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Supplementary material to:

Back-pressure traffic signal control

with unknown routing rates

Jean Gregoire⋆ Emilio Frazzoli† Arnaud de La Fortelle⋆∗ Tichakorn Wongpiromsarn•

Abstract—This is the supplementary material to the paper:
back-pressure traffic signal control with unknown routing rates.
It details proofs not included in the paper due to space limitations.
The characterization of the capacity region, the optimality of BP*
and the behaviour of the Lyapunov drift under BP control are
proved.

I. CHARACTERIZATION OF THE CAPACITY REGION

Theorem (Capacity region characterisation). Given a routing

matrix r, the capacity region Λr is the set of arrival vectors

λ such that there exists g ∈ Γ satisfying:

∀a, b ∈ N , rab(λa + gina ) ≤ gab (1)

where Γ is the set of feasible long-term endogenous service

rates, defined below:

Γ = Convex_Hull{µ(p) : p ∈ P} (2)

Moreover,

• λ ∈ Λr is a necessary condition for network stability,

considering all possible controls (including those that

have perfect knowledge of future events)

• λ ∈ int(Λr) is a sufficient condition for the network to

be stabilized by a control that does not have knowledge

of future events.

Proof. The proof is a slightly modified version of the charac-

terization of the capacity region of [1]. Let Λ̃r denote the set

of arrival rates vectors such that there exists g ∈ Γ satisfying:

∀a, b ∈ N , rab(λa + gina ) ≤ gab (3)

Let prove that λ ∈ Λ̃r is a necessary condition for network

stability, considering all possible controls (including those that

have perfect knowledge of future events). Suppose that the

network is empty at t = 0, using the equation of the dynamics

of the network, we obtain:

Qab(T ) =

T−1
∑

t=0

R
(t)
ab

(

Aa(t) + f in
a (t)

)

−
T−1
∑

t=0

fab(t) (4)

Suppose the network is stabilized and fix an arbitrary small

value ǫ > 0. By the network stability necessary condition
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of [1], there must exist some finite value V such that at

arbitrary large times T , the queues lengths are simultaneously

less than V with probability at least 1/2. Hence, there exists

a time T such that with probability at least 1/2, the following

inequalities hold for all a, b ∈ N :

Qab(T ) ≤ V (5)

V

T
≤ ǫ (6)

∑T−1
t=0 R

(t)
abAa(t)

T
≥ rabλa − ǫ (7)

∑T−1
t=0 R

(t)
ab f

in
a (t)

T
≥ rabf

in
a (t)− ǫ (8)

(9)

Define variables gab =
∑T−1

t=0 fab(t)/T . Using the above

inequalities together with Equation 4 provides:

rab
(

λa + gina
)

≤ gab + 3ǫ (10)

Hence, with probability greater that 1/2, the flows gab come

arbitrary close to satisfying Inequality 3. As a result, there

must exist sample paths fab(t) from which flow variables gab
are defined that satisfy Inequality 10. This proves that λ is a

limit point of Λ̃r. As Λ̃r is a compact, it contains its limit

points, and we finally obtain: Λr ⊂ Λ̃r.

Now, assume that λ is interior to Λ̃r. Then, as proved in

Section II, one can build a randomized control that stabilizes

the network under arrival rates vector λ. Hence, λ ∈ int(Λ̃r)
is a sufficient condition for the network to be stabilized by

some control. Combining the two above results proves that

Λ̃r = Λr.

II. EXISTENCE OF A STABILIZING RANDOMIZED POLICY

The following theorem proves the existence of a stabiliz-

ing stationary randomized policy for all arrival rates vectors

interior to the capacity region.

Theorem (Existence of a stabilizing randomized policy).

Suppose there exists ǫ > 0 such that λ + ǫ ∈ int(Λr), i.e.

λ and λ+ ǫ interior to the capacity region. Then, there exists

a stationary randomized control p̃(t) such that:

E
{

µ̃ab(p(t))− rab
(

µ̃in
a (p(t)) + λa

)}

≥ rabǫa (11)
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Proof. For the sake of simplicity, we assume in this proof

that E{Aa(t)} = λa and E{R
(t)
ab (X(t))} = rabE{X(t)} for

all X(t) independent from R
(t)
ab . It is not true in the general

case (it is the particular case of i.i.d. arrivals and routing), and

the reader can refer to [1] for the principle of an extension to

the general case using a K-steps Lyapunov drift.

Suppose λ is interior to the capacity region, i.e. there exists

a positive vector ǫ such that λ+ ǫ ∈ Λ. By Theorem I, there

exists g ∈ Γ such that:

∀a, b ∈ N , rab(λa + ǫa + gina ) ≤ gab (12)

Since g ∈ Γ, it can be expressed as a weighted sum as

follows:

g =
∑

p∈P

wpµ(p) (13)

where weights wp sum to 1. Let define the randomized

policy p̃ that selects randomly the phase to apply at every

time slot according to probabilities (wp)p∈P .

It is direct that it will result in a randomized stationary

service matrix µ(p̃(t)) verifying:

E{µab(p̃(t))} = gab (14)

As a result,

E
{

µab(p̃(t))− rab
(

µ̃in
a (p̃(t)) + λa

)}

≥ rabǫa (15)

Now, assume that p̃(t) is applied to the queuing network.

Then, using the equation of the dynamics of the network:

Qab(t+ 1) ≤ max (Qab(t)− µab(p̃(t)), 0)+

R
(t)
ab

(

Aa(t) + µin
a (p̃(t))

)

(16)

An inequality holds instead of an equality because the num-

ber of vehicles transferred is less or equal to the transmission

rate offered by servers.

Squaring both sides and using max2(x, 0) ≤ x2, we obtain:

Qab(t+ 1)2 −Qab(t)
2 ≤

(

R
(t)
ab

(

Aa(t) + µin
a (p̃(t))

)

)2

+ µab(p̃(t))
2

− 2Qab(t)
(

µab(p̃(t))−R
(t)
ab

(

Aa(t) + µin
a (p̃(t))

)

)

(17)

Define the Lyapunov function V(Q(t)) = V (t) =
∑

a,b Qab(t)
2. Taking expectations, summing over all a, b ∈

N , using independences and noting that E{A} ≤
√

E{A2},

we obtain:

E{V (t+ 1)− V (t)|Q(t)} ≤ B

− 2
∑

a,b

Qab(t)E{µab(p̃(t))− rab
(

λa + µin
a (p̃(t))

)

)} (18)

Using Inequality 15, we obtain:

E{V (t + 1) − V (t)|Q(t)} ≤ B − 2
∑

a,b

rabǫaQab(t) (19)

Let define η = 2mina,b rabǫa > 0, we finally obtain:

E{V (t + 1) − V (t)|Q(t)} ≤ B − η
∑

a,b

Qab(t) (20)

The sufficient condition using Lyapunov drift proved in [1]

enables to conclude stability of the queuing network.

III. OPTIMALITY OF BP*

Theorem (Back-pressure optimality). Assume that the phase

selection policy φ in case of equality always privileges phases

p such that for all a, b ∈ P , µab(p) = 0 if Wab = 0 and

pressure functions are linear with strictly positive slopes. Then,

BP* is stability-optimal.

Proof. Again, for the sake of simplicity, we assume in this

proof that E{Aa(t)} = λa and E{R
(t)
ab (X(t))} = rabE{X(t)}

for all X(t) independent from R
(t)
ab . The reader can refer to

[1] for the principle of an extension to the general case using

a K-steps Lyapunov drift.

Let θab > 0 denote the slope of linear pressure

function Pab and Πab(t) = Pab(Qab(t)) the evolution

of pressures over time. Define the Lyapunov function

V(Q(t)) = V (t) =
∑

a,b θabQab(t)
2 and let p(t) denote the

control applied to the queuing network. With the same manip-

ulations as for the proof of Theorem I, we obtain:

V (t+ 1)− V (t) =
∑

a,b

Πab(t+ 1)2 −Πab(t)
2 =

∑

a,b

θab
(

Qab(t+ 1)2 −Qab(t)
2
)

≤

∑

a,b

θab

[

(

R
(t)
ab

(

Aa(t) + µin
a (p(t))

)

)2

+ µab(p(t))
2

]

− 2
∑

a,b

θabQab(t)
(

µab(p(t))−R
(t)
ab

(

Aa(t) + µin
a (p(t))

)

)

≤

B(t)−2
∑

a,b

θabQab(t)
(

µab(p(t))−R
(t)
ab

(

Aa(t) + µin
a (p(t))

)

)

(21)

with the upper-bound B(t) defined below:

B(t) =
∑

a,b

θab

[

R
(t)
ab

(

Aa(t) + sup
p∈P

µin
a (p)

)]2

+

(

sup
p∈P

µab(p)

)2

(22)

Taking expectation and using independences, we get :
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E{V (t+ 1)− V (t)|Q(t)} ≤ B

− 2
∑

a,b

θabQab(t)E
{

µab(p(t))− rabµ
in
a (p(t))|Q(t)

}

+ 2
∑

a,b

θabQab(t)rabλa (23)

The upper-bound B is obtained using E{Aa} ≤
√

E{A2
a}:

B =
∑

a,b

θabr
2
ab

(

Amax
a + sup

p∈P

µin
a (p)

)2

+ θab

(

sup
p∈P

µab(p)

)2

(24)

By simple sum manipulation, the following identity is

obtained:

∑

a,b

Mab(gab − rabg
in
a ) =

∑

a,b

(Mab −
∑

c

rbcMbc)gab (25)

Using identity 25, Equation 23 becomes:

E{V (t+ 1)− V (t)|Q(t)} ≤ B

− 2
∑

a,b

(

θabQab(t)−
∑

c

rbcθbcQbc(t)

)

E {fab(t)|Q(t)}

+ 2
∑

a,b

θabQab(t)rabλa = B

− 2
∑

a,b

(

Πab(t)−
∑

c

rbcΠbc(t)

)

E {fab(t)|Q(t)}

+ 2
∑

a,b

Πab(t)rabλa (26)

Now, assume that BP* control p⋆(t) is applied and let V ⋆(t)
denote the Lyapunov function under p⋆(t). Due to service rates

independence assumption and because the phase selection

policy φ in case of equality always privileges phases p such

that µab(p) = 0 if Wab = 0, it is clear that the returned phase

to apply is such that µab (p
⋆(t)) = 0 if Wab(t) = 0.

As a result, we obtain:

E{V ⋆(t+ 1)− V ⋆(t)|Q(t)} ≤ B

− 2
∑

a,b

Wab(t)E {µab (p
⋆(t)) |Q(t)}

+ 2
∑

a,b

Πab(t)rabλa (27)

By construction of back-pressure control p⋆(t)
(see the argmax in the algorithm), p⋆(t) maximizes
∑

a,b Wab(t)µab(p(t)) over all possible alternative controls

p(t).
Now, suppose that the arrival rates vector is interior to the

capacity region Λr, i.e. there exists ǫ > 0 such that λ+ ǫ ∈ Λ.

Then, as proved in the supplementary material not provided

in this paper due to space limitations, there exists a stabilizing

stationary randomized control p̃(t) such that for all a, b ∈ N :

E
{

µab(p̃(t))− rab
(

µin
a (p̃(t)) + λa

)}

≥ rabǫa (28)

Combining the two above statements, taking expectations,

and noting that the control p̃(t) is stationary result in:

∑

a,b

Wab(t)E{µab(p
⋆(t))|Q(t)} ≥

∑

a,b

Wab(t)E{µab(p̃(t))} ≥

∑

a,b

(

Πab(t)−
∑

c

rbcΠbc(t)

)

E{µab(p̃(t)))} =

∑

a,b

Πab(t)E
{

µab(p̃(t))− rabµ
in
a (p̃(t))

}

≥

∑

a,b

Πab(t)(rabλa + rabǫa) (29)

Injecting the above result in the Lyapunov drift inequality

results in:

E{V ⋆(t+ 1)− V ⋆(t)|Q(t)} ≤ B − 2
∑

a,b

θabrabǫaQab(t)

(30)

Let η = 2mina,b θabrabǫa > 0. We finally obtain:

E{V ⋆(t + 1) − V ⋆(t)|Q(t)} ≤ B − η
∑

a,b

Qab(t) (31)

The sufficient condition using Lyapunov drift proved in [1]

enables to conclude stability of the queuing network.

IV. BEHAVIOUR OF THE LYAPUNOV DRIFT IN HEAVY LOAD

CONDITIONS

Theorem (Lyapunov drift under heavy load conditions). As-

sume λ+ ǫ ∈ Λr, BP control is applied and the network is in

heavy load conditions, then there exists B, η > 0 such that :

E{V (t+ 1)− V (t) | Q(t)} ≤ B − η
∑

a

Qa(t) (32)

for sufficiently large ǫ.

Proof. Again, for the sake of simplicity, we assume in this

proof that E{Aa(t)} = λa and E{R
(t)
ab (X)} = rabX for all

X ∈ N.

Let Πa(t) denote the evolution of Pa(Qa(t)) over time and

p(t) the control applied to the queuing network. By simple

manipulations, we get:
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V (t+ 1)− V (t) =
∑

a

θa (Qa(t+ 1)−Qa(t))
2

+ 2
∑

a

θaQa(t) (Qa(t+ 1)−Qa(t)) (33)

As a result, Inequality 33 becomes:

V (t+ 1)− V (t) ≤ B(t)− 2
∑

a

θaQa(t)

∑

b

(

fab(t)−R
(t)
ab

(

Aa(t) + f in
a (t)

)

)

(34)

with the upper-bound B(t) defined below:

B(t) =
∑

a

θa
∑

b

[

R
(t)
ab

(

Aa(t) + sup
p∈P

µin
a (p)

)]2

+
∑

a

θa
∑

b

(

sup
p∈P

µab(p)

)2

(35)

Taking expectations and using independences, we obtain :

E {V (t+ 1)− V (t) | Q(t)} ≤ B+2
∑

a

θaQa(t)λa

∑

b

rab

− 2E







∑

a,b

θaQa(t)
(

fab(t)− rabf
in
a (t)

)

| Q(t)







(36)

Moreover, by simple sum manipulations, we get the below

identity:

∑

a,b

Pa

(

fab − rabf
in
a

)

=
∑

a,b

(

Pa −
∑

c

rbcPb

)

fab (37)

Using identity 37, Equation 36 becomes:

E {V (t+ 1)− V (t) | Q(t)} ≤ B + 2
∑

a

θaQa(t)λa

− 2
∑

a,b

(

Πa(t)−

(

∑

c

rbc

)

Πb(t)

)

E {fab(t) | Q(t)}

(38)

Since
∑

c rbc ≤ 1, we obtain:

E {V (t+ 1)− V (t) | Q(t)} ≤ B + 2
∑

a

θaQa(t)λa

− 2
∑

a,b

(Πa(t)−Πb(t))E {fab(t) | Q(t)} (39)

Now, assume that BP control pBP(t) is applied and let

V BP(t) denote the Lyapunov function under pBP(t). Due to

service rates independence and because the phase selection

policy φ in case of equality always privileges phases p such

that µab(p) = 0 if Wab = 0, it is clear that the returned

phase to apply is such that µab

(

pBP(t)
)

= 0 if Wab = 0.

Moreover, by definition of dab(t), under infinite capacities,

fab(t) = dab(t)µab (p(t)). Hence, we obtain:

E
{

V BP(t+ 1)− V BP(t) | Q(t)
}

≤ B + 2
∑

a

θaQa(t)λa

− 2
∑

a,b

Wab(t)E
{

µab

(

pBP(t)
)

| Q(t)
}

(40)

By construction of back-pressure control pBP(t)
(see argmax in the algorithm), pBP(t) maximizes
∑

a,b Wab(t)µab(p(t)) over all possible alternative controls

p(t).
Now, assume λ+ ǫ ∈ Λr where ǫ is a positive vector. Then,

as proved in Section II, there exists a stabilizing stationary

randomized control p̃(t) such that:

∃g ∈ Γ : ∀a, b ∈ N , E{µab(p̃(t))} = gab (41)

Combining the two above statements and taking expecta-

tions results in:

∑

a,b

Wab(t)E{µab(p
BP(t)) | Q(t)} ≥

∑

a,b

Wab(t)E{µab(p̃(t)) | Q(t)} =

∑

a,b

dab(t) (Πa(t)−Πb(t)) gab (42)

Now, assume that the network in heavy load conditions,

then dab(t) = 1 and we obtain:

∑

a,b

Wab(t)E{µab(p
BP(t)) | Q(t)} ≥

∑

a,b

(Πa(t)−Πb(t)) gab (43)

By simple manipulation, we get the following identity:

∑

a,b

(Πa −Πb) gab =
∑

a

Πa

(

gouta − gina
)

(44)

Hence,

∑

a,b

Wab(t)E{µab(p
BP(t)) | Q(t)} ≥

∑

a

Πa(t)
(

gouta − gina
)

=
∑

a

θaQa(t)
(

gouta − gina
)

(45)

Moreover, by definition of the input/output flow,

gouta − gina =
∑

b

gab − gina =
∑

b

(

gab − rabg
in
a

)

− (1−
∑

b

rab)g
in
a (46)
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As a result, using the inequalities verified by g ∈ Γ, we

obtain:

∑

a,b

Wab(t)E{µab(p
BP(t)) | Q(t)} ≥

∑

a

θaQa(t)

[

∑

b

(rabλa + rabǫa)−

(

1−
∑

b

rab

)

gina

]

(47)

Injecting the latter result in Inequality 40 provides:

E
{

V BP(t+ 1)− V BP(t) | Q(t)
}

≤ B

− 2
∑

a

θaQa(t)

[

∑

b

rabǫa −

(

1−
∑

b

rab

)

gina

]

(48)

Let define η as follows:

η = 2min
a

θa

(

∑

b

rabǫa −

(

1−
∑

b

rab

)

gina

)

(49)

We finally obtain:

E{V BP(t+1)− V BP(t) | Q(t)} ≤ B − η
∑

a

Qa(t) (50)

If for all a ∈ N ,

∑

b

rabǫa >

(

1−
∑

b

rab

)

gina (51)

which can be verified for sufficiently large ǫ then η > 0 and

the inequality of the sufficient condition for network stability

using Lyapunov drift of [1] is verified in heavy load conditions.

However, it does not imply that the network is stable under

BP control since the heavy load assumption is not necessarily

verified at any time.
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