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MOTIONS IN LIQUID-VAPOUR INTERFACES BY USING A CONTINUOUS MECHANICAL MODEL

By using a limit analysis for the motion equations of viscous fluid endowed with internal capillarity, we are able to propose a dynamical expression for the surface tension of moving liquid-vapour interfaces without any phenomenological assumption. The proposed relation extends the static case, yields the Laplace formula in cases of mass transfer across interfacial layers and allows to take the second coefficient of viscosity of compressible fluids into account. We generalize the Maxwell rule in dynamics and directly explain the Marangoni effect.

Introduction

Far from the critical point of a fluid, experimental studies and spectrography measurements point out that liquid-vapour interfaces have a thickness of nanometer range and, in the vicinity of the layer, vapour and liquid are homogeneous [START_REF] Bongiorno | Molecular theory of fluid interfaces[END_REF][START_REF] Ball | The density profile of a confined fluid[END_REF][START_REF] Derjaguin | Surfaces Forces[END_REF][START_REF] Churaev | Thin liquid layers[END_REF]. To model liquid-vapour interfaces, the kinetic theory of gases proposes fluid equations of state as, for example, van der Waals' [START_REF] Rocard | Thermodynamique[END_REF][START_REF] Rowlinson | Molecular theory of capillarity[END_REF]. These equations are correct, more precisely they satisfy the Maxwell rule associated with the isothermal change of phases [START_REF] Aifantis | The mechanical theory of fluid interfaces and Maxwell's rule[END_REF]. Nonetheless, they present two main defaults: For fluid densities between vapour and liquid, the pressure can be negative, but simple experiments reveal the existence of pressures corresponding to traction in the fluid. In the domain between vapour and liquid, the internal energy cannot be represented as a convex surface of the density and entropy; this fact seems in contradiction with the existence of two-phase matter states in stable equilibria [START_REF] Ono | Molecular theory of surface tension in liquid[END_REF][START_REF] Meyer | Waves on fluid interfaces[END_REF]. To remove these disadvantages, the thermodynamics usually replaces the non-convex part of the surface energy by a plane domain; but the fluid is not any more a continuum: the interfacial domain is represented by a material surface without thickness. Numerous studies related as well to fluid mechanics as to thermodynamics interpret interfaces as surfaces of discontinuity between two media: a liquid-vapour interface is usually schematized by a material surface endowed with a superficial energy. This surface behaves as an autonomous one [START_REF] Scriven | Dynamics of a fluid interface equation of motion for Newtonian surface fluids[END_REF][START_REF] Ishi | Thermo-fluid dynamic theory of two-phase flow[END_REF][START_REF] Defay | Surface thermodynamics[END_REF][START_REF] Zielinska | A hydrodynamic theory for fluctuations around equilibrium of a liquidvapour interface[END_REF]. But, this representation is not able to study the dynamical behavior of the interface more precisely than a surface of discontinuity and forgets its internal structure.

In equilibrium case, it is possible to correct the disadvantages by a convenient modification of the stress tensor; in the capillary layer its expression is anisotropic; the energy of the continuous medium must be modified. This internal capillarity model is a dynamical theory relevant of second gradient theory which came from van der Waals and Korteweg [START_REF] Van Der Waals | Thermodynamique de la capillarité dans l'hypothèse d'une variation continue de la densité[END_REF][START_REF] Korteweg | Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires[END_REF] and was revisited by Cahn and Hilliard [START_REF] Cahn | Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid[END_REF]. The model is compatible with the second law of thermodynamics [START_REF] Truesdell | Rational thermodynamics[END_REF]. The representation of the internal energy as a function of the entropy, density and density gradient allows to identify the isothermal case with a model deduced from molecular theories [START_REF] Gouin | Utilization of the second gradient theory in continuum mechanics to study the motion and thermodynamics of liquid-vapour interfaces[END_REF][START_REF] Gouin | Energy of interaction between solid surfaces and liquids[END_REF]. The model is analog to the classical Landau-Ginzburg theory for second order transition [START_REF] Landau | Fluid mechanics[END_REF]. Far from the critical point the model is qualitative. Nevertheless, it is a lot more advantageous than the model of Newtonian viscous fluids which is not able to take account of layers with a strong gradient of density. Because we do not consider bubbles and droplets of radius of some nanometers, the mean surface of interface is of large dimension with respect to its interfacial thickness [START_REF] Dell'isola | Nucleation of shell-like interfaces by second gradient theory: numerical simulations[END_REF]; it is necessary to take account of the different orders of lengths of our problem: the interfacial layer is of nanometer range, but the radii of curvature of interfaces are microscopic. The surface tension is obtained thanks to the integration across the capillary layer; it is not necessary uniform along the interface and depends on the dynamical distributions of density and temperature. These distributions take account of motion equations with a Navier-Stokes-like viscosity [START_REF] Sen | Steady thermocapillary flows in two-dimensional slots[END_REF]. At a given temperature, the viscosity coefficients µ and η depend on the density (µ is the dynamic viscosity, and η is the second coefficient or shear coefficient of viscosity). For an incompressible fluid, the term involving η drops out from the equation; obviously it is not the case through fluid interfaces. We do not assume any special property on the viscosity coefficients which may strongly vary through the interface but they are bounded. The dissipative function must have a bounded integral through the capillary layer and the tangential components of the velocity field are continuous through the layer [START_REF] Bedeaux | Boundary conditions and non-equilibrium thermodynamics[END_REF]. When the temperature distribution is non-uniform along the interface, the surface tension gradients create a motion along the capillary layer: this is the so-called Maragoni's effect [START_REF] Defay | Surface thermodynamics[END_REF]. Thanks to a limit analysis taking account of the length ranges of the interface, we are able to model the Marangoni effect along the interfaces. No special energy of interface is necessary. When the mass flow across interface is non-zero, we get a dynamical expression of the Laplace formula. The proposed method is completely different from the classical calculation founded on balance equations through a surface of discontinuity where the variation of density appears only with a jump through the interface and when it is necessary to define physical surface quantities as mass or entropy per unit of area. Our study is related to interfaces with simple motions. The calculations are performed in the capillary layer as in a three-dimensional continuous medium; then, we consider the limit case when the interfacial thickness goes towards zero and consequently all the bounded expressions have a null integral through the layer [START_REF] Slemrod | Admissibility criteria for propagating phase boundaries in a van der Waals fluid[END_REF]. We assume that the fluid velocity is bounded together with its partial derivatives with respect to the coordinates tangent to the interface. The model of internal capillarity allows us to obtain a better understanding of dynamical liquid-vapour interfaces and answer to the question: is the fluid at the interface rigid or moving [START_REF] Birkhoff | Numerical fluid dynamics[END_REF]? The fluid behavior is different from the classical thermodynamics of Newtonian fluids: a supplementary term similar to a heat flux one appears in the equation of energy [START_REF] Casal | Connection between the energy equation and the motion equation in Korteweg's theory of capillarity[END_REF][START_REF] Dunn | On the thermodynamics of interstitial working[END_REF]. An integral invariant for motions compatible with the interface consists in a generalization of the Maxwell rule for isothermal liquid-vapour phase transition.

In Section 2, we resume the properties of capillary fluids and we develop the fluid motions in liquid-vapour interfaces in Sections 3 to 5. A concluding remark focuses on the second coefficient of viscosity. For the sake of simplicity, all intermediate calculations are proposed in Appendices as well as some notations.

Equations of motions of viscous fluid endowed with internal capillarity

Recall the main results of a fluid with internal capillarity [START_REF] Gouin | Utilization of the second gradient theory in continuum mechanics to study the motion and thermodynamics of liquid-vapour interfaces[END_REF][START_REF] Casal | Kelvin's theorem and potential equations in Korteweg's theory of capillarity[END_REF]. We introduce only the specific free energy as a function of the density ρ, temperature T and grad ρ ε = ε (ρ, T, β) with β = (grad ρ) 2 .

The specific free energy ε characterizes together fluid properties of compressibility and molecular capillarity of liquid-vapour interfaces. In accordance with the gas kinetic theory, λ = 2ρ ε ′ β (ρ, β) is assumed to be constant at a given temperature λ = a κ 2 γ/(5 m 2 ), where m is the molecular mass of the fluid, a the internal pressure, κ the molecular diameter and γ a factor associated with molecular potentials of interaction [START_REF] Rocard | Thermodynamique[END_REF][START_REF] Gouin | Energy of interaction between solid surfaces and liquids[END_REF], and

ρ ε = ρ α(ρ) + λ 2 (grad ρ) 2 ,
where the term (λ/2) (grad ρ) 2 is added to the volume free energy ρ α(ρ) of a compressible fluid. Specific free energy α enables to continuously connect liquid and vapour bulks such that the pressure P (ρ) = ρ 2 α ′ ρ (ρ) is similar to van der Waals' pressure. Thanks to experimental data, the λ value is λ = 1.17 × 10 -5 c.g.s. for water at 20 o Celsius [START_REF] Gouin | Liquid-solid interaction at nanoscale and its application in vegetal biology[END_REF]. The equation of motion is

ρ a = div (σ + σ v ) -ρ grad Ω , (1) 
where a is the acceleration vector, Ω the body force potential and σ the generalization of the stress tensor:

σ = -p 1 -λ grad ρ ⊗ grad ρ, (2) 
with p = ρ 2 ε ′ ρ -ρ div (λ grad ρ); the viscous stress tensor is [START_REF] Landau | Fluid mechanics[END_REF] σ v = η (tr D) 1 + 2µ D, where D denotes the velocity strain tensor. Equation (1) can be written in the form

ρ a + grad P + ρ grad ω -divσ v = 0, (3) 
where ω = Ω -λ ∆ρ. The equation of motion must be completed by the balance of mass

∂ρ ∂t + div (ρ u) = 0, ( 4 
)
where u is the velocity vector. Let us note that the equation of energy can be written in the form [START_REF] Casal | Connection between the energy equation and the motion equation in Korteweg's theory of capillarity[END_REF][START_REF] Dunn | On the thermodynamics of interstitial working[END_REF] 

∂e ∂t + div [(e 1 -σ -σ v ) u] -div λ dρ dt gradρ + div q -r -ρ ∂Ω ∂t = 0,
where e = ρ 1 2 u 2 + ε + Ω , q is the heat flux vector and r the heat supply, such that the model is compatible with the second law of thermodynamics [START_REF] Truesdell | Rational thermodynamics[END_REF].

The dynamical surface tension

Now, for the sake of simplicity, we neglect the body forces.

3.1. Case of a planar interface at equilibrium. The eigenvalues of the stress tensor in internal capillarity are deduced from Eq. ( 2):

λ 1 = -p + λ (gradρ)
2 is the eigenvalue associated with the plane orthogonal to grad ρ, λ 2 = -p is the eigenvalue associated with the direction of grad ρ. The classical notations are presented in Appendix 1; in the system of coordinates associated with the interface, the stress tensor can be written

σ =   λ 1 0 0 0 λ 1 0 0 0 λ 2   .
The equation of equilibrium of the planar interface is deduced from Eq. ( 1) and by neglecting the body forces, we get

λ 2 = -P o ,
where P o denotes the common pressure in the vapour and liquid bulks. Per unit of length, the line force exerted on the edge of the interface is

F = x l 3 x v 3 λ 1 h 3 dx 3 = -P o h + x l 3 x v 3 λ (grad ρ) 2 h 3 dx 3 ,
where the subscript 3 denotes the normal component to the density surfaces of the capillary layer, h denotes the interface thickness and l, v indicate the liquid and vapour bulks. In the limit analysis of thin interfaces, the term

P o h is negligible. Let us denotes H = x l 3 x v 3 λ (grad ρ) 2 h 3 dx 3 .
The line force H exerted per unit of length corresponds to the surface tension.

The dynamical surface tension value.

The notations are presented in Appendices 1 and 2. The equation of motion ( 3) is separated into normal and tangential components. In the orthogonal coordinate system presented in appendix 1,

ρ a tg + grad tg P = ρ λ grad tg ∆ρ + grad tg (η div u) + 2 div (µ D) tg , (5) 
ρ a 3 + 1 h 3 ∂P ∂x 3 = ρ λ 1 h 3 ∂∆ρ ∂x 3 + 1 h 3 ∂ (η divu) ∂x 3 + 2 div (µ D) 3 , (6) 
where the subscript tg denotes the tangential component to the density surfaces of the capillary layer. The normal vector e 3 corresponds to the direction of the increasing densities. An integration of Eq. ( 6) across the interface yields

x 3 x v 3 ρ a 3 h 3 dx 3 + x 3 x v 3 ∂P ∂x 3 dx 3 = x 3 x v 3 ρ λ ∂∆ρ ∂x 3 dx 3 + x 3 x v 3 ∂ (η divu) ∂x 3 dx 3 + 2 x 3 x v 3 div (µ D) 3 h 3 dx 3 .
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The fluid is assumed to cross the capillary layer. Taking account of Eq. ( 29) and Eq. ( 33) proved in Appendix 2, we get,

P -P v +Q 2 1 ρ - 1 ρ v = λρ ∆ρ -λ x 3 x v 3 ∆ρ ∂ρ ∂x 3 dx 3 +[(η + 2µ) D 33 ] x 3 x v 3 - 2 R m [η u 3 ] x 3 x v 3 ,
where Q is the mass flow across the capillary layer, R m the mean radius of curvature of the surfaces of equal density oriented following e 3 and [ ] denotes the difference of values through the interface. Taking account of Eqs. [START_REF] Sen | Steady thermocapillary flows in two-dimensional slots[END_REF][START_REF] Birkhoff | Numerical fluid dynamics[END_REF][START_REF] Casal | Connection between the energy equation and the motion equation in Korteweg's theory of capillarity[END_REF][START_REF] Dunn | On the thermodynamics of interstitial working[END_REF], we obtain

P -P v + Q 2 1 ρ - 1 ρ v = λ ρ ∆ρ + λ x 3 x v 3 2 R m 1 h 2 3 ∂ρ ∂x 3 2 h 3 dx 3 - λ 2 1 h 2 3 ∂ρ ∂x 3 2 x 3 x v 3 -Q (η + 2µ) 1 h 3 1 ρ 2 ∂ρ ∂x 3 x 3 x v 3 - 2 R m [ηu 3 ] x 3 x v 3 ,
where u 3 is the third component of u. The radius of curvature R m is assumed to be constant across the capillary layer (see Appendix 1); then,

P -P v + Q 2 1 ρ - 1 ρ v = λ ρ ∆ρ - 1 2 (grad ρ) 2 + 2 λ R m x 3 x v 3 (grad ρ) 2 h 3 dx 3 -Q (η + 2 µ) e 3 .gradρ ρ 2 x 3 x v 3 + 2 R m η ρ x 3 x v 3 . (7) 
The terms λ ρ ∆ρ -1 2 (gradρ) 2 and Q (η + 2µ) (e 3 .grad ρ) /ρ 2 x l 3

x v 3 are null in the liquid and vapour bulks. Consequently, we get:

P l -P v = Q 2 1 ρ v - 1 ρ l + 2 K R m , (8) 
where

K = H -Q η l ρ l - η v ρ v with H = λ x 3 x v 3 (grad ρ) 2 h 3 dx 3 . (9) 
Equation ( 8) extends the Laplace formula which is obtained when Q = 0. The term H can be interpreted as the dynamical surface tension of an interface crossed by a viscous fluid and K as the viscous dynamical surface tension. The surface tension depends on the dynamical distribution of the density through the interface and on the volume viscosity η, only. For a plane interface,

P l -P v = Q 2 1 ρ v - 1 ρ l . (10) 
Equation [START_REF] Scriven | Dynamics of a fluid interface equation of motion for Newtonian surface fluids[END_REF] expresses the equality of normal stresses on an interface crossed by viscous fluid and classically obtained in the literature. In the case when H = 0, Relations ( 8) and ( 10) cannot be identified with shock conditions. In a dissipative flow with a domain with strong gradients of density schematized in perfect fluid by a shock wave, the fluid is weakly dissipative and the relations of discontinuity are expressed in form of expansion with respect to the inverse of the Reynolds number [START_REF] Germain | Shock conditions and the structure of shock waves in a nonstationary flow of a dissipative fluid[END_REF].

Practical calculus of the surface tension

Let us consider the case when the flux of mass is null across the interface. The capillary layer is subject to tangential motions.

Definition : A motion is compatible with the capillary layer if the surfaces of density are material surfaces. In the capillary layer dρ/dt = 0 and consequently, div u = 0. Then, Eq. ( 3) can be written ρ a + grad P = λ ρ grad ∆ρ + 2 div (µ D) . Equation ( 6) yields

a 3 + 1 ρh 3 ∂P ∂x 3 = λ h 3 ∂∆ρ ∂x 3 + 2 ρ div (µ D) 3 ,
and we get

x3 x v 3 a 3 h 3 dx 3 + x3 x v 3 1 ρ ∂P ∂x 3 dx 3 = x 3 x v 3 λ ∂∆ρ ∂x 3 dx 3 + x 3 x v 3 2 ρ div (µ D) 3 h 3 dx 3 .
For the limit analysis of thin interfaces, two terms are null and Eqs. [START_REF] Germain | Mécanique des milieux continus[END_REF]36) in Appendix 2 yield

λ ∆ρ = P ρ - P v ρ v + ρ ρ v P ρ 2 dρ. (11) 
Consequently, in the liquid bulk,

ρ l ρ v P ρ 2 dρ = P v ρ v - P l ρ l . (12) 
Relation ( 12) is an integral invariant associated with motions compatible with the capillary layer. In the special case of isothermal equilibrium, we get Eq. (4-11) from [START_REF] Aifantis | The mechanical theory of fluid interfaces and Maxwell's rule[END_REF]. In the plane case, we are back to the Maxwell rule of equality of areas. Equation [START_REF] Ishi | Thermo-fluid dynamic theory of two-phase flow[END_REF] writes

λ ∆ρ = ∂ ∂ρ ρ ρ ρ v P -P v ρ 2 dρ . ( 13 
)
To a constant temperature, ρ ρ l ρ v (P -P v ) /ρ 2 dρ is the Helmoltz free energy per unit volume of the fluid. If we assume a regular variation of the temperature in the capillary layer, (∂P/∂θ) (∂θ/∂x 3 ) is negligible with respect to (∂P/∂ρ) (∂ρ/∂x 3 ). By taking account of Eq. ( 22), Eq. ( 13) yields

- 2 R m λ h 3 ∂ρ ∂x 3 2 + λ 1 h 3 ∂ρ ∂x 3 1 h 3 ∂ρ ∂x 3 ,3 = ∂ ∂x 3 ρ ρ ρ v P -P v ρ 2 dρ .
An integration across the capillary layer yields

λ 2 (gradρ) 2 = 2 λ R m x 3 x v 3 (gradρ) 2 h 3 dx 3 + ρ ρ ρ v P -P v ρ 2 dρ. ( 14 
)
All the same, λ 2 (gradρ)

2 = 2 λ R m x 3 x l 3 (gradρ) 2 h 3 dx 3 + ρ ρ ρ l P -P v ρ 2 dρ.
Let us denote by x i 3 the third coordinate of a surface of density ρ i , (ρ i ≡ 1 2 (ρ v + ρ l )). Due to the fact we assume the radius of curvature of non-molecular size, for

x 3 ∈ x v 3 , x i 3 the quantity (2 λ/R m ) x 3 x v 3 (gradρ) 2 h 3 dx 3 is negligible with respect to (λ/2) (gradρ) 2 .
Then,

for ρ ∈ [ρ v , ρ i ] , λ 2 (gradρ) 2 = ρ ρ ρ v P -P v ρ 2 dρ. ( 15 
)
All the same,

for ρ ∈ [ρ i , ρ l ] , λ 2 (gradρ) 2 = ρ ρ ρ l P -P v ρ 2 dρ. (16) 
Relations ( 9), ( 15) and ( 16) yield

H = 2 x i 3 x v 3 ρ ρ ρ v P -P v ρ 2 dρ h 3 dx 3 + x l 3 x i 3 ρ ρ ρ l P -P v ρ 2 dρ h 3 dx 3 .
Taking dρ = h 3 (gradρ) 2 dx 3 into account, we get

H = √ 2 λ ρ i ρ v u u ρ v P -P v ρ 2 dρ du + ρ l ρ i u u ρ l P -P l ρ 2 dρ du . ( 17 
)
Expression [START_REF] Truesdell | Rational thermodynamics[END_REF] allows to calculate the surface tension of a moving capillary layer; pressure P is a function of ρ and θ in each point of the layer. Let us note that for the limit case when the capillary layer thickness is null, the viscosity of the fluid does not explicitly appear in Rel. [START_REF] Truesdell | Rational thermodynamics[END_REF]. In the isothermal case of a planar interface at equilibrium, Rel. ( 17) is equivalent to

H = √ 2 λ ρ l ρ v f (ρ) dρ,
where f (ρ) is the free energy per unit volume which is null for ρ = ρ v and P v = P l = P o . The H value of is numerically calculable by using thermodynamical pressure models through interfaces in the form P = P (ρ, θ).

Marangoni effect for liquid-vapour interfaces

The conditions of our study are the same than in Section 4: the flux of mass across the interface is null; the surfaces of density are material surfaces. Equation (7) yields

P -P v = λ ρ ∆ρ - 1 2 (gradρ) 2 + 2 R m H v (x 3 ) ,
where

H v (x 3 ) = λ x 3 x v 3 (gradρ) 2 h 3 dx 3 .
All the same,

P -P l = λ ρ ∆ρ - 1 2 (gradρ) 2 + 2 R m H l (x 3 ) ,
where

H l (x 3 ) = λ x l 3 x 3 (gradρ) 2 h 3 dx 3 .
If we transfer these results into Eq. ( 5), we obtain for j ∈ {v, l},

ρ a tg = λ 2 grad tg (gradρ) 2 -grad tg 2 R m H j (x 3 ) +grad tg (P j )+2 div (µ D) tg . ( 18 
)
By integration of Eq. ( 18) across the capillary layer,

x l 3 x v 3 ρ a tg h 3 dx 3 = x l 3 x v 3 λ 2 grad tg (gradρ) 2 h 3 dx 3 - x i 3 x v 3 grad tg 2 R m H v (x 3 ) h 3 dx 3 - x i 3 x v 3 grad tg (P v ) h 3 dx 3 - x l 3 x i 3 grad tg 2 R m H l (x 3 ) h 3 dx 3 - x l 3 x i 3 grad tg (P l ) h 3 dx 3 + 2 x l 3 x v 3 div (µ D) tg h 3 dx 3 . (19) 
Equation ( 14) yields λ 2 (grad ρ)

2 = 2 R m H v (x 3 ) + ρ ρ ρ v P -P v ρ 2 dρ,
and by integration,

H v (x 3 ) = 4 R m x 3 x v 3 H v (x 3 ) h 3 dx 3 + 2 x 3 x v 3 ρ ρ ρ v P (θ, u) -P v u 2 du h 3 dx 3 . For x 3 ∈ x v 3 , x i 3 , the quantity (4/R m ) x 3 x v 3 H v (x 3 ) h 3 dx 3 is negligible with respect to H v (x 3
). Taking account of Rel. (15), we get:

For x 3 ∈ x v 3 , x i 3 , H v (x 3 ) = √ 2 λ ρ ρ v u u ρ v P (θ, u) -P v y 2 dy du,
where ρ denotes the density associated with x 3 . All the same,

For x 3 ∈ x i 3 , x l 3 , H l (x 3 ) = √ 2 λ ρ ρ l u u ρ l P (θ, u) -P l y 2 dy du.
In the capillary layer, the pressure P is a function of θ depending on the coordinates x 1 and x 2 ; grad tg θ is bounded as grad tg R m and grad tg H j (x 3 ) where j ∈ {v, l}. In the liquid and vapour bulks, grad tg P l and grad tg P v are bounded. By taking account of Eqs. [START_REF] Casal | Kelvin's theorem and potential equations in Korteweg's theory of capillarity[END_REF][START_REF] Germain | Shock conditions and the structure of shock waves in a nonstationary flow of a dissipative fluid[END_REF][START_REF] Aris | Vectors, tensors and the basic equations of fluid mechanics[END_REF] in Appendices 1 and 2, and for the limit analysis of thin interfaces, Eq. ( 19) yields λ 2 But, λ 2

x l 3 x v 3 grad tg (gradρ) 2 h 3 dx 3 + 2 [µ D e 3 ]
x l 3 x v 3 grad tg 1 h 3 ∂ρ ∂x 3 2 h 3 dx 3 = λ ρ l ρ v grad tg 1 h 3 ∂ρ ∂x 3 dρ = grad tg λ ρ l ρ v 1 h 3 ∂ρ ∂x 3 dρ = grad tg λ ρ l ρ v (gradρ) 2 h 3 dx 3 .
Then,

grad tg H + 2 [µ D e 3 ] l v = 0.
If we additively assume that the viscous stresses are negligible in the vapour bulk, we get

grad tg H + 2 µ l D l e 3 = 0. ( 20 
)
In the case when we consider the interface as a surface of discontinuity, the Marangoni condition is generally presented in the form of Eq. ( 20). The calculation is obtained without any approximation and with coefficients of viscosity non-constant across the capillary layer.

Let us note that we have obtained the interfacial energy by using a second gradient theory but without isothermal motions. That is the case when strong flows cross the capillary layer corresponding to important phase transitions. Moreover, the capillary layer is mobile and this fact answers to the Birkoff question [START_REF] Birkhoff | Numerical fluid dynamics[END_REF].

Concluding remark

Equation ( 9) gives the value of the viscous dynamical surface tension. We assume that H-value in dynamics is closely the same that at equilibrium. If we consider the case of water at 20 • Celsius, in c.g.s. units, ν l = µ l /ρ l = 0.01 and ν v = µ v /ρ v = 0.15. In the case of Stokes's hypothesis, η = -(2/3)µ and K -H = -0.093 × Q. For u l = 1 cm/s corresponding to a very strong mass flow, the difference between K and H is not observable far from the critical point.

Appendix 1: Orthogonal line coordinates

7.1. Preliminaries [START_REF] Germain | Mécanique des milieux continus[END_REF][START_REF] Aris | Vectors, tensors and the basic equations of fluid mechanics[END_REF]. The effective thickness of a liquid-vapour interface is of nanometer range; the other dimensions are microscopic at least. The surfaces of equal mass density modeling the interfacial layer can be considered as parallel surfaces. In the interfacial layer, the surface of equal density and the normal lines are together a triple orthogonal system and the intersection of the associated surfaces of the system are the lines of curvature. The notations are the following: scalars x 1 , x 2 , x 3 denote the curvilinear coordinates;

x ≡ (x 1 , x 2 , x 3 ) T , where superscript T denotes the transposition. At each point M of the interface, vectors e 1 , e 2 , e 3 denote the direct orthonormal vectors which are tangent to the coordinate lines. Vector e 3 represents the unit normal vector collinear to grad ρ and directed along the increasing density. The elementary displacement of point M is such that

dM = h 1 dx 1 e 1 + h 2 dx 2 e 2 + h 3 dx 3 e 3 .
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We deduce in classical derivative notations

∂e 1 ∂x 1 = - h 1,2 h 2 e 2 - h 1,3 h 3 e 3 .
We denote ds i = h i dx i , i ∈ {1, 2, 3},

∂e 1 ∂s 1 = r 1,2 e 2 + r 1,3 e 3 with r 1,2 = - h 1,2 h 1 h 2 and r 1,3 = - h 1,3 h 1 h 3 .
For surfaces Σ 1,2 generated by the two first coordinate lines, r 1,2 and r 1,3 are respectively the geodesic curvature and the normal curvature of the first coordinate line. Moreover, ∂e 2 ∂s 1 = -r 1,2 e 1 and ∂e 3 ∂s 1 = -r 1,3 e 2 .

In the same way, for i = j and belonging to {1, 2, 3}, we denote r i,j = -h i,j /(h i h j ). We get analog relations for the partial derivatives with respect to the two last coordinates. Let us note that when surfaces Σ 1,2 are parallel surfaces, then ∂e 3 /∂s 3 = 0 and consequently [START_REF] Kobayashi | Foundations of differential geometry[END_REF],

r 3,1 = r 3,2 = 0 ; (21) 
moreover, ∂e 1 /∂s 3 = ∂e 2 /∂s 3 = 0.

In the interfacial layer, e 1 , e 2 , e 3 are uniquely function of x 1 , x 2 . Vectors e 1 , e 2 are the directions of the curvature lines of the surfaces of equal density. For i = j and belonging to {1, 2, 3}, r i,j are continuous functions of coordinates x 1 , x 2 , x 3 . For the limit analysis of thin interfaces, h 1 , h 2 , e 1 , e 2 , e 3 , r i,j can be assumed to be constant across the interfacial layer and along the coordinate line x 3 .

7.2. Calculus of ∆ρ. For all vector fields v and w,

rot (v × w) = v divw -w divv+ ∂v ∂x w- ∂w ∂x v,
where ∂/∂x is the gradient operator. Let us choose v = e 3 and w = grad ρ ; then, rot (e 3 ×gradρ) = e 3 ∆ρ -grad ρ div e 3 + ∂e 3 ∂x grad ρ -∂ (grad ρ) ∂x e 3 , div e 3 = -2/Rm where Rm is the mean curvature radius of surfaces Σ 1,2 following the direction e 3 , orthonormal vector e 3 is collinear to grad ρ and e T 3 ∂e 3 /∂x = 0; consequently we get

∆ρ = - 2 Rm e T 3 gradρ + e T 3 ∂ (gradρ) ∂x e 3 ,
and finally

∆ρ = - 2 Rm 1 h 3 ∂ρ ∂x 3 + 1 h 3 1 h 3 ∂ρ ∂x 3 ,3 . (22) 
For the limit analysis of thin interfaces, Rm is constant across the interfacial layer or along the coordinate line x 3 .

7.3. Representation of the deformation velocity tensor. Scalars u 1 , u 2 , u 3 denote the components of the fluid velocity u in the system (x 1 , x 2 , x 3 ). The components of the deformation velocity tensor are

D 11 = u 1,1 h 1 -r 1,2 u 2 -r 1,3 u 3 , D 12 = 1 2 u 1,2 h 2 + u 2,1 h 1 + r 1,2 u 1 + r 2,1 u 2 , (23) 
D 13 = 1 2 u 1,3 h 3 + u 3,1 h 1 + r 1,3 u 1 + r 3,1 u 3 .
There exist six other expressions obtained by circular permutation of indices 1,2,3. From Eq. ( 21), we get

D 33 = u 3,3 h 3 . (24) 
7.4. Kinematics of interfaces. We denote u = u 3 the fluid velocity with respect to a surface of iso-density and by Q the mass flow through the interface,

Q = ρ u. (25) 
In the capillary layer Q is only a function on x 1 , x 2 . Let us note that Q = 0 is equivalent to div u = 0. From relations ( 24) and ( 25), we get,

[η u 3 ] x 3 x v 3 = Q η ρ x 3 x v 3 , (26) 
[(η + 2 µ) D 33 ] x 3 x v 3 = - 1 h 3 Q ρ 2 (η + 2 µ) ∂ρ ∂x 3 x 3 x v 3 . (27) 
When Q = 0, then div u = 0 and D 33 = 0. Consequently,

[µ D e 3 ]
x l

3 x v 3 = [µD 13 e 1 + µ D 23 e 2 ]
x l

3 x v 3 . ( 28 
)

Appendix 2: Conditions associated with the dissipative function

In the interfacial layer, we also assume that u 1 , u 2 , u 3 and η, µ are bounded and have partial derivative bounded with respect to x 1 , x 2 .

Property 1:

The tangential components of the fluid velocity are continuous through the interface. Consequently for the limit analysis of thin interfaces, we use the approximation that u 1 and u 2 are constant through the interface.

The proof of this property comes from the dissipative function ψ associated with the viscous stress tensor.

ψ = 1 2 η (tr D) 2 + 2 µ tr D 2 .
With the notations of Appendix The dissipative function must have an integral are bounded across the interface and due to (Eq. ( 24)),

x l 3 x v 3 η D 33 (D 11 + D 22 ) h 3 dx 3 = v l 3 v v 3 η (D 11 + D 22 ) du 3
is bounded. Moreover, Eq. ( 21) implies

D 13 = 1 2 u 1,3 h 3 + u 3,1 h 1 + r 1,3 u 1 .
Due to µ > 0 and η + 2 µ > 0 [START_REF] Landau | Fluid mechanics[END_REF], and the fact that in the integral of D 2 13 , the term

x l 3 x v 3 µ u 1,3 h 3 u 3,1 h 1 + r 1,3 u 1 h 3 dx 3 = u l 1 u v 1 µ u 3,1 h 1 + r 1,3 u 1 du 1
is bounded, the term

x l 3 x v 3 µ u 2 
1,3 h 3 h 3 dx 3 must be bounded. But

x l 3 x v 3 u 2 1,3 h 3 h 3 dx 3 is minimum when u 1,3 is independent of x 3 , that is to say, u 1,3 = u l 1 -u v 1 h
, where h is the interfacial thickness. Then,

x l 3 x v 3 u 2 1,3 h 3 h 3 dx 3 ≥ u l 1 -u v 1 2
h .

H. GOUIN

Additively, µ > 0 implies

x l 3 x v 3 2 µ u 2 1,3 h 3 h 3 dx 3 ≥ 2 µ min u l 1 -u v 1 2 h .
Consequently, for u l 1 = u v 1 , the dissipative function goes to infinity when h goes to zero. The component u 1 of the velocity is continuous across the interface and it is the same for component u 2 .

8.2. Property 2: For a motion normal to the interface,

x 3 x v 3 ∂ (η divu) ∂x 3 + 2 h 3 (div (µ D)) 3 dx 3 = [(η + 2 µ) D 33 ] x 3 x v 3 - 2 Rm [η u 3 ] x 3 x v 3 . ( 29 
)
We first get,

x 3 x v 3 ∂ (η div u) ∂x 3 dx 3 = [η div u] x 3 x v 3 .
Moreover, due to Property 1,

u 1,1 h 1 , u 2,1 h 1 , u 1,2 h 2 and u 2,2
h 2 are null across the interface. From Rel. ( 23),

[η D 11 ] x 3 x v 3 = u 1,1 h 1 [ η ] x 3 x v 3 -r 1,2 u 2 [ η ] x 3 x v 3 -r 1,3 [η u 3 ] x 3 x v 3 , [η D 22 ] x 3 x v 3 = u 2,2 h 2 [ η ] x 3 x 3 -r 2,1 u 1 [ η ] x 3 x v 3 -r 2,3 [η u 3 ] x 3 x v 3
and consequently

[η divu] x 3 x v 3 = - 2 Rm [η u 3 ] x 3 x v 3 + [ η ] x 3 x v 3 u 1,1 h 1 + u 2,2 h 2 -r 1,2 u 2 -r 2,1 u 1 + [ηD 33 ] x 3 x v 3 . When u 1 = u 2 = 0, [η div u] x 3 x v 3 = η D 33 - 2 Rm η u 3 x 3 x v 3 .
Moreover,

(div µ D) 3 = 1 h 1 h 2 h 3 (h 1 h 2 µD 33 ) ,3 + (h 2 h 3 µD 31 ) ,1 + (h 3 h 1 µD 32 ) ,2 +µD 13 h 3,1 h 3 h 1 + µD 23 h 3,2 h 3 h 2 -µD 11 h 1,3 h 1 h 3 -µD 22 h 2,3 h 2 h 3 .
Taking account of Eq. ( 21), we obtain

(div µ D) 3 = 1 h 1 h 2 h 3 (h 1 h 2 µ D 33 ) ,3 + h 2 h 3 2 µ u 1,3 h 3 + µ u 3,1 h 1 + µ u 1 r 1,3 + µ u 3 r 3,1 ,1 + h 3 h 1 2 µ u 3,2 h 2 + µ u 2,3 h 3 + µ u 2 r 2,3 + µ u 3 r 3,2 ,2 +r 1,3 µ u 1,1 h 1 -µ u 2 r 1,2 -µ u 3 r 1,3 + r 2,3 µ u 2,2 h 2 -µ u 3 r 2,3 -µ u 1 r 2,1 .
The only non-bounded term across the interface is

1 h 1 h 2 h 3 (h 1 h 2 µD 33 ) ,3 + h 2 h 3 2 µ u 1,3 h 3 ,1 + h 3 h 1 2 µ u 2,3 h 3 ,2 . 
Consequently, When no tangential motion appears along the interface, u 1 = u 2 = 0 and u 1,3 = u 2,3 = 0. Consequently,

x 3 x v 3 (div µ D) 3 h 3 dx 3 = x 3 x v 3 1 h 1 h 2 (h 1 h 2 µ D 33 ) ,3 + h 2 2 µ u 1,3 ,1 + h 1 2 µ u 2,3 ,2 dx 3 = [µ D 33 ] x 3 x v 3 + x 3 x v 3 1 h 1 h 2 h 2 2 µ u 1,3 ,1 + h 1 2 µ u 2,3 , 
x 3 x v 3 (div µ D) 3 h 3 dx 3 = [µ D 33 ] x 3 x v 3
and we get Rel. (29).

8.3. Property 3: Across the interface,

x l 3 x v 3 (div µ D) tg h 3 dx 3 = [µ D 13 e 1 + µ D 23 e 2 ] x l 3 x v 3 . (30) 
This relation comes from the following calculations

(div µ D) 1 = 1 h 1 h 2 h 3 (h 2 h 3 µ D 11 ) ,1 + (h 3 h 1 µ D 12 ) ,2 + (h 1 h 2 µ D 13 ) ,3 +µ D 21 h 1,2 h 1 h 2 + µ D 31 h 1,3 h 1 h 3 -µ D 22 h 2,1 h 1 2 -µ D 33 h 3,1 h 1 h 3 = 1 h 1 h 2 h 3 µ h 2 h 3 u 1,1 h 1 -r 1,2 u 2 -r 1,3 u 3 ,1 + µ h 3 h 1 2 u 1,2 h 2 + U 2,1 h 1 + r 1,2 u 1 + r 2,1 u 2 ,2 + {µ h 1 h 2 D 13 } ,3 - µ 2 u 1,2 h 2 + u 2,1 h 1 + r 1,2 u 1 + r 2,1 u 2 r 1,2 - µ 2 u 1,3 h 3 + u 3,1 h 1 + r 1,3 u 1 + r 3,1 u 3 r 1,3 + µ u 2,2 h 2 -r 2,3 u 3 -r 2,1 u 1 r 2,1 + µ u 3,3 h 3 -r 3,1 u 1 -r 3,2 u 2 r 3,1 .
Taking account of Rel. [START_REF] Dell'isola | Nucleation of shell-like interfaces by second gradient theory: numerical simulations[END_REF], the non-bounded term across the interface is

(h 1 h 2 µ D 13 ) ,3 h 1 h 2 h 3 -µ r 1,3 2 
u 1,3 h 3 .
Consequently,

x l 3 x v 3 (div µ D) 1 h 3 dx 3 = x l 3 x v 3 1 h 1 h 2
(h 1 h 2 µD 13 ) ,3 dx 3 - With the hypothesis of the limit analysis of thin interfaces, the term 

When Q = 0, we get D 33 = 0 (see Eqs. ( 23) and ( 24)); we deduce

x l 3 x v 3 (div µ D) 3 ρ h 3 dx 3 = x l 3 x v 3 1 ρ h 1 h 2 µ h 2 2 u 1,3 ,1 + µ h 1 2 u 2,3
,2 dx 3 .

For the limit analysis of thin interfaces, across the interface u 1,3 = u 2,3 = 0 and we get Rel. [START_REF] Germain | Mécanique des milieux continus[END_REF]. 

In fact, Rel. ( 21) implies

a 1 = ∂u 1 ∂t + u 1 u 1,1 h 1 + u 2 u 1,2 h 2 + u 3 u 1,3 h 3 -u 1 u 2 r 1,2 -u 1 u 3 r 1,3 + u 2 2 r 2,1 .
For ∂u 1 /∂t bounded, we immediately deduce from the limit analysis of thin interfaces that 8.6. Property 6: Through the interface,

x 3 x v 3 ρ a 3 h 3 dx 3 = Q 2 1 ρ - 1 ρ v . ( 33 
)
The only terms non bounded across the interface are: ∂u 3 /∂t and u 3 u 3,3 /h 3 . Consequently, But u 3 = Q/ρ and ∂u 3 /∂t = (∂Q/∂t) (1/ρ) -Q 2 /ρ 2 (∂ρ/∂t). If we assume that ∂Q/∂t is bounded and

u 3,3 = -Q/ρ 2 ρ ,3 , (34) then, 
x 3

x v 3 ρ a 3 h 3 dx 3 =

x 3 x v 3 - Q ρ ∂ρ ∂t h 3 - u 3 Q ρ ρ ,3 dx 3 .
Taking account of Eq. ( 4), we get ∂ρ ∂t + ρ h 1 h 2 h 3 (u 1 h 2 h 3 ) ,1 + (u 2 h 3 h 1 ) ,2 + (u 3 h 1 h 2 ) ,3 + ρ ,3

h 3 u 3 = 0. (35) 
From Eq. (34), the only non bounded term of Eq. ( 35) is ∂ρ ∂t + ρ u 3,3

h 3 + ρ ,3 h 3 u 3 ≡ ∂ρ ∂t .
Its integral across the interface is null. That is the same for the integral of (Q/ρ) (∂ρ/∂t). Consequently,

x 3
x v 3 ρ a 3 h 3 dx 3 = -

x 3 x v 3 u 3 Q ρ ρ ,3 dx 3 = -Q 2 x 3 x v 3 ρ ,3 ρ 2 dx 3 = Q 2 1 ρ - 1 ρ v .
8.7. Property 7: For a null flow across the interface,

x 3 x v 3 a 3 h 3 dx 3 = 0. ( 36 
)
All the same, this result is an immediate consequence of the limit analysis of thin interfaces.

x l 3 x v 3 = 0 .

 330 Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 90, Suppl. No.1, A10 (2013) 

x l 3 x v 3 η

 33 (tr D) 2 + 2 µ tr D 2 h 3 dx 3 bounded in the layer. With the hypothesis of Section 7.3 on the partial derivatives of component velocity, we deduce that D 11 , D 12 , D 22

x l 3 x v 3 µ r 1 ,3 u 1 2 u 1 ,3 dx 3 = 1 µ u 1

 33111311 du 1 .

1 µ u 1 du 1 is null and from an analogous calculation for x l 3 x v 3 (

 133 div µ D) 2 h 3 dx 3 we get Rel.[START_REF] Germain | Shock conditions and the structure of shock waves in a nonstationary flow of a dissipative fluid[END_REF].

8. 4 . Property 4 :l 3 x v 3 (div µ D) 3 ρ h 3

 44333 For a null flow across the interface,x dx 3 = 0.

H. GOUIN 8 . 5 . Property 5 :l 3 x v 3 ρ atg h 3

 855333 Across the interface,x dx 3 = 0.

x l 3 x v 3 ρ a 1 h 3

 333 dx 3 = 0 and the same result for a 2 .

x 3 x v 3 ρ a 3 h 3 dx 3

 33 

  {D 11 D 22 + D 33 (D 11 + D 22 )} .

			1,
	ψ =	(η + 2 µ) 2	D 2 11 + D 2 22 + D 2 33 + 2 µ D 2 12 + D 2 13 + D 2 23 + η
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