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This paper is devoted to the study of the rapid exponential stabilization problem for a controlled Korteweg-de Vries equation on a bounded interval with homogeneous Dirichlet boundary conditions and Neumann boundary control at the right endpoint of the interval. For every noncritical length, we build a feedback control law to force the solution of the closed-loop system to decay exponentially to zero with arbitrarily prescribed decay rates, provided that the initial datum is small enough. Our approach relies on the construction of a suitable integral transform and can be applied to many other equations.

Introduction

Let L > 0. Consider the following controlled Korteweg-de Vries (KdV) equation on (0, L)

       v t + v x + v xxx + vv x = 0 in (0, +∞) × (0, L), v(t, 0) = v(t, L) = 0 on (0, +∞), v x (t, L) = f (t)
on (0, +∞).

(1.1) This is a control system, where, at time t ∈ [0, +∞), the state is v(t, •) ∈ L 2 (0, L) and the control is f (t) ∈ R.

We are concerned with the following stabilization problem for the system (1.1).

Problem (S): Let λ > 0. Does there exist a linear feedback control F : L 2 (0, L) → R such that, for some δ > 0, every solution v of (1.1) with f (t) = F (v(t, •)) satisfies

|v(t, •)| L 2 (0,L) ≤ Ce -λt |v(0, •)| L 2 (0,L) , (1.2) 
for some C > 0, provided that |v(0, •)| L 2 (0,L) ≤ δ? Let us point out that, for every continuous linear map F : L 2 (0, L) → R, the Cauchy problem associated with (1.1) and f (t) = F (v(t, •)) is locally well-posed in the sense of the following theorem, which is proved in the appendix of this paper.

Theorem 1.1 Let F : L 2 (0, L) → R be continuous linear map and let T 0 ∈ (0, +∞). Then, for every v 0 ∈ L 2 (0, L), there exists at most one solution v ∈ C 0 ([0, T 0 ]; L 2 (0, L)) ∩ L 2 (0, T 0 ; H 1 0 (0, L)) of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•).

Moreover, there exists an r 0 > 0 such that, for every v 0 ∈ L 2 (0, L) with

|v 0 | L 2 (0,L) ≤ r 0 , (1.3) 
there exists one solution v ∈ C 0 ([0, T 0 ]; L 2 (0, L)) ∩ L 2 (0, T 0 ; H 1 0 (0, L)) of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•).

Let F : L 2 (0, L) → R be continuous linear map and let r 0 be as in Theorem 1.1 for T 0 △ = 1. Let v 0 ∈ L 2 (0, L) be such that (1.3) holds. From Theorem 1.1, we get that there exists a unique T ∈ (0, +∞] such that (i) There exists v ∈ C 0 ([0, T ); L 2 (0, L))∩L 2 loc ([0, T ); H 1 (0, L)) of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•), (ii) For every T ′ ∈ (T, +∞) there is no v ∈ C 0 ([0, T ′ ); L 2 (0, L)) ∩ L 2 loc ([0, T ′ ); H 1 (0, L)) of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•).

From now on, the v as in (i) will be called the solution of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 . (In fact (1.3) is not needed: see Remark A.2 below.)

It follows from [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]Lemma 3.5] that Problem (S) has a negative answer for the linearized system of (1.1) at 0 (i.e. the control system (1.5) below) for every λ > 0 and every L ∈ N with N defined by

N △ = 2π l 2 + lj + j 2 3 ; l, j ∈ Z + , (1.4) 
where Z + denote the set of positive integers: Z + △ = {1, 2, 3, . . .}. (Note, however, that it has been proved in [START_REF] Chu | Asymptotic stability of a nonlinear Korteweg-de Vries equation with a critical length[END_REF] that, for L = 2π ∈ N , 0 ∈ L 2 (0, L) is locally asymptotically stable for our KdV equation (1.1) with f (•) = 0, even if this property is not true for the linearized system at 0 of our KdV equation (1.1) with f (•) = 0.) In this paper, unless otherwise specified, we always keep the assumption that L / ∈ N .

The stabilization problems for both linear and nonlinear systems were studied extensively in the literature. There are too many related works to list them comprehensively here. As a result, we restrict ourselves to KdV equations. For KdV equations with internal feedback controls, we refer to [START_REF] Komornik | Stabilisation de l'équation de Korteweg-de Vries[END_REF][START_REF] Petris Massarolo | On the uniform decay for the Korteweg-de Vries equation with weak damping[END_REF][START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Fernando | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF][START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF][START_REF] Russell | Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation[END_REF][START_REF] Russell | Exact controllability and stabilizability of the Korteweg-de Vries equation[END_REF] and the rich references therein, as well as the self-contained survey paper [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. For KdV equations with boundary feedback controls, we refer to [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF][START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF][START_REF] Zhang | Boundary stabilization of the Korteweg-de Vries equation[END_REF] and the numerous references therein.

In this paper, we focus on the boundary feedback stabilization problems. This issue was first studied in [START_REF] Zhang | Boundary stabilization of the Korteweg-de Vries equation[END_REF], where the author proved that the system (1.1) is locally exponentially stable in H 1 0 (0, L) for L = 1 and for the feedback control f (t) = αu x (0, t) where α ∈ (0, 1). In that work, the exponential decay rate depends on α but cannot be arbitrarily large.

There are three natural methods to study Problem (S). The first one is the so called "Gramian approach". It works well for time reversible linear systems (see [START_REF] Komornik | Rapid boundary stabilization of linear distributed systems[END_REF][START_REF] Slemrod | A note on complete controllability and stabilizability for linear control systems in hilbert space[END_REF][START_REF] Manuel | Rapid exponential feedback stabilization with unbounded control operators[END_REF] for example). This method was used in [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] to get the rapid stabilization for the following linearized system of (1.1)        ṽt + ṽx + ṽxxx = 0 in (0, +∞) × (0, L), ṽ(t, 0) = ṽ(t, L) = 0 on (0, +∞), ṽx (t, L) = f (t) on (0, +∞).

(1.5)

For every given λ, by solving a suitable linear quadratic regulator problem, a feedback control law f (t) = F (ṽ(t, •)) was constructed in [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] which makes (1.5) exponentially stable with an exponential decay rate at least equal to λ. However, one does not know how to apply this result to treat the nonlinear system (1.1).

The second one is the control Lyapunov function method. It is well known that Lyapunov functions are very useful for the study the asymptotic stability of dynamical systems. For a control system, with the aid of a suitable choice of feedback laws, there are more "chances" for a given function to be a Lyapunov function. Thus, Lyapunov functions are even more useful for the stabilization of control systems than for the stability of dynamical systems without control (see [START_REF] Coron | Control and nonlinearity[END_REF]Section 12.1] for example). This method can be used to get rapid stabilization for some partial differential equations (see, for example, [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]). However this method is difficult to use here, as well as for many other control systems, to get rapid stabilization. The reason is that the "natural" control Lyapunov functions do not lead to arbitrarily large exponential decay rate. See, for example, [START_REF] Coron | Control and nonlinearity[END_REF]Remark 12.9,p. 318].

The third one is the backstepping method. It is now a standard method for finite dimensional control systems (see, e.g., [START_REF] Krstić | Nonlinear and Adaptive Control Design[END_REF], [28, pages 242-246] and [START_REF] Coron | Control and nonlinearity[END_REF]Section 12.5]). The first adaptations of this method to control systems modeled by partial differential equations were given in [START_REF] Coron | Stabilization of a rotating body beam without damping[END_REF] and [START_REF] Liu | Backstepping boundary control of Burgers' equation with actuator dynamics[END_REF]. This method has been used on the discretization of partial differential equations in [START_REF] Dejan | Backstepping in infinite dimension for a class of parabolic distributed parameter systems[END_REF]. A key modification of the method by using a Volterra transformation is introduced in [START_REF] Dejan | Boundary control of an unstable heat equation via measurement of domain-averaged temperature[END_REF]. This last article has been the starting point of many works. See, in particular, the references given in [START_REF] Krstić | Boundary control of PDEs, volume 16 of Advances in Design and Control[END_REF], where a systematic and clear introduction to this method is given. Note that this method can be useful to handle nonlinearities as it was shown in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF][START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], the authors studied the rapid stabilization problem with a left Dirichlet boundary control by the backstepping method (in that case the assumption L ∈ N is no longer required). They consider the following system

       vt + vx + vxxx + vv x = 0 in (0, +∞) × (0, L), v(t, 0) = f (t), v(t, L) = 0 on (0, +∞), vx (t, L) = 0 on (0, +∞), (1.6) 
and proved that, for every λ > 0, there exists a continuous linear feedback control f (t) = L 0 ǩ(0, y)v(t, y)dy, an r > 0 and a C > 0 such that

|v(t, •)| L 2 (0,L) ≤ Ce -λt |v(0, •)| L 2 (0,L)
for every solution of (1.6) satisfying |v(0, •)| L 2 (0,L) ≤ r. Here the function

ǩ : {(x, y) : x ∈ [0, L], y ∈ [x, L]} → R is the solution to                ǩxxx + ǩx + ǩyyy + ǩy + λ ǩ = 0 in {(x, y) : x ∈ [0, L], y ∈ [x, L]}, ǩ(x, L) = 0 in [0, L], ǩ(x, x) = 0 in [0, L], ǩx (x, x) = λ 3 (L -x) in [0, L], (1.7) 
as in the backstepping approach.

The main difference between the system (1.1) and the system (1.6) is the position where the control is acting. It is well known that the control properties of KdV equations depend in a crucial way on the location of the controls. For instance, the system is only null controllable if the control acts on the left Dirichlet boundary condition and homogeneous data is considered at the right end point of the interval (see [START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF]). On the other hand, if the system is controlled from the right boundary condition, then it is exactly controllable (see [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]). In [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], the authors also pointed out the difficulties for employing the backstepping method to solve our rapid stabilization problem for (1.1).

In this paper, in order to stabilize the solutions of (1.1), we use a more general integral transform on the state v than the one allowed by the backstepping method. In fact, no restriction is put on the integral transform which is a priori considered: it takes the following form

w(x) △ = v(x) - L 0 k(x, y)v(y)dy △ = v(x) -(Kv)(x).
(1.8)

Note that no assumption is made on the support of k(•, •). This is in contrast with the backstepping approach where the support of k is assumed to be included in one of the following triangles

{(x, y) ∈ [0, L] 2 ; x ∈ [0, L], y ∈ [0, x]}, {(x, y) ∈ [0, L] 2 ; y ∈ [0, L], x ∈ [0, y]}.
Now let us briefly explain the idea for the linearized KdV equation (1.5).

One can check that (the computations are similar but simpler than the ones for the KdV equation (1.1) given in Section 4, we omit them), if

           k yyy + k y + k xxx + k x + λk = λδ(x -y) in (0, L) × (0, L), k(x, 0) = k(x, L) = 0 on (0, L), k y (x, 0) = k y (x, L) = 0 on (0, L), k(0, y) = k(L, y) = 0 on (0, L), (1.9) 
where δ(xy) denotes the Dirac measure on the diagonal of the square [0, L] × [0, L], has a solution k which is smooth enough, then, for every solution ṽ of (1.5), w(t, x)

△ = ṽ(t, x) - L 0 k(x, y)ṽ(t, y)dy is a solution of            wt + wx + wxxx + λ w = 0 in (0, +∞) × (0, L), w(t, 0) = w(t, L) = 0 on (0, +∞), wx (t, L) = f (t) - L 0 k
x (L, y)ṽ(t, y)dy on (0, +∞).

(1.10)

If we define the feedback law F (•) by

F (ṽ) = f (t) △ = L 0 k x (L, y)ṽ(t, y)dy, (1.11) 
then the last equation of (1.10) becomes wx (t, L) = 0. Multiplying the first equation of (1.10) by w and integrating on [0, L] we get, using integration by parts together with the boundary conditions of (1.10) and wx (t, L) = 0,

d dt L 0 w(t, x) 2 dx ≤ -λ L 0 w(t, x) 2 dx, (1.12) 
which shows the exponential decay of the L 2 -norm of w. In order to get the same exponential decay of the L 2 -norm of ṽ, it suffices to prove that 1. |v| L 2 (0,L) ≤ C|v -Kv| L 2 (0,L) for some C > 0 independent of v ∈ L 2 (0, L). Furthermore, in order to show that (1.2) holds, we also need to prove that 2. k(•, •) is smooth enough so that the nonlinearity vv x will not be a problem provided that |v(0, •)| L 2 (0,L) is small enough.

We will check these two points together with the existence of k(•, •) satisfying (1.9) and therefore we prove the following local rapid stabilization result. Theorem 1.2 For every λ > 0, there exist a continuous linear feedback control law F : L 2 (0, L) → R, an r ∈ (0, +∞) and a C > 0 such that, for every v 0 ∈ L 2 (0, L) satisfying |v 0 | L 2 (0,L) ≤ r, the solution v of (1.1) with f (t)

△ = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•) is defined on [0, +∞) and satisfies |v(t, •)| L 2 (0,L) ≤ Ce -λ 2 t |v(0, •)| L 2 (0,L) , for every t ≥ 0. (1.13)
To show the existence and uniqueness of k(•, •), we have to utilize the fact that the linear KdV equation is exact controllable by Neumann boundary control on the right end point of the interval. This is different from the backstepping method, which does not use any controllability result.

Although the aim of this paper is to study the rapid stabilization of KdV equations, the method introduced here can be applied to many other partial differential equations on one dimensional bounded domains, such as heat equations, Schrödinger equations, beam equations and Kuramoto-Sivashinsky equations. In particular, we have applied it in [START_REF] Coron | Fredholm transformations and local rapid stabilization for kuramoto-sivashinsky equations[END_REF] to the following Kuramoto-Sivashinsky control system

       v t + v xxxx + λv xx + vv x = 0 in (0, +∞) × (0, 1), v(t, 0) = v(t, 1) = 0 on (0, +∞), v xx (t, 0) = f (t), v xx (t, 1) = 0 on (0, +∞), (1.14) 
where, at time t ∈ [0, +∞), the state is v(t, •) ∈ L 2 (0, 1) and the control is f (t) ∈ R. In those cases, the main difference is that the equations satisfied by the kernel k are different from (1.9). However, one can follow the same strategy to show the existence and regularity of the kernel and the invertibility of the transform. The rest of this paper is organized as follows

• in Section 2, we establish the well-posedness of (1.9) and study the regularity of its solution,

• in Section 3, we prove the invertibility of I -K,

• in Section 4, we conclude the proof of Theorem 1.2 by using the results established in Section 2 and Section 3.

2 Well-posedness of (1.9)

This section is devoted to the study of the equation (1.9). We first introduce the definition of the (transposition) solution to (1.9). Let (2.5)

E △ = ρ ∈ C ∞ ([0, L] × [0, L]) : ρ(0, y) = ρ(L, y) = ρ(x, 0) = ρ(x, L) = 0, ρ x (0, y) = ρ x (0, L) = 0 (2.1) and let G be the set of k ∈ H 1 0 ((0, L) × (0, L)) such that x ∈ (0, L) → k x (x, •) ∈ L 2 (0, L) ∈ C 0 ([0, L]; L 2 (0, L)), (2.2) 
y ∈ (0, L) → k y (•, y) ∈ L 2 (0, L) ∈ C 0 ([0, L]; L 2 (0, L)), (2.3) k y (•, 0) = k y (•, L) = 0 in L 2 (0, L).
We have the following well-posedness result for (1.9).

Lemma 2.1 Let λ = 0. Equation (1.9) has one and only one solution in G.

Proof of Lemma 2.1 : The proof is divided into two steps:

• Step 1: proof of the uniqueness of the solution to (1.9);

• Step 2: proof of the existence of a solution to (1.9) with the required regularity.

Step 1: proof of the uniqueness of the solution to (1.9)

Assume that k 1 (•, •) and k 2 (•, •) are two solutions of (1.9). Let

k 3 (•, •) △ = k 1 (•, •) -k 2 (•, •). Then k 3 (•, •) is a (transposition: (2.5) holds without the last integral term) solution of            k 3,yyy + k 3,y + k 3,xxx + k 3,x + λk 3 = 0 in (0, L) × (0, L), k 3 (x, 0) = k 3 (x, L) = 0 on (0, L), k 3,y (x, 0) = k 3,y (x, L) = 0 on (0, L), k 3 (0, y) = k 3 (L, y) = 0 on (0, L).
(2.6)

Let us define an unbounded linear operator A :

D(A) ⊂ L 2 (0, L) → L 2 (0, L) as follows.    D(A) △ = {ϕ : ϕ ∈ H 3 (0, L), ϕ(0) = ϕ(L) = 0, ϕ x (0) = ϕ x (L)}, Aϕ △ = -ϕ xxx -ϕ x .
(2.7)

The operator A is a skew-adjoint operator with compact resolvent. Furthermore, since L / ∈ N , we have L ∈ 2πZ + , which, as one easily checks, implies that 0 is not an eigenvalue of A. Denote by {iµ j } j∈Z\{0} , µ j ∈ R, the eigenvalues of A, which are organized in the following way:

• • • ≤ µ -2 ≤ µ -1 < 0 < µ 1 ≤ µ 2 ≤ • • • . (2.8)
Let us point out that all these eigenvalues are simple. Indeed, assume that µ j is of multiplicity at least 2 and ϕ 1,j and ϕ 2,j are two linear independent eigenfunctions corresponding to iµ j . Let

ϕ j △ =    ϕ 2,j - ϕ ′ 2,j (0) ϕ ′ 1,j (0) ϕ 1,j if ϕ ′ 1,j (0) = 0, ϕ 1,j if ϕ ′ 1,j (0) = 0.
(2.9)

Since ϕ 1,j and ϕ 2,j are linearly independent, we conclude that ϕ j = 0. Then ϕ j is a nonzero eigenfunction for this eigenvalue iµ j such that

ϕ j (0) = ϕ j (L) = ϕ ′ j (0) = ϕ ′ j (L) = 0. (2.10)
By [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]Lemma 3.5], our assumption L / ∈ N implies that, for every a nonzero eigenfunction ϕ j of A, ϕ ′ j (0) = 0, (2.11) which is in contradiction with (2.10). Hence all these eigenvalues are simple and all the inequalities in (2.8) are strict inequalities. Let us write {ϕ j } j∈Z\{0} for the corresponding eigenfunctions with

|ϕ j | L 2 (0,L) = 1 (j ∈ Z\ {0}). It is well known that {ϕ j } j∈Z\{0} constitutes an orthonormal basis of L 2 C (0, L).
In what follows, for simplicity, in L 2 C (0, L), L ∞ C (0, L) etc., when no confusion is possible, we omit the index C.

Next, we analyze the asymptotic behavior of µ j as |j| → +∞. This is done in [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF]. However, we present it also here since we need similar information for other sequences of numbers which will be introduced later on. To this end, we first consider the following boundary problem, with µ given in R,

       ϕ ′′′ + ϕ ′ + iµϕ = 0 in [0, L], ϕ(0) = ϕ(L) = 0, ϕ ′ (0) = ϕ ′ (L).
(2.12)

To solve the equation (2.12), we study the following algebraic equation in C

s 3 + s + iµ = 0. (2.13)
Denote by s 1 , s 2 and s 3 the three roots of (2.13). These roots are distinct if and only if 4 = 27µ 2 , which we assume from now on. For the special case 4 = 27µ 2 , the arguments given below can be adapted and we omit this adaptation.

Since the function x ∈ R → 2x(4x 2 -1) ∈ R is a surjective map from R to R, we get that there always exists at least one τ ∈ R such that µ = 2τ (4τ 2 -1).

(2.14) By this, the three roots of (2.13) are

s 1 = √ 3τ 2 -1 -iτ, s 2 = - √ 3τ 2 -1 -iτ, s 3 = 2iτ.
Since we want to analyze the asymptotic behavior of µ j as |j| → +∞, we may assume that |τ | is large enough. Thus, we only consider the case 3τ 2 > 1. Now the eigenfunction is

ϕ(x) = e -iτ x r 1 cosh( √ 3τ 2 -1x) + r 2 sinh( √ 3τ 2 -1x) + r 3 e 2iτ x
for some suitable complex numbers r 1 , r 2 and r 3 which are not all equal to 0 . The boundary conditions of (2.12) are fulfilled if and only if these three complex numbers satisfy that

                   r 1 + r 3 = 0, e -iτ L r 1 cosh( √ 3τ 2 -1L) + r 2 sinh( √ 3τ 2 -1L) + r 3 e 2iτ L = 0, -iτ r 1 + 2iτ r 3 + r 2 √ 3τ 2 -1 = -iτ e -iτ L r 1 cosh( √ 3τ 2 -1L) + r 2 sinh( √ 3τ 2 -1L) + 2iτ r 3 e 2iτ L +e -iτ L √ 3τ 2 -1 r 1 sinh( √ 3τ 2 -1L) + r 2 cosh( √ 3τ 2 -1L) .
Thus, we have that

√ 3τ 2 -1 cos(2τ L)-3τ sin(τ L) sinh( √ 3τ 2 -1L)- √ 3τ 2 -1 cos(τ L) cosh( √ 3τ 2 -1L) = 0. (2.15) As |τ | → +∞, sinh( √ 3τ 2 -1L) ∼ cosh( √ 3τ 2 -1L) ∼ 1 2 e √ 3τ 2 -1L ∼ 1 2 e √ 3|τ |L .
Hence, we find that

e √ 3τ 2 -1L = cos(2τ L) 2 cos(τ L -π 3 ) + O(1) as τ → +∞, e √ 3τ 2 -1L = cos(2τ L) 2 cos(τ L + π 3 ) + O(1) as τ → -∞.
(2.16)

For j ∈ Z with |j| large enough, one checks that there exists a unique solution τ = τ j of (2.15) in each interval [ jπ L , (j+1)π L ), and one has that

       τ j = jπ L + 5π 6L + O 1 j as j → +∞, τ j = jπ L + π 6L + O 1 j as j → -∞.
(2.17)

From this and (2.14) we can see that

       µ j = 2jπ L 3 + 40π 3 3 j 2 + O(j) as j → +∞, µ j = 2jπ L 3 + 8π 3 3 j 2 + O(j) as j → -∞.
(2.18)

The corresponding eigenfunction ϕ j with |ϕ j | L 2 (0,L) = 1 reads

ϕ j (x) = α j e -iτ j x cosh 3τ 2 j -1x + e 3iτ j L -cosh 3τ 2 j -1L sinh 3τ 2 j -1L sinh 3τ 2 j -1x -e 2iτ j x , (2.19) where α j ∈ (0, +∞) is a suitable chosen positive real number such that |ϕ j | L 2 (0,L) = 1.
Let us analyze the asymptotic behavior of α j as |j| → +∞. For this, with some simple computations, we see that

ϕ j (x) = α j cosh 3τ 2 j -1x sinh 3τ 2 j -1L -sinh 3τ 2 j -1x cosh 3τ 2 j -1L sinh 3τ 2 j -1L e -iτ j x + e 3iτ j L sinh 3τ 2 j -1x sinh 3τ 2 j -1L e -iτ j x -e 2iτ j x .
(2.20)

Then, we find that, as |j| → +∞,

L 0 ϕ j (x) -α j 2e 3iτ j L sinh 3τ 2 j -1x + e √ 3τ 2 j -1(L-x) 2 sinh 3τ 2 j -1L e -iτ j x -e 2iτ j x 2 dx 1 2 = O α j e - √ 3τ 2 j -1L , (2.21) 
which, using |ϕ j | L 2 (0,L) = 1, gives us

α j → 1 √ L as |j| → +∞. (2.22)
We now estimate ϕ j,x . From (2.19), we obtain that

ϕ j,x (x) = α j -iτ j e -iτ j x cosh 3τ 2 j -1x + e 3iτ j L -cosh 3τ 2 j -1L sinh 3τ 2 j -1L sinh 3τ 2 j -1x +e -iτ j x 3τ 2 j -1 sinh 3τ 2 j -1x + e 3iτ j L -cosh 3τ 2 j -1L sinh 3τ 2 j -1L 3τ 2 j -1 cosh 3τ 2 j -1x -2iτ j e 2iτ j x .
(2.23) From (2.22) and (2.23), we get that, for |j| large enough,

|ϕ j,x | L ∞ (0,L) ≤ max x∈[0,L] α j τ j 2e 3iτ j L sinh 3τ 2 j -1x + e √ 3τ 2 j -1L- √ 3τ 2 j -1x -e - √ 3τ 2 j -1L+ √ 3τ 2 j -1x 2 sinh 3τ 2 j -1L + max x∈[0,L] α j 3τ 2 j -1 2e 3iτ j L sinh 3τ 2 j -1x -e √ 3τ 2 j -1L- √ 3τ 2 j -1x -e - √ 3τ 2 j -1L+ √ 3τ 2 j -1x 2 sinh 3τ 2 j -1L +2|τ j | ≤ C|τ j |,
(2.24) From (2.17) and (2.24), one gets, for every j ∈ Z + ,

|ϕ j,x | L ∞ (0,L) ≤ C|j|.
(2.25)

From (2.23), as |j| → +∞,

ϕ j,x (0) = α j e 3iτ j L -cosh 3τ 2 j -1L sinh 3τ 2 j -1L 3τ 2 j -1 -3iτ j = α j -3iτ j -3τ 2 j -1 + α j O e - √ 3τ 2 j -1L
(2.26) and

ϕ j,x (L) = α j -3iτ j e 2iτ j L + e -iτ j L 3τ 2 j -1 sinh 3τ 2 j -1L + 3τ 2 j -1 e 3iτ j L -cosh 3τ 2 j -1L sinh 3τ 2 j -1L cosh 3τ 2 j -1L = α j -3iτ j + 3τ 2 j -1 e 2iτ j L + α j O e - √ 3τ 2 j -1L .
(2.27)

Let us write

k 3 (x, y) = j∈Z\{0} ψ j (x)ϕ j (y) (2.28)
for the solution to (2.6). Then, we get that ψ j solves

ψ ′′′ j + ψ ′ j + λψ j -iµ j ψ j = 0 in (0, L), ψ j (0) = ψ j (L) = 0. (2.29) Let c j △ = ψ j,x (L) -ψ j,x (0) (j ∈ Z \ {0}).
We consider the following equation:

       ψ′′′ j + ψ′ j + λ ψj -iµ j ψj = 0 in (0, L), ψj (0) = ψj (L) = 0, ψ′ j (L) -ψ′ j (0) = 1.
(2.30)

Since λiµ j is not an eigenvalue of A (recall that λ = 0), the equation (2.30) has one and only one solution. Moreover

ψ j = c j ψj for every j ∈ Z \ {0}. (2.31) 
Denote by r

(1)

j , r (2) 
j and r

(3) j the roots of

r 3 + r = -λ + iµ j . (2.32) Let σ j ∈ R be such that 2σ j (4σ 2 j -1) =      -λ 2 + µ 2 j , if µ j > 0, λ 2 + µ 2 j , if µ j < 0.
(2.33)

Then, there exists C > 0 such that

|σ -j -τ j | ≤ C 1 + j 2 and |σ 2 -j -τ 2 j | ≤ C 1 + |j| , ∀ j ∈ Z \ {0}. (2.34) Let σj ∈ C be such that 2σ j (4σ 2 j -1) = -iλ -µ j . (2.35)
Roughly speaking, there are three complex numbers which satisfy (2.35). For a good choice of σj , we have lim

|j|→+∞ |σ j -σj | = 0.
In this case, it is easy to see that there is a constant C > 0 such that

|σ j -σj | ≤ C 1 + j 2 , ∀j ∈ Z \ {0}.
(2.36)

The solutions to (2.32) read r

(1)

j = 3σ 2 j -1 -iσ j , r (2) 
j = -3σ 2 j -1 -iσ j , r (3) 
j = 2iσ j .
For every j ∈ Z \ {0}, let us define

κ (1) j △ = -iσ j + 3σ 2 j -1 -3σ 2 j -1 -iσ j , κ (2) j △ 
= σj σ j , (2.37)

θ j (x) △ = e (-iσ j - √ 3σ 2 j -1)x -e (-iσ j + √ 3σ 2 j -1-2 √ 3σ 2 j -1)x , x ∈ [0, L]. (2.38) Let J ∈ Z + be such that (j ∈ Z and |j| ≥ J) ⇒ 3σ 2 j -1 ≥ 1 and |3σ 2 j -1| ≥ 1 .
(2.39) (The existence of such a J follows from (2.17), (2.34) and (2.36)). From (2.36) and (2.38), one gets the existence of C 1 > 0 and C > 0 such that, for every x ∈ [0, L] and every j ∈ Z \ {0} with |j| ≥ J,

|θ j (x)| ≤ e (-iσ j - √ 3σ 2 j -1+ √ 3σ 2 j -1)x -e (-iσ j + √ 3σ 2 j -1- √ 3σ 2 j -1)x e - √ 3σ 2 j -1x ≤ e (-iσ j - √ 3σ 2 j -1+ √ 3σ 2 j -1)x 1 -e 2( √ 3σ 2 j -1- √ 3σ 2 j -1)x e - √ 3σ 2 j -1x ≤ C 1 e C 1 j 2 C 1 j 2 e - √ 3σ 2 j -1x ≤ C j 2 e - √ 3σ 2 j -1x .
(2.40)

Similarly, there exists C > 0 such that, for every x ∈ [0, L] and all integer j with |j| ≥ J,

|θ ′ j (x)| ≤ C 3σ 2 j -1 j 2 e - √ 3σ 2 j -1x . (2.41)
From (2.40) and (2.41), one gets the existence of C > 0 such that, for all integer j with |j| ≥ J,

|θ j (L)| ≤ Ce - √ 3σ 2 j -1L , |θ ′ j (L)| ≤ C 3σ 2 j -1e - √ 3σ 2 j -1L . (2.42)
Similar to the argument for the analysis of µ j and ϕ j , we can get that, if 3σ 2 j ≤ 1, ψj (x) = e -iκ (1) j σ j x β

(1)

j cos 1 -3σ 2 j x + β (2) j sin 1 -3σ 2 j x + β (3) j e 2iκ (2) j σ j x + β (1) j -β (2) j θ j (x),
and, if 3σ

2 j > 1, ψj (x) = e -iκ (1) j σ j x β (1) 
j cosh 3σ 2 j -1x + β (2) j sinh 3σ 2 j -1x + β (3) j e 2iκ (2) j σ j x + β (1) j -β (2) j θ j (x).
From now on, we assume that |j| is large enough so that 3σ 2 j > 1. From the boundary conditions satisfied by ψj -see (2.30)-, we get

                                       β (1) j + β (3) j = 0, e -iκ (1) j σ j L β (1) j cosh 3σ 2 j -1L + β (2) j sinh 3σ 2 j -1L + β (3) j e 2iκ (2) j σ j L + β (1) j -β (2) j θ j (L) = 0, -iκ j σ j β (1) 
j + 2iκ j σ j β (3) 
j + β (2) j 3σ 2 j -1 + 1 = -iκ j σ j e -iκ (1) j σ j L β (1) 
j cosh 3σ 2 j -1L +β (2) j sinh 3σ 2 j -1L +2iσ j β (3) j e 2iκ (2) j σ j L +e -iκ (1) j σ j L 3σ 2 j -1 β (1) j sinh 3σ 2 j -1L +β (2) j cosh 3σ 2 j -1L + β (1) j -β (2) j θ ′ j (L).
(2.43) Then, we know ψj (x) = β j e -iκ (1) j σ j x cosh 3σ 2 j -1x + e i(κ (1) j +2κ

(2)

j )σ j L -cosh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) × sinh 3σ 2 j -1x -e iκ j σ j x θ j (x) -e 2iκ (2) j σ j x ,
(2.44) where β j is a suitable chosen complex number such that the third equality in (2.43) holds.

From (2.44), we have, as |j| → +∞, ψj,x (0) = β jiκ (1)

j σ j -2iκ (2) j σ j + e i(κ (1) j +2κ (2) j )σ j L -cosh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) × 2 3σ 2 j -1 -3σ 2 j -1 = β j -iκ (1) 
j σ j -2iκ (2) 
j σ j -2 3σ 2 j -1 + 3σ 2 j -1 + γ j O e - √ 3σ 2 j -1L
(2.45) and ψj,x (L) = β j -iκ

(1)

j σ j e 2iκ (2) j σ j L -2iκ (2) 
j σ j e 2iκ (2) j σ j L +e -iκ (1) j σ j L 3σ 2 j -1 sinh 3σ 2 j -1L + e i(κ (1)
j +2κ

(2)

j )σ j L -cosh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) sinh 3σ 2 j -1L + e iκ (1) j σ j L θ j (L) 3σ 2 j -1 cosh 3σ 2 j -1L -iκ (1) 
j σ j e iκ (1) j σ j L θ j (L) -ie iκ (1) j σ j L θ ′ j (L) = β j -iκ (1) 
j σ j -2iκ (2) 
j σ j + 3σ 2 j -1 e 2iκ (2) j σ j L + β j O e - √ 3σ 2 j -1L .
(2.46) Since ϕ j,y (0) = ϕ j,y (L), from (2.26) and (2.27), we get

-3iτ j -3τ 2 j -1 + O e - √ 3τ 2 
j -1L = -3iτ j + 3τ 2 j -1 e 2iτ j L .

(2.47)

This, together with the choice of σ j , κ

j and κ

(2)

j , implies that -iκ (1) 
j σ j -2iκ (2) 
j σ j -2 3σ 2 j -1 + 3σ 2 j -1 = -iκ (1) 
j σ j -2iκ (2) 
j σ j + 3σ 2 j -1 e 2iκ (2) j σ j L + O 1 j 2 , as |j| → +∞.
(2.48) Thus, we see

β j = O(j 2 ) as |j| → +∞. (2.49) Let, for j ∈ Z \ {0}, ψj (x) △ =    α -j β j ψj (x), x ∈ [0, L] if 3σ 2 j > 1, ψj (x), x ∈ [0, L] if 3σ 2 j ≤ 1.
(2.50)

Now, we are going to prove that { ψj } j∈Z\{0} is a Riesz basis of L 2 (0, L).

First, we analyze the asymptotic behavior of ψj (•) as |j| → +∞. It is clear that ψj (x) = α -j e i(κ (1) j +2κ

(2)

j )σ j L sinh 3σ 2 j -1x sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) e -iκ (1) j σ j x + cosh 3σ 2 j -1L θ j (x) sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) + cosh 3σ 2 j -1x sinh 3σ 2 j -1L -sinh 3σ 2 j -1x cosh 3σ 2 j -1L sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L)
e -iκ (1)

j σ j x - cosh 3σ 2 j -1x e iκ (1) j σ j (L-x) θ j (L) + e i(κ (1) 
j +2κ

(2)

j )σ j L θ j (x) sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) - e ik (1) j σ j (L-y) θ j (L) sinh 3σ 2 j -1x -e iκ (1) j σ j y θ j (x) sinh 3σ 2 j -1L -e iκ (1) j σ j L θ j (L) -e 2iκ (2) j σ j x .
(2.51) Then, using also (2.22), we get that

L 0 ψj (x)-α -j 2e i(κ (1) j +2κ (2) 
j )σ j L sinh 3σ 2 j -1x + e √ 3σ 2 j -1(L-x) 2 sinh 3σ 2 j -1L -2e iκ (1) j σ j L θ j (L) e -iκ (1) 
j σ j x -e 2iκ (2) 
j σ j x 2 dx 1 2
= O 1 j 3 as |j| → +∞.

(2.52) Now, we prove that

j∈Z\{0} ψ-j -ϕ j 2 L 2 (0,L) < ∞.
(2.53) Utilizing (2.42) and straightforward computations, one can show that

α j 2e 3iτ j L sinh 3τ 2 j -1x + e √ 3τ 2 j -1(L-x) 2 sinh 3τ 2 j -1L e -iτ j x -e 2iτ j x -α j 2e i(κ (1)
j +2κ

(2)

j )σ -j L sinh 3σ 2 -j -1x +e √ 3σ 2 -j -1(L-x) 2 sinh 3σ 2 -j -1L -2e iκ (1) j σ -j L θ j (L) e -iκ (1) j σ -j x -e 2iκ (2) j σ -j x ≤ Cα j 1 -e ( √ 3τ 2 j -1- √ 3σ 2 -j -1)x + 1 -e (κ (1) j σ -j -τ j )x + 1 -e (κ (2) j σ -j -τ j )x + e - √ 3σ 2 
-j -1L .

(2.54) Hence, using (2.21), (2.34) and (2.52), we see that there exists C > 0 such that for every

j ∈ Z \ {0}, L 0 | ψ-j -ϕ j | 2 dx ≤ C 3τ 2 j -1 -3σ 2 -j -1 2 + τ j -κ (1) 
j σ -j 2 + τ j -κ (2) 
j σ -j 2 + e - √ 3σ 2 -j -1L + 1 j 6 ≤ C 1 j 4 . (2.55) Since +∞ j=1 1 j 4 < +∞,
we have (2.53).

Let T > 0. Consider the following control system:

       ϑ t + ϑ xxx + ϑ x = 0 in (0, T ) × (0, L), ϑ(t, 0) = ϑ(t, L) = 0 in (0, T ), ϑ x (t, L) -ϑ x (t, 0) = η(t) in (0, T ), (2.56) 
where η(•) ∈ L 2 (0, T ) is the control. Let θ = A -1 ϑ (recall (2.7) for the definition of A).

Then, we know θ solves

∂ t θ = A θ -η(t)b, (2.57) 
where b(•) is the solution to

b xxx + b x = 0 in (0, L), b(0) = b(L) = 0, b x (L) -b x (0) = 1. (2.58)
Clearly, b ∈ L 2 (0, L). Let b = j∈Z\{0} b j ϕ j . Since the system (2.56) is exactly controllable in L 2 (0, L) (see [21, Theorem 1.2]), we get that (2.56) is also exactly controllable in A -1 L 2 (0, L) . In particular, b j = 0 for every j ∈ Z \ {0}.

For j ∈ Z \ {0}, let ψj ∈ D(A) be the solution of

A ψj + (-λ + iµ j ) ψj = - α -j β j (-λ + iµ j )b. (2.59)
Then, for every j ∈ Z \ {0}, we have 

A -1 ψj = -(-λ + iµ j ) -1 ψj - α -j β j A -1 b (2.
a j α -j β j (-λ + iµ j ) -1 b - j∈Z\{0} a j (-λ + iµ j ) -1 ψj = 0. ( 2 

.65)

Applying A -1 to (2.64) and using (2.60) again, we get

j∈Z\{0} a j α -j β j (-λ + iµ j ) -1 A -1 b + j∈Z\{0} a j (-λ + iµ j ) -2 ψj = 0, (2.66) 
which indicates that

j∈Z\{0} a j α -j β j (-λ+iµ j ) -1 A -1 b- j∈Z\{0} a j α -j β j (-λ+iµ j ) -2 b+ j∈Z\{0} a j (-λ+iµ j ) -2 ψj = 0.
(2.67) By induction, one gets that, for every positive integer p, 

j∈Z\{0} a j α -j β j (-λ + iµ j ) -1 A -p b + p k=2 j∈Z\{0} a j α -j β j (-λ + iµ j ) -k (-1) p+1-k A p+1-k b - j∈Z\{0} a i α -j β j (-λ + iµ j ) -p-1 (-1) p+1 b + j∈Z\{0} a i (-λ + iµ j ) -p-1 (-1) p+1 ψj = 0. (2.68) If j∈Z\{0} a j α -j β j (-λ + iµ j ) -1 = 0, ( 2 
G(z) = j∈Z\{0} d j b j e (iµ j ) -1 z , z ∈ C. (2.74)
Then, it is clear that G(•) is a holomorphic function. From (2.73), we see that

G (p) (0) = 0 for every p ∈ {0} ∪ Z + .
Thus, we find that G(•) = 0, which educes that d j b j = 0 for all integer j. Since b j = 0 for every j ∈ Z \ {0}, we know that d j = 0 for all integer j. Therefore, we get d = 0, which leads to a contradiction with that d = 0. Hence, (2.69) implies that span { ψj } j∈Z\{0} = L 2 (0, L).

(2.75)

If j∈Z\{0} a j α -j β j (-λ + iµ j ) -1 = 0 and j∈Z\{0} a j α -j β j (-λ + iµ j ) -2 = 0,
then by using (2.68) again, we obtain that

{A -p b} p∈{0}∪Z + ⊂ span { ψj } j∈Z\{0} .
Then, by a similar argument, we find that (2.75) again holds. Similarly, we can get that, if there is a p ∈ Z + such that j∈Z\{0} a j α -j β j (-λ + iµ j ) -p = 0, (2.76) then (2.75) holds.

On the other hand, if j∈Z\{0} a j α -j β j (-λ + iµ j ) -p = 0 for every p ∈ Z + , (2.77)

we define a function

G(z) △ = j∈Z\{0} a j α -j β j (-λ + iµ j ) -1 e (-λ+iµ j ) -1 z for every z ∈ C,
and it is clear that G(•) is a holomorphic function and

G (p) (0) = 0 for every p ∈ {0} ∪ Z + ,
which implies that G(•) = 0. Therefore, we conclude that a j = 0 for every j ∈ Z \ {0}.

By the above argument, we know that either { ψj } j∈Z\{0} is ω-independent or is complete in L 2 (0, L). Before proceeding our proof, we recall the following two known results. 

j∈Z + |e j -b j | X |f j | X ′ < +∞,
then {b j } j∈Z + is a basis for X which is equivalent to {e j } j∈Z + . Now we continue the proof. We first deal with the case where { ψj } j∈Z\{0} is ω-independent. Let us take H = L 2 (0, L) and put

e 2j-1 = ϕ j for j ∈ Z + , e 2j = ϕ -j for j ∈ Z + , f 2j-1 = ψ-j for j ∈ Z + , f 2j = ψj for j ∈ Z + .
Then, by (2.55), the conditions of Lemma 2.2 are fulfilled. Thus, we get that { ψj } j∈Z\{0} is a Riesz basis of L 2 (0, L).

Next, we consider the case that { ψj } j∈Z\{0} is complete in L 2 (0, L). Let us set X = L 2 (0, L), e 2j-1 = ϕ j for j ∈ Z + , e 2j = ϕ -j for j ∈ Z + , f 2j-1 = ϕ j for j ∈ Z + ,

f 2j = ϕ -j for j ∈ Z + , b 2j-1 = ψ-j for j ∈ Z + , b 2j = ψj for j ∈ Z + .
Then, using (2.55) once more, it is easy to see that the conditions of Lemma 2.3 are fulfilled. Therefore, we get that { ψj } j∈Z\{0} is a Riesz basis of L 2 (0, L). Now we give an estimate of {c j } j∈Z\{0} . From (2.17) and (2.24), we get that

1 C j 2 ≤ L 0 |ϕ j,y (y)| 2 dy ≤ Cj 2 .
This, together with the fact that { ψj } j∈Z\{0} is a Riesz basis of L 2 (0, L) and

k 3 (•, •) ∈ H 1 0 ((0, L) × (0, L)), implies that +∞ > L 0 L 0 |k 3,y (x, y)| 2 dxdy ≥ L 0 L 0 j∈Z\{0} c j β j α -j ψj (x)ϕ j,y (y) 2 dxdy ≥ C L 0 j∈Z\{0} c j β j α -j ϕ j,y (y) 2 dy ≥ C j∈Z\{0} c j β j α -j j 2 .
Hence, we find that

c j β j α -j j j∈Z\{0} ∈ ℓ 2 (Z \ {0}).
(2.78) From (2.11), (2.17), (2.22) and (2.26), we get the existence of C > 0 such that

C -1 |j| ≤ |ϕ j,y (0)| ≤ C|j|, ∀j ∈ Z \ {0}. (2.79) 
From (2.78) and (2.79), we find that

c j β j α -j ϕ j,y (0) j∈Z\{0} ∈ ℓ 2 (Z \ {0}).
(2.80) Using (2.28), k 3,y (x, 0) = 0 and the second inequality of (2.79), we find that

j∈Z\{0} ψ j (•)ϕ j,y (0) = j∈Z\{0} c j β j α -j ϕ j,y (0) ψj (•) = 0 in L 2 (0, L).
Using that { ψj } j∈Z is a Riesz basis of L 2 (0, L), we get c j β j α -j ϕ j,y (0) = 0 for every j ∈ Z \ {0}.

Then, we see ϕ j,y (0) = 0 if c j = 0. However, by [21, Lemma 3.5], this is impossible since L / ∈ N . Thus, we get that c j = 0 for every j ∈ Z \ {0}, which implies that the equation (2.6) admits a unique solution k 3 = 0. Therefore, we obtain that the equation (1.9) admits at most one solution. This concludes Step 1.

Step 2: proof of the existence of a solution to (1.9) with the required regularity Denote by D(A) ′ the dual space of D(A) with respect to the pivot space L 2 (0, L). Let

h(•) = j∈Z\{0} h j ϕ j (•) ∈ D(A), i.e., |h(•)| 2 D(A) = j∈Z\{0} |h j µ j | 2 < +∞, we have that j∈Z\{0} |h j ϕ ′ j (0)| ≤ j∈Z\{0} |h j µ j | 2 1 2 j∈Z\{0} |ϕ ′ j (0)µ -1 j | 2 1 2 < +∞.
Hence 

l 2 j=-l 1 ϕ ′ j (0)ϕ j (•) is converging in D(A) ′ as
△ = j∈Z\{0} ϕ ′ j (0)ϕ j (•) ∈ D(A) ′ . (2.82) Further, it is clear that (h, b) D(A),D(A) ′ = j∈Z\{0} h j ϕ ′ j (0) = h ′ (0) = -δ ′ 0 (h), which implies that b = -δ ′ 0 in D(A) ′ . (2.83) Let a j △ = λ ϕ ′ j (0) , φ j △ = φj + (-A -iµ j + λ) -1 (a j b -λ φj ) for j ∈ Z \ {0}. (2.84)
From (2.18), (2.79) and (2.84), we have that

L 0 ϕ j (x) -φ j (x) 2 dx = L 0 (-A -iµ j + λ) -1 (a j b -λ φj ) 2 dx = L 0 k∈Z\{0,j} (iµ k -iµ j + λ) -1 λϕ ′ k (0) ϕ ′ j (0) φk (x) 2 dx = k∈Z\{0,j} (iµ k -iµ j + λ) -1 λϕ ′ k (0) ϕ ′ j (0) 2 ≤ Cλ 2 k∈Z\{0,j} k 3 -j 3 -2 j -2 k 2 for all j ∈ Z \ {0}.
(2.85) From (2.85), we obtain, for j > 0,

L 0 ϕ j (x) -φ j (x) 2 dx ≤ C k>2j k 2 k 3 -j 3 2 j 2 + j<k≤2j k 2 k 3 -j 3 2 j 2 + -j<k<j, k =0 k 2 k 3 -j 3 2 j 2 + k≤-j k 2 k 3 -j 3 2 j 2 .
(2.86)

Now we estimate the terms in the right hand side of (2.86). First, we have that

k>2j k 2 k 3 -j 3 2 j 2 ≤ k>2j 8 7k 4 j 2 ≤ 8 7j 4 k>2j 1 k 2 ≤ 1 j 5 .
(2.87)

Next, j<k≤2j k 2 k 3 -j 3 2 j 2 ≤ 4 j<k≤2j 1 k 3 -j 3 2 = 4 1≤l≤j 1 (j + l) 3 -j 3 2 ≤ 4 1≤l≤j 1 3j 2 l + 3jl 2 + l 3 2 ≤ 4 9 -j≤l≤-1 1 j 2 1 (j + l) 2 l 2 = 4 9 1≤l≤j 1 j 2 1 j 1 l - 1 j + l 2 ≤ 8 9 1≤l≤j 1 j 4 1 l 2 + 1 (j -l) 2 ≤ 8π 2 27 1 j 4 .
(2.88) Similarly, we can get that

-j<k<j, k =0 k 2 k 3 -j 3 2 j 2 ≤ 8π 2 27 
1 j 4
(2.89) and k≤-j

k 2 k 3 + j 3 2 j 2 ≤ 8 j 5 .
(2.90) From (2.86) to (2.90), we know that there is a constant C > 0 such that for all positive integer j, it holds that

L 0 ϕ j (x) -φ j (x) 2 dx ≤ C j 4 .
(2.91)

Similarly, we can prove that there is a constant C > 0 such that for all negative integer j, it holds that

L 0 ϕ j (x) -φ j (x) 2 dx ≤ C j 4 . (2.92)
Further, by similar arguments, we can obtain that

L 0 ϕ j,x (x) -φ j,x (x) 2 dx ≤ C j 2 for all j ∈ Z \ {0}. (2.93)
With the same strategy to prove that { ψj } j∈Z\{0} is a Riesz basis of L 2 (0, L), we also can show that

-(λ -iµ j )A -1 φ j j∈Z\{0}
is a Riesz basis of L 2 (0, L).

(2.94) From (2.18) and (2.79), we get that

j∈Z\{0} ϕ ′ j (0)(iµ j ) -1 φj is converging in L 2 (0, L).
From (2.94), there is

{ĉ j } j∈Z\{0} ∈ l 2 (Z \ {0}) such that - j∈Z\{0} ĉj (λ -iµ j )A -1 φ j = j∈Z\{0} ϕ j,y (0)(iµ j ) -1 φj in L 2 (0, L),
which, together with (2.82) and (2.83), implies that

- j∈Z\{0} ĉj (λ -iµ j )φ j = j∈Z\{0} ϕ j,y (0) φj = -δ ′ 0 in D(A) ′ .
(2.95) Since ϕ j ∈ D(A), from (2.95), we find that

-ĉj (λ -iµ j ) L 0 ϕ j (x)φ j (x)dx - k∈Z\{0,j} ĉk (λ -iµ k ) L 0 ϕ j (x)φ k (x)dx = ϕ j,y (0). (2.96)
For j = k, we get, using (2.82) and (2.84),

ĉk (λ -iµ k ) L 0 ϕ j (x)φ k (x)dx = ĉk (λ -iµ k ) L 0 ϕ j (x) ϕ k (x) + (-A -iµ k + λ) -1 a k b(x) -λϕ k (x) dx = ĉk (λ -iµ k ) L 0 ϕ j (x)(-A -iµ k + λ) -1 a k ϕ ′ j (0)ϕ j (x)dx = ĉk (λ -iµ k )(iµ j -iµ k + λ) -1 a k ϕ ′ j (0) = ĉk λ λ -iµ k iµ j -iµ k + λ ϕ ′ j (0) ϕ ′ k (0)
. This, together with (2.96), implies that

-ĉj (λ -iµ j ) - k∈Z\{0,j} ĉk λ λ -iµ k iµ j -iµ k + λ ϕ ′ j (0) ϕ ′ k (0)
= ϕ ′ j (0) for all j ∈ Z \ {0}.

(2.97) 

For j ∈ Z \ {0} and k ∈ Z \ {0}, let c j = - ĉj (λ -iµ j ) ϕ ′ j (0) , a jk = 1 iµ j -iµ k + λ . ( 2 
a jk c k = k∈Z\{0,j} ĉk λ -iµ k iµ j -iµ k + λ 1 ϕ ′ k (0) ≤ C k∈Z\{0,j} ĉk λ -ik 3 j 3 -k 3 1 k ≤ C k∈Z\{0,j} |ĉ k | 2 1 2 k∈Z\{0,j} λ -ik 3 j 3 -k 3 1 k 2 1 2 .
(2.100)

For positive integer j, k∈Z\{0,j}

λ -ik 3 j 3 -k 3 1 k 2 ≤ k>2j λ -ik 3 j 3 -k 3 1 k 2 + j<k≤2j λ -ik 3 j 3 -k 3 1 k 2 + -j<k<j, k =0 λ -ik 3 j 3 -k 3 1 k 2 + k≤-j λ -ik 3 j 3 -k 3 1 k 2 .
(2.101)

We now estimate the four terms in the right hand side of (2.101). First, we have that

k>2j λ -ik 3 j 3 -k 3 1 k 2 ≤ 8 7 k>2j 1 + λ 2 k 2 ≤ C j . (2.102) Second, j<k≤2j λ -ik 3 j 3 -k 3 1 k 2 ≤ C + j<k≤2j 4j 2 j 3 -k 3 2 ≤ C + 1≤l≤j 4j 2 j 3 -(j + l) 3 2 ≤ C + 1≤l≤j 4j 2 3j 2 l + 3jl 2 + l 3 2 ≤ C + 16 9 1≤l≤j 1 l 2 ≤ C.
(2.103)

With similar arguments, we can obtain that 

-j<k<j, k =0 λ -ik 3 j 3 -k 3 1 k 2 ≤ C (2.104) and k≤-j λ -ik 3 j 3 -k 3 1 k 2 ≤ C. ( 2 
|a jk | = k∈Z\{0,j} 1 |iµ j -iµ k +λ| ≤ k∈Z\{0,j} 1 |µ j -µ k | ≤ k∈Z\{0,j} C |j 3 -k 3 | ≤ k>2j C j 3 -k 3 + j<k≤2j C j 3 -k 3 + -j<k<j, k =0 C j 3 -k 3 + k≤-j C j 3 -k 3 .
(2.109)

We estimate the terms in the last line of (2.109) one by one. First,

k>2j 1 |j 3 -k 3 | ≤ 8 7 k>2j 1 k 3 ≤ 8 7 k>2j 1 k 1 k(k -1) ≤ 8 7 1 (2j + 1)2j ≤ 2 7j 2 . (2.110) Second, j<k≤2j 1 |j 3 -k 3 | ≤ 1<l≤j 1 |j 3 -(j + l) 3 | ≤ 1<l≤j 1 3j 2 l + 3jl 2 + l 3 ≤ 1 3 1<l≤j 1 j 2 l + jl 2 ≤ 1 3j 2 1<l≤j 1 j + l + 1 l ≤ 2 ln |j| 3j 2 .
(2.111)

Similarly, we can obtain that

-j<k<j, k =0 1 j 3 -k 3 ≤ 4 ln |j| 3j 2 (2.112)
and k≤-j

1 j 3 -k 3 ≤ 1 j 2 .
(

From (2.109) to (2.113), we know there is a constant C > 0 such that for all positive integer j, k∈Z\{0,j}

|a jk | ≤ C ln |j| j 2 .
(2.114)

By similar arguments, we also can show that for all negative integer j, k∈Z\{0,j}

|a jk | ≤ C ln |j| j 2 . (2.115) 
Combining (2.99), (2.108), (2.114) and (2.115), we obtain that

1 - C ln |j| j 2 ≤ c j ≤ 1 + C ln |j| j 2 .
(2.116)

We now turn to the definition of k(•, •). From (2.91) and (2.116), one has

j∈Z\{0} L 0 ϕ j (x) -c j φ j (x) 2 dx ≤ 2 j∈Z\{0} L 0 (1 -c j )ϕ j (x) 2 dx + 2 j∈Z\{0} L 0 |c j | 2 ϕ j (x) -φ j (x) 2 dx ≤ C j∈Z\{0} ln 2 |j| j 4 + 1 j 4 < +∞.
(2.117)

Inequality (2.117) allows us to define k(•, •) ∈ L 2 ((0, L) × (0, L)) by k(x, y) △ = j∈Z\{0} [ϕ j (x) -c j φ j (x)]ϕ j (y), 0 ≤ x, y ≤ L. (2.118) 
Let us prove that k(•, •) ∈ H 1 ((0, L) × (0, L)). Thanks to (2.25), (2.93) and (2.116), we find that

L 0 L 0 j∈Z\{0} [ϕ ′ j (x) -c j φ ′ j (x)]ϕ j (y) 2 dxdy = j∈Z\{0} L 0 ϕ ′ j (x) -c j φ ′ j (x) 2 dx ≤ j∈Z\{0} L 0 (1 -c j )ϕ ′ j (x) 2 dx + j∈Z\{0} L 0 |c j | 2 ϕ ′ j (x) -φ ′ j (x) 2 dx ≤ C j∈Z\{0} ln 2 |j| j 2 + 1 j 2 < +∞, (2.119 
)

which shows that k x (•, •) ∈ L 2 ((0, L) × (0, L)). (2.120) 
Utilizing (2.18), (2.84) and (2.108), we get

L 0 L 0 j∈Z\{0} c j [ϕ j (x) -φ j (x)]ϕ ′ j (y) 2 dxdy = L 0 L 0 j,k∈Z\{0} c j c k ϕ j (x) -φ j (x) ϕ k (x) -φ k (x) ϕ ′ j (y)ϕ ′ k (y)dxdy = L 0 L 0 j,k∈Z\{0} c j c k (-A-iµ j +λ) -1 (a j b-λϕ j )(x)(-A-iµ k +λ) -1 (a k b-λϕ k )(x) ×ϕ ′ j (y)ϕ ′ k (y)dxdy = L 0 L 0 j,k∈Z\{0} c j c k l∈Z\{0,j} (iµ l -iµ j + λ) -1 λϕ ′ l (0) ϕ ′ j (0) ϕ l (x) × l∈Z\{0,k} (iµ l -iµ k + λ) -1 λϕ ′ l (0) ϕ ′ k (0) ϕ l (x) ϕ ′ j (y)ϕ ′ k (y)dxdy ≤ Cλ 2 j,k∈Z\{0} l∈Z\{0,j,k} (iµ l -iµ j + λ) -1 ϕ ′ l (0)(iµ l -iµ k + λ) -1 ϕ ′ l (0) × L 0 ϕ ′ j (y)ϕ ′ j (0) -1 ϕ ′ k (y)ϕ ′ k (0) -1 dy ≤ Cλ 2 l∈Z\{0} j∈Z\{0,l} (iµ l -iµ j + λ) -1 ϕ ′ l (0) k∈Z\{0,l} (iµ l -iµ k + λ) -1 ϕ ′ l (0) .
(2.121) Similar to the proof of (2.114), we can obtain that

           j∈Z\{0,l} (iµ l -iµ j + λ) -1 ϕ ′ l (0) ≤ C ln |l||ϕ ′ l (0)| l 2 ≤ C ln |l| |l| , k∈Z\{0,l} (iµ l -iµ k + λ) -1 ϕ ′ l (0) ≤ C ln |l||ϕ ′ l (0)| l 2 ≤ C ln |l| |l| . (2.122) 
Combining (2.121) and (2.122), one has that 

L 0 L 0 j∈Z\{0} c j ϕ j (x) -φ j (x) ϕ ′ j (y) 2 dxdy ≤ Cλ 2 l∈Z\{0} ln 2 |l| l 2 < +∞. ( 2 
L 0 L 0 j∈Z\{0} ϕ j (x) -c j φ j (x) ϕ ′ j (y) 2 dxdy ≤ 2 L 0 L 0 j∈Z\{0} (1 -c j )ϕ j (x)ϕ ′ j (y) 2 dxdy +2 L 0 L 0 j∈Z\{0} c j ϕ j (x) -φ j (x) ϕ ′ j (y) 2 dxdy ≤ 2 j∈Z\{0} L 0 (1 -c j )ϕ ′ j (y) 2 dy + 2 L 0 L 0 j∈Z\{0} c j ϕ j (x) -φ j (x) ϕ ′ j (y) 2 dxdy ≤ C j∈Z\{0} ln 2 |j| j 2 < +∞.
(2.124) From (2.117), (2.119) and (2.124), we see that

k y (•, •) ∈ L 2 ((0, L) × (0, L)), (2.125) 
which, together with (2.120), shows that k(•,

•) ∈ H 1 ((0, L) × (0, L)). Clearly, k(•, •) = 0 on the boundary of (0, L) × (0, L). Thus, we conclude that k(•, •) ∈ H 1 0 ((0, L) × (0, L)). Let us define k (n) (x, y) △ = 0<|j|≤n ϕ j (x) -c j φ j (x) ϕ j (y) in (0, L) × (0, L).
(2.126)

Simple estimates show that

x ∈ (0, L) → k (n) x (x, •) ∈ L 2 (0, L) is in C 0 ([0, L]; L 2 (0, L)). (2.127) 
For any m, n ∈ Z + , m < n, we have that

L 0 m<|j|≤n ϕ ′ j (x) -c j φ ′ j (x) ϕ j (y) 2 dy = m<|j|≤n ϕ ′ j (x) -c j φ ′ j (x) 2 ≤ 2 m<|j|≤n (1 -c j )ϕ ′ j (x) 2 + 2 m<|j|≤n |c j | 2 ϕ ′ j (x) -φ ′ j (x) 2 .
(2.128) By means of (2.25) and (2.116), we find that max

x∈[0,L] m<|j|≤n (1 -c j )ϕ ′ j (x) 2 ≤ C m<|j|≤n ln 2 |j| j 2 .
(2.129) From (2.84) and (2.24), similarly to the proof of (2.114), we obtain that max

x∈[0,L] m<|j|≤n |c j | 2 ϕ ′ j (x) -φ ′ j (x) 2 = max x∈[0,L] m<|j|≤n |c j | 2 l∈Z\{0,j} (iµ l -iµ j + λ) -1 λϕ ′ l (0) ϕ ′ j (0) ϕ ′ l (x) 2 ≤ C m<|j|≤n l∈Z\{0,j} l 2 (j 3 -l 3 )j 2 ≤ C m<|j|≤n ln 2 |j| j 2 .
(2.130)

Combining (2.129) and (2.130), we get that

x ∈ (0, L) → k (n) x (x, •) ∈ L 2 (0, L) +∞ n=1 is a Cauchy sequence in C 0 ([0, L]; L 2 (0, L)), (2.131 
) which shows that (2.2) holds. Proceeding as in the proofs of (2.125) and of (2.131), one gets that

y ∈ (0, L) → k (n) y (•, y) ∈ L 2 (0, L) +∞ n=1 is a Cauchy sequence in C 0 ([0, L]; L 2 (0, L)), (2.132 
) which also gives (2.3). Moreover (2.95), (2.98), (2.126) and (2.132) imply that

k y (•, 0) = lim n→+∞ k (n) y (•, 0) = 0 in L 2 (0, L).
(2.133)

Similarly, one can show that 

k y (•, L) = lim n→+∞ k (n) y (•, L) = 0 in L 2 (0, L). ( 2 
(∂ xxx + ∂ x + ∂ yyy + ∂ y + λ)(1 -c j )ϕ j (x)ϕ j (y) = (1 -c j )(iµ j -iµ j + λ)ϕ j (x)ϕ j (y) = (1 -c j )λϕ j (x)ϕ j (y). ( 2 
(∂ xxx + ∂ x + ∂ yyy + ∂ y + λ)c j [ϕ j (x) -φ j (x)]ϕ j (y) = -(∂ xxx + ∂ x + ∂ yyy + ∂ y + λ) k∈Z\{0,j} c j λϕ ′ k (0)ϕ k (x) ϕ ′ j (0)(iµ k -iµ j + λ) ϕ j (y) = -c j λ k∈Z\{0,j} ϕ ′ k (0) ϕ ′ j (0) ϕ k (x)ϕ j (y) = c j λϕ j (x)ϕ j (y) - c j λ ϕ ′ j (0) k∈Z\{0} ϕ ′ k (0)ϕ k (x)ϕ j (y) = c j λϕ j (x)ϕ j (y) + c j λ ϕ ′ j (0) δ ′ x=0 ⊗ ϕ j (y) in D(A) ′ ⊗ L 2 (0, L).
(2.136) From (2.126), (2.135) and (2.136), we get in

D(A) ′ ⊗ L 2 (0, L), k (n) xxx (x, y) + k (n) x (x, y) + k (n) yyy (x, y) + k (n) y (x, y) + λk (n) (x, y) -δ ′ x=0 ⊗ 0<|j|≤n c j λ ϕ ′ j (0) ϕ j (y) = λ 0<|j|≤n ϕ j (x)ϕ j (y).
Therefore, for any ρ ∈ E ⊂ D(A) ⊗ L 2 (0, L) (recall (2.1) for the definition of E), we have 

0 = L 0 L 0 k (n) xxx (x, y) + k (n) x (x, y) +k (n) yyy (x, y) + k (n) y (x, y) +λk (n) (x,

Invertibility of I -K

We define a bounded linear operator K : L 2 (0, L) → L 2 (0, L) by

K(v)(x) △ = L 0 k(x, y)v(y)dy for every v ∈ L 2 (0, L).
Note that, by Remark 2.1, if v is a real valued function, then Kv is also a real valued function. The goal of this section is to prove the following lemma. Lemma 3.1 I -K is an invertible operator.

Proof of Lemma 3.1 : Since k(•, •) ∈ L 2 ((0, L) × (0, L)), we get that K is a compact operator. Further, since k ∈ H 1 0 ((0, L) × (0, L)), we know that K is a continuous linear map from L 2 (0, L) into H 1 0 (0, L). Denote by K * the adjoint operator of K. Then, it is easy to see that

K * (v)(x) = L 0 k * (x, y)v(y)dy for any v ∈ L 2 (0, L),
where k * is defined by k * (x, y) △ = k(y, x), (x, y) ∈ (0, L) × (0, L).

(3.1)

From (1.9) and (3.1), one gets

           k * y + k * yyy + k * x + k * xxx + λk * = λδ(y -x) in (0, L) × (0, L), k * (0, y) = k * (L, y) = 0 on (0, L), k * x (0, y) = k * x (L, y) = 0 on (0, L), k * (x, 0) = k * (x, L) = 0 on (0, L). (3.2) 
Further, from (3.1) again, we have the following regularity for k * (•, •):

y ∈ (0, L) → k * y (•, y) ∈ L 2 (0, L) is in C 0 ([0, L]; L 2 (0, L)), (3.3) 
x ∈ (0, L)

→ k * x (x, •) ∈ L 2 (0, L) is in C 0 ([0, L]; L 2 (0, L)). (3.4) 
Let us point out that, from the (3.2) and (3.4), we know

v ∈ K * (L 2 (0, L)) ⇒ v ∈ C 1 ([0, L]), v(0) = v(L) = v x (0) = v x (L) = 0 . (3.5)
We claim that the spectral radius r(K * ) of K * equals 0. Otherwise, since K * : L 2 (0, L) → L 2 (0, L) is as K a compact linear operator, there is a nonzero eigenvalue α of K * . Then, there exists a positive integer n 0 such that Ker(K * -αI) n 0 +1 = Ker(K * -αI) n 0 .

(3.6)

(∂ xxx + ∂ x )ξ = µξ in (0, L), ξ(0) = ξ(L) = ξ x (0) = ξ x (L) = 0.
But, by [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]Lemma 3.5] again, this is impossible since L / ∈ N . Then, we know r(K * ) = 0, which implies that the spectral radius r(K) of K is zero. Hence, we know that the real number 1 belongs to the resolvent set of K, which completes the proof of Lemma 3.1.

Proof of Theorem 1.2

This section is addressed to a proof of Theorem 1.2.

Proof of Theorem 1.2 : Let T > 0, which will be given later. Consider the following equation

               v 1,t + v 1,x + v 1,xxx + v 1 v 1,x = 0 in [0, T ] × (0, L), v 1 (t, 0) = v 1 (t, L) = 0 on [0, T ], v 1,x (t, L) = L 0 k x (L, y)v 1 (t, y)dy on [0, T ], v 1 (0) = v 0 in (0, L). (4.1) 
By Theorem 1.1, we know that there is an r T > 0 such that for all v 0 ∈ L 2 (0, L) with |v 0 | L 2 (0,L) ≤ r T , the equation (4.1) admits a unique solution v 1 ∈ C 0 ([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 0 (0, L)). Moreover, there is a constant C T > 0 such that

|v 1 | C 0 ([0,T ];L 2 (0,L))∩L 2 (0,T ;H 1 0 (0,L)) ≤ C T |v 0 | L 2 (0,L) . (4.2) 
Let w 1 = (I -K)v 1 . Then, we have that

w 1,t (t, x) = v 1,t (t, x) - L 0 k(x, y)v 1,t (t, y)dy = v 1,t (t, x) + L 0 k(x, y) v 1,y (t, y) + v 1,yyy (t, y) + v 1 (t, y)v 1,y (t, y) dy = v 1,t (t, x) + k(x, y)v 1 (t, y) y=L y=0 - L 0 k y (x, y)v 1 (t, y)dy + k(x, y)v 1,yy (t, y) y=L y=0 -k y (x, y)v 1,y (t, y) y=L y=0 + k yy (x, y)v 1 (t, y) y=L y=0 - L 0 k yyy (x, y)v 1 (t, y)dy+ 1 2 k(x, y)v 1 (t, y) 2 y=L y=0 - 1 2 L 0 k y (x, y)v 1 (t, y) 2 dy = v 1,t (t, x) - L 0 k y (x, y) + k yyy (x, y) v 1 (t, y)dy - 1 2 L 0 k y (x, y)v 1 (t, y) 2 dy, (4.3) 
w 1,x (t, x) = v 1,x (t, x) - L 0 k x (x, y)v 1 (t, y)dy (4.4) and w 1,xxx (t, x) = v 1,xxx (t, x) - L 0 k xxx (x, y)v 1 (t, y)dy. (4.5)
Therefore, for a given λ ∈ R, utilizing the fact the v 1 solves (4.1), we obtain that

w 1,t (t, x) + w 1,x (t, x) + w 1,xxx (t, x) + λw 1 (t, x) + 1 2 L 0 k y (x, y)v 1 (t, y) 2 dy = λv 1 (t, x) - L 0 v 1 (t, y) k y (x, y) + k yyy (x, y) + k x (x, y) + k xxx (x, y) + λk(x, y) dy = - L 0 v 1 (t, y) k y (x, y) + k yyy (x, y) + k x (x, y) + k xxx (x, y) + λk(x, y) -λδ(x -y) dy = -v 1 (t, x)v 1,x (t, x). ( 4 
.6) Hence, if we take the feedback control F as

F (ϕ) △ = L 0 k x (L, y)ϕ(y)dy, ∀ϕ ∈ L 2 (0, L), (4.7) 
then we get that w Thus, we see that

1 solves                w 1,t + w 1,x + w 1,xxx + w 1 w 1,x + λw 1 = -v 1 v 1,x - 1 2 L 0 k y (x, y)v 1 (t, y) 2 dy in [0, T ] × (0, L), w 1 (t, 0) = w 1 (t, L) = 0 on [0, T ],
d dt L 0 |w 1 (t, x)| 2 dx = -|w 1,x (t, 0)| 2 -2λ L 0 |w 1 (t, x)| 2 dx - L 0 w 1 (t, x)v 1 (t, x)v 1,x (t, x)dx - 1 2 L 0 w 1 (t, x) L 0 k y (x, y)v 1 (t, y) 2 dy dx. (4.9) 
Now we estimate the third and fourth terms in the right hand side of (4.9). First, 

L 0 w 1 (t, x)v 1 (t, x)v 1,x (t, x)dx = L 0 v 1 (t, x) - L 0 k(x, y)v 1 (t, y)dy v 1 (t, x)v 1,x (t, x)dx = L 0 L 0 k(x, y)v 1 (t, y)dy v 1 (t, x)v 1,x (t, x)dx = 1 2 L 0 L 0 k x (x, y)v 1 (t, y)dy v 1 (t, x) 2 dx ≤ 1 2 L 0 |k x (•, y)| 2 dy L ∞ (0,L) L 0 v 1 (t, x) 2 dx 3 2 ≤ |(I -K) -1 | 3 L(L 2 (0,L)) 1 2 L 0 |k x (•, y)| 2 dy L ∞ (0,L) L 0 w 2 1 (t, x)dx 3 2 . (4.10) Next, L 0 w 1 (t, x) L 0 k y (x, y)v 1 (t, y) 2 dydx = L 0 v 1 (t, x) - L 0 k(x, y)v 1 (t, y)dy L 0 k y (x, y)v 1 (t, y) 2 dy dx ≤ L 0 v 1 (t, x) L 0 k y (x, y)v 1 (t,
0 v 1 (t, x) L 0 k y (x, y)v 1 (t, y) 2 dy dx = L 0 v 1 (t, y) 2 L 0 k y (x, y)v 1 (t, x)dx dy ≤ L 0 v 1 (t, y) 2 L 0 |k y (x, y)| 2 dx 1 2 dy L 0 v 1 (t, x) 2 dx 1 2 ≤ L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) L 0 v 1 (t, x) 2 dx 3 2 ≤ |(I -K) -1 | 3 L(L 2 (0,L)) L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) L 0 w 1 (t, x) 2 dx 3 2 .
(4.12)

The second term in the right hand side of (4.11) satisfies that

L 0 L 0 k(x, z)v 1 (t, z)dz L 0 k y (x, y)v 1 (t, y) 2 dy dx = L 0 v 1 (t, y) 2 L 0 k y (x, y) L 0 k(x, z)v 1 (t, z)dz dxdy ≤ L 0 v 1 (t, y) 2 L 0 |k y (x, y)| 2 dx 1 2 dy L 0 L 0 k(x, z)v 1 (t, z)dz 2 dx 1 2 ≤ L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) L 0 |k(x, y)| 2 dxdy 1 2 L 0 v 1 (t, x) 2 dx 3 2 ≤ |(I -K) -1 | 3 L(L 2 (0,L)) L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) L 0 |k(x, y)| 2 dxdy 1 2 L 0 w 1 (t, x) 2 dx 3 2 . (4.13) Let C = 1 2 |(I -K) -1 | 3 L(L 2 (0,L)) L 0 |k x (•, y)| 2 dy L ∞ (0,L) +|(I -K) -1 | 3 L(L 2 (0,L)) L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) +|(I -K) -1 | 3 L(L 2 (0,L)) L 0 |k y (x, •)| 2 dx 1 2 L ∞ (0,L) L 0 |k(x, y)| 2 dxdy 1 2 .
From (4.9)-(4.13), we get that

d dt L 0 |w 1 (t, x)| 2 dx ≤ -2λ L 0 |w 1 (t, x)| 2 dx + C L 0 w 1 (t, x) 2 dx 3 2 . (4.14)
For a given λ > 0, we know that there is a δ

1 > 0 such that, if |w 1 (0)| L 2 (0,L) ≤ δ 1 , then C L 0 w 1 (t, x) 2 dx 1 2 ≤ λ, ∀ t ∈ [0, T ].
This, together with (4.14), implies that

d dt L 0 |w 1 (t, x)| 2 dx ≤ -λ L 0 |w 1 (t, x)| 2 dx, ∀ t ∈ [0, T ]. In particular |w 1 (t, •)| L 2 (0,L) ≤ e -λt 2 |w 1 (0, •)| L 2 (0,L) , ∀ t ∈ [0, T ]. (4.15)
Then, from Lemma 3.1 and (4.15), we get that if

|v 1 (0, •)| L 2 (0,L) ≤ min{|I -K| -1 L(L 2 (0,L)) δ 1 , r T }, then |v 1 (t, •)| L 2 (0,L) ≤ |(I -K) -1 | L(L 2 (0,L)) |I -K| L(L 2 (0,L)) e -λt 2 |v 1 (0, •)| L 2 (0,L) , ∀ t ∈ [0, T ]. (4.16) Now we choose T > 0 such that e -λT 2 ≤ |(I -K) -1 | L(L 2 (0,L)) |I -K| L(L 2 (0,L)) .
From (4.16), we find that |v 1 (T )| L2 (0,L) ≤ |v 1 (0)| L 2 (0,L) ≤ r T . Thus, by Theorem 1.1, we know that the following equation is well-posed. This, together with the Gronwall inequality, implies that v 1 = v 2 in [0, T ] × (0, L).

Existence of the solution

Let us extend h and h to be a function on (0, +∞) × (0, L) and (0, +∞) by setting them to be equal to zero on (T, +∞) × (0, L) and (T, +∞), respectively. Denote by ||F || the norm of the continuous linear map F : L 2 (0, L) → R. Set Hence, for v 0 given in L 2 (0, L), we can define a map J : C 0 ([0, T 1 ]; L 2 (0, L)) → C 0 ([0, T 1 ]; L 2 (0, L))

as follows: J (u) = v, where v ∈ C 0 ([0, T 1 ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 0 (0, L)) solves (A.1) with h(•) = F (u(•)) and v(0, •) = v 0 (•).

For ũ, û ∈ C 0 ([0, T 1 ]; L 2 (0, L)), one has, using in particular (A.2) and (A. Hence, we get that J is a contractive map. By the Banach fixed point theorem, we know that J has a unique fixed point v 1 , which is the solution to the following equation

           v 1,t + v 1,xxx + v 1,x = h in [0, T 1 ] × (0, L), v 1 (t, 0) = v 1 (t, L) = 0 on [0, T 1 ], v 1,x (t, L) = F (v 1 (t, •)) on [0, T 1 ],
v 1 (0, x) = v 0 (x) in (0, L). (A.10)

(2. 4 ) 0 L 0 ρ

 400 We call k(•, •) ∈ G a solution to (1.9) if L yyy (x, y) + ρ y (x, y) + ρ xxx (x, y) + ρ x (x, y)λρ(x, y) k(x, y)dxdy + L 0 λρ(x, x)dx = 0, for every ρ ∈ E.

  .69) we get from (2.68) that {A -p b} p∈({0}∪Z + ) ⊂ span { ψj } j∈Z\{0} .(2.70)If span { ψj } j∈Z\{0} = L 2 (0, L), then we can find a nonzero functiond = j∈Z\{0} d j ϕ j ∈ L 2 (0, L) (2.71) such that (h, d) L 2 (0,L) = 0, for every h ∈ span { ψj } j∈Z\{0} . (2.72) From (2.70) and (2.72), we obtain that (A -p b, d) L 2 (0,L) = 0 for every p ∈ {0}∪Z + . Therefore, we get j∈Z\{0} b j (iµ j ) -p d j = 0 for all p ∈ {0} ∪ Z + . (2.73) Let us define a complex variable function G(•) : C → C as

ρ 0 L 0 ρ 1 Remark 2 . 1

 00121 x)ϕ j (y) ρ(x, y)dxdyxxx (x, y) + ρ x (x, y) + ρ yyy (x, y) + ρ y (x, y) + λρ(x, y) k (n) (x, y)dxdy -133), (2.134) and letting n → +∞ in (2.137), we obtain that L xxx (x, y) + ρ x (x, y) + ρ yyy (x, y) + ρ y (x, y) + λρ(x, y) k(x, y)dxdy + L 0 ρ(y, y)dy = 0. (2.138) This concludes Step 2 and therefore the proof of Lemma 2.Note that k(•, •) is a real valued function since k(•, •) is also a solution of (1.9) in G and therefore, by the uniqueness proved in Step 1, we must have k(•, •) = k(•, •).

y) 2 dy dx + L 0 L 0 k

 00 (x, y)v 1 (t, y)dy L 0 k y (x, y)v 1 (t, y) 2 dy dx .

(4. 11 )

 11 The first term in the right hand side of (4.11) satisfies that

L

  

  t + v 2,x + v 2,xxx + v 2 v 2,x = 0 in [0, T ] × (0, L), v 2 (t, 0) = v 2 (t, L) = 0 on [0, T ], v 2,x (t, L) = L 0 k x (L, y)v 2 (t, y)dy on [0, T ], v 2 (0) = v 1 (T )in (0, L).

(4. 17 )

 17 Further, by a similar argument, we can find that w 2△ = (I -K)v 2 satisfies |w 2 (t, •)| L 2 (0,L) ≤ e -λt 2 |w 2 (0, •)| L 2 (0,L) , ∀ t ∈ [0, T ] and |v 2 (T, •)| L 2 (0,L) ≤ |v 2 (0, •)| L 2 (0,L) .Then, we can define v 3 and w 3 in a similar manner. By induction, we can findv n ∈ C 0 ([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 0 (0, L)) (n > 1), which solves                v n,t + v n,x + v n,xxx + v n v n,x = 0 in [0, T ] × (0, L), v n (t, 0) = v n (t, L) = 0 on [0, T ], v n,x (t, L) = L 0 k x (L, y)v n (t, y)dy on [0, T ],v n (0) = v n-1 (T ) in (0, L).

(4. 18 )C 1+|ũ| 2 L 2 0 |

 18220 Further, we have that w n = (I -K)v n satisfies|w n (t, •)| L 2 (0,L) ≤ e -λt 2 |w n (0, •)| L 2 (0,L) = e -λt 2 |w n-1 (T, •)| L 2 (0,L)(4.19)and|v n (T, •)| L 2 (0,L) ≤ |v n (0, •)| L 2 (0,L) = |v n-1 (T, •)| L 2 (0,L) .Now we putv(t + (n -1)T, x) = v n (t, x), w(t + (n -1)T, x) = w n (t, x) for (t, x) ∈ [0, T ) × [0, L].Then, it is an easy matter to see that v is a solution to (1.1) and w = (I -K)v. From (4.19), we get that |w(t, •)| L 2 (0,L) ≤ e -λt 2 |w(0, •)| L 2 (0,L) , ∀ t ≥ 0. (4.20)This, together with w = (I -K)v, implies that for all t ≥ 0,|v(t, •)| L 2 (0,L) ≤ e -λtand of             ût + ûx + ûxxx + ûû x = 0 in [0, T ] × (0, L), û(t, 0) = û(t, L) = 0 on [0, T ], ûx (t, L) = ĥ(t) on [0, T ], û(0, x) = û0 (x) in (0, L), (A.4)one has the following inequalityL 0 |ũ(t, x)û(t, x)| 2 dx ≤ e x) -û0 (x)| 2 dx + t h(s) -ĥ(s)| 2 ds (A.5) for all t ∈ [0, T ].Remark A.1 In[START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF], the term t 0 | h(s)-ĥ(s)| 2 ds in the right hand side of (A.5) is T 0 | h(s)ĥ(s)| 2 ds. However, one can see that the proof of[START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] also gives (A.5).Proof of Theorem 1.1 : Uniqueness of the solution Assume that v 1 and v 2 are two solutions of (1.1), by Lemma A.3, we know that for any t ∈ [0, T ],

L 0 |v 1 C 1+|v 1 | 2 L 2 |F (v 1 ) 0 L 0 |v 1

 01221001 (t, x)v 2 (t, x)| 2 dx ≤ e -F (v 2 )| 2 ds ≤ Ce C 1+|v 1 | 2 L 2 (0,T ;H 1 (0,L)) +|v 2 | 2 L 2 (0,T ;H 1 (0,L)) t (s, x)v 2 (s, x)| 2 dxds. (A.6) 

7 )

 7 Let u ∈ C 0 ([0, T 1 ]; L 2 (0, L)). We know that h(•) △ = F (u(•)) ∈ L 2 (0, T 1 ).

1 T 1 0F 2 ≤ T 1 C 1

 11211 [START_REF] Coron | Control and nonlinearity[END_REF],|J (ũ) -J (û)| C 0 ([0,T 1 ];L 2 (0,L)) ≤ C (ũ(t, •)) -F (û(t, •)) y)û(t, y)| 2 dydt 1 ||F |||ũ -û| C 0 ([0,T 1 ];L 2 (0,L)) ≤ 1 √ 2 |ũ -û| C 0 ([0,T1];L 2 (0,L)) .

(A. 8 )| 2 C 1 0F 2 L 1 2 L 1 2 L 2 1 0F 2 L 1 2 |v 1 | 2 C

 821212122121212 Using (A.2), (A.7) and (A.8), we find that |v 1 0 ([0,T 1 ];L 2 (0,L))≤ C 1 |v 0 | 2 L 2 (0,L) + T (v(t, •)) 2 dt + | h| (0,T 1 ;L 2 (0,L)) ≤ C 1 |v 0 | 2 L 2 (0,L) + T 1 ||F || 2 |v 1 | 2 C 0 ([0,T 1 ];L 2 (0,L)) + | h| (0,T 1 ;L 2 (0,L)) ≤ C 1 |v 0 | 2 L 2 (0,L) + | h| 2 L 1 (0,T 1 ;L 2 (0,L)) + 1 2 |v 1 | 2 C 0 ([0,T 1 ];L 2 (0,L)) ,which implies that|v 1 | 2 C 0 ([0,T 1 ];L 2 (0,L)) ≤ 2C 1 |v 0 | 2 L 2 (0,L) + | h| 2 L 1 (0,T 1 ;L 2 (0,L)) . (A.9)From (A.2), (A.8) and (A.9), we obtain that|v 1 | 2 C 0 ([0,T 1 ];L 2 (0,L)) + |v 1 | (0,T 1 ;H 1 0 (0,L)) ≤ C 1 |v 0 | 2 L 2 (0,L) + T (v(t, •)) 2 dt + | h| (0,T 1 ;L 2 (0,L)) ≤ C 1 |v 0 | 2 L 2 (0,L) + | h| 2 L 1 (0,T 1 ;L 2 (0,L)) + C 1 T 1 ||F || 2 |v 1 | 2 C 0 ([0,T 1 ];L 2 (0,L)) ≤ C 1 |v 0 | 2 L 2 (0,L) + | h| 2 L 1 (0,T 1 ;L 2 (0,L)) + 1 0 ([0,T 1 ];L 2 (0,L))≤ 2C 1 |v 0 | 2 L 2 (0,L) + | h| 2 L 1 (0,T 1 ;L 2 (0,L)) .

  Assume that there exists {a j } j∈Z\{0} ∈ ℓ 2 (Z) such that

			a j ψj = 0.	(2.62)
		j∈Z\{0}		
	From (2.61) and (2.62), we obtain that			
	j∈Z\{0}	a j ψj +	α -j β j	b = 0.	(2.63)
	Applying A -1 to (2.63), and using (2.60), one gets that
		a j (-λ + iµ j ) -1	ψj = 0,	(2.64)
	j∈Z\{0}				
	which, together with (2.60), implies that		
	j∈Z\{0}				
						60)
	and	ψj = ψj +	α -j β j	b.	(2.61)

  Lemma 2.2[START_REF] Young | An introduction to nonharmonic Fourier series[END_REF] Page 45, Theorem 15] Let H be a separable Hilbert space and let {e j } j∈Z + be an orthonormal basis for H. If {f j } j∈Z + is an ω-independent sequence such that

	j∈Z +	|f

je j | 2 H < +∞, then {f j } j∈Z + is a Riesz basis for H. Lemma 2.3 [30, Page 40, Theorem 12] Let {e j } j∈Z + be a basis of a Banach space X and let {f j } j∈Z + be the associated sequence of coefficient functionals. If {b j } j∈Z + is complete in X and if

|(I -K) -1 | L(L 2 (0,L)) |I -K| L(L 2 (0,L)) |v(0, •)| L 2 (0,L) ≤ Ce -λt 2 |v(0, •)| L 2 (0,L) .
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Let

It is a finite dimensional space.

Since α = 0, F ⊂ K * (L 2 (0, L)), and, with (3.5),

Note that, by the fact that k * ∈ H 1 0 ((0, L) × (0, L)), K * can be extended to be a continuous linear map from H -1 (0, L) into L 2 (0, L). (3.8) Let us denote by K * this extension and remark that, if u ∈ H -1 (0, L) is such that K * u = αu, then u ∈ L 2 (0, L). Thus, we see that Ker( K * -αI) ⊂ L 2 (0, L) and Ker( K * -αI) = Ker(K * -αI). Similarly, we have

From (3.5) and (3.9) we also get that K * can be extended to be a continuous linear map from H -3 (0, L) into H -2 (0, L). This, together with (3.8) and an interpolation argument, shows that K * can be extended to be a continuous linear map from H -2 (0, L) into H -1 (0, L). We denote by K * this extension. Then, as for K * , one has

Using (3.9), a density argument and (3.8) we get that

From (3.11), (3.7), and induction on n, one gets that

and therefore, for every polynomial P ,

By virtue of (3.10), (3.7) and (3.13) with P (X)

Then, we know that for any v 0 ∈ L 2 (0, L) with |v 0 | L 2 (0,L) ≤ δ 0 , the equation (1.1) with the initial datum v 0 admits a solution

Further, we have that

A Appendix

This section is devoted to a proof of Theorem 1.1. Before giving the proof, we first recall the following useful results. Let T > 0. We consider the following linearized KdV equation with non-homogeneous boundary condition.

Here

In [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] (see also [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]), the author proved the following results:

In [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF], the following result is proved. Proposition 15] There exists C > 0 such that for every ũ0 , û0 ∈ L 2 (0, L) and h, ĥ ∈ L 2 (0, T ) for which there exist solution ũ and û in C 0 ([0, T ];

By a similar argument, we can prove that the following equation

. Furthermore, this solutions satisfies that

(A.12)

By induction, we know that for an integer n ≥ 2, the following equation admits a unique solution.

Furthermore, one has

Then v is the solution to

Let κ > 0, depending only on L > 0, such that

From now on, we assume that v 0 ∈ L 2 (0, L) satisfies

Then B is a nonempty closed subset of the Banach space C 0 ([0, T ]; L 2 (0, L))∩L 2 (0, T ; H 1 0 (0, L)). Let us define a map K from B to C 0 ([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 0 (0, L)) as follows:

where v is the solution to (A.15) with h = zz x .

From Lemma A.2 and the above well-posedness result for (A.15), we know that K is welldefined. From (A.16) and (A.18), we have that Therefore, we know that K is from B to B and is contractive. Then, by the Banach fixed point theorem, there is a (unique) fixed point v, which is the solution to (1.1) with initial data v(0, •) = v 0 (•).

Remark A.2 Adapting the proof of [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]Section 3.1], one can also prove that, for every v 0 ∈ L 2 (0, L), there exist T > 0 and a solution v ∈ C 0 ([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)) of (1.1) with f (t) = F (v(t, •)) satisfying the initial condition v(0, •) = v 0 (•).