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Abstract

In this paper we address the stationary Oldroyd model with diffu-
sive stress in two ways: first we present the mathematical analysis of
the model. Second, as the link between the diffusive model and the
standard one is questionable from the mathematical point of view,
we discuss, by means of numerical simulations, the behaviour of the
model with respect to vanishing diffusion. In particular, numerical
results in 2D or 3D suggest that the solution of the diffusive model
converges to the solution of the non-diffusive model at order 1 in the
L
2−norm and H

1−norm.
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1 Introduction

The Oldroyd model describes the behaviour of a viscoelastic fluid. Its prin-
ciple is built upon a description of the shear stress that interpolates between
a purely viscous contribution and a purely elastic contribution. Let Ω be
a bounded open set in R

3 and f be a given vector function on Ω. We are
looking for a vector function u : Ω 7→ R

3, a scalar function p : Ω 7→ R and
a symmetric tensor function σ : Ω 7→ R

3×3, representing the velocity, the
pressure and the elastic extra-stress of the fluid satisfying the following set
of equations:























Re (u · ∇u)− (1− r)∆u+∇p = divσ + f , in Ω,
divu = 0, in Ω,

We (u · ∇σ + ga(∇u,σ)) + σ − D∆σ = 2rD(u), in Ω,
u = 0, on ∂Ω,

D ∂
n
σ = 0, on ∂Ω.

(1)
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Here, Re denotes the Reynolds number that quantifies the inertial effects in
the fluid flow; We is the Weissenberg number related to a relaxation time
that characterizes the elasticity of the fluid; D is a diffusive parameter of
the elastic stress; r ∈ [0, 1] is an interpolation parameter : cases r ∈ (0, 1)
are often referred as Jeffreys models whereas case r = 1 is referred as the
Maxwell model. Besides, D(u) (resp. W(u)) denotes the symmetric (resp.
skew-symmetric) part of the velocity gradient. The function ga, −1 ≤ a ≤ 1,
is a bilinear mapping related to the total derivative, in which the parameter a
interpolates between the so-called upper-convected model (a = 1) and lower-
convected model (a = −1). Note that the case a = 0 is known as the so-called
corotational model. The function ga is defined as

ga(∇u,σ) = W(u) · σ − σ ·W(u) + a(D(u) · σ + σ · D(u)).

Remark 1 In standard derivations of Oldroyd model from kinetic models for
dilute polymers, the diffusive term D∆σ is routinely omitted, on the grounds
that it is several orders of magnitude smaller than the other terms in the
equation. It physically corresponds to a centre-of-mass diffusion term in the
dumbell models and it is in the range of about 10−9 to 10−7 when the macro-
scopic length-scale of the domain is of order 1, see [3].

The Oldroyd model also has a transient version which, notably, has been
extensively analysed in many ways: the transient version of the standard
Oldroyd model (without diffusion: D = 0) has been the subject of intensive
studies: in particular P.-L. Lions & N. Masmoudi [12] proved a global ex-
istence result of weak solutions for any data in the corotational case only.
In the general case, C. Guillopé & J.-C. Saut [10] proved the existence and
uniqueness of local strong solutions; besides, if the fluid is not too elastic and
if the data are sufficiently small, then solutions are global. Then L. Molinet
& R. Talhouk [13] proved that the smallness assumption on the elasticity
of the fluid could be relaxed. The transient version of the diffusive Oldroyd
model (with diffusion: D > 0) has been studied by a few authors: recently
P. Constantin & M. Kliegl [7] proved the existence of global strong solutions
in 2D for the Cauchy problem of the diffusive Oldroyd-B model (i.e. a = +1)
and uniqueness of the solution among a class of strong solutions. Notice also
that other regularizations of the standard Oldroyd model have been studied,
see in particular [3].

Let us now discuss the stationary case. To our knowledge, the only avail-
able result is due to M. Renardy [16] and focuses on the standard model
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(without diffusion) only: existence and uniqueness of strong solutions is
proved under the assumption of small regular data. The method used by
M. Renardy is based on a reformulation of the Oldroyd model as a “Newto-
nian generalized” fluid: the contribution of the stress divσ is expressed as
an implicit function of the velocity field u and, then, an iterative scheme is
built upon this fully nonlinear system. When dealing with stress diffusion,
the mathematical analysis of the model can be approached with a completely
different framework, as the diffusive contribution in the stress equation dras-
tically changes the mathematical properties of the system. So far, the method
that we present in the present paper is based on a classical weak formulation
and then on energy estimates. Let us underline the main differences with the
standard Oldroyd model studied by M. Renardy: first, the diffusive model
makes it possible to handle with irregular data and boundary conditions ;
second, in the corotational case, the smallness of the data is not needed
anymore.

Let us give some motivation for the study of the vanishing diffusion pro-
cess which consists in investigating the asymptotic regime D → 0 in the
diffusive Oldroyd model. As a matter of fact, the vanishing viscosity process
describes the transition between a (second order) diffusive model towards
a (first order) transport model. Thus, boundary conditions have to be dis-
cussed. For this, let us draw some parallel with the behaviour of scalar trans-
port models, as the Oldroyd equation is a convection equation. In the frame-
work of scalar conservation laws, a classical approach to deal with boundary
conditions is to introduce the so-called vanishing viscosity method. But the
analysis highly depends on the type of boundary conditions that are con-
sidered. In the case of Dirichlet boundary conditions, introducing artificial
diffusion leads, when passing to the limit, to a problem in which boundary
conditions cannot be assumed to be satisfied pointwise because of the degen-
eracy of the operator. Nevertheless, Bardos, LeRoux & Nedelec [2] exhibited
a condition that expresses the way the boundary conditions are satisfied at
the limit. In particular, it includes the fact that when the flux is mono-
tone, the boundary condition is active when information enters the domain
whereas it is not active when it goes out. In the end, Bardos, LeRoux &
Nedelec provide a so-called weak entropy formulation, still based of the van-
ishing viscosity method, which leads to a well-posed problem: at the limit
(i.e. without diffusion but with Dirichlet boundary conditions that have to
be understood in a weak sense), the problem admits a unique solution. When
dealing with Neumann boundary conditions, well-posedness in a similar set-
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ting is questionable: does the vanishing viscosity method may lead to the
selection of a unique solution? To our knowledge, this is an open question.
In the context of the diffusive Oldroyd model, as the order of mag nitude of D
is about 10−7, the vanishing diffusion process has to be addressed. Besides, at
least for the Oldroyd model, classical solutions do exist in the non-diffusive
model [16] with suitable boundary conditions. Dealing with a system of
conservation law (such as the Oldroyd model) is much more difficult than
dealing with a scalar conservation law but numerical simulations may play a
role in the analysis of the asymptotic regime D → 0 by providing ideas on
the behaviour of the diffusive model with respect to the standard one.

The present paper is composed of three sections. In Section 2 we give
the weak formulation of the problem, the mathematical framework and the
main results: existence, uniqueness, regularity. Section 3 is devoted to the
numerical simulation of the models: an algorithm is proposed and benchmark
tests are considered in order to investigate the vanishing viscosity process.

2 Weak formulation of the stationary prob-

lem and main theoretical results

For the sake of physical relevance, the mathematical analysis presented in this
section is presented in dimension 3. However, results are valid in dimension 2.
The variational formulation of Problem (1) is written











































Find (u,σ) ∈ V ×W such that, for all (v, τ ) ∈ V ×W ,

Re

∫

Ω

(u · ∇u) · v + (1− r)

∫

Ω

∇u : ∇v +

∫

Ω

σ : D(v) = 〈f ,v〉,

We

∫

Ω

(u · ∇σ + ga(∇u,σ)) : τ +

∫

Ω

σ : τ +D

∫

Ω

∇σ : ∇τ

= 2r

∫

Ω

D(u) : τ ,

(2)

where the functional spaces V and W are defined by

V = {u ∈ H1
0 (Ω)

3; divu = 0},
W = {σ ∈ H1(Ω)3×3; σ = T

σ},
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and where 〈·, ·〉 denotes the duality bracket between H−1 and H1
0 . We will

use the following norms:

‖u‖2V =

∫

Ω

‖∇u‖2, ‖σ‖2W =

∫

Ω

‖σ‖2 + ‖∇σ‖2.

The main theorem which is proved in this article concerns an existence result
for Problem (2). In its general form, it requires some assumptions on the
data. For this, we introduce the following constants:

C(I) :=
8|a|C2

ΩWe‖f‖H−1

min(1− r,D)2
,

C(II) :=

√
2rmin(1− r,D)

4|a|C2
ΩWe

(

1−
√

1− C(I)

)

,

where CΩ is a constant which only depends on the domain Ω.

Remark 2

1. Note that C(II) is defined provided C(I) ≤ 1.

2. For a = 0, we have by continuity C(I) = 0 and C(II) =

√
2r‖f‖H−1

min(1− r,D)
.

3. Constant CΩ is related to the Sobolev injection W ⊂ L4(Ω)3×3:

∀σ ∈ W, ‖σ‖L4 ≤ CΩ‖σ‖W .

4. The only physical parameter that is not involved in the definition of
constants C(I) and C(II) is the Reynolds number Re. In other words,
the existence result that is further described does not depend on the
value of the Reynolds number.

Theorem 1 Let Ω be a Lipschitz bounded open set in R
3 and f ∈ H−1(Ω)3.

Let Re ≥ 0, We ≥ 0, 0 < r < 1, −1 ≤ a ≤ 1 and D > 0.

• Existence. If C(I) ≤ 1 then, there exists a solution (u,σ) of problem (2)
which satisfies

2r‖u‖2V + ‖σ‖2W ≤ C2
(II). (3)

Moreover there exists p ∈ L2(Ω) such that (u, p) satisfies (1)1,2,3 in the
sense of distributions.
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• Uniqueness. Problem (2) admits at most one solution if one of the
following conditions is satisfied:

a) ‖f‖H−1 is small enough;

b) Re and We are small enough.

• Regularity. If Ω is of class C∞ and if each component of f belongs to
C∞(Ω) then each component of any solution of (2) belongs to C∞(Ω)
and the considered solution satisfies (1) in a classical sense.

Let us mention two corollaries.

Corollary 2 Problem (2) admits a unique solution if one of the following
conditions is satisfied:

a) ‖f‖H−1 is small enough;

b) Re and We are small enough.

Corollary 3 If a = 0, there exists a solution for all data.

The proof is decomposed into four parts. In section 2.1 we show the
existence for the weak formulation (2) using a Galerkin approximations and
compactness results to perform the limit. The existence of a pressure is
obtained by De Rham theory. In section 2.2, we prove the uniqueness of
the solution and, in section 2.3, we investigate the regularity of the weak
solutions and prove that, if the data are regular, so is the solution.

2.1 Proof of existence

As a preliminary, V × W is endowed with the scalar product (·, ·)V×W de-
fined by

((u,σ), (v, τ ))V×W = 2r(u,v)V + (σ, τ )W .

As V and W are separable Hilbert spaces, we consider a countable or-
thonormal basis (wk)k∈N in the space V , and a countable orthonormal basis
(sk)k∈N in the space W . We use the notation Vk := span(w1, ...,wk) and
Wk := span(s1, ..., sk). For each fixed integer k ∈ N, we would like to define
an approximate solution (uk,σk) of (2) by

uk =

k
∑

i=0

αi,kwi, σk =

k
∑

i=0

βi,ksi,
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satisfying the variational problem

Re

∫

Ω

(uk · ∇uk) · vk + (1− r)

∫

Ω

∇uk : ∇vk +

∫

Ω

σk : D(vk) = 〈f ,vk〉,

We

∫

Ω

(uk · ∇σk + ga(∇uk,σk)) : τ k +

∫

Ω

σk : τ k +D

∫

Ω

∇σk : ∇τ k

= 2r

∫

Ω

τ k : D(uk),

(4)

for all (vk, τ k) ∈ Vk×Wk. Equations (4) form a system of nonlinear equations
for α1,k, ..., αk,k, β1,k, ..., βk,k, and the existence of a solution of this system is
not obvious. We use the following lemma:

Lemma 1 Let X be a finite dimensional Hilbert space with scalar product
(·, ·) and norm ‖ · ‖, and let P be a continuous mapping from X into itself
such that

∃R > 0; ∀ξ ∈ X (‖ξ‖ = R =⇒ (P (ξ), ξ) ≥ 0). (5)

Then there exists ξ ∈ X, ‖ξ‖ ≤ R, such that P (ξ) = 0.

The related proof, based on the Brouwer fixed point theorem, can be found
in [17, p.166]. We only note that the result which is proved in [17] corre-
sponds to the case where the inegality (P (ξ), ξ) ≥ 0 in the assertion (5) is a
strict inequality. The case of a large inequality holds too, with the same proof.

We apply this lemma to prove the existence of (uk,σk) as follows: let X
be the space defined as X := Vk × Wk, endowed with the scalar product
inherited from V ×W . Let Pk the mapping from X into itself defined by, for
all ((u,σ), (v, τ )) ∈ X2,

(Pk(u,σ), (v, τ ))X

= 2r

[

Re

∫

Ω

(u · ∇u) · v + (1− r)

∫

Ω

∇u : ∇v +

∫

Ω

σ : D(v)− 〈f ,v〉
]

+

[
∫

Ω

σ : τ +D

∫

Ω

∇σ : ∇τ +We

∫

Ω

(u · ∇σ + ga(∇u,σ)) : τ

− 2r

∫

Ω

D(u) : τ

]

.
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The continuity of Pk is obvious. Let us show that condition (5) holds. De-
noting ξ = (u,σ) ∈ X we have

(Pk(ξ), ξ)X = 2r(1− r)

∫

Ω

‖∇u‖2 +
∫

Ω

‖σ‖2 +D

∫

Ω

‖∇σ‖2

+We

∫

Ω

ga(∇u,σ) : σ − 2r〈f ,u〉.

From the Hölder inequality and the Sobolev injection W ⊂ L4(Ω)9, there
exists a positive constant CΩ which only depends on the domain, such that
‖σ‖L4 ≤ CΩ‖σ‖W . Thus, the contribution ga satisfied

∫

Ω

ga(∇u,σ) : σ ≤ 2|a|
∫

Ω

‖∇u‖‖σ‖2 ≤ 2|a|‖∇u‖L2‖σ‖2L4 ,

which yields
∫

Ω

ga(∇u,σ) : σ ≤ 2|a|C2
Ω‖u‖V ‖σ‖2W . (6)

We deduce that

(Pk(ξ), ξ)X ≥ 2r(1− r)‖u‖2V +min(1,D)‖σ‖2W
− 2|a|C2

ΩWe‖u‖V ‖σ‖2W − 2r‖f‖H−1‖u‖V .

Using the definition of the norm ‖ξ‖2X = 2r‖u‖2V + ‖σ‖2W , we obtain

(Pk(ξ), ξ)X ≥ min(1− r,D)‖ξ‖2X −
√
2|a|C2

ΩWe√
r

‖ξ‖3X −
√
2r‖f‖H−1‖ξ‖X.

We write this inequality as (Pk(ξ), ξ)X ≥ ‖ξ‖X(−α‖ξ‖2X + β‖ξ‖X − γ).

• If a 6= 0 (i.e. α > 0), we deduce that (Pk(ξ), ξ)X may be positive for
some value of ξ if the discriminant β2 − 4αγ is nonnegative; in this case we
have

(Pk(ξ), ξ)X ≥ 0 ⇐⇒ β −
√

β2 − 4αγ

2α
≤ ‖ξ‖X ≤ β +

√

β2 − 4αγ

2α
.

In particular, by denoting

C(II) =
β −

√

β2 − 4αγ

2α
,
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we obtain
‖ξ‖X = C(II) =⇒ (Pk(ξ), ξ)X ≥ 0.

We also note that C(II) > 0 (except for the case f = 0 (i.e. γ = 0) where we

can use instead of C(II) any constant C such that 0 < C < β
α
).

• If a = 0 (i.e. α = 0), we easily have

(Pk(ξ), ξ)X ≥ 0 ⇐⇒ ‖ξ‖X ≥ γ

β
.

We then use
C(II) =

γ

β
.

As for the case a 6= 0 we have C(II) > 0 (except for f = 0 (i.e. γ = 0) where
we can use instead of C(II) any positive constant).

Finally, assumptions given by Lemma 1 are satisfied taking R = C(II) as soon
as β2 − 4αγ ≥ 0, which is equivalent to the condition C(I) ≤ 1 introduced
in Theorem 1. By Lemma 1, we deduce that, for any k ∈ N, Equations (4)
admit a solution (uk,σk) which satisfies

2r‖uk‖2V + ‖σk‖2W ≤ C2
(II). (7)

This estimate (7) implies that the sequence (uk,σk) remains bounded in
V × W . Thus there exists some (u,σ) ∈ V × W and a subsequence (still
denoted by k) such that (uk,σk) ⇀ (u,σ) for the weak topology of V ×W ,
as k → +∞. As H1 ⊂ L2 with compact injection, (uk,σk) → (u,σ) for the
strong topology of L2(Ω)3 × L2(Ω)9. The consequences are twofold:

• We can pass to the limit in all the terms of Equations (4), and deduce
that (u,σ) is a solution of (2) ;

• Due to the usual property of the weak limit, we have

2r‖u‖2V + ‖σ‖2W ≤ lim inf
k→+∞

2r‖uk‖2V + ‖σk‖2W ≤ C2
(II).

This concludes the proof of existence of a solution (u,σ) of problem (2) sat-
isfying Eq. (3).
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Now let us prove the existence of a pressure field associated to the incom-
pressibility condition. For a solution (u,σ) of problem (2), we have, for all
v ∈ D(Ω) such that div v = 0,

〈Re(u · ∇u)− (1− r)∆u− divσ − f ,v〉 = 0.

By De Rham theorem, there exists a pressure p ∈ D′(Ω) such that Eq. (1)
holds in D′(Ω). The regularity of ∆u, u · ∇u, divσ and f implies that the
pressure p is more regular. For instance, by Sobolev embeddings, we have

u ∈ V ⊂ L6(Ω)3

and since ∇u ∈ L2(Ω)3×3, then the convective term u·∇u belongs to L3/2(Ω).
Thus, we have

∇p = ∆u+ divσ + f − Re(u · ∇u) ∈ H−1(Ω).

This implies that p ∈ L2(Ω), see [17, p.14].

2.2 Proof of uniqueness

Let (u1,σ1) and (u2,σ2) be two solutions of (2) and introduce the difference
(u,σ) = (u2,σ2)−(u1,σ1). By subtraction we obtain, for all (v, τ ) ∈ V ×W ,

Re

∫

Ω

(u · ∇u2 + u1 · ∇u) · v + (1− r)

∫

Ω

∇u : ∇v +

∫

Ω

σ : D(v) = 0,

We

∫

Ω

(u · ∇σ2 + u1 · ∇σ + ga(∇u,σ2) + ga(∇u1,σ)) : τ +

∫

Ω

σ : τ

+D

∫

Ω

∇σ : ∇τ = 2r

∫

Ω

τ : D(u).

Taking (v, τ ) = (2r u,σ) and adding the two equations, we obtain

2r(1− r)‖u‖2V +min(1,D)‖σ‖2W ≤ −2rRe

∫

Ω

(u · ∇u2) · u

−We

∫

Ω

(u · ∇σ2 + ga(∇u,σ2) + ga(∇u1,σ)) : σ.

By definition of the bilinear function ga, we have
∫

Ω

ga(∇u,σ2) : σ = (a+ 1)

∫

Ω

(∇u · σ2) : σ + (a− 1)

∫

Ω

(σ2 · ∇u) : σ.
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Using the Hölder inequality and the Sobolev injectionW ⊂ L4(Ω)9 we deduce
that

∣

∣

∣

∣

∫

Ω

ga(∇u,σ2) : σ

∣

∣

∣

∣

≤ 2C2
Ω‖u‖V ‖σ2‖W‖σ‖W .

Estimating the other terms as in Equation (6), we obtain

2r(1− r)‖u‖2V +min(1,D)‖σ‖2W ≤ 2rC2
ΩRe‖u2‖V ‖u‖2V

+ 3C2
ΩWe‖σ2‖W‖u‖V ‖σ‖W

+ 2|a|C2
ΩWe‖u1‖V ‖σ‖2W .

As the solutions (u1,σ1) and (u2,σ2) satisfy Equation (3), we deduce that

2r(1− r)‖u‖2V +min(1,D)‖σ‖2W ≤ C2
ΩC(II)√
2r

(

2rRe‖u‖2V

+ 3We
√
2r‖u‖V ‖σ‖W

+ 2|a|We‖σ‖2W
)

.

(8)

From Young inequality we deduce

3We
√
2r‖u‖V ‖σ‖W ≤ 2rRe‖u‖2V +

9We2

4Re
‖σ‖2W .

Consequently, Estimate (8) reads 2rA‖u‖2V + B‖σ‖2W ≤ 0 where A and B
are given by

A = (1− r)− 4ReC2
ΩC(II)√
2r

,

B = min(1,D)− C2
ΩC(II)√
2r

(

9We2

4Re
+ 2|a|We

)

.

Using the fact that C(II) tends to 0 as ‖f‖H−1 tends to 0, we deduce that
for ‖f‖H−1 small enough, the coefficients A and B are positive. In the same
way, if Re is small enough then A > 0 and, if We is small, then B > 0. These
inequalities imply ‖u‖V = ‖σ‖W = 0, which means (u1,σ1) = (u2,σ2).

2.3 Strong solutions

As previously, we notice that u ∈ L6(Ω)3, so that u · ∇u ∈ L3/2(Ω)3. We
also have divσ ∈ L2(Ω)3 and if f is regular then the regularity of the Stokes
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problem, see [5], implies that

u ∈ W 2,3/2(Ω)3, p ∈ W 1,3/2(Ω).

In the same way, u ·∇σ and ga(∇u,σ) belong to L3/2(Ω)3×3. The regularity
of the Laplace problem implies that

σ ∈ W 2,3/2(Ω)3×3.

Repeating such a process, we find that u ∈ W s,3/2(Ω)3, p ∈ W s−1,3/2(Ω)
and σ ∈ W s,3/2(Ω)3×3 for any s ∈ N. The proof is concluded.

3 Numerical investigation of the vanishing dif-

fusion process

Numerical simulations have been performed in order to illustrate the influ-
ence of the diffusive parameter on the stationary solution. After giving some
comprehensive details on the numerical method, we will present two simula-
tions:

• The flow past a cylinder in a plane channel is a benchmark case from
the literature. The vanishing diffusion process is faced with its formal
limit. Let us recall that the non-diffusive model investigated by M. Re-
nardy [16] deals with Dirichlet boundary conditions for the velocity field
with an additional assumption: the normal component of the velocity
is zero. Thus, no fluid enters or exits the domain, avoiding possible
compatibility problems with boundary conditions on the stress tensor,
which do not need to be imposed in this particular situation. In the
diffusive model, there is no such limitation on the Dirichlet boundary
condition. The benchmark case allows us to investigate the conver-
gence of the solution with diffusion to the solution without diffusion,
relaxing the assumption on the boundary condition.

• The driven cavity is considered. In this problem, the normal component
of the velocity is zero but the discontinuity of the prescribed velocity
field at the corners of the domain lead to a loss of regularity of the
solution. Therefore, strong solutions do not exist and the framework
given by M. Renardy is not valid anymore. Nevertheless, the finite
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element solution is well-defined (for both the diffusive case and the
non-diffusive case) and, thus, we investigate the convergence of the
solution with diffusion to the solution without diffusion, despite the
lack of regularity of the solutions.

The numerical simulations described in Section 3 have been led in the
corotationnal case, i.e. a = 0. The Johnson-Segalman issue is addressed in
the concluding remarks in Section 4.

3.1 Algorithm

The numerical method is based on the transient version of the Oldroyd model:
stationary states are attained as the long-time solution of the evolutive model.
If the solution converges in time, then a stationary state is obtained through
this process. Note also that for a = 0 existence of a stationary solution is en-
sured and, if the data are sufficiently small, the stationary solution is unique.
As a consequence, in a non-uniqueness regime, if the algorithm converges,
then it is likely to select a stationary solution among all the possible ones.

In order to describe the application of the characteristics method for the
particular convective terms in the viscous and elastic equations, we consider
the artificial time dependent velocity field u(t,x) = u and an artificial time
dependence in all involved functions, by introducing the notation φ(t,x) =
φ(x). By convenience, we immediatly drop he overscripts ·. Then, we can
introduce the following material (or total derivative) operator associated to
the velocity field u:

D

Dt
=

∂

∂t
+ u · ∇ . (9)

In this way, the initial equations take the following form.

• the momentum equation can be written as

Re
Du

Dt
− (1− r)∆u+∇p = divσ + f ;

• the incompressibility equation is unchanged :

divu = 0 ;

• the constitutive equation can be written as

We

(

Dσ

Dt
+ ga(∇u,σ)

)

+ σ − D∆σ = 2rD(u).
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Next, by approximating the total derivative by the characteristics method,
the previous equations can be approximated by

• momentum equation:

Re
un+1 − un ◦ κn

∆t
− (1− r)∆un+1 +∇pn+1 = divσn+1 + fn+1 ;

• incompressibility equation:

divun+1 = 0 ;

• constitutive equation:

We

(

σ
n+1 − σ

n ◦ κn

∆t
+ ga(∇un+1,σn+1)

)

+σ
n+1−D∆σ

n+1 = 2rD(un+1),

where the index n + 1 denotes the approximation at the artificial time tn+1

of the introduced time dependent functions and ∆t denotes an artificial time
step. Moreover, the function κn is defined at each spatial point of the domain
by κn(x) = κ(tn+1,x; tn), that denotes the position at time tn of the point
placed in x at time tn+1 and moving along the integral path (characteristic
curve) defined by the velocity field u, so that κn(x) can be obtained from
the solution of the final value ODE problem:

dκ

dτ
(tn+1,x; τ) = u

(

τ, κ(tn+1,x; τ)
)

, κ(tn+1,x; tn+1) = x.

In order to pose an approximated problem (which is actually dependent
on the parameter ∆t), The semi-discretized problem is completed with the
boundary conditions now written in terms of un+1 and σ

n+1, instead of u
and σ and, also, some initial condition for both the velocity field and the
elastic constraint. In this way, a stationary solution of the Oldroyd model
with diffusive stress is obtained by letting t tend to ∞.

Before describing in details the effective problems to solve, let us highlight
the fact that the discretized problem is strongly coupled. As we are only
interested in the long time asymptotic solution, a very simple trick for easier
computations consists in splitting the coupling between the velocity field
and the elastic stress. In other words, we consider an explicit term in the

15



source term of the viscous equation instead of an explicit one: divσn+1 is
replaced by divσn. Besides, in order to use classical approximation spaces,
the incompressibility condition is treated by duality. Thus, the effective
problems to solve, at each time step tn+1, now reads























Find (un+1, pn+1,σn+1) ∈ H1
0 × L2

0(Ω)×W such that
A(un+1,v) + B(pn+1,v) = F(v),

B(q,un+1) = 0,
C(σn+1, τ ) = G(τ ),

for all (v, q, τ ) ∈ H1
0 × L2

0(Ω)×W .

with the following operators

A(u,v) :=
Re

∆t

∫

Ω

u · v + 2(1− r)

∫

Ω

D(u) : D(v),

B(q,u) := −
∫

Ω

q div(u),

C(σ, τ ) :=
We

∆t

∫

Ω

σ : τ +We

∫

Ω

ga(∇un+1,σ) : τ

+

∫

Ω

σ : τ +D

∫

Ω

∇σ : ∇τ ,

and the source terms defined as

F(v) := −
∫

Ω

σ
n : ∇v +

Re

∆t

∫

Ω

(un ◦ κn) · v + 〈fn+1,v〉,

G(τ ) :=
We

∆t

∫

Ω

(σn ◦ κn) : τ + 2r

∫

Ω

τ : D(un+1).

Now we have to deal with the spatial discretization of the weak formula-
tion. For this, we consider a triangular mesh of the domain Ω. The first two
equations may be analyzed as a Stokes system which is, therefore, treated
with P+

1 −P1 or P2−P1 finite elements (for the velocity and pressure fields),
in order to ensure the inf-sup condition at the discrete level. When deal-
ing with a diffusive term D > 0, the Oldroyd equation is treated with P1

finite elements which naturally approximates H1(Ω). For comparison needs,
when computing the solution without diffusion D = 0, the Oldroyd equa-
tion is treated with P0 finite elements which naturally approximates L2(Ω)
corresponding to the regularity of the stress tensor.
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3.2 Flow past a cylinder in a plane channel in 2D

3.2.1 Numerical profiles

As a benchmark case, we consider a viscoelastic flow past a cylinder in a
plane channel. The cylinder ensures the fact that classical Poiseuille profiles
are not a solution of the system in the viscoelastic case. This case was studied
experimentally in [18], and computationally in [1, 8] and recently in [9].

The channel-with-cylinder geometry is built upon a channel with length
L = 40R, height H = 4R. Introducing Cartesian ccordinates, the channel is
thus described by x ∈ (0, L), z ∈ (−2R, 2R). The cylinder has a radius R
and its center of mass is located at x = 10R and z = 0, preserving geometric
symmetry with respect to the line {z = 0}. No-slip boundary conditions
are imposed at {z = ±2R} and a parabolic (Poiseuille) velocity profile is
imposed at the inlet {x = 0} and at the outlet {x = L}: it is characterized
either by the maximal velocity value Umax or the input/output flux Q. In
all the computations, R has been set to 0.25 and the flux has been set to
Q = 1.0 which corresponds to a maximal velocity Umax = 2Q/(3R) = 8/3 at
the inlet/outlet.

Considering the benchmark case studied in [9], numerical simulations have
been performed with

Re = 0.67, We = 1.0, r = 0.6, a = 0

and different values of D. Note that the focus on the corotational model (i.e.
a = 0) guarantees the existence of a stationary solution for both the diffusive
and standard models. The study of the Johnson-Segalman (i.e. a 6= 0) model
will be discussed in concluding remarks.

Figure 1 represents the solution of the stationary Oldroyd model without
diffusion, near the cylinder, computed with an unstructured mesh made of
136879 triangles and 69342 vertices. This solution is the reference solution
when investigating the behaviour of the model with respect to the diffusive
parameter.

3.2.2 Error analysis

Figure 2 illustrates the influence of the diffusion parameter D on the velocity
field and the elastic stress tensor, as it tends to 0. The benchmark case
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D ‖u(D) − u(0)‖L2 ‖u(D) − u(0)‖H1 ‖σ(D) − σ
(0)‖L2 ‖σ(D) − σ

(0)‖H1

1e-04 3.2e-3 1.6e-1 2.2e-1 6.6e+1
1e-05 8.1e-4 5.2e-2 1.8e-1 63e+1
1e-06 3.4e-4 2.3e-2 9.9e-2 3.5e+1
1e-07 4.9e-5 3.3e-3 1.4e-2 5.1e+0
1e-08 5.1e-6 3.4e-4 1.5e-3 5.3e-1
1e-09 5.4e-7 3.4e-5 1.5e-4 5.3e-2
1e-10 1.0e-7 4.5e-6 1.5e-5 5.3e-3

Table 1: Flow past a cylinder in a plane channel in 2D: computation of the
error with respect to the diffusive parameter for the velocity and the elastic
constraint, in the L2−norm and H1−norm.

evidences the convergence of the solution corresponding to the diffusive model
to the solution of the non-diffusive model, in classical L2− and H1−norms
(see Table 1). Rates of convergence are numerically derived (see Figure 2).

Linear regressions have been addressed for small values of D (see Fig-
ure 2). It shows that the error in the L2−norm and the H1−norm behaves
at order 1 for both the velocity and the elastic constraint.

We point out the fact that the previous observations related to the order
of approximation are still valid in the non-inertial regime (e.g. Re = 0.0,
r = 0.5, We = 1.0) or inertial regime (e.g. Re = 10.0, r = 0.5, We = 1.0).

Let us highlight the fact that one could expect that difficulties arise in
the vinicity of boundaries identified as inlets, i.e. where the fluid enters the
domain. Indeed Dirichlet boundary conditions on the velocity field, at the
inlet, enforce the information on the stress tensor to propagate inside the
fluid domain because of the transport process. As the stress tensor is trans-
ported from the inlet into the fluid domain, Neumann boundary conditions
on the elastic stress tensor do not seem to be the most relevant choice in
terms of numerical stability. However, numerical simulations do not reveal
any instability or boundary layer phenomenon. Let us notice that other
boundaries (outlets corresponding to velocity fields expressing the fact that
the fluid goes outside the domain, and lateral boundaries corresponding to
zero velocity field) are not identified as a source of problems, which is also
confirmed by numerical simulations.
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3.3 Driven cavity in 2D

3.3.1 Numerical profiles

The driven cavity problem is considered. The fluid domain is a unit square.
Boundary conditions on the velocity field are prescribed: u = 0 is imposed
on lateral and bottom boundaries whereas u = (−1, 0) is imposed on the top
boundary. The interest of this problem relies on the loss of regularity of the
velocity field, even in the case of the linear Stokes problem: the solution does
not belong to H1(Ω) anymore, because of the discontinuity of the Dirichlet
boundary conditions located at the corners of the geometry [4]. Neverthe-
less, the finite element solution is well defined. Therefore, we observe the
behaviour of the elastic tensor with respect to the loss of regularity.

Numerical simulations have been performed with

Re = 10.0, We = 1.0, r = 0.5, a = 0

and different values of D. Simulations evidence several facts: Figure 3 reveals
a large vortex whose typical size corresponds to the size of the domain: this
is due to the inertial effects. The loss of regularity is observed on the pressure
profiles: singularities are revealed at the top corners of the domain, at which
extremal values are reached. Besides, the influence of the diffusion on the
tensor profiles is important, playing the role of a regularizing effect, as it is
expected, see Figures 4 and 5. Furthermore, velocity profiles are little affected
by the diffusion parameter D, as long as it is small enough (less than 10−3).
In the end, the driven cavity test suggests that the loss of regularity does not
affect the convergence of the solution towards the solution of the Oldroyd
problem without diffusion.

3.3.2 Error analysis

The numerical tests have been led for various values of the Reynolds num-
ber Re, Weissenberg number We and retardation parameter r, see Figures
6–13. In all cases, the following estimates hold:

‖σ(D) − σ
(0)‖L2 = O(D), ‖σ(D) − σ

(0)‖H1 = O(D),

‖u(D) − u(0)‖L2 = O(D), ‖u(D) − u(0)‖H1 = O(D).

Note that even if the velocity fields do not belong to H1, the lack of regularity
is localized at the corner of the domain. In particular, the loss of regularity

19



is the same for both u(D) and u(0) so that the difference between the two
velocity fields is likely to belong to H1. This suggests that, despite the
lack of regularity of the solution that prevents us from falling into the scope
of the work of Renardy [16], the Oldroyd model is a rigorous limit of the
diffusive Oldroyd model as the vanishing diffusive solution converges to the
non-diffusive solution in L2 and even in H1.

3.4 Driven cavity in 3D

3.4.1 Numerical profiles

The driven cavity problem is considered. The fluid domain is a unit cube.
Boundary conditions on the velocity field are prescribed: u = 0 is imposed
on lateral and bottom boundaries whereas

u(x, y, 1) = 4 x (1− x) y (1− y) ex

is imposed on the top boundary. Numerical simulations have been performed
with a structured mesh, size 30 × 30 × 30, in the inertial regime Re = 4.0,
elastic regime We = 1.0 and r = 0.5 and different values of D.

Streamlines associated to the velocity field are shown on Figures 14–16.

3.4.2 Error analysis

As in the 2D case, error analysis in 3D by means of numerical simulations
shows that the solution of the diffusive problem is close to the solution of the
non-diffusive problem at order 1 in the L2−norm or in the H1−norm. More
precisely, the behaviour of the error with respect to D can be described as
follows, see Figures 17 and 18:

• Figure 17 or 18, zone I. For values of D less than 10−9, the computed
error is persistant as the machine precision, when computing the error,
has been attained.

• Figure 17 or 18, zone II. The convergence result associated to the
asymptotic regime D → 0 is ensured by the behaviour of the error
corresponding to small values of D, namely D ∼ 10−9 − 10−3. In this
range, the magnitude of the order of convergence for both the velocity
field and the elastic tensor is identified as being equal to 1.
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• Figure 17 or 18, zone III. For values of D greater that 10−3, which
lack physical relevance anyway, the corresponding solution cannot be
assumed to be close to the solution of the non-diffusive problem as the
diffusive effect on the elastic tensor is predominant over the memory
effect.

Hence, the computations suggest that the convergence order with respect
to D does not depend on the dimension of the problem.

4 Concluding remarks

As stated in Theorem 1, existence of a stationary solution of the diffusive
model is guaranteed if

C(I) :=
8|a|C2

ΩWe‖f‖H−1

min(1− r,D)2
≤ 1. (10)

Uniqueness of the solution is guaranteed if the source term is small enough or
if the Weissenberg and Reynolds numbers are small enough. It is also noted
that examples of nonuniqueness exist. They are even the source of well-
known phenomenon like shear banding, see [15]. For example in [11] or in [6]
it is shown that for r > 8/9 (and D = 0), there may be three solutions for the
stationary Oldroyd problem, forming in the case of a Couette flow a number
of shear bands. Besides, as presented in Section 3, convergence in strong
topologies in 2D and 3D has been illustrated on benchmark tests, suggesting
that the formal asymptotics related to the vanishing diffusion process may
be valid at least in some realistic physical situations.

However, the numerical experiments presented in Section 3 have been led
with the corotational case only, i. e. a = 0, and for moderate Weissenberg
numbers. Therefore, it is natural to question the validity of this conjecture for
different values of a and We, which is discussed in the two next subsections.

4.1 On the Johnson-Segalman model

Before addressing the vanishing viscosity process for the Johnson-Segalman
model, we can question whether condition expressed by Eq. (10) is technical
or necessary when a 6= 0, since the asymptotics only makes sense if the
stationary solution is defined for any value of D. The Johnson-Segalman
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model with diffusive constraint was particularly studied in [15] in a cylindrical
Couette flow. But in the most general case, i.e. without assumption on the
geometry and boundary condition, does existence of a solution depend on
a choice of parameters that should belong to a limited range of admissible
values in order to satisfy Eq. (10) (or a sharper condition)? Or can the
condition expressed in Eq. (10) be weakened or even purely forgotten in order
to ensure existence of a sationary solution? Supplementary computations
have been led and proven to be helpful in the understanding of the diffusive
Johnson-Segalman model:

• Table 2 tends to show that Eq. (10) is certainly necessary: too large
values of |a| need to be counterbalanced by large values of D for the
algorithm to succeed in defining a stationary state.

• In both benchmark problems, computations with a = ±0.5 and a =
±1.0 (with large values of D) reveal velocity profiles which are quite
different from those observed with smaller values of a.

• The case a = ±0.1 is somehow intriguing as the solution with diffusive
constraint is defined for every value of D. It suggests that, for small
values of |a| Eq. (10) may not be necessary. Alternatively the discretiza-
tion process (in time and space) of the Oldroyd system may induce some
relaxation of the condition on the resulting finite-dimensional Oldroyd
system.

We would like to underline that these numerical observations are mostly
compatible with theoretical results related to the standard Oldroyd models
[10, 12, 13]: global-in-time solutions exist in the case a = 0 without any
assumption and in the case a 6= 0 under smallness assumption on the data ;
relaxing this smallness assumption in the Johnson-Segalman model drasti-
cally weakens the existence result, as the existence of local-in-time solutions
only can be guaranteed. These results, related to the transient version of the
standard model, shed a light on both theoretical and numerical results: in
our algorithm, stationary states are obtained by letting time tend to +∞,
which is possible only if a global-in-time solution of the corresponding tran-
sient problem exists. In the vanishing diffusion limit, condition expressed
by Eq. (10) may express the degeneracy of the behaviour of solutions with
respect to time in the Johnson-Segalman models.
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4.2 On the high Weissenberg regime

The high Weissenberg regime does not fall into the range of validity of the
study, in particular when considering condition expressed by Eq. (10) that
ensures existence of a solution. Therefore, at this stage, well-posedness of the
problem with large values of the Weissenberg number is an open problem.
However, from the numerical point of view, simulations with the algorithm
proposed in this paper failed. We argue two possible directions that may
justify this observation: first, ill-posedness of the problem could explain the
numerical instabilities that are observed in the simulations ; second, the split-
ting procedure of the algorithm may be the cause of the instabilities as it
tends to segregate the two steps of the computations when the Weissenberg
number is large, leading to unphysical oscillations of the solution of the tran-
sient model and, in the end, numerical instabilities which prevent us from
defining a stationary state.
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equations with boundary conditions, Comm. Partial Differential Equa-
tions, 4(9), 1017-1034, 1979.

[3] J. Barrett, E. Süli. Existence of global weak solutions to some reg-
ularized kinetic models for dilute polymers, Multiscale Model. Simul.,
6(2), 506-546, 2007.

[4] Z. Cai, Y. Wang. An error estimate for two-dimensional Stokes driven
cavity flow, Math. Comp., 78(266), 771-787, 2009.

[5] L. Cattabriga. Su un problema al contorno relativo al sistema di
equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31, 308-340, 1961.

[6] F. Boyer, L. Chupin, P. Fabrie. Numerical study of viscoelastic
mixtures through a Cahn-Hilliard flow model, Eur. J. Mech. B Fluids,
23(5), 759-780, 2004.

23



[7] P. Constantin, M. Kliegl. Note on global regularity for two-
dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech.
Anal. 206(3), 725-740, 2012.

[8] Y. Fan, R.I. Tanner, N. Phan-Thien. Galerkin/least-square finite-
element methods for steady viscoelastic flows, J. Non-Newton. Fluid
Mech. 84, 1999.

[9] N. Goyal, J.J. Derksen. Direct simulations of spherical particles sed-
imenting in viscoelastic fluids, J. Non-Newton. Fluid Mech. 183-184,
1-13, 2012.
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Figure 1: Solution of the stationary Oldroyd model near the cylinder, with
Re = 0.67, r = 0.6, a = 0, We = 1.0, D = 0.0. (A): norm of the velocity field,
(B): pressure p, (C): elongational component of the elastic tensor σ11 − σ22,
(D): shear component of the elastic tensor σ12.
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Figure 2: Flow past a cylinder in a plane channel in 2D: influence of the
diffusive term on the error on the velocity (l.) and the elastic constraint (r.).

D = 10+0 D = 10−1 D = 10−2 D = 10−3 D = 0

(P) (C) (P) (C) (P) (C) (P) (C) (P) (C)
a = +1.0 © © ⊠ © ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

+0.8 © © © © ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

+0.5 © © © © © © ⊠ ⊠ ⊠ ⊠

+0.1 © © © © © © © © © ©
0.0 © © © © © © © © © ©

−0.1 © © © © © © © © © ©
−0.5 © © © © © © ⊠ ⊠ ⊠ ⊠

−0.8 © © © © ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

−1.0 © © ⊠ © ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

Table 2: Simulations of the Johnson-Segalman model with diffusive con-
straint for the 2D benchmarks: (P) stands for the benchmark related to the
flow past a cylinder in a plane channel and (C) stands for the driven cavity
problem. Symbol©means that a stationary state has been captured whereas
symbol ⊠ means that the algorithm has failed in capturing a stationary state.
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Figure 3: Solution of the stationary Oldroyd model for the driven cavity
problem with Re = 10.0, r = 0.5, a = 0, We = 1.0, D = 0.0: (t.) Norm of
the velocity field, (b.) pressure field.
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Figure 4: Solution of the stationary Oldroyd model for the driven cavity
problem with Re = 10.0, We = 1.0, r = 0.5, a = 0. Elongational component
of the elastic tensor σ11 − σ22. (t.): D = 0.000, (m.): D = 0.001, (b.):
D = 0.100.
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Figure 5: Solution of the stationary Oldroyd model for the driven cavity
problem with Re = 10.0, We = 1.0, r = 0.5, a = 0. Shear component of the
elastic tensor σ12. (t.): D = 0.000, (m.): D = 0.001, (b.): D = 0.100.
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Figure 6: Lid-driven cavity in 2D with Re = 0.0, We = 0.5, r = 0.2, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).

10
−10

10
0

10
−10

10
−5

10
0

 

 

H1 norm: order 0.97

L2 norm: order 0.99

∥ ∥

u
(D

)
−

u
(0
)∥ ∥

D
10

−10
10

0

10
−5

10
0

 

 

H1 norm: order 0.97

L2 norm: order 0.97

∥ ∥

σ
(D

)
−

σ
(0
)∥ ∥

D

Figure 7: Lid-driven cavity in 2D with Re = 0.0, We = 0.5, r = 0.5, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 8: Lid-driven cavity in 2D with Re = 0.0, We = 1.0, r = 0.2, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 9: Lid-driven cavity in 2D with Re = 0.0, We = 1.0, r = 0.5, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 10: Lid-driven cavity in 2D with Re = 5.0, We = 0.5, r = 0.2, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 11: Lid-driven cavity in 2D with Re = 5.0, We = 0.5, r = 0.5, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 12: Lid-driven cavity in 2D with Re = 5.0, We = 1.0, r = 0.2, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 13: Lid-driven cavity in 2D with Re = 5.0, We = 1.0, r = 0.5, a = 0:
influence of the diffusive term on the error on the velocity (l.) and the elastic
constraint (r.).
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Figure 14: Solution of the stationary Oldroyd model for the 3D driven cavity
problem with Re = 4.0, We = 1.0, r = 0.5, a = 0, D = 0.0: (t.) streamlines
related to the velocity field ; (m.) cutting planes sampling the 3D magnitude
of the velocity field ; (b.) magnitude of the pressure field.

35



σ11 − σ22

−4

1

σ11 − σ33

−2.5

1

σ22 − σ33

−0.5

2

Figure 15: Solution of the stationary Oldroyd model for the 3D driven cavity
problem with Re = 4.0, We = 1.0, r = 0.5, a = 0, D = 0.0: cutting planes
sampling the elongational components of the elastic tensor (t.) σ11 − σ22,
(m.) σ11 − σ33 and (b.) σ22 − σ33.
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Figure 16: Solution of the stationary Oldroyd model for the 3D driven cavity
problem with Re = 4.0, We = 1.0, r = 0.5, a = 0, D = 0.0: cutting planes
sampling shear components of the elastic tensor (t.) σ12, (m.) σ13 and (b.) σ23.
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Figure 17: Lid-driven cavity in 3D: influence of the diffusive term on the
error on the velocity (l.) and the elastic constraint (r.). Computations have
been led with We = 1.0, r = 0.5, a = 0 in the non-inertial regime Re = 0.0.
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Figure 18: Lid-driven cavity in 3D: influence of the diffusive term on the
error on the velocity (l.) and the elastic constraint (r.). Computations have
been led with We = 1.0, r = 0.5, a = 0 in the inertial regime Re = 4.0.
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