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MOTIONS IN LIQUID-VAPOUR INTERFACES

BY USING A CONTINUOUS MECHANICAL MODEL

HENRI GOUIN
⋆

ABSTRACT. By using a limit analysis for the motion equations of viscous fluid endowed

with internal capillarity, we are able to propose a dynamical expression for the surface ten-

sion of moving liquid-vapour interfaces without any phenomenological assumption. The

proposed relation extends the static case, yields the Laplace formula in cases of mass trans-

fer across interfacial layers and allows to take the second coefficient of viscosity of com-

pressible fluids into account. We generalize the Maxwell rule in dynamics and directly

explain the Marangoni effect.

Dedicated to Professor Giuseppe Grioli on the occasion of his 100th birthday

1. Introduction

Far from the critical point of a fluid, experimental studies and spectrography measure-

ments point out that liquid-vapour interfaces have a thickness of nanometer range and,

in the vicinity of the layer, vapour and liquid are homogeneous [1, 2, 3, 4]. To model

liquid-vapour interfaces, the kinetic theory of gases proposes fluid equations of state as,

for example, van der Waals’ [5, 6]. These equations are correct, more precisely they sat-

isfy the Maxwell rule associated with the isothermal change of phases [7]. Nonetheless,

they present two main defaults:

For fluid densities between vapour and liquid, the pressure can be negative, but simple

experiments reveal the existence of pressures corresponding to traction in the fluid. In the

domain between vapour and liquid, the internal energy cannot be represented as a convex

surface of the density and entropy; this fact seems in contradiction with the existence of

two-phase matter states in stable equilibria [8, 9].

To remove these disadvantages, the thermodynamics usually replaces the non-convex part

of the surface energy by a plane domain; but the fluid is not any more a continuum: the

interfacial domain is represented by a material surface without thickness. Numerous stud-

ies related as well to fluid mechanics as to thermodynamics interpret interfaces as surfaces

of discontinuity between two media: a liquid-vapour interface is usually schematized by a

material surface endowed with a superficial energy. This surface behaves as an autonomous

one [10, 11, 12, 13]. But, this representation is not able to study the dynamical behavior

of the interface more precisely than a surface of discontinuity and forgets its internal struc-

ture.

http://http://dx.doi.org/10.1478/AAPP.91S1A10
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2 H. GOUIN

In equilibrium case, it is possible to correct the disadvantages by a convenient modifica-

tion of the stress tensor; in the capillary layer its expression is anisotropic; the energy of

the continuous medium must be modified. This internal capillarity model is a dynamical

theory relevant of second gradient theory which came from van der Waals and Korteweg

[14, 15] and was revisited by Cahn and Hilliard [16]. The model is compatible with the

second law of thermodynamics [17]. The representation of the internal energy as a func-

tion of the entropy, density and density gradient allows to identify the isothermal case with

a model deduced from molecular theories [18, 19]. The model is analog to the classical

Landau-Ginzburg theory for second order transition [20]. Far from the critical point the

model is qualitative. Nevertheless, it is a lot more advantageous than the model of New-

tonian viscous fluids which is not able to take account of layers with a strong gradient of

density. Because we do not consider bubbles and droplets of radius of some nanometers,

the mean surface of interface is of large dimension with respect to its interfacial thickness

[21]; it is necessary to take account of the different orders of lengths of our problem: the

interfacial layer is of nanometer range, but the radii of curvature of interfaces are micro-

scopic. The surface tension is obtained thanks to the integration across the capillary layer;

it is not necessary uniform along the interface and depends on the dynamical distributions

of density and temperature. These distributions take account of motion equations with a

Navier-Stokes-like viscosity [22]. At a given temperature, the viscosity coefficients µ and

η depend on the density (µ is the dynamic viscosity, and η is the second coefficient or shear

coefficient of viscosity). For an incompressible fluid, the term involving η drops out from

the equation; obviously it is not the case through fluid interfaces. We do not assume any

special property on the viscosity coefficients which may strongly vary through the interface

but they are bounded. The dissipative function must have a bounded integral through the

capillary layer and the tangential components of the velocity field are continuous through

the layer [23]. When the temperature distribution is non-uniform along the interface, the

surface tension gradients create a motion along the capillary layer: this is the so-called

Maragoni’s effect [12]. Thanks to a limit analysis taking account of the length ranges of

the interface, we are able to model the Marangoni effect along the interfaces. No special

energy of interface is necessary. When the mass flow across interface is non-zero, we get

a dynamical expression of the Laplace formula.

The proposed method is completely different from the classical calculation founded on

balance equations through a surface of discontinuity where the variation of density appears

only with a jump through the interface and when it is necessary to define physical surface

quantities as mass or entropy per unit of area. Our study is related to interfaces with simple

motions. The calculations are performed in the capillary layer as in a three-dimensional

continuous medium; then, we consider the limit case when the interfacial thickness goes

towards zero and consequently all the bounded expressions have a null integral through the

layer [24]. We assume that the fluid velocity is bounded together with its partial derivatives

with respect to the coordinates tangent to the interface.

The model of internal capillarity allows us to obtain a better understanding of dynamical

liquid-vapour interfaces and answer to the question: is the fluid at the interface rigid or

moving [25]? The fluid behavior is different from the classical thermodynamics of New-

tonian fluids: a supplementary term similar to a heat flux one appears in the equation of

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)



MOTIONS IN LIQUID-VAPOUR INTERFACES 3

energy [26, 27]. An integral invariant for motions compatible with the interface consists in

a generalization of the Maxwell rule for isothermal liquid-vapour phase transition.

In Section 2, we resume the properties of capillary fluids and we develop the fluid

motions in liquid-vapour interfaces in Sections 3 to 5. A concluding remark focuses on the

second coefficient of viscosity. For the sake of simplicity, all intermediate calculations are

proposed in Appendices as well as some notations.

2. Equations of motions of viscous fluid endowed with internal capillarity

Recall the main results of a fluid with internal capillarity [18, 28]. We introduce only

the specific free energy as a function of the density ρ, temperature T and gradρ

ε = ε (ρ, T, β) with β = (grad ρ)2 .

The specific free energy ε characterizes together fluid properties of compressibility and

molecular capillarity of liquid-vapour interfaces. In accordance with the gas kinetic the-

ory, λ = 2ρ ε′β(ρ, β) is assumed to be constant at a given temperature
(

λ = a κ2γ/(5m2),
where m is the molecular mass of the fluid, a the internal pressure, κ the molecular diam-

eter and γ a factor associated with molecular potentials of interaction
)

[5, 19], and

ρ ε = ρα(ρ) +
λ

2
(grad ρ)2,

where the term (λ/2) (grad ρ)2 is added to the volume free energy ρα(ρ) of a compress-

ible fluid. Specific free energy α enables to continuously connect liquid and vapour bulks

such that the pressure P (ρ) = ρ2α′

ρ(ρ) is similar to van der Waals’ pressure. Thanks to

experimental data, the λ value is λ = 1.17× 10−5 c.g.s. for water at 20o Celsius [29]. The

equation of motion is

ρ a = div (σ + σv)− ρ grad Ω , (1)

where a is the acceleration vector, Ω the body force potential and σ the generalization of

the stress tensor:

σ = −p1− λ grad ρ ⊗ grad ρ, (2)

with p = ρ2ε′ρ − ρ div (λ grad ρ); the viscous stress tensor is [20]

σv = η (tr D)1+ 2µ D,

where D denotes the velocity strain tensor. Equation (1) can be written in the form

ρ a+ gradP + ρ gradω − divσv = 0, (3)

where ω = Ω− λ∆ρ. The equation of motion must be completed by the balance of mass

∂ρ

∂t
+ div (ρu) = 0, (4)

where u is the velocity vector. Let us note that the equation of energy can be written in the

form [26, 27]

∂e

∂t
+ div [(e 1− σ − σv)u]−div

(

λ
dρ

dt
gradρ

)

+ div q − r − ρ
∂Ω

∂t
= 0,

where e = ρ
(

1
2

u2 + ε+Ω
)

, q is the heat flux vector and r the heat supply, such that the

model is compatible with the second law of thermodynamics [17].

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)



4 H. GOUIN

3. The dynamical surface tension

Now, for the sake of simplicity, we neglect the body forces.

3.1. Case of a planar interface at equilibrium. The eigenvalues of the stress tensor in

internal capillarity are deduced from Eq. (2):

λ1 = −p+ λ (gradρ)
2

is the eigenvalue associated with the plane orthogonal to grad ρ,

λ2 = −p is the eigenvalue associated with the direction of gradρ.

The classical notations are presented in Appendix 1; in the system of coordinates associated

with the interface, the stress tensor can be written

σ =





λ1 0 0
0 λ1 0
0 0 λ2



 .

The equation of equilibrium of the planar interface is deduced from Eq. (1) and by neglect-

ing the body forces, we get

λ2 = −Po,

where Po denotes the common pressure in the vapour and liquid bulks. Per unit of length,

the line force exerted on the edge of the interface is

F =

∫ xl

3

xv
3

λ1h3
dx

3
= −Po h+

∫ xl

3

xv
3

λ (gradρ)
2
h

3
dx

3
,

where the subscript 3 denotes the normal component to the density surfaces of the capillary

layer, h denotes the interface thickness and l, v indicate the liquid and vapour bulks. In

the limit analysis of thin interfaces, the term Po h is negligible. Let us denotes H =
∫ xl

3

xv
3

λ (grad ρ)
2
h

3
dx

3
. The line force H exerted per unit of length corresponds to the

surface tension.

3.2. The dynamical surface tension value. The notations are presented in Appendices 1

and 2. The equation of motion (3) is separated into normal and tangential components. In

the orthogonal coordinate system presented in appendix 1,

ρ atg + gradtg P = ρ λ gradtg ∆ρ+ gradtg (η divu) + 2 div (µD)tg , (5)

ρ a
3
+

1

h
3

∂P

∂x
3

= ρ λ
1

h
3

∂∆ρ

∂x
3

+
1

h
3

∂ (η divu)

∂x
3

+ 2div (µD)3 , (6)

where the subscript tg denotes the tangential component to the density surfaces of the cap-

illary layer. The normal vector e
3

corresponds to the direction of the increasing densities.

An integration of Eq. (6) across the interface yields
∫ x

3

xv
3

ρ a
3
h

3
dx

3
+

∫ x
3

xv
3

∂P

∂x
3

dx
3
=

∫ x
3

xv
3

ρ λ
∂∆ρ

∂x
3

dx
3

+

∫ x
3

xv
3

∂ (η divu)

∂x
3

dx
3
+ 2

∫ x
3

xv
3

div (µD)3 h3
dx

3
.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)
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The fluid is assumed to cross the capillary layer. Taking account of Eq. (29) and Eq. (33)

proved in Appendix 2, we get,

P−Pv+Q2

(

1

ρ
− 1

ρv

)

= λρ∆ρ−λ

∫ x
3

xv
3

∆ρ
∂ρ

∂x
3

dx
3
+[(η + 2µ)D

33
]
x
3

xv
3

− 2

Rm

[η u
3
]
x
3

xv
3

,

where Q is the mass flow across the capillary layer, Rm the mean radius of curvature of

the surfaces of equal density oriented following e
3

and [ ] denotes the difference of values

through the interface. Taking account of Eqs. (22,25,26,27), we obtain

P − Pv +Q2

(

1

ρ
− 1

ρv

)

= λρ∆ρ+ λ

∫ x
3

xv
3

2

Rm

1

h2
3

(

∂ρ

∂x
3

)2

h
3
dx

3

−λ

2

[

1

h2
3

(

∂ρ

∂x
3

)2
]x

3

xv
3

−Q

[

(η + 2µ)
1

h
3

1

ρ2
∂ρ

∂x
3

]x
3

xv
3

− 2

Rm

[ηu
3
]
x
3

xv
3

,

where u
3

is the third component of u. The radius of curvatureRm is assumed to be constant

across the capillary layer (see Appendix 1); then,

P − Pv +Q2

(

1

ρ
− 1

ρv

)

= λ

{

ρ∆ρ− 1

2
(gradρ)

2

}

+
2λ

Rm

∫ x
3

xv
3

(grad ρ)
2
h

3
dx

3

−Q

{

[

(η + 2µ)
e

3
.gradρ

ρ2

]x
3

xv
3

+
2

Rm

[

η

ρ

]x
3

xv
3

}

. (7)

The terms λ
{

ρ∆ρ− 1
2
(gradρ)

2
}

and Q

{

[

(η + 2µ) (e
3
.grad ρ) /ρ2

]xl

3

xv
3

}

are null in the

liquid and vapour bulks. Consequently, we get:

Pl − Pv = Q2

(

1

ρv
− 1

ρl

)

+
2K

Rm

, (8)

where

K = H −Q

(

ηl
ρl

− ηv
ρv

)

with H = λ

∫ x
3

xv
3

(grad ρ)2 h
3
dx

3
. (9)

Equation (8) extends the Laplace formula which is obtained when Q = 0. The term H
can be interpreted as the dynamical surface tension of an interface crossed by a viscous

fluid and K as the viscous dynamical surface tension. The surface tension depends on the

dynamical distribution of the density through the interface and on the volume viscosity η,

only. For a plane interface,

Pl − Pv = Q2

(

1

ρv
− 1

ρl

)

. (10)

Equation (10) expresses the equality of normal stresses on an interface crossed by viscous

fluid and classically obtained in the literature. In the case when H = 0, Relations (8)

and (10) cannot be identified with shock conditions. In a dissipative flow with a domain

with strong gradients of density schematized in perfect fluid by a shock wave, the fluid is

weakly dissipative and the relations of discontinuity are expressed in form of expansion

with respect to the inverse of the Reynolds number [30].

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)



6 H. GOUIN

4. Practical calculus of the surface tension

Let us consider the case when the flux of mass is null across the interface. The capillary

layer is subject to tangential motions.

Definition : A motion is compatible with the capillary layer if the surfaces of density

are material surfaces.

In the capillary layer dρ/dt = 0 and consequently, divu = 0. Then, Eq. (3) can be written

ρ a+ gradP = λρ grad∆ρ+ 2 div (µD) .

Equation (6) yields

a
3
+

1

ρh
3

∂P

∂x
3

=
λ

h
3

∂∆ρ

∂x
3

+
2

ρ
div (µD)3 ,

and we get
∫ x3

xv
3

a
3
h

3
dx3 +

∫ x3

xv
3

1

ρ

∂P

∂x
3

dx
3
=

∫ x
3

xv
3

λ
∂∆ρ

∂x
3

dx3 +

∫ x
3

xv
3

2

ρ
div (µD)3 h3dx3.

For the limit analysis of thin interfaces, two terms are null and Eqs. (31, 36) in Appendix

2 yield

λ∆ρ =
P

ρ
− Pv

ρv
+

∫ ρ

ρv

P

ρ2
dρ. (11)

Consequently, in the liquid bulk,
∫ ρl

ρv

P

ρ2
dρ =

Pv

ρv
− Pl

ρl
. (12)

Relation (12) is an integral invariant associated with motions compatible with the capillary

layer. In the special case of isothermal equilibrium, we get Eq. (4-11) from [7]. In the

plane case, we are back to the Maxwell rule of equality of areas. Equation (11) writes

λ∆ρ =
∂

∂ρ

(

ρ

∫ ρ

ρv

P − Pv

ρ2
dρ

)

. (13)

To a constant temperature, ρ
∫ ρl

ρv
(P − Pv) /ρ

2dρ is the Helmoltz free energy per unit vol-

ume of the fluid. If we assume a regular variation of the temperature in the capillary layer,

(∂P/∂θ) (∂θ/∂x
3
) is negligible with respect to (∂P/∂ρ) (∂ρ/∂x

3
). By taking account of

Eq. (22), Eq. (13) yields

− 2

Rm

λ

h
3

(

∂ρ

∂x
3

)2

+ λ

(

1

h
3

∂ρ

∂x
3

)(

1

h
3

∂ρ

∂x
3

)

,3

=
∂

∂x
3

(

ρ

∫ ρ

ρv

P − Pv

ρ2
dρ

)

.

An integration across the capillary layer yields

λ

2
(gradρ)

2
=

2λ

Rm

∫ x
3

xv
3

(gradρ)
2
h

3
dx

3
+ ρ

∫ ρ

ρv

P − Pv

ρ2
dρ. (14)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)



MOTIONS IN LIQUID-VAPOUR INTERFACES 7

All the same,

λ

2
(gradρ)

2
=

2λ

Rm

∫ x
3

xl
3

(gradρ)
2
h

3
dx3 + ρ

∫ ρ

ρl

P − Pv

ρ2
dρ.

Let us denote by xi
3

the third coordinate of a surface of density ρi, (ρi ≡ 1
2
(ρv + ρl)).

Due to the fact we assume the radius of curvature of non-molecular size, for x
3
∈
[

xv
3
, xi

3

]

the quantity (2λ/Rm)
∫ x

3

xv
3

(gradρ)
2
h

3
dx3 is negligible with respect to (λ/2) (gradρ)

2
.

Then,

for ρ ∈ [ρv, ρi] ,
λ

2
(gradρ)2 = ρ

∫ ρ

ρv

P − Pv

ρ2
dρ. (15)

All the same,

for ρ ∈ [ρi, ρl] ,
λ

2
(gradρ)

2
= ρ

∫ ρ

ρl

P − Pv

ρ2
dρ. (16)

Relations (9), (15) and (16) yield

H = 2

{

∫ xi

3

xv
3

ρ

(

∫ ρ

ρv

P − Pv

ρ2
dρ

)

h
3
dx

3
+

∫ xl

3

xi
3

ρ

(

∫ ρ

ρl

P − Pv

ρ2
dρ

)

h
3
dx

3

}

.

Taking dρ = h
3

√

(gradρ)
2
dx

3
into account, we get

H =
√
2λ

{

∫ ρi

ρv

(

u

√

∫ u

ρv

P − Pv

ρ2
dρ

)

du +

∫ ρl

ρi

(

u

√

∫ u

ρl

P − Pl

ρ2
dρ

)

du

}

. (17)

Expression (17) allows to calculate the surface tension of a moving capillary layer; pressure

P is a function of ρ and θ in each point of the layer.

Let us note that for the limit case when the capillary layer thickness is null, the viscosity of

the fluid does not explicitly appear in Rel. (17). In the isothermal case of a planar interface

at equilibrium, Rel. ( 17) is equivalent to

H =
√
2λ

∫ ρl

ρv

√

f(ρ) dρ,

where f(ρ) is the free energy per unit volume which is null for ρ = ρv and Pv = Pl =
Po. The H value of is numerically calculable by using thermodynamical pressure models

through interfaces in the form P = P (ρ, θ).

5. Marangoni effect for liquid-vapour interfaces

The conditions of our study are the same than in Section 4: the flux of mass across the

interface is null; the surfaces of density are material surfaces. Equation (7) yields

P − Pv = λ

{

ρ∆ρ− 1

2
(gradρ)

2

}

+
2

Rm

Hv (x3
) ,

where

Hv (x3
) = λ

∫ x
3

xv
3

(gradρ)
2
h

3
dx3.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No. 1, A10 (2013)



8 H. GOUIN

All the same,

P − Pl = λ

{

ρ∆ρ− 1

2
(gradρ)

2

}

+
2

Rm

Hl (x3
) ,

where

Hl (x3
) = λ

∫ xl

3

x
3

(gradρ)
2
h

3
dx

3
.

If we transfer these results into Eq. (5), we obtain for j ∈ {v, l},

ρ atg =
λ

2
gradtg (gradρ)

2−gradtg

(

2

Rm

Hj (x3
)

)

+gradtg (Pj)+2 div (µD)tg . (18)

By integration of Eq. (18) across the capillary layer,

∫ xl

3

xv
3

ρ atgh3
dx

3
=

∫ xl

3

xv
3

λ

2
gradtg (gradρ)

2
h

3
dx

3
−
∫ xi

3

xv
3

gradtg

(

2

Rm

Hv (x3
)

)

h
3
dx

3

−
∫ xi

3

xv
3

gradtg (Pv)h3
dx

3
−
∫ xl

3

xi
3

gradtg

(

2

Rm

Hl (x3
)

)

h
3
dx

3

−
∫ xl

3

xi
3

gradtg (Pl) h3
dx

3
+ 2

∫ xl

3

xv
3

div (µD)tg h3
dx

3
. (19)

Equation (14) yields

λ

2
(grad ρ)

2
=

2

Rm

Hv (x3
) + ρ

∫ ρ

ρv

P − Pv

ρ2
dρ,

and by integration,

Hv (x3
) =

4

Rm

∫ x
3

xv
3

Hv (x3
) h

3
dx

3
+ 2

∫ x
3

xv
3

ρ

(

∫ ρ

ρv

P (θ, u)− Pv

u2
du

)

h
3
dx

3
.

For x3 ∈
[

xv
3
, xi

3

]

, the quantity (4/Rm)
∫ x

3

xv
3

Hv (x3
) h

3
dx

3
is negligible with respect to

Hv (x3
). Taking account of Rel. (15), we get:

For x
3
∈
[

xv
3
, xi

3

]

, Hv (x3
) =

√
2λ

∫ ρ

ρv

√

u

∫ u

ρv

P (θ, u)− Pv

y2
dy du,

where ρ denotes the density associated with x
3
. All the same,

For x
3
∈
[

xi
3
, xl

3

]

, Hl (x3
) =

√
2λ

∫ ρ

ρl

√

u

∫ u

ρl

P (θ, u)− Pl

y2
dy du.

In the capillary layer, the pressure P is a function of θ depending on the coordinates x
1

and

x
2
; gradtgθ is bounded as gradtgRm and gradtgHj (x3

) where j ∈ {v, l}. In the liquid

and vapour bulks, gradtgPl and gradtgPv are bounded. By taking account of Eqs. (28, 30,

32) in Appendices 1 and 2, and for the limit analysis of thin interfaces, Eq. (19) yields

λ

2

∫ xl

3

xv
3

gradtg (gradρ)
2
h

3
dx

3
+ 2 [µD e

3
]
xl

3

xv
3

= 0.
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But,

λ

2

∫ xl

3

xv
3

gradtg

(

1

h
3

∂ρ

∂x
3

)2

h
3
dx

3
= λ

∫ ρl

ρv

gradtg

(

1

h
3

∂ρ

∂x
3

)

dρ

= gradtg

(

λ

∫ ρl

ρv

1

h
3

∂ρ

∂x
3

dρ

)

= gradtg

(

λ

∫ ρl

ρv

(gradρ)
2
h

3
dx

3

)

.

Then, gradtgH + 2 [µD e3]
l

v = 0.

If we additively assume that the viscous stresses are negligible in the vapour bulk, we get

gradtgH + 2µl Dl
e

3
= 0. (20)

In the case when we consider the interface as a surface of discontinuity, the Marangoni

condition is generally presented in the form of Eq. (20). The calculation is obtained with-

out any approximation and with coefficients of viscosity non-constant across the capillary

layer.

Let us note that we have obtained the interfacial energy by using a second gradient theory

but without isothermal motions. That is the case when strong flows cross the capillary

layer corresponding to important phase transitions. Moreover, the capillary layer is mobile

and this fact answers to the Birkoff question [25].

6. Concluding remark

Equation (9) gives the value of the viscous dynamical surface tension. We assume that

H-value in dynamics is closely the same that at equilibrium. If we consider the case of

water at 20◦ Celsius, in c.g.s. units, νl = µl/ρl = 0.01 and νv = µv/ρv = 0.15. In the

case of Stokes’s hypothesis, η = −(2/3)µ and K −H = −0.093×Q.

For ul = 1 cm/s corresponding to a very strong mass flow, the difference between K and

H is not observable far from the critical point.

7. Appendix 1: Orthogonal line coordinates

7.1. Preliminaries [31, 32]. The effective thickness of a liquid-vapour interface is of nanometer range; the

other dimensions are microscopic at least. The surfaces of equal mass density modeling the interfacial layer

can be considered as parallel surfaces. In the interfacial layer, the surface of equal density and the normal

lines are together a triple orthogonal system and the intersection of the associated surfaces of the system are

the lines of curvature. The notations are the following: scalars x
1
, x

2
, x

3
denote the curvilinear coordinates;

x ≡ (x
1
, x

2
, x

3
)T , where superscript T denotes the transposition. At each point M of the interface, vectors

e
1
, e

2
, e

3
denote the direct orthonormal vectors which are tangent to the coordinate lines. Vector e

3
represents

the unit normal vector collinear to grad ρ and directed along the increasing density. The elementary displacement

of point M is such that

dM = h
1
dx

1
e
1
+ h

2
dx

2
e
2
+ h

3
dx

3
e
3
.
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10 H. GOUIN

We deduce in classical derivative notations

∂e
1

∂x
1

= −
h
1,2

h
2

e
2
−
h
1,3

h
3

e
3
.

We denote dsi = hidxi , i ∈ {1, 2, 3},

∂e
1

∂s
1

= r
1,2e2

+ r
1,3e3

with r
1,2 = −

h
1,2

h
1
h
2

and r
1,3 = −

h
1,3

h
1
h
3

.

For surfaces Σ
1,2 generated by the two first coordinate lines, r

1,2 and r
1,3 are respectively the geodesic curvature

and the normal curvature of the first coordinate line. Moreover,

∂e
2

∂s
1

= −r
1,2e1

and
∂e

3

∂s
1

= −r
1,3e2

.

In the same way, for i 6= j and belonging to {1, 2, 3}, we denote r
i,j

= −h
i,j
/(h

i
h
j
).We get analog relations

for the partial derivatives with respect to the two last coordinates. Let us note that when surfaces Σ
1,2 are parallel

surfaces, then ∂e
3
/∂s

3
= 0 and consequently [33],

r
3,1 = r

3,2 = 0 ; (21)

moreover, ∂e
1
/∂s

3
= ∂e

2
/∂s

3
= 0.

In the interfacial layer, e
1
, e

2
, e

3
are uniquely function of x

1
, x

2
. Vectors e

1
, e

2
are the directions of the

curvature lines of the surfaces of equal density. For i 6= j and belonging to {1, 2, 3}, r
i,j

are continuous

functions of coordinates x
1
, x

2
, x

3
. For the limit analysis of thin interfaces, h

1
, h

2
, e

1
, e

2
, e

3
, r

i,j
can be

assumed to be constant across the interfacial layer and along the coordinate line x
3

.

7.2. Calculus of ∆ρ. For all vector fields v and w,

rot (v ×w) = v divw −w divv+
∂v

∂x
w−

∂w

∂x
v,

where ∂/∂x is the gradient operator. Let us choose v = e
3

and w = grad ρ ; then,

rot (e
3
×gradρ) = e

3
∆ρ− grad ρ div e

3
+
∂e

3

∂x
grad ρ−

∂ (grad ρ)

∂x
e
3
,

div e
3

= −2/Rm where Rm is the mean curvature radius of surfaces Σ
1,2 following the direction e

3
, or-

thonormal vector e
3

is collinear to grad ρ and e
T
3
∂e

3
/∂x = 0; consequently we get

∆ρ = −
2

Rm

e
T
3
gradρ+ e

T

3

∂ (gradρ)

∂x
e
3
,

and finally

∆ρ = −
2

Rm

1

h
3

∂ρ

∂x
3

+
1

h
3

(

1

h
3

∂ρ

∂x
3

)

,3

. (22)

For the limit analysis of thin interfaces, Rm is constant across the interfacial layer or along the coordinate line

x
3

.

7.3. Representation of the deformation velocity tensor. Scalars u
1
, u

2
, u

3
denote the components of the

fluid velocity u in the system (x
1
, x

2
, x

3
). The components of the deformation velocity tensor are

D
11

=
u
1,1

h
1

− r
1,2u2

− r
1,3u3

,

D
12

=
1

2

(

u
1,2

h
2

+
u
2,1

h
1

+ r
1,2u1

+ r
2,1u2

)

, (23)

D
13

=
1

2

(

u
1,3

h
3

+
u
3,1

h
1

+ r
1,3u1

+ r
3,1u3

)

.

There exist six other expressions obtained by circular permutation of indices 1,2,3. From Eq. (21), we get

D
33

=
u
3,3

h
3

. (24)
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7.4. Kinematics of interfaces. We denote u = u
3

the fluid velocity with respect to a surface of iso-density and

by Q the mass flow through the interface,

Q = ρ u. (25)

In the capillary layer Q is only a function on x
1
, x

2
. Let us note that Q = 0 is equivalent to divu = 0. From

relations (24) and (25), we get,

[η u
3
]
x
3

xv
3

= Q

[

η

ρ

]x
3

xv
3

, (26)

[(η + 2µ)D
33
]
x
3

xv
3

=

[

−
1

h
3

Q

ρ2
(η + 2µ)

∂ρ

∂x
3

]x
3

xv
3

. (27)

When Q = 0, then divu = 0 and D
33

= 0. Consequently,

[µD e
3
]
xl

3

xv
3

= [µD
13
e
1
+ µD

23
e
2
]
xl

3

xv
3

. (28)

8. Appendix 2: Conditions associated with the dissipative function

In the interfacial layer, we also assume that u
1
, u

2
, u

3
and η, µ are bounded and have partial derivative

bounded with respect to x
1
, x

2
.

8.1. Property 1: The tangential components of the fluid velocity are continuous through the interface. Conse-

quently for the limit analysis of thin interfaces, we use the approximation that u
1

and u
2

are constant through

the interface.

The proof of this property comes from the dissipative function ψ associated with the viscous stress tensor.

ψ =
1

2

(

η (tr D)2 + 2µ tr
(

D2
)

)

.

With the notations of Appendix 1,

ψ =
(η + 2µ)

2

(

D2

11
+D2

22
+D2

33

)

+ 2µ
(

D2

12
+D2

13
+D2

23

)

+ η {D
11
D

22
+D

33
(D

11
+D

22
)} .

The dissipative function must have an integral
∫ xl

3

xv
3

(

η (tr D)2 + 2µ tr
(

D2
)

)

h
3
dx

3
bounded in the layer. With

the hypothesis of Section 7.3 on the partial derivatives of component velocity, we deduce that D
11
,D

12
,D

22

are bounded across the interface and due to (Eq. (24)),

∫ xl

3

xv
3

ηD
33

(D
11

+D
22
)h

3
dx

3
=

∫ vl

3

vv
3

η (D
11

+D
22
) du

3

is bounded. Moreover, Eq. (21) implies

D
13

=
1

2

(

u
1,3

h
3

+
u
3,1

h
1

+ r
1,3u1

)

.

Due to µ > 0 and η + 2µ > 0 [20], and the fact that in the integral of D2

13
, the term

∫ xl

3

xv
3

µ
u
1,3

h
3

(

u
3,1

h
1

+ r
1,3u1

)

h
3
dx

3
=

∫ ul
1

uv
1

µ

(

u
3,1

h
1

+ r
1,3u1

)

du
1

is bounded, the term
∫ xl

3

xv
3

µ
u2

1,3

h
3

h
3
dx

3
must be bounded. But

∫ xl

3

xv
3

u2

1,3

h
3

h
3
dx

3
is minimum when u

1,3 is

independent of x
3

, that is to say, u
1,3 =

ul

1
−uv

1

h
, where h is the interfacial thickness. Then,

∫ xl

3

xv
3

u2
1,3

h
3

h
3
dx

3
≥

(

ul
1
− uv

1

)2

h
.
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12 H. GOUIN

Additively, µ > 0 implies
∫ xl

3

xv
3

2µ
u2
1,3

h
3

h
3
dx

3
≥ 2µmin

(

ul
1
− uv

1

)2

h
.

Consequently, for ul
1
6= uv

1
, the dissipative function goes to infinity when h goes to zero. The component u

1
of

the velocity is continuous across the interface and it is the same for component u
2

.

8.2. Property 2: For a motion normal to the interface,
∫ x

3

xv
3

(

∂ (η divu)

∂x
3

+ 2h
3
(div (µD))

3

)

dx
3
= [(η + 2µ)D

33
]
x
3

xv
3

−
2

Rm

[η u
3
]
x
3

xv
3

. (29)

We first get,

∫ x
3

xv
3

∂ (η divu)

∂x
3

dx
3
= [η divu]

x
3

xv
3

.

Moreover, due to Property 1,
u
1,1

h
1

,
u
2,1

h
1

,
u
1,2

h
2

and
u
2,2

h2
are null across the interface. From Rel. (23),

[η D
11
]
x
3

xv
3

=
u
1,1

h
1

[ η ]
x
3

xv
3

− r
1,2u2

[ η ]
x
3

xv
3

− r
1,3 [η u

3
]
x
3

xv
3

,

[η D
22
]
x
3

xv
3

=
u
2,2

h
2

[ η ]
x
3

xv
3

− r
2,1u1

[ η ]
x
3

xv
3

− r
2,3 [η u

3
]
x
3

xv
3

and consequently

[η divu]
x
3

xv
3

= −
2

Rm

[η u
3
]
x
3

xv
3

+ [ η ]
x
3

xv
3

(

u
1,1

h
1

+
u
2,2

h
2

− r
1,2u2

− r
2,1u1

)

+ [ηD
33
]
x
3

xv
3

.

When u
1
= u

2
= 0,

[η divu]
x
3

xv
3

=

[

ηD
33

−
2

Rm

η u
3

]x
3

xv
3

.

Moreover,

(divµD)
3

=
1

h
1
h
2
h
3

(

(h
1
h
2
µD

33
),3 + (h

2
h
3
µD

31
),1 + (h

3
h
1
µD

32
),2

)

+µD
13

h
3,1

h
3
h
1

+ µD
23

h
3,2

h
3
h
2

− µD
11

h
1,3

h
1
h
3

− µD
22

h
2,3

h
2
h
3

.

Taking account of Eq. (21), we obtain

(div µD)
3

=
1

h
1
h
2
h
3

(

(h
1
h
2
µD

33
),3 +

{

h
2
h
3

2

(

µu
1,3

h
3

+
µu

3,1

h
1

+ µu
1
r
1,3 + µ u

3
r
3,1

)}

,1

+

{

h
3
h
1

2

(

µ u
3,2

h
2

+
µ u

2,3

h
3

+ µ u
2
r
2,3 + µu

3
r
3,2

)}

,2

)

+r
1,3

(

µu
1,1

h
1

− µu
2
r
1,2 − µu

3
r
1,3

)

+ r
2,3

(

µ u
2,2

h
2

− µu
3
r
2,3 − µu

1
r
2,1

)

.

The only non-bounded term across the interface is

1

h
1
h
2
h
3

(

(h
1
h
2
µD

33
),3 +

{

h
2
h
3

2

µ u
1,3

h
3

}

,1

+

{

h
3
h
1

2

µu
2,3

h
3

}

,2

)

.

Consequently,

∫ x
3

xv
3

(div µD)
3
h
3
dx

3
=

∫ x
3

xv
3

1

h
1
h
2

{

(h
1
h
2
µD

33
),3 +

(

h
2

2
µu

1,3

)

,1

+

(

h
1

2
µ u

2,3

)

,2

}

dx
3

= [µD
33
]
x
3

xv
3

+

∫ x
3

xv
3

1

h
1
h
2

{

(

h
2

2
µu

1,3

)

,1

+

(

h
1

2
µu

2,3

)

,2

}

dx
3
.
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When no tangential motion appears along the interface, u
1
= u

2
= 0 and u

1,3 = u
2,3 = 0. Consequently,

∫ x
3

xv
3

(div µD)
3
h
3
dx

3
= [µD

33
]
x
3

xv
3

and we get Rel. (29).

8.3. Property 3: Across the interface,

∫ xl

3

xv
3

(divµD)tg h3
dx

3
= [µD

13
e
1
+ µD

23
e
2
]
xl

3

xv
3

. (30)

This relation comes from the following calculations

(div µD)
1

=
1

h
1
h
2
h
3

(

(h
2
h
3
µD

11
),1 + (h

3
h
1
µD

12
),2 + (h

1
h
2
µD

13
),3

)

+µD
21

h
1,2

h
1
h
2

+ µD
31

h
1,3

h
1
h
3

− µD
22

h
2,1

h
1
h
2

− µD
33

h
3,1

h
1
h
3

=
1

h
1
h
2
h
3

(

{

µh
2
h
3

(

u
1,1

h
1

− r
1,2u2

− r
1,3u3

)}

,1

+

{

µh
3
h
1

2

(

u
1,2

h
2

+
U

2,1

h
1

+ r
1,2u1

+ r
2,1u2

)}

,2

+ {µh
1
h
2
D

13
},3

)

−
µ

2

(

u
1,2

h
2

+
u
2,1

h
1

+ r
1,2u1

+ r
2,1u2

)

r
1,2 −

µ

2

(

u
1,3

h
3

+
u
3,1

h
1

+ r
1,3u1

+ r
3,1u3

)

r
1,3

+µ

(

u
2,2

h
2

− r
2,3u3

− r
2,1u1

)

r
2,1 + µ

(

u
3,3

h
3

− r
3,1u1

− r
3,2u2

)

r
3,1 .

Taking account of Rel. (21), the non-bounded term across the interface is

(h
1
h
2
µD

13
),3

h
1
h
2
h
3

− µ
r
1,3

2

u
1,3

h
3

.

Consequently,

∫ xl

3

xv
3

(div µD)
1
h
3
dx

3
=

∫ xl

3

xv
3

1

h
1
h
2

(h
1
h
2
µD

13
),3 dx3

−

∫ xl

3

xv
3

µ
r
1,3u1

2
u
1,3dx3

= [µD
13
]
xl

3

xv
3

−
r
1,3

2

∫ ul

1

uv
1

µu
1
du

1
.

With the hypothesis of the limit analysis of thin interfaces, the term
r
1,3

2

∫ ul

1

uv
1

µ u
1
du

1
is null and from an

analogous calculation for
∫ xl

3

xv
3

(div µD)
2
h
3
dx

3
we get Rel. (30).

8.4. Property 4: For a null flow across the interface,

∫ xl

3

xv
3

(div µD)
3

ρ
h
3
dx

3
= 0. (31)

When Q = 0, we get D
33

= 0 (see Eqs. (23) and (24)); we deduce

∫ xl

3

xv
3

(div µD)
3

ρ
h
3
dx

3
=

∫ xl

3

xv
3

1

ρ h
1
h
2

(

(

µh
2

2
u
1,3

)

,1

+

(

µ h
1

2
u
2,3

)

,2

)

dx
3
.

For the limit analysis of thin interfaces, across the interface u
1,3 = u

2,3 = 0 and we get Rel. (31).
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8.5. Property 5: Across the interface,

∫ xl

3

xv
3

ρ atg h3
dx

3
= 0. (32)

In fact, Rel. (21) implies

a
1
=
∂u

1

∂t
+
u
1
u
1,1

h
1

+
u
2
u
1,2

h
2

+
u
3
u
1,3

h
3

− u
1
u
2
r
1,2 − u

1
u
3
r
1,3 + u2

2
r
2,1 .

For ∂u
1
/∂t bounded, we immediately deduce from the limit analysis of thin interfaces that

∫ xl

3

xv
3

ρ a
1
h
3
dx

3
= 0

and the same result for a
2

.

8.6. Property 6: Through the interface,
∫ x

3

xv
3

ρa
3
h
3
dx

3
= Q2

(

1

ρ
−

1

ρv

)

. (33)

The only terms non bounded across the interface are: ∂u
3
/∂t and u

3
u
3,3/h3

. Consequently,
∫ x

3

xv
3

ρ a
3
h
3
dx

3
=

∫ x
3

xv
3

ρ

(

∂u
3

∂t
+
u
3
u
3.3

h
3

)

h
3
dx

3
.

But u
3
= Q/ρ and ∂u

3
/∂t = (∂Q/∂t) (1/ρ)−

(

Q2/ρ2
)

(∂ρ/∂t). If we assume that ∂Q/∂t is bounded and

u
3,3 = −

(

Q/ρ2
)

ρ
,3
, (34)

then,
∫ x

3

xv
3

ρ a
3
h
3
dx

3
=

∫ x
3

xv
3

(

−
Q

ρ

∂ρ

∂t
h
3
−
u
3
Q

ρ
ρ
,3

)

dx
3
.

Taking account of Eq. (4), we get

∂ρ

∂t
+

ρ

h
1
h
2
h
3

{

(u
1
h
2
h
3
),1 + (u

2
h
3
h
1
),2 + (u

3
h
1
h
2
),3

}

+
ρ
,3

h
3

u
3
= 0. (35)

From Eq. (34), the only non bounded term of Eq. (35) is

∂ρ

∂t
+ ρ

u
3,3

h
3

+
ρ
,3

h
3

u
3
≡
∂ρ

∂t
.

Its integral across the interface is null. That is the same for the integral of (Q/ρ) (∂ρ/∂t). Consequently,
∫ x

3

xv
3

ρ a
3
h
3
dx

3
= −

∫ x
3

xv
3

u
3
Q

ρ
ρ
,3
dx3 = −Q2

∫ x
3

xv
3

ρ
,3

ρ2
dx

3
= Q2

(

1

ρ
−

1

ρv

)

.

8.7. Property 7: For a null flow across the interface,
∫ x

3

xv
3

a
3
h
3
dx

3
= 0. (36)

All the same, this result is an immediate consequence of the limit analysis of thin interfaces.
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forces capillaires, Archives Néerlandaises II 6, 1-24 (1901).

[16] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component

incompressible fluid, J. Chem. Phys. 31, 688-699 (1959).

[17] C. Truesdell, Rational thermodynamics (Mac Graw Hill, London, 1969).

[18] H. Gouin, Utilization of the second gradient theory in continuum mechanics to study the motion and thermo-

dynamics of liquid-vapour interfaces, Physicochemical Hydrodynamics, Series B, Physics 174, 667-682 (1986)

& arXiv:1108.2766.

[19] H. Gouin, Energy of interaction between solid surfaces and liquids, J. Phys. Chem. B 102, 1212-1218 (1998)

& arXiv:0801.4481.

[20] L. Landau and E. Lifschitz, Fluid mechanics (Mir, Moscow, 1958).

[21] F. dell’Isola, H. Gouin and G. Rotoli, Nucleation of shell-like interfaces by second gradient theory: numer-

ical simulations, Eur. J. Mech., B/Fluids 15, 545-568 (1996) & arXiv:0906.1897.

[22] A.K. Sen and S.H. Davis, Steady thermocapillary flows in two-dimensional slots, J. Fluid Mech. 121, 163-

186 (1982).

[23] D. Bedeaux, A.M. Alabano and P. Mazur, Boundary conditions and non-equilibrium thermodynamics, Phys-

ica A, 82, 438-462 (1976).

[24] M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat.

Mech. and Anal. 81, 301-315 (1983).

[25] G. Birkhoff, Numerical fluid dynamics, SIAM Rev. 25, 1-34 (1983).

[26] P. Casal and H. Gouin, Connection between the energy equation and the motion equation in Korteweg’s
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