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Submitted to the Annals of Statistics

NEW PROCEDURES CONTROLLING THE FALSE DISCOVERY

PROPORTION VIA ROMANO-WOLF’S HEURISTIC

By Sylvain Delattre and Etienne Roquain

The false discovery proportion (FDP) is a convenient way to ac-
count for false positives when a large number of tests are performed
simultaneously. Romano and Wolf (2007) have proposed a general
principle that builds FDP controlling procedures from k-family-wise
error rate controlling procedures while incorporating dependencies in
an appropriate manner, see Korn et al. (2004); Romano and Wolf
(2007). However, the theoretical validity of the latter is still largely
unknown. This paper provides a careful study of this heuristic: first,
we extend this approach by using a notion of “bounding device” that
allows to cover a wide range of critical values, including those that
adapt to m0, the number of true null hypotheses. Second, the theo-
retical validity of the latter is investigated both non-asymptotically
and asymptotically. Third, we introduce suitable modifications of this
heuristic that provide new methods overcoming the existing proce-
dures with a proven FDP control.

1. Introduction.

1.1. Motivation. Assessing significance in massive data is an important challenge of con-
temporary statistics, which becomes especially difficult when the underlying errors are cor-
related. Pertaining to this class of high-dimensional problems, a common issue is to make
simultaneously a huge number of 0/1 decisions with a valid control of the overall amount of
false discoveries (items declared to be wrongly significant). In this context, a convenient way
to account for false discoveries is the false discovery proportion (FDP) that corresponds to
the proportion of errors among the items declared as significant (i.e. “1”) by the procedure.

The Benjamini and Hochberg (BH) procedure has been widely popularized after the cel-
ebrated paper Benjamini and Hochberg (1995) and is shown to control the expectation of
the FDP, called the false discovery rate (FDR), either theoretically under constrained de-
pendency structures (see Benjamini and Yekutieli (2001)), or with simulations (see Kim and
van de Wiel (2008)). However, many authors have noticed that the distribution of the FDP of
BH procedure can be affected by the dependencies, see, e.g., Korn et al. (2004); Delattre and
Roquain (2011); Guo et al. (2014), which makes the use of the BH procedure questionable.

To illustrate further this phenomenon, Figure 1 displays the distribution of the FDP of
the BH procedure in the classical one-sided Gaussian multiple testing framework, when the
test statistics are all ρ-equicorrelated. As ρ increases, the distribution of the FDP gets less
concentrated and turns out to be drastically skewed for ρ = 0.1 (in particular it falls outside
the Gaussian regime). Clearly, in that case, the mean fails to describe accurately the overall
behavior of the FDP distribution. In particular, although the mean of the FDP is below
α = 0.2, the true value of FDP is not ensured to be small in that case.

An alternative proposed in Genovese and Wasserman (2004); Perone Pacifico et al. (2004);
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Lehmann and Romano (2005) is to control the (1 − ζ)−quantile of the FDP distribution at
level α, that is, to assert

(1) P(FDP > α) ≤ ζ.

While taking ζ = 1/2 into (1) provides a control of the median of the FDP, taking ζ = 0.05
ensures that the FDP does not exceed α with probability at least 95%. Markedly, Figure 1
shows that the (1 − ζ)-quantiles of the FDP distribution are substantially affected by the
dependencies, but not equally for all the ζ’s: due to the increasingly heavy upper-tail, while
the 95%-quantile gets substantially larger, the median gets slightly smaller. This suggests
that the BH procedure is much too optimistic for a 95%-quantile control, but is actually too
conservative for a FDP median control. Overall, this reinforces the fact that controlling the
(1− ζ)-quantile of the FDP is essential in the presence of dependence.
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Fig 1. Fitted density of the false discovery proportion of the BH procedure when increasing the dependence.
m = 1000, m0 = 800, 104 simulations, Gaussian one-sided equicorrelated model.

1.2. RW’s heuristic and main contributions of this paper. The problem of finding multiple
testing procedures ensuring the control (1) has received a growing attention in the last decades,
see for instance Lehmann and Romano (2005); Romano and Shaikh (2006a,b); Romano and
Wolf (2007); Guo and Romano (2007); Dudoit and van der Laan (2008); Chi and Tan (2008a);
Roquain (2011); Roquain and Villers (2011); Guo et al. (2014). However, existing procedures
with a proven FDP control are in general too conservative. This increases the interest of
simple and general heuristics that work “fairly”. Romano and Wolf (2007) Romano and Wolf
(2007), themself referring to Korn et al. (2004) Korn et al. (2004), have proposed such an
heuristic. It is called RW’s heuristic in the sequel and can be formulated as follows: start
from a family Rk, k ∈ {1, . . . ,m}, of procedures such that for all k, with probability at least
1−ζ, the procedure Rk makes less than k−1 false discoveries. Then, choose some k̂ such that
(k̂−1)/Rk̂ ≤ α, where Rk denotes the number of rejections of Rk. Finally use Rk̂. Note that,
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in the original formulation, k̂ was constrained to be chosen such that any k′ with k′ < k̂ should
also satisfy (k′ − 1)/Rk′ ≤ α (“step-down” approach). The rationale behind this principle is
that, for each k, the FDP of Rk is bounded by (k − 1)/Rk with probability 1 − ζ, so that
the FDP of Rk̂ should be smaller than (k̂ − 1)/Rk̂ ≤ α with probability 1− ζ, which entails
(1). However, as it is, this argument is not rigorous, because it does not take into account the
fluctuations of k̂.

This heuristic has been theoretically justified (in the step-down form) in settings where the
p-values under the null are independent of the p-values under the alternative (full indepen-
dence in Guo and Romano (2007); alternative p-values all equal to 0 in Romano and Wolf
(2007)). Since these situations rely on an independence assumption, and since the FDP is
particularly interesting under dependence, it seems appropriate to study the precise behavior
of this method in a “simple dependent case”. Thus, our study is guided by the case where
the dependencies are known and Gaussian multivariate, from which an important particular
case is the equi-correlated case mentioned above with a known ρ (the estimation of ρ will be
also discussed). In a nutshell, this paper makes the following main contributions.

- It provides a general framework in which RW’s heuristic can be investigated, by build-
ing the initial k-FWE critical values with “bounding devices”: a strong interest is the
possibility to build critical values that “adapt” to m0, the number of true nulls. This
allows to encompass many procedures, either new or previously known.

- We show that RW’s heuristic may fail to control the FDP non-asymptotically (even un-
der its step-down form). Two corrections that provably control the FDP are introduced.
By using simulations, we show that the resulting procedures are more powerful than
those previously existing.

- In an ρ-equicorrelated one-sided Gaussian asymptotical framework we show that one of
our bounding device suggests to use the following new critical values:

τℓ = Φ
(
ρ1/2Φ

−1
(ζ) + (1− ρ)1/2Φ

−1
(αℓ/m)

)
,(2)

where Φ is the upper-tail of the standard normal distribution. Interestingly, we show that
the step-up procedure associated to (2) asymptotically controls the FDP. Furthermore,
we prove that this control is maintained when we plug an estimator ρ̂m of ρ into (2)
(provided that the estimator has an estimation rate faster than logarithmic).

Finally, let us emphasize that the novel critical values (2) allow to describe how the quantities
α, ζ and ρ come into play when controlling (asymptotically) the FDP. Taking ρ = 0 just
gives Simes’ critical values and thus the BH procedure, whatever ζ is. The asymptotic FDP
control can be explained in that case by the fast concentration of the FDP of BH around
its expectation as m grows to infinity under independence (see, e.g., Neuvial (2008)). Now,
for ρ > 0, the new critical values are markedly different from the BH critical values: taking
ζ = 1/2 leads to less conservative critical values (if α ≤ 1/2), while taking ζ smaller can lead
to more conservativeness (as expected), see Figure 2 (a) for an illustration. Finally, we plot
in Figure 2 (b) the density of the FDP of the step-up procedure using the new critical values
(2) for ζ = 0.05. As one might expect, compared to the BH procedure, the density has been
shifted to the left so that the 95%-quantile of the FDP of the novel procedure is below α.

1.3. Multiple testing framework. We observe a random variable X, whose distribution
belongs to some set P. For m ≥ 2, we define a setting for performing m tests simultaneously
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Fig 2. Left: plot of the critical values (2) in function of ℓ. Right: same as Figure 1 but only for ρ = 0.1 and by
adding the new step-up procedure using (2). m = 1000, α = 0.2, Gaussian one-sided equicorrelated model.

by introducing a true/false null parameter H ∈ {0, 1}m and a set of associated distributions
PH ⊂ P (assumed to be non-empty) which are candidates to be the distribution of X under
the configuration H. We denote H0(H) = {i : Hi = 0}, m0(H) =

∑m
i=1(1−Hi) and H1(H) =

{i : Hi = 1}, m1(H) =
∑m

i=1Hi the set/number of true and false nulls, respectively. The
basic assumption is the following: for all i ∈ {1, . . . ,m}, there is a p-value pi(X) satisfying
the following assumption

∀H ∈ {0, 1}m with Hi = 0, we have pi(X) ∼ U(0, 1) when X ∼ P with P ∈ PH .

In this paper, a leading example is the one-sided Gaussian multivariate framework, for
which X = Hµ + Y , where Hµ = (Hiµi)1≤i≤m for H ∈ {0, 1}m, µ ∈ (R+\{0})m and Y is
a m-dimensional centered Gaussian vector with covariance matrix Γ such that Γi,i = 1. We
focus on the (one-sided) multiple testing problem of “EXi = 0” versus “EXi > 0”, which is
equivalent to test “Hi = 0” against “Hi = 1” here. The p-values are given by pi(X) = Φ(Xi).
A special case of interest is the equi-correlated case:

(ρ-equi) Γi,j = ρ, for all i 6= j, where ρ ∈ [−(m− 1)−1, 1],

which is extensively used throughout the paper. When (ρ-equi) does not hold, the joint distri-
bution of the p-values under the null (pi, i ∈ H0(H)) depends in general on the subset H0(H).
Obviously, in that case, we do not want to explore the

(
m

m0(H)

)
possible subsets of {1, . . . ,m}

in our inference, which inevitably should arise when our procedure fits to such a dependence
structure. To circumvent this technical difficulty, we can add random effects to our model.
This makes H becoming random. More formally, we distinguish between the two following
models:

- Fixed mixture model: the parameter H is fixed by advance and unknown. Overall, the
parameters of the model are given by θ = (H,P ) to be chosen in the set

ΘF = {(H,P ) : H ∈ {0, 1}m, P ∈ PH}.
- Uniform mixture model: the number of true null m0 ∈ {0, 1, . . . ,m} is unknown and
fixed by advance, while H is a random vector distributed in such a way that H0(H)
is randomly generated (independently and previously of the other variables), uniformly
in the subsets of {1, . . . ,m} of cardinal m0. The parameters of the model are given by
θ = (m0, (PH)H), to be chosen in the set

ΘU = {(m0, (PH)H) : m0 ∈ {0, 1, . . . ,m}, PH ∈ PH for all H}.
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In this model, the distribution of X conditionally on H is PH .

While the fixed mixture model is the most commonly used model for multiple testing, the
uniform mixture model is new to our knowledge and follows the general philosophy of models
with random effects, see Efron et al. (2001). It is convenient for the adaptation issue w.r.t.
m0, as we will see later on. With some abuse, we denote m0(θ) (or m0 when not ambiguous)
the number of true nulls in the fixed/uniform mixture models. In the sequel, Θ denotes either
ΘF or ΘU (when unspecified, Θ is ΘF ).

1.4. Type I error rates. First, for t ∈ [0, 1], denote Vm(t) =
∑m

i=1(1−Hi)1 {pi(X) ≤ t} and
Rm(t) =

∑m
i=1 1 {pi(X) ≤ t} the number of false discoveries and the number of discoveries

(at threshold t), respectively. For some pre-specified k ∈ {1, . . . ,m} and some thresholding
method t̂m ∈ [0, 1] (potentially depending on the data), the k-family-wise error rate (k-
FWER) is defined as the probability that more than k true nulls have a p-value smaller than
t̂m, see, e.g., Hommel and Hoffman (1988); Lehmann and Romano (2005). Formally, for θ ∈ Θ
(in one of the models defined in Section 1.3 and Θ being the corresponding parameter space),

(3) k-FWER(t̂m) = Pθ(Vm(t̂m) ≥ k).

Note that k = 1 corresponds to the traditional family-wise error rate (FWER). From (3),
providing k-FWER(t̂m) ≤ ζ (for all θ ∈ Θ and some ζ ∈ (0, 1)), ensures that, with probability
at least 1− ζ, less than k − 1 false discoveries are made by the thresholding procedure t̂m.

Next, for some threshold t ∈ [0, 1], define the false discovery proportion at threshold t as
follows:

(4) FDPm(t) =
Vm(t)

Rm(t) ∨ 1
.

The quantity FDPm(t) is not observable because it depends on the unknown process Vm(t).
Furthermore, FDPm(t) is random, so that FDPm(t) ≤ α can hold only with high probabil-
ity. Controlling the FDP via a threshold t = t̂m (potentially depending on the data) thus
corresponds to the following probabilistic bound:

(5) ∀θ ∈ Θ, Pθ

(
FDPm

(
t̂m
)
≤ α

)
≥ 1− ζ,

for some pre-specified values α, ζ ∈ (0, 1). As mentioned before, (5) corresponds to upper-
bound the (1 − ζ)−quantile of the distribution of FDPm

(
t̂m
)
by α. Since FDPm(t) > α is

equivalent to Vm(t) ≥ ⌊αRm(t)⌋+1, the FDP control and the k-FWER control are intrinsically
linked.

From an historical point of view, the introduction of the FDP goes back to Eklund in the
1960’s (as reported in Seeger (1968)), that has presented the FDP as a solution to the “mass-
significance problem”. Much later, the seminal paper of Benjamini and Hochberg Benjamini
and Hochberg (1995) has widely popularized the use of the FDP in practical problems by
introducing and studying the false discovery rate (FDR), which corresponds to the expectation
of the FDP.

1.5. Step-up and step-down procedures. Consider a nondecreasing sequence (τℓ)1≤ℓ≤m of
nonnegative values, with the convention τ0 = 0. Classically, the latter is referred to as critical
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values. The corresponding step-up (resp. step-down) procedure is defined as rejecting the
p-values smaller than τℓ̂, where ℓ̂ is defined by either of the two following quantities:

max{ℓ ∈ {0, 1, . . . ,m} such that p(ℓ) ≤ τℓ};(SU)

max{ℓ ∈ {0, 1, . . . ,m} such that ∀ℓ′ ∈ {0, 1, . . . , ℓ}, p(ℓ′) ≤ τℓ′}.(SD)

Let us also recall the so-called “switching relation”: p(ℓ) ≤ τℓ is equivalent to Rm(τℓ) ≥ ℓ.

This entails Rm(τℓ̂) = ℓ̂ both in the step-up and step-down cases.

2. Building k-FWE-based critical values.

2.1. Revisiting RW’s heuristic. Starting from arbitrary critical values (τℓ)1≤ℓ≤m, and by

taking an integer ℓ̂ such that Rm(τℓ̂) = ℓ̂, we have

Pθ(FDPm(τℓ̂) > α) = Pθ(Vm(τℓ̂) > α Rm(τℓ̂))

= Pθ(Vm(τℓ̂) ≥ ⌊αℓ̂⌋+ 1).(6)

Hence, by taking τℓ such that (⌊αℓ⌋ + 1)-FWER(τℓ) ≤ ζ for all ℓ, we should get that (6) is
below ζ. However, as already mentioned, the above reasoning does not rigorously establish (5)
(with t̂m = τℓ̂), because it implicitly assumes that ℓ̂ is determinist. Nevertheless, this heuristic
is a good starting point for building critical values related to the FDP control.

2.2. Bounding device. Let us consider either the fixed model Θ = ΘF or the uniform model
Θ = ΘU . First, let us define a bounding device as any function B0

m : (t, k, u) 7→ B0
m(t, k, u) ∈

[0, 1], defined for t ∈ [0, 1], k ∈ {1, . . . ,m} and u ∈ {0, . . . ,m}, which is non-increasing in k,
with B0

m(0, k, u) = 0 for all u, k, B0
m(t, k, u) = 0 for all t ∈ [0, 1] whenever u < k, and such

that for all t ∈ [0, 1], k ∈ {1, . . . ,m} and u ∈ {k, . . . ,m}, we have

B0
m(t, k, u) ≥ sup

θ∈Θ
m0(θ)=u

{Pθ(Vm(t) ≥ k)} .(Bound)

Now, define for t ∈ [0, 1], k ∈ {1, . . . ,m} and ℓ ∈ {k, . . . ,m}, the quantities

Bm(t, k) = sup
0≤u≤m

{
B0

m(t, k, u)
}
;(Bound-nonadapt)

B̃m(t, k, ℓ) = sup
k≤k′≤ℓ

{
sup

0≤u≤m−ℓ+k′
B0

m(t, k′, u)

}
;(Bound-adapt)

which are additionally assumed to be non-decreasing and left-continuous in t. Note that
Bm(t, k) and B̃m(t, k, ℓ) are both non-increasing in k.

Definition 2.1. Let us consider a bounding device B0
m(t, k, u) and the above associated

quantities Bm(t, k) and B̃m(t, k, ℓ). Then the non adaptive (resp. adaptive, oracle) k-FWE-
based critical values associated to the bounding function B0

m are defined as follows (respec-
tively):

τ ℓ = max
{
t ∈ [0, 1] : Bm(t, ⌊αℓ⌋+ 1) ≤ ζ

}
, 1 ≤ ℓ ≤ m;(7)

τ̃ℓ = max
{
t ∈ [0, 1] : B̃m(t, ⌊αℓ⌋+ 1, ℓ) ≤ ζ

}
, 1 ≤ ℓ ≤ m;(8)

τ0ℓ = max
{
t ∈ [0, 1] : B0

m(t, ⌊αℓ⌋+ 1,m0) ≤ ζ
}
, 1 ≤ ℓ ≤ m.(9)
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The above definition implies that (τ ℓ)1≤ℓ≤m, (τ̃ℓ)1≤ℓ≤m and (τ0ℓ )1≤ℓ≤m are nondecreasing
sequences, so that they can be used as critical values. The critical values τ̃ℓ, ℓ = 1, . . . ,m, are
said adaptive because they implicitely (over-)estimate m0 by

(10) m(ℓ) = m− ℓ+ ⌊αℓ⌋+ 1.

In the literature, this way to adapt to π0 is often referred to as “one-stage” (by contrast
with “two-stage”, see Benjamini et al. (2006); Sarkar (2008); Blanchard and Roquain (2009)).
It has been used in Gavrilov et al. (2009); Finner et al. (2009) and has been proved to be
asymptotically optimal in a specific sense (AORC), see Finner et al. (2009). Also, τ ℓ ≤ τ̃ℓ for
all ℓ, that is, adaptation always leads to less conservative critical values. Finally, it is worth
to check that τm ≤ τ̃m < 1 (this comes from B0

m(1, k, u) = 1 for all u ≥ k) so that the output
ℓ̂ of the step-up algorithm is not identically equal to m.

2.3. Examples. We provide below three examples of bounding devices: Markov,K-Markov
and Exact. Instances of resulting critical values are displayed in Figure 3. As we will see, while
the exact bounding device leads to the largest critical values the Markov-type devices are still
useful because they can offer finite sample controls.

Markov. By Markov’s inequality, we have

(11) Pθ(Vm(t) ≥ k) ≤ Eθ(Vm(t))

k
=

m0t

k
=: B0

m(t, k,m0).

Since Bm(t, k) = mt/k and B̃m(t, k, ℓ) = supk≤k′≤ℓ sup0≤u≤m−ℓ+k′{ut/k′} = (m− ℓ+ k)t/k,
this gives rise to the critical values

τ ℓ =
ζ(⌊αℓ⌋+ 1)

m
; τ̃ℓ =

ζ(⌊αℓ⌋+ 1)

m(ℓ)
, 1 ≤ ℓ ≤ m,(12)

where m(ℓ) is defined by (10). The adaptive critical values (τ̃ℓ)1≤ℓ≤m are those proposed by
Lehmann and Romano in Lehmann and Romano (2005). Note that these critical values do
not adapt to the underlying dependence structure of the p-values.

K-Markov. When ζ is small, the Markov device can be too conservative and we might want
to use a sharper tool. Let K ≥ 1 be an integer. As suggested in Guo et al. (2014) (for K = 2),
we can use the following bound: for k ≥ K,

Pθ(Vm(t) ≥ k) ≤ Eθ[Vm(t)(Vm(t)− 1) · · · (Vm(t)−K + 1)]

k(k − 1) · · · (k −K + 1)
.

By essence, this device is useless whenever k < K, so we replace it by the simple Markov
device. This yields

B0
m(t, k, u) =

{
Am(t,K,u)

k(k−1)···(k−K+1) if K ≤ k
ut
k ∨ Am(t,K,m)

K! if 1 ≤ k ≤ K − 1,
(13)

where Am(t,K, u) = sup{Eθ[Vm(t)(Vm(t) − 1) · · · (Vm(t) −K + 1)], θ ∈ Θ,m0(θ) = u}. Note
that the operator “∨ ” in the last display is added to keep the non-increasing property w.r.t.
k. As a first illustration, assuming

pi, i ∈ H0, are mutually independent (cond. on H in model ΘU ),(Indep)
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Fig 3. Plot of − log(τ̃ℓ) in function of ℓ ∈ {1, . . . ,m}, for k-FWE-based critical values obtained with several
types of bounding devices and assuming (ρ-equi). For comparison, the solid thin black line corresponds either
to the BH critical values − log(αℓ/m) (non adaptive) or the AORC critical values − log(αℓ/(m − (1 − α)ℓ))
defined in Finner et al. (2009) (adaptive).

B0
m(t, k, u) equals u(u−1)···(u−K+1)

k(k−1)···(k−K+1) t
K for k ≥ K, which entails for ℓ ∈ {1, . . . ,m}, τ̃ℓ =

ζ1/K
(
(⌊αℓ⌋+1)(⌊αℓ⌋+1−1)···(⌊αℓ⌋+1−K+1)

m(ℓ)(m(ℓ)−1)···(m(ℓ)−K+1)

)1/K
for ℓ ≥ ℓK , where ℓK denotes ⌈(K−1)/α⌉ with ⌈n⌉

being the smallest integer larger than or equal to n. A second illustration is the equicorrelated
case (ρ-equi) with ρ ∈ [0, 1), for which

(14) B0
m(t, k, u) =

u(u− 1) · · · (u−K + 1)

k(k − 1) · · · (k −K + 1)

∫ 1

0
(F0,ρ(t, x))

Kdx

for k ≥ K, where we let

F0,ρ(t, x) = Φ
(
(Φ

−1
(t)−√

ρ Φ
−1

(x))/
√
1− ρ

)
.(15)

The latter comes comes from the well known decomposition

Xi − EXi ∼
√
ρ ξ0 +

√
1− ρ ξi,(16)

where the ξi’s are all i.i.d. N (0, 1). Inverting B0
m(t, ⌊αℓ⌋ + 1,m(ℓ)) = ζ gives rise to critical

values τ ℓ and τ̃ℓ, both taking into account the value of ρ.
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NEW PROCEDURES CONTROLLING THE FDP 9

Exact. In some cases, closed-formulas can be derived for the RHS of (Bound). First, assuming
(Indep), the distribution of V (t) is a binomial with parameters (u, t). Hence, B0

m(t, k, u) =∑u
j=k

(
u
j

)
tj(1 − t)u−j . It is easy to check that B̃m(t, k, ℓ) = B0

m(t, k,m − ℓ + k), so that the
corresponding adaptive critical values can be obtained by a numerical inversion (these critical
values were already proposed in Guo and Romano (2007)). Second, the following exact formula
can be used under (ρ-equi) when ρ ∈ [0, 1):

B0
m(t, k, u) =

∫ 1
0

∑u
j=k

(
u
j

)
(F0,ρ(t, x))

j(1− F0,ρ(t, x))
u−jdx

B̃m(t, k, ℓ) = B0
m(t, k,m− ℓ+ k),

(17)

where F0,ρ(t, x) is defined in (15). Third, in the Gaussian case where Γ is known, the quantities
in the RHS of (Bound) can be computed by a Monte-Carlo method as follows: on the one
hand, in the non adaptive case, we can upper-bound Vm(t) by the full null process

(18) V ′
m(t) = m−1

m∑

i=1

1
{
Φ(Yi) ≤ t

}
,

whose distribution is known when Γ is known, because Y ∼ N (0,Γ). On the other hand,
in the adaptive case, the original null process Vm(t) can be easily generated in the uniform
model ΘU in the case m0(θ) = u, for an arbitrary u. This leads to non-adaptive and adaptive
critical values that incorporate any pre-specified covariance matrix Γ.

3. Finite sample results.

3.1. Preliminary results. The following theorem gathers the only existing cases, quite
restrictive, where RW’s heuristic has been proved to provide FDP control (to our knowledge).
For the sake of generality, we reformulate these results by using our setting.

Proposition 3.1 (Romano and Wolf (2007); Guo and Romano (2007); Guo et al. (2014)).
Consider some bounding device B0

m and the associated k-FWE-based critical values (τℓ)1≤ℓ≤m,
being either adaptive or not and computed either in the fixed mixture model (Θ = ΘF ) or in
the uniform mixture model (Θ = ΘU ). Let us consider the corresponding number of rejections
ℓ̂ of the associated step-down (SD) or step-up (SU) procedure. Then the FDP control (5) holds
(with t̂m = τℓ̂) in the following cases:

(i) step-down algorithm and the null p-values (pi, i : Hi = 0) are independent of the alter-
native p-values (pi, i : Hi = 1) Romano and Wolf (2007); Guo and Romano (2007);

(ii) step-down or step-up algorithm with the Lehmann-Romano critical values, that is, with
(τℓ)1≤ℓ≤m given by (12), and when Simes’ inequality is valid:

(19) Pθ

(
m0⋃

k=1

{
q(k) ≤ ζk/m0

}
)

≤ ζ,

where q(1) ≤ q(2) ≤ · · · ≤ q(m0) denote the ordered p-values under the null Guo et al.
(2014).

The case (i) comes from inequalities established in Lehmann and Romano (2005); Romano
and Wolf (2007), that we recall in Section 7.1 under an unified form (see also Theorem 5.2 in
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10 DELATTRE, S. AND ROQUAIN, E.

Roquain (2011)). Note that it contains the case where all the p-values under the alternative
are equal to zero (Dirac-Uniform configuration). Case (ii) has been solved more recently in
Guo et al. (2014). Here, it can be seen as a consequence of the following general inequality,
that will be useful throughout the paper (see Section 7.3 for a proof).

Proposition 3.2. Consider the setting of Proposition 3.1 in the step-down or step-up
case. Then we have for all θ ∈ Θ,

Pθ

(
FDPm(τℓ̂) > α

)
≤ Pθ

(
Vm(ν0

k̂
) ≥ k̂ ≥ 1

)
= Pθ

(
q(k̂) ≤ ν0

k̂
, k̂ ≥ 1

)
,(20)

for k̂ = Vm(τℓ̂), where q(1) ≤ · · · ≤ q(m0) denotes the ordered p-values under the null and
where

(21) ν0k = max{t ∈ [0, 1] : B0
m(t, k,m0) ≤ ζ}.

Proposition 3.1 (ii) thus follows from Proposition 3.2, used with the adaptive Markov
bounding device coming from (11). Markedly, Proposition 3.2 establishes that the FDP control
for adaptive k-FWE based critical values is linked to a specific inequality between the null
p-values and the bounding device using the true value of m0.

Further note that (20) in Proposition 3.2 is sharp whenever m0(θ) = m: in that case, the
LHS and RHS are both equal to the probability that k̂(= ℓ̂) is not zero, i.e., that at least
one ℓ ∈ {1, . . . ,m} is such that p(ℓ) ≤ τℓ. For instance, in the independent case and using the

exact device (17), when m = m0 = 2 and α = 0.5, we have τ1 = τ̃1 = 1 − (1 − ζ)1/2 and
τ2 = τ̃2 = ζ1/2 and

Pθ

(
FDPm(τℓ̂) > α

)
= 2ζ − (1− (1− ζ)1/2)(2ζ1/2 − 1 + (1− ζ)1/2).

We merely check that the latter is larger than ζ for all ζ ∈ (0, 1). This establishes the following:

Fact 3.3. RW’s heuristic does not always provide a valid FDP control for finite m in its
step-up form.

Also, non-reported simulations show that the FDP control can be violated for a larger value
of m.

Now, an important question is to know whether RW’s heuristic always provides a valid
FDP control for finite m in its step-down form. First, we can merely check that the following
cases can be added in Proposition 3.1 in the step-down case:

(iii) for all θ ∈ Θ, ⌊αbα(m0(θ))⌋ = 0 (e.g., m0(θ) ∈ {1,m} or ⌊αm⌋ = 0);
(iv) under (ρ-equi) when ρ = 1.

Note that (iii) contains the case m0 = m which was problematic in the step-up case. A con-
sequence is that any configuration for which the FDP control fails should be searched outside
cases (i), (ii), (iii) and (iv). As a matter of fact, we found a numerical example under equi-
correlation when using the critical values (τ0ℓ )ℓ defined by (9), with the exact device. To this
end, we have evaluated the probability exceedance of the FDP by the exact calculations pro-
posed in Roquain and Villers (2011); Blanchard et al. (2014). This method is time consuming
for large m but avoids the undesirable fluctuations due to the Monte-Carlo approximation
while performing simulations. Precisely, under Assumption (ρ-equi), when m = 30, α = 0.2,
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NEW PROCEDURES CONTROLLING THE FDP 11

ζ = 0.05, ρ = 0.3,m0 = 15, µi = 1.5, 1 ≤ i ≤ m, we obtained Pθ

(
FDPm(τ0

ℓ̂
) > α

)
> ζ+10−3.

Admittedly, the FDP control is just slightly violated. Nevertheless, this gives a numerical ev-
idence of the following fact.

Fact 3.4. RW’s heuristic does not always provide a valid FDP control for finite m in its
(oracle) step-down form.

Fact 3.4 is interesting from a theoretical point of view: it annihilates any hope of finding a
general finite sample proof of FDP control in the step-down case (the case of the non-oracle
adaptive version is studied with extensive simulations, see Section 5.1).

3.2. Existing modifications. Fact 3.4 indicates that, to obtain a provable finite sample
control, it is appropriate to slightly decrease the initial k-FWE-based critical values (τℓ)1≤ℓ≤m.
Interestingly, several existing procedures that provably control the FDP can be reinterpreted
as modifications of the τℓ’s. In the literature, we have identified the following principles:

• The “diminution” principle Romano and Shaikh (2006a,b); Guo et al. (2014): first,
establish a rigorous upper-bound for P(FDP > α) for a step-down or step-up procedure
with arbitrary critical values (cℓ(x))1≤ℓ≤m depending on a single parameter x. Second,
adjust x to make the bound smaller than ζ. As an illustration, Romano and Shaikh
Romano and Shaikh (2006a,b) have proposed a bound that can be rewritten as follows
(see Section 7.2 for a proof):

CRS(x) = max
1≤u≤m



u

bα(u)∑

ℓ=1

cℓ(x)− cℓ−1(x)

d(ℓ,m, u)



 ;(22)

where for all u, ℓ ∈ {0, . . . ,m}, we let

bα(u) =

{
(⌊(m− u)/(1− α)⌋+ 1) ∧ (⌈u/α⌉ − 1) ∧m (step-down)

(⌈u/α⌉ − 1) ∧m (step-up)
;(23)

d(ℓ,m, u) =

{
⌊αℓ⌋+ 1 (step-down)

(⌊αℓ⌋+ 1) ∨ (ℓ−m+ u) (step-up)
(24)

This bound holds under general dependence, but does not incorporate it. Finally, the
diminution principle has been recently followed by using much more sophisticated
bounds that incoporate the pairwise dependence, see Theorems 3.7 and 3.8 in Guo
et al. (2014).

• The “augmentation” principle van der Laan et al. (2004); Farcomeni (2009): consider
the 1-FWE controlling procedure at level ζ rejecting the null hypotheses corresponding
to the set R(1) = {1 ≤ i ≤ m : pi ≤ τ1(ζ)} , denote ℓ(1) the number of rejections of
R(1) and

ℓ̃Aug = ⌊ℓ(1)/(1− α)⌋ ∧m.

Then the “augmented” procedure rejects the nulls associated to the ℓ̃Aug smallest p-
values. This procedure can incorporate the dependence if R(1) is appropriately chosen.

• The “simultaneous” k-FWE control proposed in Genovese and Wasserman (2006): con-
sider critical values (τℓ(ζ/m))1≤ℓ≤m (with ζ divided by m) and let

ℓ̃sim =

⌊
max {R(τℓ(ζ/m))− ⌊αℓ⌋ : ℓ ≤ R(τℓ(ζ/m)), ℓ ≥ 0}

1− α

⌋
∧m.
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12 DELATTRE, S. AND ROQUAIN, E.

Then the “simultaneous” procedure rejects the nulls corresponding to the ℓ̃sim smallest
p-values. Again, this procedure is able to incorporate the dependence if the τℓ’s are
suitably built.

3.3. Two new modifications. This section presents new results that can be seen as modifi-
cations of k-FWE based procedures that ensure finite sample FDP control. Both modifications
incorporate the dependence between the p-values. Furthermore, the numerical experiments of
Section 5 show that they are more powerful than the the state-of-the-art procedures described
above in Section 3.2.

The first result follows the “diminution” principle by using a new bound on the probability
exceedance. For any arbitrary critical values (cℓ(x))1≤ℓ≤m (depending on a variable x), we let

Cex(x) = max
1≤u≤m





bα(u)∑

ℓ=1

max
θ∈Θ

m0(θ)=u

{(Pθ (Vm(cℓ(x)) ≥ d(ℓ− 1,m, u))− Pθ (Vm(cℓ−1(x)) ≥ d(ℓ− 1,m, u)))

∧ (Pθ (Vm(cℓ(x)) ≥ d(ℓ,m, u))− Pθ (Vm(cℓ−1(x)) ≥ d(ℓ,m, u)))}
}
,

(25)

where bα(u) and d(ℓ,m, u) are given by (23) and (24), respectively. The following result is
established in Section 7.2.

Theorem 3.5. Let us consider either the fixed model (Θ = ΘF ) or the uniform model
(Θ = ΘU ) and any family of critical values (cℓ(x))1≤ℓ≤m, x ≥ 0, such that cm(0) = 0.
Consider some x⋆ ≥ 0 satisfying

Cex(x⋆) ∧ CRS(x⋆) ≤ ζ,

where Cex(·) is defined by (25) and CRS(·) by (22). Let ℓ̂ be the number of rejections of the
step-down (SD) (resp. step-up (SU)) algorithm associated to the critical values (cℓ(x

⋆))1≤ℓ≤m.
Then the FDP control (5) holds (with t̂m = τℓ̂).

Theorem 3.5 can be applied with any starting critical values (cℓ(x))1≤ℓ≤m. A choice in
accordance with RW’s heuristic is

(26) cℓ(x) = x τ̃ℓ, ℓ ∈ {1, . . . ,m}, x ≥ 0,

where (τ̃ℓ)1≤ℓ≤m are the adaptive k-FWE based critical values (8) for some appropriate bound-
ing device. Next, while Theorem 3.5 does not require any assumption on the dependence, it
implicitly assumes that the function Cex(·) is known or easily computable. This is the case
for instance in the equicorrelated case (ρ-equi) with ρ ∈ [0, 1), because we have

Cex(x) = max
1≤u≤m





bα(u)∑

ℓ=1

(
B0

m(cℓ(x), d(ℓ− 1,m, u), u)−B0
m(cℓ−1(x), d(ℓ− 1,m, u), u)

)

∧
(
B0

m(cℓ(x), d(ℓ,m, u), u)−B0
m(cℓ−1(x), d(ℓ,m, u), u)

)}
,(27)
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NEW PROCEDURES CONTROLLING THE FDP 13

where B0
m(t, k, u) is the exact bounding device defined by (17). A second illustration is the

case where Γ is known but arbitrary and where the model is Θ = ΘU . In that situation,
Cex(x) in (25) can be approximated by Monte-Carlo calculations.

The second result presented in this section relies on the K-Markov device B0
m(t, k, u) given

by (14) (for some integer K ≥ 1) and specifically assumes equicorrelation (ρ-equi) with
ρ ∈ [0, 1). We consider the critical values defined as follows: for ℓ ∈ {1, . . . ,m},

(28) τnewℓ =

{
τ̃ℓ(λζ,m(ℓ)) if ℓ ≥ ℓK(

(1−λ)ζ(⌊αℓ⌋+1)
m(ℓ)

)
∧ τ̃ℓK (λζ,m) if ℓ < ℓK ,

where ℓK = ⌈(K − 1)/α⌉, λ ∈ [0, 1] is some tuning parameter and where τ̃ℓ(ζ, u) denotes the
value of t obtained by solving the equation

∫ 1

0
(F0,ρ(t, x))

Kdx = ζ
(⌊αℓ⌋+ 1)(⌊αℓ⌋+ 1− 1) · · · (⌊αℓ⌋+ 1−K + 1)

u(u− 1) · · · (u−K + 1)

with F0,ρ(t, x) given by (15). The following result holds (see Section 7.4 for a proof).

Theorem 3.6. Consider the step-up procedure associated to the critical values (τnewℓ )1≤ℓ≤m

given by (28) with rejection number ℓ̂. Then the finite sample FDP control (5) holds for
t̂m = τnew

ℓ̂
in the equicorrelated case (ρ-equi) with ρ ∈ [0, 1).

When K = 1 and λ = 1, the critical values (τnewℓ )1≤ℓ≤m are the Lehmann-Romano critical
values (12) and thus Theorem 3.6 is in accordance with Proposition 3.1 (ii) and Theorem 3.1 of
Guo et al. (2014), because Simes’ inequality is valid in that case. The originality of Theorem 3.6
lies in the case K > 1, that allows to incorporate ρ in a FDP controlling procedure. The
experiments of Section 5 are made with the choice K = 2 and λ = 0.5 or 0.95.

Finally, let us underline that the proof of Theorem 3.6 uses the MTP2 property (see,
e.g., Karlin and Rinott (1980)) in a novel manner via the K-Markov device. It is thus of
independent interest, see Section 7.4.

4. Asymptotic results. The goal of this section is to study RW’s heuristic from an
asymptotic point of view.

4.1. Setting and assumptions. In this section, the FDP control under study is asymptotic:

lim sup
m

{
Pθ(m)

(
FDPm

(
t̂m
)
> α

)}
≤ ζ,(29)

for some t̂m. This requires to consider a sequence of models (Θ(m),m ≥ 1) and a sequence of
parameters (θ(m),m ≥ 1) with θ(m) ∈ Θ(m) for all m ≥ 1. The latter sequence is assumed to
be fixed once for all throughout this section. Also, the family of models is composed of fixed
mixture models (H(m) is not assumed to be random). Moreover, we will assume throughout
this study the following common assumption:

m0(θ
(m))/m → π0, where π0 ∈ (0, 1).(30)

Also, under (30), we let π1 = 1− π0.
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14 DELATTRE, S. AND ROQUAIN, E.

Useful assumptions on (θ(m),m ≥ 1) are the following weak dependence assumptions on
the processes Ĝm(t) = Rm(t)/m and Ĝ0,m(t) = Vm(t)/m0, t ∈ [0, 1]:

||Ĝm −G||∞ = oP (1), for some G : [0, 1] → [0, 1];(weakdep)

||Ĝ0,m − I||∞ = oP (1), for I(t) = t, t ∈ [0, 1].(weakdep0)

In the Gaussian multivariate setting, (weakdep) and (weakdep0) are satisfied under (30) if
the following conditions hold (see Lemma A.1):

(m1)
−1

m∑

i=1

Hiδµi

weak−−−→ ν, for a distribution ν on R
+ with ν({0}) = 0,(Conv-alt)

m−2
m∑

i,j=1

(Γi,j)
2 → 0.(weakdepGauss)

Here, G(t) = π0t+π1F1(t) and F1(t) =
∫∞
0 Φ(Φ

−1
(t)−β)dν(β). Condition (Conv-alt) extends

the usual situation where the p-value distribution is fixed with m under the alternative (as
assumed in Genovese and Wasserman (2004); Neuvial (2008); Delattre and Roquain (2011);
Delattre and Roquain (2012)). Assumption (weakdepGauss) seems to have been introduced in
Fan et al. (2012), see also Schwartzman and Lin (2011); Delattre and Roquain (2012). Finally,
let us underline that under (ρ-equi), Assumption (weakdepGauss) is satisfied whenever ρ =
ρm → 0.

4.2. The BH procedure and FDP control under weak dependence. Let us go back to Fig-
ure 1. Clearly, the BH procedure is inappropriate to control the FDP for ζ = 0.05 in the
equi-correlated case ρ = 0.1. However, when ρ = 0, even if the BH procedure is only intended
to control the expectation of the FDP at level α, the 95% quantile of the FDP is still close to
α. This comes from the concentration of the FDP of the BH procedure around π0α < α = 0.2
as m grows to infinity. It is well known that this quantile converges to π0α as m grows to
infinity, so that the limit in (29) is equal to zero, see, e.g., Neuvial (2008). In other words,
the FDP concentration combined with the slight amount of conservativeness due to π0 < 1
“prevents” the FDP to exceed α. The consequence is simple: the BH procedure controls the
FDP asymptotically in the sense of (29) under independence. As a matter of fact, the latter
also holds under weak dependence (see Section 8.1 for a proof):

Lemma 4.1. Consider the BH procedure, that is, the step-up procedure associated to the
linear critical values τℓ = αℓ/m, ℓ ∈ {1, . . . ,m}, and denote its rejection number by ℓ̂. Assume
that (θ(m),m ≥ 1) satisfies (30), (weakdep), (weakdep0) and further assume that G satisfies
the following property:

(Exists) there exists t ∈ (0, 1), such that G(t) > t/α.

Then we have Pθ(m)

(
FDPm

(
τℓ̂
)
> α

)
→ 0. In particular, (29) always holds.

Note that all the assumptions of Theorem 4.1 are always satisfied under (30),(Conv-alt)
and (weakdepGauss).

In the literature, even under independence, it is common to exclude the BH procedure
while studying (29). For instance, Proposition 4.1 in Chi and Tan (2008b) shows that the
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“oracle” version of the BH procedure, that is, the step-up procedure with critical values
αℓ/m0, ℓ ∈ {1, . . . ,m}, has a FDP exceeding α with a probability tending to 1/2. Since the
oracle BH procedure is often considered as “better” than the original BH procedure, it is
thus tempting to exclude the BH procedure when studying an FDP control of type (29).
Lemma 4.1 shows that, perhaps surprisingly, this is a mistake: BH procedure is interesting
for providing (29) and does not suffer from the same drawback than the oracle BH procedure.

However, as Figure 1 suggests, the BH procedure can fail to control the FDP as m is
tending to infinity if the dependence is not weak. Under (ρ-equi) and when the p-values under
the alternative are zero (Dirac uniform configuration), this fact has been established formally
in Finner et al. (2007), by showing that the limit of the FDP of the BH procedure is not
deterministic anymore and hence can exceed α with a positive probability, which is obviously
not related to ζ (because BH critical values does not depend on ζ).

4.3. Asymptotic modification of RW’s heuristic. First, let us mention that RW’s heuris-
tic controls the FDP under weak dependence: we have proved in a former version of this
manuscript that a step-up procedure with k-FWE based critical values also satisfies (29) in a
weak dependence framework slightly more constrained than the one of Section 4.1. Roughly
speaking, the essence of the argumentation is as follows: when ℓ̂/m converges in probability to
some deterministic quantities, then the fluctuations of ℓ̂ asymptotically disappear in (6), and
thus this probability is bounded by ζ from (Bound). Let us note that a previous occurrence
of this reasoning can be found at the end of Section 7 in Genovese and Wasserman (2006).

However, according to Lemma 4.1, to guarantee an asymptotic control of the FDP under
weak dependence, one could simply apply the BH procedure, which is much simpler and more
powerful (at least when ζ is small). Hence, to this respect, the “weak dependent” case is not
so crucial and we do not report here the corresponding study; we refer the reader to the first
version of this manuscript for more details on this issue.

Instead, we consider the asymptotical framework under assumption (ρ-equi). By using the
decomposition (16), we easily check that the exact device (17) is such that, for k = km with
km/m → c,

Bm(t, k) = PU (Nm/m ≥ k/m) → P(F0,ρ(t, U) ≥ c),

where F0,ρ(t, x) is defined by (15), where U ∼ U(0, 1) and Nm follows a binomial distribution
of parameters m and F0,ρ(t, U) (conditionally on U). Making the latter probability equal to ζ
entails c = F0,ρ(t, ζ), which, by replacing respectively c by αℓ/m and t by τℓ leads to the new
critical values (2) mentioned in the introduction of the paper. We now state the main result
of this section, to be proved in Section 8.2.

Theorem 4.2. Assume that θ(m) satisfies (30), assume (ρ-equi) with an arbitrary ρ =
ρm ∈ [0, 1], possibly depending on m, but bounded away from 1 asymptotically. Assume
(Conv-alt) with a constant alternative β. Consider the step-up procedure associated to the
critical values τℓ, ℓ = 1, . . . ,m defined by (2) with rejection number ℓ̂. Then we have the
asymptotic FDP control (29) with t̂ = τℓ̂.

In practice, ρ is often unknown and we can legitimately ask whether it is possible to
incorporate an estimate ρ̂m of ρ in the critical values (2). The next theorem gives a positive
answer, provided that the estimation rate is faster than logarithmic.
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Theorem 4.3. In the setting of Theorem 4.2, consider a random variable ρ̂m such that

(31) (logm)(ρ̂m − ρm)2 = oP (1).

Consider the critical values τ̂ℓ, ℓ = 1, . . . ,m defined by (2) where ρ has been replaced by ρ̂m.
Then the corresponding step-up procedure (with rejection number ℓ̂) satisfies (29) with t̂ = τ̂ℓ̂.

Finally, let us now provide an example of estimator satisfying (31) in the equicorrelated
setting of Theorem 4.2. For this, we make the light assumption that X is obtained as an

average between two i.i.d. variables:X = (X(1)+X(2))/
√
2, withX

(j)
i = βHi/

√
2+ρm

1/2ξ
(j)
0 +

(1− ρm)1/2 ξ
(j)
i , where ξ

(j)
i , 0 ≤ i ≤ m, 1 ≤ j ≤ 2, are all i.i.d. N (0, 1). Letting Z =

(X(2) −X(1))/
√
2 and considering the empirical variance σ̂2

m,Z = 1
m

∑m
i=1(Zi − Z)2 of Z. We

have classically that mσ̂2
m,Z/(1− ρm) ∼ χ2(m− 1). Thus ρ̂m = 1− σ̂2

m,Z satisfies (31).

5. Numerical experiments.

5.1. Studying finite sample FDP control for the exact bounding device. This section com-
plements Fact 3.4 by considering the FDP control for the step-down procedure associated to
the adaptive (non-oracle) k-FWE based critical values coming from the exact bounding device
(17). It took us some efforts to identify a parameter configuration for which the FDP control
is violated. As a matter of fact, m should be quite large to make the probability exceeds ζ,
hence, to that respect, the exact calculations of Section 3 are not usable anymore. We thus
evaluate the probability that the FDP exceeds α with extensive Monte-Carlo simulations
(106 replicates), performed in the one-sided equi-correlated Gaussian multivariate framework
(ρ-equi) defined in Section 1.3, for alternative means µi all equal to some β. Figure 4 reports
a situation where the FDP control is violated (admittedly not by much). This is a numerical
support to the fact that, in general, modifications should be used to provide a finite sample
FDP control via RW’s heuristic.
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Fig 4. P(FDPm(τ
ℓ̂
) > α) in function of β for the adaptive step-down procedure using the exact bounding device

in the equi-correlated case.
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Procedures not using the value of ρ Procedures incoporating the value of ρ

[LR]: Lehmann Romano procedure (12) [AugEx] augmentation with exact bounding device
[AugBonf]: augmentation with τ1(ζ) = ζ/m [SimEx] simultaneous k-FWE with exact bounding device
[SimLR]: simultaneous k-FWE with (12) [DimExEx] new diminution with (25)
[DimMarkovLR]: diminution with (22) [DimGuoLR] diminution proposed in Theorem 3.8 of Guo et al. (2014)
[Bonf]: the raw Bonferroni procedure [Split1/2] new procedure (28) with λ = 1/2 and K = 2

[Split0.95] new procedure (28) with λ = 0.95 and K = 2
[RWExact] non-modified k-FWE based with exact bounding device

Table 1

Procedures used in Figures 5 and 6, see Sections 3.2 and 3.3 for more details. All the procedures are step-up
and adaptive (non oracle).

5.2. Power comparison of the finite sample modifications. This section evaluates the power
of the procedures considered in Section 3 with a proven FDP control. The power is evaluated
by using the standard false non-discovery rate (FNR), defined as the expected ratio of errors
among the accepted null hypotheses. Table 1 summarizes the procedures that have been
considered. The simulation setting is the same as in the previous section.

Figure 5 displays the power of procedures that do not incorporate the value of ρ (left
column in Table 1). Note that [LR] controls the FDP because Simes’ inequality is valid here,
see Proposition 3.1 (ii). Hence, it does not use the true value of ρ but uses nevertheless
an assumption on the dependence structure. This is not the case of [AugBonf], [SimLR],
[DimMarkovLR] and [Bonf] that control the FDP for any dependence structure. As one can
expect, [LR] essentially dominates the other procedures. Also, while [AugBonf] comes in
second position, [SimLR] is even worst than [Bonf] so should be avoided here.

Now, while incorporating the value of ρ, we will loosely say that a procedure is “admissible”
if it performs better than [LR] at least for “a reasonable amount” of parameter configurations.
Figure 6 displays the power of procedures incorporating the value of ρ (except [LR] and [Bonf]
that we have added only for comparison), see the right column of Table 1. Note that, except
[RWExact], all the procedures have a proven FDP control, so that the power comparison is
fair. First, [DimGuoLR] is “not admissible”, which indicates that the interest of the bounds
found in Guo et al. (2014) are mainly theoretical in our setting. Second, [AugEx] only improves
[LR] in a very small region, which shows that, as one can expect, providing 1-FWE control for
controlling the FDP is too conservative in general. As for [SimEx], things are more balanced:
when ρ = 0, it improves [LR] when many rejections are possible (π0 not large or β large)
but does worst otherwise. We think that this is due to the nature of the [LR] critical values,
which are design to perform well when only few nulls are expected to be rejected. When ρ
is larger, however, [SimEx] quickly deteriorates. An explanation is that the simultaneity in
[SimEx] is obtained via an union bound, which is conservative when the dependence is strong.
Finally, our new procedures [Split1/2], [Split0.95] and [DimExEx] seem to be all “admissible”
in these simulations and substantially outperform the other procedures. Also, none of the
three procedures uniformly dominates the others. For instance, taking λ = 1/2 rather than
λ = 0.95 is better when less rejections are expected, but worst otherwise, while [DimExEx]
seems often better than [Split1/2]. In conclusion, the three new proposed procedures have
interesting power properties. Finally note that among these three procedures, [DimExEx]
has the additional interest of offering FDP control outside the equi-correlated regime, see
Theorem 3.5.
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Fig 5. Relative FNR to Lehmann Romano procedure in function of β, see text and Table 1. Procedures not
using the value of ρ.

6. Conclusion and discussion. This paper investigated the FDP control in the case
where the dependence is partly/fully incorporated, by using an extension of RW’s heuristic.
We provided two new approaches that offer finite sample control: the first one (Theorem 3.5)
followed the diminution principle and can be used as soon as the joint distribution of the null
p-values can be computed. The second one (Theorem 3.6) offered a finite sample control under
equicorrelation and interestingly relied on the K-Markov device. Next, an important part of
our work concerned the asymptotic FDP control: we first noticed that the weak dependent case
seems to be of marginal interest, because the simple BH procedure can be used in that case.
Then, still based on RW’s heuristic, we proposed new critical values that provide asymptotic
control under equicorrelation (Theorems 4.2 and 4.3). A strong point of the latter is the
capacity to plug an estimator of ρ in the critical values. Hence, it can undertake the difficult
task of incorporating unknown dependence while controlling the FDP (asymptotically).
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Fig 6. Relative FNR to Lehmann Romano procedure in function of β, see text and Table 1. Procedures using
the value of ρ (except [LR] and [Bonf]).

Our leading example is related to one-sided testing, so we can legitimately ask whether
our results can be extended to two-sided testing, that is, when pi = 2Φ(|Xi|) (by using the
notation of Section 1.3). The bounding device calculations done in Section 2.3 can be clearly
generalized to that case by replacing F0,ρ(t, x) (see (15)) by

F
(2)
0,ρ (t, x) = F0,ρ(t/2, x) + F0,ρ(t/2, 1− x).

Hence, we can define new critical values coming from the corresponding exact bounding
device and combine it with the diminution principle presented in Theorem 3.5. However, the
other results of the paper cannot be directly generalized to the two-sided case: the proof of
Theorem 3.6 uses a positive dependence assumption that is not valid in the two-sided case
(see, e.g., Benjamini and Yekutieli (2001)). As for Theorems 4.2 and 4.3, the proofs rely on the
fact that for all t, x 7→ F0,ρ(t, x) is non-increasing w.r.t. x, which is a property not maintained
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for x 7→ F
(2)
0,ρ (t, x).

While this paper solved some issues, it opened several directions of research. For instance,
is the asymptotic FDP control of Theorem 4.2 still true when using the original critical values
of RW’s method rather than their asymptotic counterpart (2)? We believe that this issue
intrinsically relies on the “Poisson” asymptotic regime, which was (essentially) not consid-
ered here in our asymptotic FDP controlling results. Finally, a crucial (but probably very
challenging) issue is the validity of RW’s approach in the case of permutation tests with an
arbitrary and unknown dependence structure.

7. Proofs for finite sample results.

7.1. An unifying bound.

Proposition 7.1. For any critical values (τℓ)1≤ℓ≤m, consider either the corresponding
step-down procedure (SD) or the corresponding step-up procedure (SU), with rejection number
ℓ̂. Then the following holds, both in the fixed model (Θ = ΘF ) and the uniform model (Θ =
ΘU ): for all θ ∈ Θ,

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

Pθ

(
Vm(τℓ) ≥ d(ℓ,m,m0), ℓ̃ = ℓ

)
,(32)

where bα(m0), d(ℓ,m,m0) are defined in (23) and (24) respectively, and ℓ̃ is taken as follows:

(i) Step-down case: ℓ̃ = ℓ̂(1), where ℓ̂(1) = min{ℓ ∈ {1, . . . ,m} : Sm(τℓ) < (1 − α)ℓ} (with
the convention min ∅ = m + 1) and by denoting Sm(t) = Rm(t) − Vm(t) the number of
true discoveries at threshold t.

(ii) Step-up case: ℓ̃ = ℓ̂.

Moreover, in the step-up case, (32) is an equality.

Proposition 7.1 (i) is a reformulation of Theorem 5.2 in Roquain (2011) in our framework
and is based on ideas presented in the proofs of Lehmann and Romano (2005); Romano and
Wolf (2007). Proposition 7.1 (ii) is essentially based on Romano and Shaikh (2006b) and we
provide a short proof below.

Proof. Since FDPm(τℓ̂) > α implies ⌊αℓ̂⌋ + 1 ≤ m0, we have ℓ̂ ≤ bα(m0). Also, ℓ̂ =

Rm(τℓ̂) ≤ m1 + Vm(τℓ̂), which implies Vm(τℓ̂) ≥ ℓ̂−m1. This implies (32) in case (ii).

7.2. A new bound.

Proposition 7.2. In the setting of Proposition 7.1, assume moreover that there exists a
family of random variables (Zℓ,ℓ′)1≤ℓ,ℓ′≤m satisfying: for all ℓ, ℓ′,

(33) 1
{
Vm(τℓ) ≥ d(ℓ′,m,m0)

}
≤ Zℓ,ℓ′ a.s.

and, a.s., Zℓ,ℓ′ is nondecreasing in ℓ and nonincreasing in ℓ′. Then for all θ ∈ Θ,

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

(Eθ (Zℓ,ℓ−1)− Eθ (Zℓ−1,ℓ−1)) ∧ (Eθ (Zℓ,ℓ)− Eθ (Zℓ−1,ℓ)) ,(34)

by letting Z0,ℓ′ = 0 and Zℓ,0 = 1 for ℓ′ ≥ 0, ℓ ≥ 1.
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Applied with Zℓ,ℓ′ = Vm(τℓ)/d(ℓ
′,m,m0), Proposition 7.2 establishes the Romano-Shaikh

bound (22). Applied with Zℓ,ℓ′ = 1 {Vm(τℓ) ≥ d(ℓ′,m,m0)}, Proposition 7.2 entails Theo-
rem 3.5.

Proof. From (32), we derive

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

Pθ

(
Vm(τℓ) ≥ d(ℓ,m,m0), ℓ̃ = ℓ

)

≤
bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ = ℓ

})
.

Now, the RHS of the previous display is equal to

bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ

})
−

bα(m0)−1∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ+ 1

})

=

bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ

})
−

bα(m0)∑

ℓ=1

Eθ

(
Zℓ−1,ℓ−11

{
ℓ̃ ≥ ℓ

})

=

bα(m0)∑

ℓ=1

Eθ

(
(Zℓ,ℓ − Zℓ−1,ℓ−1)1

{
ℓ̃ ≥ ℓ

})

≤
bα(m0)∑

ℓ=1

Eθ (Zℓ,ℓ−1 − Zℓ−1,ℓ−1) ∧ Eθ (Zℓ,ℓ − Zℓ−1,ℓ) ,

which proves the result.

7.3. Proof of Proposition 3.2. Let k̂ = Vm(τℓ̂) and note that k̂ ≤ m0 and {FDPm(τℓ̂) >

α} = {k̂ ≥ ⌊αℓ̂⌋ + 1}. First, in the non-adaptive case, we have by definition of Bm, for all t
and k ≤ m0,

Bm(t, k) = sup
0≤u≤m

{
B0

m(t, k, u)
}
≥ B0

m(t, k,m0).

Hence, we have by definition of the (non-adaptive) critical values,

ζ ≥ Bm(τℓ̂, ⌊αℓ̂⌋+ 1) ≥ B0
m(τℓ̂, ⌊αℓ̂⌋+ 1,m0),

which is larger than or equal to B0
m(τℓ̂, k̂,m0) whenever k̂ ≥ ⌊αℓ̂⌋+ 1. Hence, we obtain

{
FDPm(τℓ̂) > α

}
⊂
{
B0

m(τℓ̂, k̂,m0) ≤ ζ, k̂ ≥ 1
}
⊂
{
τℓ̂ ≤ ν0

k̂
, k̂ ≥ 1

}
,

and thus (20) holds. Second, in the adaptive case, we use that m0 ≤ m−Rm(τℓ̂) + Vm(τℓ̂) =

m− ℓ̂+ k̂. Thus, whenever k̂ ≥ ⌊αℓ̂⌋+ 1, we have for all t,

ζ ≥ B̃m(τℓ̂, ⌊αℓ̂⌋+ 1, ℓ̂) = sup
⌊αℓ̂⌋+1≤k′≤ℓ̂

{
sup

0≤u≤m−ℓ̂+k′
B0

m(τℓ̂, k
′, u)

}

≥ sup
0≤u≤m−ℓ̂+k̂

B0
m(τℓ̂, k̂, u) ≥ B0

m(τℓ̂, k̂,m0).(35)

Hence, this implies τℓ̂ ≤ ν0
k̂
and k̂ ≥ 1 and the proof is finished.
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7.4. Proof of Theorem 3.6. First observe that the critical values (28) can be obtained by
modifying the K-Markov Bounding device B0

m(t, k, u) defined by (14) as follows :

(B0
m)′(t, k, u) =

{
B0

m(t, k, u)/λ if k ≥ K
ut

(1−λ)k ∨ (B0
m(t,K,m)/λ) if k < K,

(the second bounding value being infinite when λ = 1). Note that the associated adaptive
bounding device (Bound-adapt) is equal to (B0

m)′(t, k,m − ℓ + k) and thus gives rise to the
adaptive critical values (28). By using Proposition 3.2 and by letting k̂ = Vm(τnew

ℓ̂
), we get

Pθ

(
FDPm(τnew

ℓ̂
) > α

)
=

m0∑

k=1

Pθ

(
Vm(ν0k) ≥ k, k̂ = k

)
,

where ν0k is such that (B0
m)′(ν0k , k,m0) ≤ ζ for all k. It follows that Pθ

(
FDPm(τnew

ℓ̂
) > α

)
is

smaller than or equal to T1 + T2, where we let

T1 =

m0∑

k=K

Pθ

(
Vm(ν0k) ≥ k, k̂ = k

)
;

T2 =

(K−1)∧m0∑

k=1

Pθ

(
Vm(ν0k) ≥ k, k̂ = k

)
,

with by convention T1 = 0 when K > m0. For the first term, we note that for k ≥ K,

1
{
Vm(ν0k) ≥ k

}
≤ 1(

k
K

)
∑

X⊂H0:|X|=K

1

{
max
i∈X

{qi} ≤ ν0k

}
.

Then, since k̂ is permutation invariant (as a function of the p-values) and since (ρ-equi) holds,
we obtain

T1 ≤
m0∑

k=K

m0(m0 − 1) · · · (m0 −K + 1)

k(k − 1) · · · (k −K + 1)
Pθ

(
k̂ = k, max

1≤i≤K
{qi} ≤ ν0k

)

≤ λζ

m0∑

k=K

Pθ

(
k̂ = k

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)

≤ λζ

m0∑

k=K

Pθ

(
k̂ ≤ k

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
− Pθ

(
k̂ ≤ k − 1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
,

where q1, . . . , qm0 denotes the p-values under the null, i.e., the p-values of the set {pi, i ∈ H0}.
Now, under assumption (ρ-equi) with ρ ≥ 0, since the inverse of the covariance matrix has only
nonpositive off-diagonal entries, the p-value family (pi)1≤i≤m is MTP2, see Karlin and Rinott
(1980). Then, since the set

{
p ∈ [0, 1]m : max1≤i≤K{qi} ≤ ν0k

}
is stable w.r.t. the lattice

operations ∧ and ∨, the p-value family (pi)1≤i≤m is also MTP2 conditionally on the event
{max1≤i≤K{qi} ≤ ν0k}. Therefore, the p-value family (pi)1≤i≤m is associated conditionally on

{max1≤i≤K{qi} ≤ ν0k}. Since the function p ∈ [0, 1]m 7→ 1
{
k̂ ≤ k − 1

}
is nondecreasing and
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the function p ∈ [0, 1]m 7→ 1
{
max1≤i≤K{qi} ≤ ν0k−1

}
is nonincreasing, we thus have

Pθ

(
k̂ ≤ k − 1, max

1≤i≤K
{qi} ≤ ν0k−1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)

≤ Pθ

(
k̂ ≤ k − 1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
× Pθ

(
max
1≤i≤K

{qi} ≤ ν0k−1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
,

which entails

Pθ

(
k̂ ≤ k − 1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
≥ Pθ

(
k̂ ≤ k − 1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k−1

)
.

This shows

T1 ≤ λζ

m0∑

k=K

Pθ

(
k̂ ≤ k

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k

)
− Pθ

(
k̂ ≤ k − 1

∣∣∣∣ max
1≤i≤K

{qi} ≤ ν0k−1

)
≤ λζ,

by using a telescopic argument.
Now, for T2, we use 1

{
Vm(ν0k) ≥ k

}
≤ 1

k

∑m0
i=1 1

{
qi ≤ ν0k

}
andm0ν

0
k ≤ (1−λ)ζk for k < K,

T2 ≤
m0∑

i=1

(K−1)∧m0∑

k=1

1

k
Pθ

(
k̂ = k, qi ≤ ν0k

)

≤ (1− λ)ζ m−1
0

m0∑

i=1

(K−1)∧m0∑

k=1

Pθ

(
k̂ = k

∣∣ qi ≤ ν0k

)

≤ (1− λ)ζ m−1
0

m0∑

i=1

(K−1)∧m0∑

k=1

Pθ

(
k̂ ≤ k

∣∣ qi ≤ ν0k

)
− Pθ

(
k̂ ≤ k − 1

∣∣ qi ≤ ν0k

)

≤ (1− λ)ζ m−1
0

m0∑

i=1

(K−1)∧m0∑

k=1

Pθ

(
k̂ ≤ k

∣∣ qi ≤ ν0k

)
− Pθ

(
k̂ ≤ k − 1

∣∣ qi ≤ ν0k−1

)

≤ (1− λ)ζ,

by using again the MTP2 property. This finishes the proof

8. Proofs for asymptotic results.

8.1. Proof of Lemma 4.1. Actually, we prove the result for a more general class of proce-
dures, where t̂ = τℓ̂ is obtained by (43) for a sequence of functions fm = f̂m (possibly random)
which is uniformly close to f∞(t) = t/α on every compact of (0, α], that is,

(36) sup
b≤t≤α

|f̂m(t)− t/α| → 0, a.s. for all b ∈ (0, α).

Note that f̂m = f∞ gives the BH procedure by Lemma A.2. Next, since Rm(t̂) ≥ mf̂m(t̂),

P
(
FDPm

(
t̂
)
> α

)
≤ P

(
Vm(t̂)/m > αf̂m(t̂)

)

= P

(
(m0/m)(Ĝ0,m(t̂)− t̂)− α(f̂m(t̂)− t̂/α) > (1−m0/m)t̂

)

≤ P

(
(m0/m)||Ĝ0,m − I||∞ + α sup

t⋆≤t≤α
|f̂m(t)− t/α| > (1−m0/m)t⋆

)

+ P(t̂ ≤ t⋆),
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for some t⋆ > 0 satisfying G(t⋆) > t⋆/α (which exists by (Exists)). By (30) and (weakdep0),
it is sufficient to check that P(t̂ ≤ t⋆) tends to zero. For this, we use (weakdep) that ensures

P(t̂ > t⋆) ≥ P(Ĝm(t⋆) > f̂m(t⋆))

≥ P(G(t⋆) > f∞(t⋆) + |G(t⋆)− Ĝm(t⋆)|+ |f̂m(t⋆)− f∞(t⋆)|) → 1,

which finishes the proof.

8.2. Proof of Theorems 4.2 and 4.3. First observe that Theorem 4.3 is more general than
Theorem 4.2, simply by taking ρ̂m = ρm (which of course satisfies (31)). Hence, we focus in
the sequel only on the proof of Theorem 4.3.

By Lemma A.2, t̂ = τ̂ℓ̂ is given by (43) with f̂m defined by (42). We merely check that

(37) f̂m(t) = F0,ρ̂m(t, ζ)/α,

where F0,ρ̂m is given by (15). Next, up to consider a subsequence, we can assume that the
sequence ρm converge to some limit ρ⋆ ∈ [0, 1) and that (31) holds almost surely.

First, when ρ⋆ = 0, since F0,ρ̂m(t, ζ) converges uniformly to t on any compact of (0, 1) and
by using the result of Section 8.1, we obtain that P

(
FDPm

(
t̂
)
> α

)
converges to zero. Now

assume ρ⋆ ∈ (0, 1). Still using a subsequence argument in combination with the Skorokhod
representation theorem, we can assume that (t̂, U) ∈ [0, 1]2 is almost surely converging to
some (T, U) (on appropriate subspaces). We aim now at identifying the values of U for which
T > 0 a.s. From (37), observe that

F0,ρ̂m(t̂, ζ) = max{t′ ∈ [0, 1] | Ĝ′
m(t′) ≥ t′/α},(38)

by writing Xi = βHi + ρm
1/2 Φ

−1
(U) + (1− ρm)1/2 ξi, for U ∼ U(0, 1) independent of ξi,

1 ≤ i ≤ m, i.i.d. N (0, 1) and where

(39) Ĝ
′
m(t′) = m−1

m∑

i=1

1
{
F0,ρ̂m(pi, ζ) ≤ t′

}
≥ m−1

m∑

i=1

Hi 1
{
Φ(ξi) ≤ Ĥm(t′)

}
,

by letting

Ĥm(t′) = Φ

(
Φ
−1

(t′)(1− ρ̂m)1/2 + (ρ̂m)1/2Φ
−1

(ζ)− ρ
1/2
m Φ

−1
(U)− β

(1− ρm)1/2

)
.

Since the latter converges a.s. to

H(t′) = Φ
(
Φ
−1

(t′)− µ(U)
)
, µ(U) = (1− ρ⋆)−1/2

(
β + (ρ⋆)1/2

(
Φ
−1

(U)− Φ
−1

(ζ)
))

,

the RHS of (39) converges a.s. to π1H(t′). Now, we should consider two cases:

- Case µ(U) > 0: the slope of H is infinite in 0. From (38), for a large m, we have

F0,ρ̂m(t̂, ζ) > t′0 where t′0 is equal to any t′ ∈ (0, 1) satisfying H(t′) > t′/α. This entails
that t̂ is almost surely asymptotically bounded away from 0, and T > 0 a.s. Moreover,
when Hi = 0, the assertion pi ≤ t is equivalent to Φ(ξi) ≤ F0,ρm(t, U). This entails that
for any compact K ⊂ (0, 1),

sup
t∈K

|Ĝ0,m(t)− F0,ρ⋆(t, U)| ≤ sup
t∈K

|Ĝ0,m(t)− F0,ρm(t, U)|+ sup
t∈K

|F0,ρm(t, U)− F0,ρ⋆(t, U)|,
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which tends a.s. to zero by the Glivenko-Cantelli theorem and because ρm tends to ρ⋆.
As a consequence, when µ(U) > 0, a.s., as m grows to infinity,

FDP(t̂) =
m0

m

Ĝ0,m(t̂)

Ĝm(t̂)
≤ m0

m

Ĝ0,m(t̂)

f̂m(t̂)
→ π0α

F0,ρ⋆(T, U)

F0,ρ⋆(T, ζ)
.(40)

- Case µ(U) < 0: in that case, we show that the probability that the procedure makes at
least one rejection is tending to zero. For this, let ε > 0, and consider tε ∈ (0, 1) such

that for all t′ ∈ (0, tε], we have Φ(Φ
−1

(t′)− µ(U)/2) ≤ ε t′. Let

µ̂m = Φ
−1

(α/m)

∣∣∣∣∣

(
1− ρ̂m
1− ρm

)1/2

− 1

∣∣∣∣∣+
β + ρ

1/2
m Φ

−1
(U)− (ρ̂m)1/2Φ

−1
(ζ)

(1− ρm)1/2
.

By (31), µ̂m converges a.s. to µ(U) and thus is smaller than µ(U)/2 for m large enough

(a.s.). As a consequence, a.s., for all t′ ≥ α/m, for a largem, Ĥm(t′) ≤ Φ(Φ
−1

(t′)−µ̂m) ≤
Φ(Φ

−1
(t)−µ(U)/2). Then, by denoting qi = Φ(ξi), so that the qi’s are all i.i.d. uniform,

we have

P(ℓ̂ ≥ 1) ≤ P

(
∃ℓ ∈ {1, . . . ,m} : q(ℓ) ≤ Ĥm(αℓ/m)

)

≤ P

(
∃ℓ ∈ {1, . . . ,m} : q(ℓ) ≤ Φ(Φ

−1
(αℓ/m)− µ(U)/2)

)
+ o(1)

≤ P
(
∃ℓ ∈ {1, . . . ,m}, αℓ/m ≤ tε : q(ℓ) ≤ εαℓ/m

)

+ P
(
∃ℓ ∈ {1, . . . ,m}, αℓ/m > tε : q(ℓ) ≤ αℓ/m

)
+ o(1)

≤ εα+ P

(
∃t ∈ (tε, α] : F̂(t) ≥ t/α

)
+ o(1)

≤ εα+ P

(
sup
t∈[0,1]

|F̂(t)− t| ≥ (1/α− 1)tε

)
+ o(1)

by using Simes’ inequality (see, e.g., (19)) and by denoting F̂ the e.c.d.f. of the qi’s. By
taking the lim sup in m and then by making ε tends to zero we get that P(ℓ̂ ≥ 1) tends
to zero. As a consequence, when µ(U) < 0, we have a.s. (up to consider a subsequence),

FDP(t̂) ≤ 1
{
ℓ̂ ≥ 1

}
→ 0.(41)

Finally, combining (40) and (41) yields

lim sup
m

P
(
FDPm(t̂) > α

)
≤ lim sup

m
P
(
FDPm(t̂) > α, µ(U) > 0

)

+ lim sup
m

P
(
FDPm(t̂) > α, µ(U) < 0

)

= P

(
π0α

F0,ρ⋆(T, U)

F0,ρ⋆(T, ζ)
> α, µ(U) > 0

)

≤ P (F0,ρ⋆(T, U) > F0,ρ⋆(T, ζ)) = P (U < ζ) = ζ,

because U ∼ U(0, 1).
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APPENDIX A: AUXILIARY RESULTS

Lemma A.1. In the Gaussian setting, conditions (30), (Conv-alt) and (weakdepGauss)
imply (weakdep).

Proof. From (weakdepGauss) and (30), Proposition 2.1 in Delattre and Roquain (2012)
(for instance) ensures that, for all t, Vm(t)/m converges in probability to π0t. Similarly, let p′i =

Φ(Φ
−1

(pi)−µi) = Φ(Yi) for i such that Hi = 1. We have that for all t, m−1
∑m

i=1Hi1 {p′i ≤ t}
converges to π1t. Let us now consider the case of Sm(t)/m = m−1

∑m
i=1Hi1

{
p′i ≤ Φ(Φ

−1
(t)− µi)

}
.

For this, we define the uniform random index I ∼ m−1
1

∑m
i=1Hiδi. By (Conv-alt), we have

µI  ν. Moreover, we merely check that, up to consider a subsequence, a.s., the joint conver-
gence (p′I , µI) U(0, 1)⊗ ν holds. Hence, Sm(t)/m is converging to π1F1(t).

Lemma A.2. Let us consider a step-up procedure with critical values (τℓ)1≤ℓ≤m and a

rejection threshold τℓ̂, where ℓ̂ is defined by (SU). Consider the function fm defined by

fm(t) = m−1 ×min{ℓ ∈ {0, . . . ,m+ 1} : τℓ ≥ t},(42)

with the conventions τ0 = 0, τm+1 = 1. Let t̂ be defined by

(43) t̂ = sup{t ∈ [0, 1] : Ĝm(t) ≥ fm(t)}.

Then the supremum into (43) is a maximum, that is, Ĝm(t̂) ≥ fm(t̂). Furthermore, t̂ = τℓ̂.

Proof. The first point holds because fm is left-continuous. Next, since fm(t) ≤ ℓ/m is
equivalent to τℓ ≥ t, we have

τℓ = max{t ∈ [0, 1] : fm(t) ≤ ℓ/m}.

Hence, Ĝm(τℓ̂) ≥ ℓ̂/m ≥ fm(τℓ̂) and τℓ̂ ≤ t̂. Conversely, let us prove t̂ ≤ τℓ̂. Since fm(t̂) ≤ 1,

we have t̂ ≤ τm. We can thus define

k̃ = min{k ∈ {0, . . . ,m} : t̂ ≤ τk}.

By definition of ℓ̂, the result is shown if we prove Ĝm(τk̃) ≥ k̃/m. Assume k̃ ≥ 1 (otherwise

the result is trivial). By definition of k̃, τk̃−1 < t̂, which in turn implies fm(t̂) > (k̃−1)/m (by

definition of fm). This gives Ĝm(t̂) ≥ fm(t̂) > (k̃ − 1)/m. Hence, Ĝm(τk̃) ≥ Ĝm(t̂) ≥ k̃/m,
which concludes the proof.
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Université Paris Diderot, LPMA,

E-mail: sylvain.delattre@univ-paris-diderot.fr
UPMC Université Paris 6, LPMA,
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