eluci-
date the full phase diagram of the system and provides,
as we show below, an oversimplified picture of the role of
D. To have a more complete understanding of the phase
diagram, we will first rely on lattice simulations.

Lattice model simulations. – In our lattice model,
diffusion is modelled as random jumps on a 2D square lat-
tice of linear size L . The jumping rate is denoted by µ,
and hence the diffusion coefficient D is D = µ△x2/(4△t).
We allow for multiple agents on the same lattice site. The
only interaction that occurs among agents in this model is
the infection event between an infected and a susceptible
agent that occupy the same lattice site. Such an event
is characterized by the transition rate α as indicated in
Eq. (1). The dynamics of such system of reacting diffus-
ing agents can be rigorously described by a master equa-
tion as the one given by Eq. (4), where we have defined
ρ̂(x, t) = {ρS(x), ρI(x), ρR(x)}, the sum

∑

x,x′ runs over
all first pairs of nearest neighbors, and

∑

x
over all lattice

sites in the system. Eq. (4) describes the evolution of the
probability of finding the system in a given configuration
ρ̂(x) at time t. In addition, the equation always deals
with an integer number of particles per node. Transitions,
either involving diffusion or reaction of particles, are dis-
crete events where only one particle changes its position
or internal state.

For simplicity, we have set △x = △t = 1 in our simula-
tions, which means that α, β, and γ represent the proba-
bility per time step that the corresponding reaction occurs.
Simulations have been performed according to the follow-
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∂tP (ρ̂(x), t) = D
∑

φ={S,I,R}

∑

{x,x′}

[(ρφ(x) + 1)P (ρφ(x) + 1, ρφ(x
′)− 1) (4)

−ρφ(x)P (ρ̂(x)) + (ρφ(x
′) + 1)P (ρφ(x) − 1, ρφ(x

′) + 1)− ρφ(x
′)P (ρ̂(x))]

+
∑

x

[α [(ρS(x) + 1)(ρI(x)− 1)P (ρS(x) + 1, ρI(x) − 1)− ρS(x)ρI(x)P (ρ̂(x))]

+ β [(ρI(x) + 1)P (ρI(x) + 1, ρR(x) − 1)− ρI(x)P (ρ̂(x))]

+ γ [(ρR(x) + 1)P (ρS(x)− 1, ρR(x) + 1)− ρR(x)P (ρ̂(x))]]

0.01 0.1 1
0.001

0.01

0.1

1

simulation
DP approach
CD approach
Classical MF

active phase

absorbing phase

α

4D=µ

Fig. 2: (color online) Phase diagram. The curve separates the
active and the absorbing phase. For a given reaction rate α,
there is critical diffusion coefficient D above which the active
phase exists. Parameters L = 256, ρ0 = 0.1, and β = γ =
5× 10−4.

ing scheme. At every time step, we go first through all
particles and with probability µ we move the particle to
one of the nearest neighbor lattice site. Secondly, we go
through all lattice sites where more than one particle is lo-
cated and evaluate all possible pairs S-I. With probability
α the corresponding reaction is performed. Thirdly, we go
through all particles I and R and evaluate the transitions
I → R and R→ S with probabilities β and γ, respectively.
These three tasks are performed at every time step.

Figs 2-4 show the results of our lattice model simula-
tions. It is evident that the steady-state of the system
depends critically on D. We will now attempt to analyze
the model analytically with the collision duration (CD)
approach.

The collision duration (CD) approach. – In this
section, we expand on our previous intuitive argument in
order to calculate the effective infection rate based on a
physical picture of the microscopic dynamics. We first
consider the typical time required for an infected agent
(I) to encounter a susceptible agent (S), which for dif-
fusional agents can be approximated as ∝ (ρSµ)

−1. We

0.001 0.01 0.1 1
α

0.01

0.1

1

ρ S/ρ
0 µ=0.01 (sim.)

µ=0.02 (sim.)
µ=0.05 (sim.)
µ=0.1 (sim.)
µ=0.5 (sim.)
µ=1 (sim.)
CD approach
DP approach

Fig. 3: (color online) Steady state value ρS/ρ0 as function of
reaction rate α for various mobility parameters µ. Parameters
L = 256, ρ0 = 0.1, and β = γ = 5× 10−4.

also know that every time that two agents meet at a lat-
tice site, the probability that the reaction occurs in a time
step is given by α̃ = α∆t. Furthermore, the probability
that the particle stays at the same lattice site during ∆t is
θ = 1− µ̃, with µ̃ = µ∆t. Thus, the probability pc(n) that
it remains for n time steps is given by pc(n) = θn(1 − θ).
On the other hand, the probability pr(n) that a reaction
occurs during the n time steps is pr(n) = 1− (1− α̃)n+1.
In the limit of ∆t → 0, pr(ω) = 1 − exp(−αω) and
pc(ω) = µ exp(−µω)dω, which means that 〈ω〉 scales with
µ as 〈ω〉 = (µ)−ξ, with ξ = 1. Then, the probability ψ
that a reaction occurs during an average collision event is
given by:

ψ =

∞
∑

n=0

θn(1− θ)
[

1− (1 − α̃)n+1
]

(5)

≈

∫ ∞

0

dω µe−µω
(

1− e−αω
)

=
α

α+ µ
,

where we have used the limit ∆t→ 0 to approximate the
sum. We stress that essentially we are using the residence
time distribution to estimate the probability that an en-
counter results in a successful reaction. This time is noth-
ing else than the collision duration. Moreover, simulations
with reactive self-propelled disks (SPD) moving off-lattice
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DP approach

Fig. 4: (color online) Steady state value ρS/ρ0 as function of
the mobility parameter µ for various reaction rate values α.
Parameters L = 256, ρ0 = 0.1, and β = γ = 5× 10−4.

can be accurately described by using an scheme similar to
the one presented here, where pc is explicitly the collision
duration distribution which can be empirically measured
from the simulations. The collision duration in SPD sim-
ulations was found to be exponentially distributed as our
estimate for pc [23]. Putting together these results, we can
express the rate equation for ρS as

∂tρS = −ψµρSρI + γρR . (6)

This in turn suggests that αeff = µψ(α, µ). Inserting this
into Eq. (2), we obtain:

ρ∗S =
β

α

(

1 +
α

µ

)

. (7)

Figs. 3 and 4 compare Eq. (7) with simulations data and
shows that the CD approach provides a reasonable esti-
mate of the average density of the chemical species with
the correct functional dependency with α and µ. From
Eq. (7), it is possible to obtain the critical reaction rate
αc as function of µ for a given set of parameters β, γ and
ρ0:

αc =
β

ρ0 − [β/µ]
. (8)

Fig. 2 shows that the CD approach even allows us to
(roughly) estimate the boundary between the active and
absorbing phase. It is worth mentioning that the CD ap-
proach provides a correction to the classical mean-field at
any spatial dimension.

Doi-Peliti Formalism. – In the previous section,
we have highlighted the importance of the temporal se-
quence of pairwise interactions between an infected and
a susceptible individuals. Here, we will employ the well
known perturbative DP method to perform calculations
on the steady-state densities by focusing again on the
temporal sequence of binary interactions. Through the

Fig. 5: (a) The propagators for S and I are denoted by GS

and GI respectively. (b) The diagrams depict the vertices ap-
pearing in the action. (c) The series of sequential-one-loop
diagrams captured in the calculations of αeff .

DP formalism we aim to write the evolution of P (ρ̂(x), t)
given by Eq. (4) as a Schrödinger-like equation, and then
to evaluate average values by making use of a diagram-
matic expansion of the resulting path integral formulation.
The details behind this complex procedure are well docu-
mented in the literature, and we refer the interested reader
to [3]. Here, we only outline the main steps to provide, for
the non-expert reader, a rough idea about the procedure.
The first step involves the representation in Fock space of
Eq. (4) that leads to |φ(t)〉 =

∑

ρ̂(x) P (ρ̂(x), t)|ρ̂(x)〉. The

evolution of |φ(t)〉 is given by dt|φ(t)〉
dt

= −Ĥ|φ(t)〉, whose

formal solution is |φ(t)〉 = exp(−Ĥt)|φ(0)〉, with |φ(0)〉
representing the initial condition. The ‘Hamiltonian’ Ĥ is
nothing other than the RHS of Eq. (4) expressed in term
of local raising and lowering operators for the different
types individuals, which we denote as ŝ†, î†, r̂† and ŝ, î, r̂,
respectively. Since the diffusive terms are standard [3], we
focus on the chemical reaction terms. The reaction I → R
contributes the term

[

î†î− r̂† î
]

to Ĥ, R → S the term
[

r̂†r̂ − ŝ†r̂
]

, and S + I → 2I the terms
[

ŝ†î†ŝ̂i− î†î† ŝ̂i
]

.

Given Ĥ , one can employ the Trotter formula together
with the coherent states representation to relate the tem-
poral evolution of the Schrödinger equation to a field the-
ory calculation. A further customary simplification is the
use of the so-called Doi-shift: s† = 1+ s∗, i† = 1+ i∗, and
r† = 1 + r∗ in the action Ŝ, whose final form is shown in
Eq. (9).
In Eq. (9), ρS0

(x), ρI0(x), ρR0
(x) correspond to the ini-

tial numbers of agents per lattice site for the correspond-
ing types. To calculate the evolution of the density of the
ω-type where ω = {s, i, r}, we can employ the following
formula:

ρω(x, t) =

∫

D{φ, φ∗}ω e−Ŝ({φ,φ∗};0,t)

∫

D{φ, φ∗}e−Ŝ({φ,φ∗};0,t)
, (10)
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Ŝ({φ, φ∗}; 0, t) =

∫ t

0

dt′
∫

ddx
[

s∗(∂t −D∇2)s+ i∗(∂t −D∇2 + β)i + r∗(∂t −D∇2 + γ)r (9)

−γs∗r − βr∗i+ α(s∗si− i∗si+ s∗i∗si− i∗i∗si)− (ρS0
s∗ + ρI0 i

∗ + ρR0
r∗)δ(t)] .

where
∫

D{φ, φ∗} . . . represents functional integrations
over the fields {s, i, r, s∗, i∗, r∗} and ω has to be replaced
by s, i or r. Note that if we ignore the quartic terms in
the action in Eq. (9), the above field theory reduces—by

finding the extrema of Ŝ, i.e., δŜ
δs∗

= δŜ
δi∗

= δŜ
δr∗

= 0—to the
“classical” reaction-diffusion equations shown in Eq. (3).
In physical terms, the quartic terms in the action accounts
for the fluctuations inherent in the diffusion and infection
events that are ignored by the “classical” equations [3].
In principle, the steady state configuration of the system

can now be obtained by evaluating the functional integrals
in Eq. (10). In practice, such a calculation is unfortunately
intractable and thus approximation schemes are needed.
Motivated by the results of the previous section, we will
employ the Feynman diagram method to keep track of
the temporal sequence of pairwise interactions between an
infected and a susceptible individuals. In this graphical
method (Fig. 5), the propagators for the three types of
agents are denoted by Gω(k, t). For instance,

GI(k, t) = Θ(t)e−(ǫ(k)+β)t , (11)

where Θ(t) is the Heaviside function, with Θ(t) = 1 for
t ≥ 0 and 0 otherwise, and

ǫ(k) = 4D

2
∑

j=1

sin2(kj/2) (12)

represents the dispersion relation for the diffusion oper-
ator on a 2D square lattice [6, 22]. Interactions between
the agents are then captured by the vertices depicted in
Fig. 5(b) that connect the propagators. An exact calcula-
tions of Eq. (10) amounts to summing all of the relevant
diagrams. As mentioned before, motivated by our colli-
sion duration analysis, we will only focus on the sequen-
tial pairwise interactions by selectively summing the series
of all sequential-one-loop diagrams depicted in Fig. 5(c).
Due to the choice of the diagrams considered, the effective
infection rate can be expressed as a power series in α:

αeff = α+(w2 −w1)α
2 +(w2

1 − 2w1w2+w2
2)α

3 +O(α4) ,
(13)

where w1 denotes the contribution from the second dia-
gram in Fig. 5(c) and w2 denotes the contribution from
the third diagram in Fig. 5(c). For instance,

w1 =
2

(2π)2

∫ ∞

0

dt

∫

Λ

d2kGS(k, t)GI(−k, t)

=
2

(2π)2

∫

Λ

d2k
1

2ǫ(k) + β
, (14)

where Λ denotes the first Brillouin zone: ] − π, π]2 [22].
Note that due to the presence of the decay rate β, the
above loop integral is both infrared and ultraviolet con-
vergent and thus w1 can be easily computed numerically.
The same applies to w2. Since the sum in Eq. 13 is a sum
of a geometric series, αeff can be rewritten as

αeff =
α

1 + α(w1 − w2)
. (15)

Now, due to the presence of the diffusion constant in ǫ(k)
(see Eq. (12)), αeff also becomes D dependent. In other
words, distinct from the mean-field prediction, the critical
infection rate that separates the absorbing and active re-
gions depends on the diffusion coefficient D. Substituting
αeff from Eq. (15) into Eq. (2), we obtain that:

ρ∗S =
β

α
(1 + α(w1 − w2)) . (16)

Furthermore, the phase boundary separating the absorb-
ing and active phases can be obtained by estimating
ρS/ρ0 = 1, from which we find that the critical reaction
rate:

αc =
β

ρ0 − β(w1 − w2)
. (17)

Comparing Eqs. (7) and (16), and (8) and (17), it becomes
evident that both methods, i.e., the CD and DP approach,
lead to the same functional prediction, with (w1−w2) be-
ing approximated by µ−1 in the CD approach. In the
limit of infinitely fast diffusing particles, both approaches
reduce, as expected, to the mean-field prediction, Eq. (2).
Notice that the DP equations are derived for multiple oc-
cupancy at each lattice site. Given the low density regime
we are considering here, we do not think that the corre-
sponding single occupancy version would affect our results.
This is also supported by the fact that a similar macro-
scopic behavior has been observed in recent simulations
with volume exclusion [23].
Fig. 2 shows good quantitative agreement between the

phase diagram α-D obtained in simulations and by imple-
menting the CD and DP formalisms. Figs. 3–4 show that
the DP method also qualitatively agrees with the numeri-
cal simulations, and even provides a quantitative descrip-
tion for small values of the α and D. The (approximated)
DP method seems to deviate from numerical results as α
and D become large (see Figs. 3–4), while the CD approx-
imation provides a more accurate description. In short,
the CD method provides a better description of the sys-
tem dynamics far away from the critical point (Figs. 3
and 4), while the (approximated) DP approach predicts
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more accurately the behavior and position of the critical
point (Fig. 2).

Concluding remarks. – A chemical reaction among
moving reacting particles (on a lattice) can be exactly de-
scribed by a master equation as Eq. (4). Unfortunately,
the direct integration of such equations is typically infea-
sible. Given the complexity of the problem, neglecting
fluctuations seems to be the intuitive way to tackle the
problem. However, we have seen that a classical reaction
diffusion approach, as shown in Eq. (3), provides a qual-
itative incorrect description of the problem close to, and
far away from, the critical point. In order to obtain a
physically accurate description of the dynamics, fluctua-
tions have to be, somehow, incorporated in the theory.
One option is to use the machinery of field theory through
the DP formalism. Such a formalism is able to account
for all kind of fluctuations occurring in the system that
include those resulting from the re-encounters of the in-
fected and susceptible agents as well as their spatial anti-
correlation. There is, however, a practical problem that
ultimately represents a drawback of the DP approach. The
DP formalism provides an exact and reliable description of
the problem as long as we are able to sum all the involved
Feynman’s diagrams, but this is in most cases an unfeasi-
ble task. Moreover, we cannot systematically improve our
description since we cannot know which diagrams contain
the leading contribution. As a result, we are forced to
use our intuition to select a collection of diagrams with
the hope of picking up the most relevant ones. Figs 2-
4 show that the diagrams we have selected are enough
to provide a correct qualitative description of the popula-
tion dynamics, with the critical point and the steady state
population values exhibiting the correct functional depen-
dency with particle diffusion. Nevertheless, the quantita-
tive mismatch is evident, particularly far away from the
critical point. This can be due to the uncontrolled ap-
proximation scheme we employ, i.e., the set of diagrams
we chose to consider. On the other hand, with the colli-
sion duration approach, we focused on the effect of local,
mobility-induced fluctuations on the population dynamics
and showed that this simple approach provides an excel-
lent semi-quantitative description of the long term system
behavior, with the critical point and asymptotic popula-
tion values exhibiting the correct functional dependency
with particle diffusion. The CD approach provides cor-
rections to the classical mean-field at any dimension. Our
findings strongly suggest that collision duration fluctua-
tions play a leading role in reaction-diffusion models of
population dynamics.
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