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This is the supplementary material to the paper: back-pressure traffic signal control with unknown routing rates. It details some model details and proofs not included in the paper due to space limitations. The characterization of the capacity region, the optimality of BP* and the behaviour of the Lyapunov drift under BP control are proved.

I. ROUTING PROCESS ASSUMPTIONS

When a quantity of vehicles arrives at node N a ∈ I(J i ) during slot t, exogenously and endogenously, it is split and added into queues Q ab , b ∈ O(J i ), according to an exogenous routing process R (t) ab , defined for all a, b ∈ N . The arrival process and the routing process are independent, and for all t, R (t)

ab is independent from {Q(τ )} τ ≤t . R (t)
ab takes an integer, returns an integer, and for X ∈ N, b R

ab (X) ≤ X. For all process X(t) such that for all t, R (t) ab is independent from {X(τ )} τ ≤t , there exists a rate r ab ≥ 0 for all a, b ∈ N such that R (t) ab (X(t)) -r ab X(t) is rate convergent with rate 0. As a consequence of the above assumptions: b r ab ≤ 1

II. NETWORK DYNAMICS Consider the network under phase control p(t). Let define the following flow variables:

f ab (t) = min [Q ab (t), µ ab (p(t))]
(2)

f in a (t) = b f ba (t) (3) 
The network dynamics under control p(t) is completely described as follows:

Q ab (t + 1) = Q ab (t) + R (t) ab A a (t) + f in a (t) -f ab (t) (4) 
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III. CHARACTERIZATION OF THE CAPACITY REGION

A. Stability definition

A key property of queuing systems is stability, defined below: Definition 1 (Stability). The queuing network is stable if each individual queue U satisfies:

lim sup T →+∞ E 1 T T -1 t=0 1 U (t)>V → 0 as V → +∞ (5)
This definition of stability is standard and is applicable to networks with arbitrary inputs and control laws [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF].

B. The capacity region

It is possible to define a capacity region which describes the set of arrivals rates vectors that can be stably handled by the network.

Definition 2 (Capacity region [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF]). Given a routing matrix r, the capacity region Λ r is the closure of the set of all arrival rate vectors λ that can be stabilized by some control.

The following theorem provides a characterization of the capacity region in our particular model: Theorem (Capacity region characterisation). Given a routing matrix r, the capacity region Λ r is the set of arrival vectors λ such that there exists g ∈ Γ satisfying:

∀a, b ∈ N , r ab (λ a + g in a ) ≤ g ab ( 6 
)
where Γ is the set of feasible long-term endogenous service rates, defined below:

Γ = Convex_Hull{µ(p) : p ∈ P} (7)
Moreover,

• λ ∈ Λ r is a necessary condition for network stability, considering all possible controls (including those that have perfect knowledge of future events) • λ ∈ int(Λ r ) is a sufficient condition for the network to be stabilized by a control that does not have knowledge of future events.

Proof. The proof is a slightly modified version of the characterization of the capacity region of [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF]. Let Λr denote the set of arrival rates vectors such that there exists g ∈ Γ satisfying:

∀a, b ∈ N , r ab (λ a + g in a ) ≤ g ab (8) 
Let prove that λ ∈ Λr is a necessary condition for network stability, considering all possible controls (including those that have perfect knowledge of future events). Suppose that the network is empty at t = 0, using the equation of the dynamics of the network, we obtain:

Q ab (T ) = T -1 t=0 R (t) ab A a (t) + f in a (t) - T -1 t=0 f ab (t) (9) 
Suppose the network is stabilized and fix an arbitrary small value > 0. By the network stability necessary condition of [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF], there must exist some finite value V such that at arbitrary large times T , the queues lengths are simultaneously less than V with probability at least 1/2. Hence, there exists a time T such that with probability at least 1/2, the following inequalities hold for all a, b ∈ N :

Q ab (T ) ≤ V (10) V T ≤ (11) T -1 t=0 R (t) ab A a (t) T ≥ r ab λ a - (12) 
T -1 t=0 R (t) ab f in a (t) T ≥ r ab f in a (t) - (13) (14) 
Define variables g ab =

T -1 t=0 f ab (t)/T . Using the above inequalities together with Equation 9 provides:

r ab λ a + g in a ≤ g ab + 3 (15)
Hence, with probability greater that 1/2, the flows g ab come arbitrary close to satisfying Inequality 8. As a result, there must exist sample paths f ab (t) from which flow variables g ab are defined that satisfy Inequality 15. This proves that λ is a limit point of Λr . As Λr is a compact, it contains its limit points, and we finally obtain: Λ r ⊂ Λr . Now, assume that λ is interior to Λr . Then, as proved in Section IV, one can build a randomized control that stabilizes the network under arrival rates vector λ. Hence, λ ∈ int( Λr ) is a sufficient condition for the network to be stabilized by some control. Combining the two above results proves that Λr = Λ r .

IV. EXISTENCE OF A STABILIZING RANDOMIZED POLICY

The following theorem proves the existence of a stabilizing stationary randomized policy for all arrival rates vectors interior to the capacity region.

Theorem (Existence of a stabilizing randomized policy). Suppose there exists > 0 such that λ + ∈ int(Λ r ), i.e. λ and λ + interior to the capacity region. Then, there exists a stationary randomized control p(t) such that:

E μab (p(t)) -r ab μin a (p(t)) + λ a ≥ r ab a (16)
Proof. For the sake of simplicity, we assume in this proof that E{A a (t)} = λ a and E{R (t) ab (X(t))} = r ab E{X(t)} for all X(t) independent from R (t) ab . It is not true in the general case (it is the particular case of i.i.d. arrivals and routing), and the reader can refer to [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF] for the principle of an extension to the general case using a K-steps Lyapunov drift.

Suppose λ is interior to the capacity region, i.e. there exists a positive vector such that λ + ∈ Λ. By Theorem III-B, there exists g ∈ Γ such that:

∀a, b ∈ N , r ab (λ a + a + g in a ) ≤ g ab (17) 
Since g ∈ Γ, it can be expressed as a weighted sum as follows:

g = p∈P w p µ(p) (18) 
where weights w p sum to 1. Let define the randomized policy p that selects randomly the phase to apply at every time slot according to probabilities (w p ) p∈P .

It is direct that it will result in a randomized stationary service matrix µ(p(t)) verifying:

E{µ ab (p(t))} = g ab (19) 
As a result,

E µ ab (p(t)) -r ab μin a (p(t)) + λ a ≥ r ab a (20) 
Now, assume that p(t) is applied to the queuing network. Then, using the equation of the dynamics of the network:

Q ab (t + 1) ≤ max (Q ab (t) -µ ab (p(t)), 0) + R (t)
ab A a (t) + µ in a (p(t)) (21) An inequality holds instead of an equality because the number of vehicles transferred is less or equal to the transmission rate offered by servers.

Squaring both sides and using max 2 (x, 0) ≤ x 2 , we obtain:

Q ab (t + 1) 2 -Q ab (t) 2 ≤ R (t) ab A a (t) + µ in a (p(t)) 2 + µ ab (p(t)) 2 -2Q ab (t) µ ab (p(t)) -R (t) ab A a (t) + µ in a (p(t)) (22) 
Define the Lyapunov function

V(Q(t)) = V (t) = a,b Q ab (t) 2 .
Taking expectations, summing over all a, b ∈ N , using independences and noting that E{A} ≤ E{A 2 }, we obtain:

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b Q ab (t)E{µ ab (p(t)) -r ab λ a + µ in a (p(t)) )} (23)
Using Inequality 20, we obtain:

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b r ab a Q ab (t) (24)
Let define η = 2 min a,b r ab a > 0, we finally obtain:

E{V (t + 1) -V (t)|Q(t)} ≤ B -η a,b Q ab (t) (25) 
The sufficient condition using Lyapunov drift proved in [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF] enables to conclude stability of the queuing network.

V. OPTIMALITY OF BP* Theorem (Back-pressure optimality). Assuming that pressure functions are linear with strictly positive slopes. Then, BP* is stability-optimal.

Proof. Again, for the sake of simplicity, we assume in this proof that E{A a (t)} = λ a and E{R (t) ab (X(t))} = r ab E{X(t)} for all X(t) independent from R (t) ab . The reader can refer to [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF] for the principle of an extension to the general case using a K-steps Lyapunov drift.

Let θ ab > 0 denote the slope of linear pressure function P ab and Π ab (t) = P ab (Q ab (t)) the evolution of pressures over time. Define the Lyapunov function V(Q(t)) = V (t) = a,b θ ab Q ab (t) 2 and let p(t) denote the control applied to the queuing network. With the same manipulations as for the proof of Theorem III-B, we obtain:

V (t + 1) -V (t) = a,b Π ab (t + 1) 2 -Π ab (t) 2 = a,b θ ab Q ab (t + 1) 2 -Q ab (t) 2 ≤ a,b θ ab R (t) ab A a (t) + µ in a (p(t)) 2 + µ ab (p(t)) 2 -2 a,b θ ab Q ab (t) µ ab (p(t)) -R (t) ab A a (t) + µ in a (p(t)) ≤ B(t)-2 a,b θ ab Q ab (t) µ ab (p(t)) -R (t) ab A a (t) + µ in a (p(t)) (26) 
with the upper-bound B(t) defined below:

B(t) = a,b θ ab R (t) ab A a (t) + sup p∈P µ in a (p) 2 + sup p∈P µ ab (p) 2 (27) 
Taking expectation and using independences, we get :

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b θ ab Q ab (t)E µ ab (p(t)) -r ab µ in a (p(t))|Q(t) + 2 a,b θ ab Q ab (t)r ab λ a (28)
The upper-bound B is obtained using E{A a } ≤ E{A 2 a }:

B = a,b θ ab r 2 ab A max a + sup p∈P µ in a (p) 2 + θ ab sup p∈P µ ab (p) 2 (29) 
By simple sum manipulation, the following identity is obtained:

a,b M ab (g ab -r ab g in a ) = a,b (M ab - c r bc M bc )g ab (30)
Using identity 30, Equation 28 becomes:

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b θ ab Q ab (t) - c r bc θ bc Q bc (t) E {f ab (t)|Q(t)} + 2 a,b θ ab Q ab (t)r ab λ a = B -2 a,b Π ab (t) - c r bc Π bc (t) E {f ab (t)|Q(t)} + 2 a,b Π ab (t)r ab λ a (31)
Now, assume that BP* control p (t) is applied and let V (t) denote the Lyapunov function under p (t). It is assumed that in case of equality when selecting the phase that maximizes the weighted sum, the selected phase p (t)

satisfies µ ab (p (t)) = 0 if W ab (t) = 0.
As a result, we obtain:

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b W ab (t)E {µ ab (p (t)) |Q(t)} + 2 a,b Π ab (t)r ab λ a (32)
By construction of back-pressure control p (t) (see the arg max in the algorithm), p (t) maximizes a,b W ab (t)µ ab (p(t)) over all possible alternative controls p(t). Now, suppose that the arrival rates vector is interior to the capacity region Λ r , i.e. there exists > 0 such that λ + ∈ Λ. Then, as proved in the supplementary material not provided in this paper due to space limitations, there exists a stabilizing stationary randomized control p(t) such that for all a, b ∈ N :

E µ ab (p(t)) -r ab µ in a (p(t)) + λ a ≥ r ab a (33) 
Combining the two above statements, taking expectations, and noting that the control p(t) is stationary result in:

a,b W ab (t)E{µ ab (p (t))|Q(t)} ≥ a,b W ab (t)E{µ ab (p(t))} ≥ a,b Π ab (t) - c r bc Π bc (t) E{µ ab (p(t)))} = a,b Π ab (t)E µ ab (p(t)) -r ab µ in a (p(t)) ≥ a,b Π ab (t)(r ab λ a + r ab a ) (34) 
Injecting the above result in the Lyapunov drift inequality results in:

E{V (t + 1) -V (t)|Q(t)} ≤ B -2 a,b θ ab r ab a Q ab (t) (35) 
Let η = 2 min a,b θ ab r ab a > 0. We finally obtain:

E{V (t + 1) -V (t)|Q(t)} ≤ B -η a,b Q ab (t) (36)
The sufficient condition using Lyapunov drift proved in [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF] enables to conclude stability of the queuing network.

VI. BEHAVIOUR OF THE LYAPUNOV DRIFT IN HEAVY LOAD

CONDITIONS

Theorem (Lyapunov drift under heavy load conditions). Assume λ + ∈ Λ r , BP control is applied and the network is in heavy load conditions, then there exists B, η > 0 such that :

E{V (t + 1) -V (t) | Q(t)} ≤ B -η a Q a (t) (37) 
for sufficiently large .

Proof. Again, for the sake of simplicity, we assume in this proof that E{A a (t)} = λ a and E{R (t) ab (X)} = r ab X for all X ∈ N.

Let Π a (t) denote the evolution of P a (Q a (t)) over time and p(t) the control applied to the queuing network. By simple manipulations, we get:

V (t + 1) -V (t) = a θ a (Q a (t + 1) -Q a (t)) 2 + 2 a θ a Q a (t) (Q a (t + 1) -Q a (t)) (38)
As a result, Inequality 38 becomes:

V (t + 1) -V (t) ≤ B(t) -2 a θ a Q a (t) b f ab (t) -R (t) ab A a (t) + f in a (t) (39) 
with the upper-bound B(t) defined below:

B(t) = a θ a b R (t) ab A a (t) + sup p∈P µ in a (p) 2 + a θ a b sup p∈P µ ab (p) 2 (40) 
Taking expectations and using independences, we obtain :

E {V (t + 1) -V (t) | Q(t)} ≤ B+2 a θ a Q a (t)λ a b r ab -2E    a,b θ a Q a (t) f ab (t) -r ab f in a (t) | Q(t)    (41) 
Moreover, by simple sum manipulations, we get the below identity: 

E {V (t + 1) -V (t) | Q(t)} ≤ B + 2 a θ a Q a (t)λ a -2 a,b Π a (t) - c r bc Π b (t) E {f ab (t) | Q(t)} (43)
Since c r bc ≤ 1, we obtain:

E {V (t + 1) -V (t) | Q(t)} ≤ B + 2 a θ a Q a (t)λ a -2 a,b (Π a (t) -Π b (t)) E {f ab (t) | Q(t)} (44)
Now, assume that BP control p BP (t) is applied and let V BP (t) denote the Lyapunov function under p BP (t). It is assumed that in case of equality when selecting the phase that maximizes the weighted sum, the selected phase p (t) satisfies µ ab (p (t)) = 0 if W ab (t) = 0. Moreover, by definition of d ab (t), under infinite capacities, f ab (t) = d ab (t)µ ab (p(t)). Hence, we obtain:

E V BP (t + 1) -V BP (t) | Q(t) ≤ B + 2 a θ a Q a (t)λ a -2 a,b W ab (t)E µ ab p BP (t) | Q(t) (45) 
By construction of back-pressure control p BP (t) (see arg max in the algorithm), p BP (t) maximizes a,b W ab (t)µ ab (p(t)) over all possible alternative controls p(t). Now, assume λ + ∈ Λ r where is a positive vector. Then, as proved in Section IV, there exists a stabilizing stationary randomized control p(t) such that:

∃g ∈ Γ : ∀a, b ∈ N , E{µ ab (p(t))} = g ab (46) 
Combining the two above statements and taking expectations results in:

a,b W ab (t)E{µ ab (p BP (t)) | Q(t)} ≥ a,b W ab (t)E{µ ab (p(t)) | Q(t)} = a,b d ab (t) (Π a (t) -Π b (t)) g ab (47)
Now, assume that the network in heavy load conditions, then d ab (t) = 1 and we obtain:

a,b W ab (t)E{µ ab (p BP (t)) | Q(t)} ≥ a,b (Π a (t) -Π b (t)) g ab (48)
By simple manipulation, we get the following identity: We finally obtain: which can be verified for sufficiently large then η > 0 and the inequality of the sufficient condition for network stability using Lyapunov drift of [START_REF] Neely | Dynamic power allocation and routing for satellite and wireless networks with time varying channels[END_REF] is verified in heavy load conditions. However, it does not imply that the network is stable under BP control since the heavy load assumption is not necessarily verified at any time.

E{V BP (t + 1) -V BP (t) | Q(t)} ≤ B -

P

  a f ab -r ab f in a = a,b P ac r bc P b f ab (42) Using identity 42, Equation 41 becomes:

W-

  -Π b ) g ab = a Π a g out a -g in a ab (t)E{µ ab (p BP (t)) | Q(t)} ≥ a Π a (t) g out a -g in a = a θ a Q a (t) g out a -g in a (50)Moreover, by definition of the input/output flow,g out a -g in a = b g ab -g in a =b g ab -r ab g in a , using the inequalities verified by g ∈ Γ, we obtain:a,b W ab (t)E{µ ab (p BP (t)) | Q(t)} ≥ a θ a Q a (t) b (r ab λ a + r ab a ) -1b r ab g in a (52)Injecting the latter result in Inequality 45 provides:E V BP (t + 1) -V BP (t) | Q(t) ≤ B
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