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Abstract: The false discovery proportion (FDP) is a convenient way to account for
false positives in an high dimensional setting where a large number of tests are performed
simultaneously. The Benjamini-Hochberg procedure is now widely used and is known to
control the expectation of the FDP, called the false discovery rate (FDR). However, when
the individual tests are correlated, controlling the FDR can be unsuitable to ensure that
the actually achieved FDP is close (or below) the targeted level. This rises the question of
controlling the quantiles of the distribution of the FDP, which is a challenging question
that has received a growing attention in the recent literature. This paper elaborates
upon the general principle let down by Romano and Wolf (2007) in Romano and Wolf
(2007) (RW) that builds FDP controlling procedures from k-family-wise error rate (k-
FWE) controlling procedures, while incorporating known dependencies in an appropriate
manner. This method is revisited as follows : first, choose a device to upper-bound the
k-FWE, for all k. Second, build the corresponding critical values, possibly adaptively to
the number m0 of true null hypotheses. Third, use these critical values into a step-wise
procedure (either step-down or step-up). The goal of the paper is to study the obtained
FDP when using this methodology. Our first result provides sample finite bounds, while
our second result is asymptotic in the number m of hypotheses. Overall, this paper can
be seen as a validation of RW’s paradigm for controlling the FDP under dependence.

AMS 2000 subject classifications: Primary 62H15; secondary 60F17.
Keywords and phrases: multiple testing, false discovery rate, pairwise correlation,
Gaussian multivariate distribution, functional central limit theorem.

1. Introduction

1.1. Motivation

Assessing significancy in massive data is an important challenge of contemporary statistics,
which becomes especially difficult when the underlying errors have correlations. Pertaining
to this class of high-dimensional problems, a common issue is to make simultaneously a huge
number of 0/1 decisions, possibly correlated, and with a valid control on the overall amount
of false discoveries (items declared to be 1 wrongly). A convenient way to account for false
discoveries in high dimension is the false discovery proportion (FDP) that corresponds to the
proportion of errors among the items declared as significant (i.e. “1”) by the procedure.
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The so-called “Benjamini and Hochberg procedure” (BH procedure), has been widely pop-
ularized after the celebrated paper Benjamini and Hochberg (1995) and is shown to control
the expectation of the FDP, called the false discovery rate (FDR), either theoretically under
constrainted dependency structures (see Benjamini and Yekutieli (2001)), or with simulations
(see Kim and van de Wiel (2008)). However, many authors have noticed that the distribu-
tion of the FDP of BH procedure can be affected by the dependencies, see, e.g., Delattre
and Roquain (2011); Guo et al. (2013); Korn et al. (2004), which makes the use of the BH
procedure questionable.

To illustrate deeper this phenomenon, Figure 1 displays the distribution of the FDP of the
(oracle) BH procedure in the classical one-sided Gaussian multiple testing framework, when
the test statistics are all ρ-equicorrelated. As ρ increases, the distribution of the FDP get
less concentrated and turns out to be drastically skewed for ρ = 0.1 (in particular it falls
outside the Gaussian regime). Clearly, in that case, the mean fails to describe accurately the
overall behavior of the FDP distribution. In particular, although the mean of the FDP is
below α = 0.2, the true value of FDP is not ensured to be small in that case.

An alternative proposed in Genovese and Wasserman (2004); Lehmann and Romano (2005);
Perone Pacifico et al. (2004) is to control the (1 − ζ)−quantile of the FDP distribution at
level α, that is, to assert P(FDP > α) ≤ ζ. While taking ζ = 1/2 provides a control of the
median of the FDP, taking ζ = 0.05 ensures that the FDP does not exceed α with probability
at least 95%. Markedly, Figure 1 shows that the (1 − ζ)-quantiles of the FDP distribution
are substantially affected by the dependencies, but not equally for all the ζ’s: due to the
increasingly heavy upper-tail, while the 95%-quantile gets substantially larger, the median
gets slightly smaller. This suggests that the (oracle) BH procedure, is much too optimistic for
a 95%-quantile control, but is actually too conservative for a FDP median control. Overall,
this reinforces the fact that controlling the (1 − ζ)-quantile of the FDP is essential in the
presence of dependence.
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Fig 1. Density of the false discovery proportion of the (oracle) BH procedure when increasing the dependence.
m = 1000, m0 = 800, 5× 104 simulations, Gaussian one-sided equicorrelated model.
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1.2. Multiple testing framework

We observe a random variable X whose distribution belongs to some set P. For m ≥ 2,
we define a setting for performing m tests simultaneously by introducing a true/false null
parameter H ∈ {0, 1}m and a set of associated distributions PH ⊂ P (assumed to be non-
empty) which are candidates to be the distribution ofX under the configurationH. We denote
H0(H) = {i : Hi = 0}, m0(H) =

∑m
i=1(1−Hi) and H1(H) = {i : Hi = 1}, m1(H) =

∑m
i=1Hi

the set/number of true and false nulls, respectively. The basic assumption is the following:
for all i ∈ {1, . . . ,m}, there is a p-value pi(X) satisfying the following assumption

∀H ∈ {0, 1}m with Hi = 0, we have pi(X) ∼ U(0, 1) when X ∼ P with P ∈ PH .

In this paper, a leading example is the Gaussian multivariate framework, for which X =
Hµ+Y , where Hµ = (Hiµi)1≤i≤m for H ∈ {0, 1}m, µ ∈ (R+\{0})m and Y is a m-dimensional
centered Gaussian vector with covariance matrix Γ such that Γi,i = 1. We focus on the one-
sided multiple testing problem of “EXi = 0” versus “EXi > 0”, which is equivalent to test
“Hi = 0” against “Hi = 1”. The p-values are given by pi(X) = Φ(Xi). Importantly, in
this paper, the matrix Γ is sometimes assumed to be known. This is in accordance with
practical situations where we test whether an outcome is associated to multiple covariates
(e.g., genome-wide association studies), see Section 2 in Fan et al. (2012). A special case of
interest is the equi-correlated case:

Γi,j = ρ, for all i 6= j, where ρ ∈ [−(m− 1)−1, 1], (ρ-equi)

which is extensively used throughout the paper.
When (ρ-equi) does not hold, the joint null distribution of the p-values under the null

(pi, i ∈ H0(H)) depends in general on the subset H0(H). Obviously, in that case, we do not
want to explore the

(
m

m0(H)

)
possible subsets of {1, . . . ,m} in our inference, which inevitably

should arise when our procedure fits to such a dependence structure. To circumvent this
technical difficulty, we propose to add to our model random effects, that make H random.

More formally, we distinguish between the three following models:

- Fixed mixture model: the parameter H is fixed by advance and unknown. Overall, the
parameters of the model are given by θ = (H,P ) to be chosen in the set

ΘF = {(H,P ) : H ∈ {0, 1}m, P ∈ PH}.

- Uniform mixture model: the number of true null m0 ∈ {0, 1, . . . ,m} is unknown and
fixed by advance, while H is a random vector in such a way that H0(H) is randomly
generated (independently and previously of the other variables), uniformly in the subsets
of {1, . . . ,m} of cardinalm0. The parameters of the model are given by θ = (m0, (PH)H),
to be chosen in the set

ΘU = {(m0, (PH)H) : m0 ∈ {0, 1, . . . ,m}, PH ∈ PH for all H}.

In this model, the distribution of X conditionally on H is PH .
- Bernoulli mixture model: contrary to the “Uniform mixture model”, the distribution of
H is B(1− π0)

⊗m, for some parameter π0 ∈ [0, 1]. Note that it can be obtained from an
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uniform model by taking in addition m0 ∼ B(m,π0). The parameters of the model are
given by θ = (π0, (PH)H) to be chosen in

ΘB = {(π0, (PH)H) : π0 ∈ [0, 1], PH ∈ PH for all H}.

Also, we denote π1 = 1− π0.

While the fixed mixture model is the most commonly used model for multiple testing, the
Bernoulli mixture model has become somewhat standard since its introduction by Efron et al.
(2001), see, e.g., Genovese and Wasserman (2004); Roquain and Villers (2011); Storey (2003),
because it is mathematically more convenient while it incorporates a meaningful a priori
on the trueness/falseness of the null hypotheses. The uniform mixture model, which is new
to our knowledge, removes part of the random effects of the Bernoulli mixture to keep m0

deterministic. While it still derives some benefit from the random mixture, it is additionally
convenient for the adaptation to m0, as we will see later on. With some abuse, we denote
m0(θ) (or m0 when not ambiguous) the number of true null in the fixed/uniform mixture
models.

1.3. Type I error rates

First, for t ∈ [0, 1], denote Vm(t) =
∑m

i=1(1−Hi)1 {pi(X) ≤ t} andRm(t) =
∑m

i=1 1 {pi(X) ≤ t}
the number of false discoveries and the number of discoveries (at threshold t), respectively.

For some pre-specified k ∈ {1, . . . ,m} and some thresholding method t̂m ∈ [0, 1] (potentially
depending on the data), the k-family-wise error rate is defined as the probability that more
than k true nulls have a p-value smaller than t̂m, see, e.g., Hommel and Hoffman (1988);
Lehmann and Romano (2005). Formally, for θ ∈ Θ (in one of the models defined in Section 1.2
and Θ being the corresponding parameter space)

k-FWER(t̂m) = Pθ(Vm(t̂m) ≥ k). (1)

Note that when k = 1, the latter corresponds to the traditional FWER. From (1), providing
k-FWER(t̂m) ≤ ζ (for all θ ∈ Θ and some ζ ∈ (0, 1)), ensures that, with probability at least
1−ζ, less than k−1 false discoveries are made by the thresholding procedure t̂m. However, the
meaning of k in this criterion may be seen as troublesome: while ensuring at most k − 1 = 5
false discoveries seems fair for more than 100 discoveries (say), it is certainly unacceptable
when less than 10 discoveries (say) are made. Hence, it seems appropriate to relate k to the
overall number of discoveries of the procedure. To this end, for some threshold t ∈ [0, 1], define
the false discovery proportion at threshold t as follows:

FDPm(t) =
Vm(t)

Rm(t) ∨ 1
. (2)

The quantity FDPm(t) is not observable because it depends on the unknown process V (t).
Furthermore, FDPm(t) is random, so that FDPm(t) ≤ α can hold only with high probability.
Controlling the FDP via a threshold t = t̂m,α,ζ (potentially depending on the data) thus
corresponds to the following probabilistic bound:

∀θ ∈ Θ, Pθ

(
FDPm

(
t̂m,α,ζ

)
≤ α

)
≥ 1− ζ, (3)
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for some pre-specified values α, ζ ∈ (0, 1). As mentioned before, (3) corresponds to upper-
bound the (1 − ζ)−quantile of the distribution of FDPm

(
t̂m,α,ζ

)
by α. Since FDPm(t) > α

is equivalent to Vm(t) ≥ ⌊αRm(t)⌋ + 1, note that FDP control and k-FWER control are
intrinsically linked.

From an historical point of view, the introduction of the FDP goes back to Eklund in the
1960’s (as reported in Seeger (1968)), that has presented the FDP as a solution to the “mass-
significance problem”. Much later, the seminal paper of Benjamini and Hochberg Benjamini
and Hochberg (1995) has widely popularized the use of the FDP in practical problems by
introducing and studying the false discovery rate (FDR), which corresponds to the expectation
of the FDP.

1.4. Step-up and step-down procedures

Consider a nondecreasing sequence (τℓ)1≤ℓ≤m of nonnegative values (critical values), with
the convention τ0 = 0. The corresponding step-up (resp. step-down) procedure is defined
as rejecting the p-values smaller than τℓ̂, where ℓ̂ is defined by either of the two following
quantities:

max{ℓ ∈ {0, 1, . . . ,m} such that p(ℓ) ≤ τℓ}; (SU)

max{ℓ ∈ {0, 1, . . . ,m} such that ∀ℓ′ ∈ {0, 1, . . . , ℓ}, p(ℓ′) ≤ τℓ′}. (SD)

Let us also recall the so-called “switching relation”, establishing that p(ℓ) ≤ τℓ is equivalent

to R(τℓ) ≥ ℓ. This entails that R(τℓ̂) = ℓ̂ both in the step-up and step-down cases.

1.5. Proposed approach and relation to previous literature

The problem of finding multiple testing procedures ensuring (3) has received a growing atten-
tion in the last decades, see for instance Chi and Tan (2008); Dudoit and van der Laan (2008);
Guo et al. (2013); Lehmann and Romano (2005); Romano and Shaikh (2006a,b); Romano and
Wolf (2007); Roquain (2011); Roquain and Villers (2011). To investigate this challenging is-
sue, existing work either proposed FDP controlling procedures that are too conservative (see
Guo et al. (2013); Lehmann and Romano (2005); Romano and Shaikh (2006a,b)), either es-
tablished the FDP control under very restrictive assumptions (e.g., independence in Guo and
Romano (2007), alternative p-values all equal to 0 in Romano and Wolf (2007)). The present
paper is an attempt to fill the gap between these two extreme situations by providing theo-
retical supports for the general method exposed in RW Romano and Wolf (2007). However,
strictly speaking, contrary to RW who used resampling based technics, our approach is guided
by the case where the dependencies are known and Gaussian multivariate. This setup, already
considered in Fan et al. (2012); Troendle (2000) for instance, allows exact (or alternatively
Monte-Carlo) calculations and we find it appropriate to study accurately the property of a
method capturing the dependencies like RW’s method.

RW’s method, itself generalizing the approach of Korn et al. (2004), is to build an FDP
controlling procedure from k-FWER controlling procedures at level γ (rejecting, say, Rk

hypotheses), by a step-down algorithm starting from k = 1 and stopping the first time that
Rk < k/α − 1. In Section 2, we reformulate this method by defining k-FWE-based critical
values, as coming from a “bounding device”, that can be chosen in a way that adapts to
m0 and/or to the dependence structure. This gives rise to several critical values families,
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including the well-known Lehmann-Romano critical values Lehmann and Romano (2005) and
those found in Guo and Romano (2007). The derived critical values are then used into a step-
down or step-up procedure. Sections 3 and 4 present our major contributions w.r.t. RW’s
work: finite sample bounds and asymptotic control for the FDP of the derived procedures.
While our finite sample bounds are shown to improve the state-of-the-art bounds Guo et al.
(2013); Romano and Shaikh (2006a,b), the asymptotic results hold when the number m of
hypotheses tends to infinity and rely on a type of weak dependence assumption between the
individual p-values (functional central limit theorem). This is markedly different from the
setting of RW, because their control is established when the number of observations (sample
size) tends to infinity, while the numberm of hypotheses being fixed. The latter corresponds to
the case where all the alternative p-values are (asymptotically) equal to 0. Since this so-called
“Dirac Uniform” configuration (see Finner et al. (2007)) is not proved to be least favorable,
this is a seriously stringent assumption.

Next, let us underline that previous work studying the asymptotic FDP distribution all rely
on the use of the functional delta method Delattre and Roquain (2011); Delattre and Roquain
(2012); Farcomeni (2006); Genovese and Wasserman (2004); Neuvial (2008). This tool, that
relies on the tedious and complex calculations of derivatives Neuvial (2008), is advantageously
not required here.

2. Building k-FWE-based critical values

2.1. Heuristic

Starting from arbitrary critical values (τℓ)1≤ℓ≤m, and by taking an indice ℓ̂ such that R(τℓ̂) = ℓ̂,
we have

Pθ(FDPm(τℓ̂) > α) = Pθ(Vm(τℓ̂) > α R(τℓ̂))

= Pθ(Vm(τℓ̂) ≥ ⌊αℓ̂⌋+ 1). (4)

Hence, by taking τℓ such that Pθ(Vm(τℓ) ≥ ⌊αℓ⌋ + 1) = (⌊αℓ⌋ + 1)-FWER(τℓ) ≤ ζ for all ℓ,
we should get that (4) is below ζ. However, the above reasoning does not rigorously establish
(3) (with t̂m,α,ζ = τℓ̂), because it implicitly assumed that ℓ̂ is determinist. Nevertheless, this
heuristic is the starting point for building the critical values.

2.2. Bounding device

Let us consider as model either the fixed model Θ = ΘF or the uniform model Θ = ΘU .
First, let us define a bounding device as any function B0

m : (t, k, u) 7→ B0
m(t, k, u) ∈ [0, 1],

defined for t ∈ [0, 1], k ∈ {1, . . . ,m} and u ∈ {k, . . . ,m}, which is non-increasing in k, with
B0

m(0, k, u) = 0 and such that

B0
m(t, k, u) ≥ sup

θ∈Θ
m0(θ)=u

{Pθ(Vm(t) ≥ k)} . (Bound)

Now, define for t ∈ [0, 1], k ∈ {1, . . . ,m} and ℓ ∈ {k, . . . ,m}, the quantities

Bm(t, k) = sup
k≤u≤m

{
B0

m(t, k, u)
}
; (Bound-nonadapt)

B̃m(t, k, ℓ) = sup
k≤u≤m−ℓ+k

{
B0

m(t, k, u)
}
; (Bound-adapt)

imsart-generic ver. 2012/08/16 file: DR2012a2.tex date: November 15, 2013



Delattre, S. and Roquain, E./ 7

which are additionally assumed to be non-decreasing and left-continuous in t. While Bm(t, k)
is obviously non-increasing in k because B0

m(t, k, u) is, the fact that B̃m(t, k, ℓ) is non-
increasing in k is an additional assumption that we make throughout the paper.

Definition 2.1. Let us consider a bounding device B0
m(t, k, u) and the above associated quan-

tities Bm(t, k) and B̃m(t, k, ℓ). Then the non adaptive (resp. adaptive, oracle) k-FWE-based
critical values associated to the bounding function B0

m are respectively defined as follows:

τ ℓ = max
{
t ∈ [0, 1] : Bm(t, ⌊αℓ⌋+ 1) ≤ ζ

}
, 1 ≤ ℓ ≤ m; (5)

τ̃ℓ = max
{
t ∈ [0, 1] : B̃m(t, ⌊αℓ⌋+ 1, ℓ) ≤ ζ

}
, 1 ≤ ℓ ≤ m; (6)

τ0ℓ = max
{
t ∈ [0, 1] : B0

m(t, ⌊αℓ⌋+ 1,m0) ≤ ζ
}
, 1 ≤ ℓ ≤ m. (7)

The critical values τ̃ℓ, ℓ = 1, . . . ,m, are said adaptive because they implicitely (over-) esti-
mate m0 by m−ℓ+⌊αℓ⌋+1. This way to adapt to π0, that produces procedures often referred
to as “one-stage” (by contrast with “two-stage”, see Benjamini et al. (2006); Blanchard and
Roquain (2009); Sarkar (2008a)), has been used in Finner et al. (2009); Gavrilov et al. (2009)
and has been proved to be asymptotically optimal in a specific sense (AORC), see Finner
et al. (2009). Finally, it is worth to check that τm ≤ τ̃m < 1 (this comes from B0

m(1, k, u) = 1
for all u ≥ k) so that the output ℓ̂ of the step-up algorithm is not identically equal to m.

2.3. Examples

We provide below three examples of bounding devices. Some resulting critical values are
displayed in Figure 2 and 3.

Markov By Markov’s inequality, we have

Pθ(Vm(t) ≥ k) ≤ Eθ(Vm(t))

k
=

m0t

k
=: B0

m(t, k,m0).

This gives rise to the critical values

τ ℓ =
ζ(⌊αℓ⌋+ 1)

m
; τ̃ℓ =

ζ(⌊αℓ⌋+ 1)

m− ℓ+ ⌊αℓ⌋+ 1
, 1 ≤ ℓ ≤ m. (8)

The adaptive critical values (τ̃ℓ)1≤ℓ≤m are those proposed by Lehmann and Romano in
Lehmann and Romano (2005). Note that these critical values do not adapt to the under-
lying dependence structure of the p-values.

Pairwise By using Markov’s inequality “at the second order”, we obtain

Pθ(Vm(t) ≥ k) ≤ Pθ

(
(Vm(t))2 ≥ k2

)
≤ m0t+m0(m0 − 1)F

(2)
θ (t)

k2
,

where F
(2)
θ denotes the function:

F
(2)
θ (t) =

1

m0(m0 − 1)
Eθ


∑

i 6=j

(1−Hi)(1−Hj)1 {pi(X) ≤ t, pj(X) ≤ t}


 . (9)

imsart-generic ver. 2012/08/16 file: DR2012a2.tex date: November 15, 2013



Delattre, S. and Roquain, E./ 8

0 100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m = 500 ,  α = 0.1 ,  ζ = 0.5

Markov
Pair−wise ( ρ = 0 )
Exact ( ρ = 0 )

0 100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m = 500 ,  α = 0.1 ,  ζ = 0.5

Markov
Pair−wise ( ρ = 0 )
Exact ( ρ = 0 )

0 100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m = 500 ,  α = 0.1 ,  ζ = 0.05

Markov
Pair−wise ( ρ = 0 )
Exact ( ρ = 0 )

0 100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

m = 500 ,  α = 0.1 ,  ζ = 0.05

Markov
Pair−wise ( ρ = 0 )
Exact ( ρ = 0 )

Fig 2. k-FWE-based critical values. Left: τk’s (non adaptive); Right: τ̃k’s (adaptive). Exact calculations of
critical values under Gaussian independence (ρ = 0). For comparison, the solid thin black line denotes either
the BH critical values tk = αk/m (non adaptive) or the AORC critical values tk = αk/(m− (1− α)k) defined
in Finner et al. (2009) (adaptive).

Hence, we can take

B0
m(t, k, u) = k−2

(
ut+ u(u− 1) sup

{
F

(2)
θ (t), θ ∈ Θ,m0(θ) = u

})
. (10)

As a first instance, assuming

pi, i ∈ H0, are pairwise independent (cond. on H in model ΘU ), (Pw-indep)

we get F
(2)
θ (t) = t2 and thus B0

m(t, k, u) = (ut+ u(u− 1)t2)/k2, which leads for instance to

τ̃ℓ =

(
ζ(⌊αℓ⌋+ 1)2

(m− ℓ+ ⌊αℓ⌋)(m− ℓ+ ⌊αℓ⌋+ 1)
+

1

4(m− ℓ+ ⌊αℓ⌋)2
)1/2

− 1

2(m− ℓ+ ⌊αℓ⌋) .
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Fig 3. Same as Figure 3 under Assumption (ρ-equi) with ρ = 0.2.

As a second illustration, in the case (ρ-equi) with ρ ≥ 0, we easily get

F
(2)
θ (t) =

∫ t

0
Φ

(
Φ−1(t)− ρ Φ−1(x)√

1− ρ2

)
dx, (11)

which can lead to critical values (adaptive or not) by a numerical inversion. Third, in the
Gaussian case with known covariance matrix Γ (but not necessarily equi-correlated), we easily

get that Bm(t, k) = B0
m(t, k,m) =

(
mt+m(m− 1)F

(2)
Γ (t)

)
/k2 where

F
(2)
Γ (t) =

1

m(m− 1)

∑

1≤i 6=j≤m

∫ t

0
Φ


Φ−1(t)− Γi,j Φ

−1(x)√
1− Γ2

i,j


 dx. (12)

The adaptive case is more delicate because the supremum in (10) lies over the set of all the
matrices of the form (Γi,j)i,j∈A, for A ⊂ {1, . . . ,m}, |A| = u, which can be a huge set when
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u < m. For this reason, it can be more convenient to consider the uniform mixture model

(rather than the fixed mixture model) for which B0
m(t, k, u) =

(
ut+ u(u− 1)F

(2)
Γ (t)

)
/k2,

where F
(2)
Γ is given by (12). This leads to adaptive critical values by a numerical inversion.

All these critical values take into account the pairwise dependence structure of the data.

Exact In some cases, closed-formulas can be derived for the RHS of (Bound). First, assum-
ing

pi, i ∈ H0, are mutually independent (cond. on H in model ΘU ), (Indep)

the distribution of V (t) is a binomial with parameters (u, t). Hence,B0
m(t, k, u) =

∑u
j=k

(
u
j

)
tj(1−

t)u−j . The corresponding adaptive critical values have been introduced in Guo and Romano
(2007). Second, the following exact formula can be used under (ρ-equi) when ρ ≥ 0:

B0
m(t, k, u) =

∫ 1

0

u∑

j=k

(
u

j

)
(Fρ(t, x))

j(1− Fρ(t, x))
u−jdx, (13)

where Fρ(t, x) = Φ
(
(Φ−1(t)−√

ρ Φ−1(x))/(
√
1− ρ)

)
. This comes comes from the well known

decomposition Xi ∼ Hiµi +
√
ρ U +

√
1− ρ ξi, where U and ξi are all i.i.d. N (0, 1). Third, in

the Gaussian case where Γ is known, the quantities in the RHS of (Bound) can be computed
by a Monte-Carlo method as follows: on the one hand, in the non adaptive case, we can
upper-bound Vm(t) by the full null process

V ′
m(t) = m−1

m∑

i=1

1 {Φ(Yi) ≤ t} (14)

whose distribution is known since Y ∼ N (0,Γ) is. On the other hand, in the adaptive case,
the original null process Vm(t) can be easily generated in the uniform model ΘU in the case
m0(θ) = u, for an arbitrary u. This leads to non-adaptive and adaptive critical values that
incorporate any pre-specified covariance matrix Γ.

3. Finite sample results

In this section, we provide upper bounds for the probability that the FDP of a step-down/step-
up procedure exceeds α. First, this section gathers part of the most prominent state-of-the-art
bounds in an unified way, second we provide improvements when the covariance dependence
is known. These results hold for any critical values, but are particularly interesting when used
with k-FWE-based critical values.

3.1. A first unifying bound

Proposition 3.1. For any critical values (τℓ)1≤ℓ≤m, consider either the corresponding step-

down procedure (SD) or the corresponding step-up procedure (SU), with rejection number ℓ̂.
Then the following holds, both in the fixed model (Θ = ΘF ) and the uniform model (Θ = ΘU ):
for all θ ∈ Θ,

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

Pθ

(
Vm(τℓ) ≥ d(ℓ,m,m0), ℓ̃ = ℓ

)
, (15)
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where bα(m0), d(ℓ,m,m0) and ℓ̃ are taken as follows:

(i) Step-down case: for all u ∈ {0, . . . ,m}, bα(u) = (⌊(m−u)/(1−α)⌋+1)∧(⌈u/α⌉−1)∧m;
d(ℓ,m, u) = ⌊αℓ⌋ + 1; ℓ̃ = ℓ̂(1), where ℓ̂(1) = min{ℓ ∈ {1, . . . ,m} : Sm(τℓ) < (1 − α)ℓ}
(with the convention min ∅ = m+1) and by denoting Sm(t) = Rm(t)−Vm(t) the number
of true discoveries at threshold t.

(ii) Step-up case: for all u ∈ {0, . . . ,m}, bα(u) = (⌈u/α⌉−1)∧m ; d(ℓ,m, u) = (⌊αℓ⌋+1)∨
(ℓ−m+ u) ; ℓ̃ = ℓ̂.

Moreover, in the step-up case, (15) is an equality.

Proposition 3.1 (i) is a reformulation of Theorem 5.2 in Roquain (2011) in our framework
and is based on ideas presented in the proofs of Lehmann and Romano (2005); Romano and
Wolf (2007). Proposition 3.1 (ii) is essentially based on Romano and Shaikh (2006b) and we
provide a short proof for it in Section 6.1.

Now, let us apply Proposition 3.1 in the step-down case, for critical values (τℓ)1≤ℓ≤m that
are k-FWE-based (associated to some bounding device B0

m and either adaptive or not). From
(15), the FDP control (3) holds for t̂m,α,ζ = τℓ̂ when the RHS of (15) is below ζ. This holds
in several particular cases:

(a) Dirac-Uniform configuration (established in Romano and Wolf (2007)): when all the
p-values under the alternative are equal to zero. In that case, ℓ̂(1) is deterministic
and is equal to ℓ⋆ = (⌊(m − m0)/(1 − α)⌋ + 1) ∧ m. Hence, the RHS of (15) is
Pθ (Vm(τℓ⋆) ≥ ⌊αℓ⋆⌋+ 1) ≤ B0

m(τℓ⋆ , ⌊αℓ⋆⌋+ 1,m0), which is below ζ (because m− ℓ⋆ +
⌊αℓ⋆⌋+ 1 ≥ m0).

(b) Independence (established in Guo and Romano (2007) with the exact device): when
for all θ, the p-values (pi, i : Hi = 0) are independent of the p-values (pi, i : Hi = 1).
This implies that ℓ̂(1) is independent of the process Vm(·) and thus that the probability

Pθ

(
Vm(τℓ) ≥ ⌊αℓ⌋+ 1 | ℓ̂(1) = ℓ

)
is below ζ for all ℓ.

(c) when for all θ ∈ Θ, ⌊αbα(m0(θ))⌋ = 0 (e.g., m0(θ) ∈ {1,m} or ⌊αm⌋ = 0): the RHS of
(15) is bounded by Pθ

(
Vm(τbα(m0)) ≥ ⌊αbα(m0)⌋+ 1

)
and thus is below ζ.

(d) under (ρ-equi) when ρ = 1: since in that case Vm(t) = m01 {p1 ≤ t} we have τℓ ≤ ζ for
all ℓ ≤ bα(m0). Next, 1 {Vm(τℓ) ≥ ⌊αℓ⌋+ 1} ≤ 1 {p1 ≤ τℓ} ≤ 1

{
p1 ≤ τbα(m0)

}
for all

ℓ ≤ bα(m0), which implies the control.

Additionally to the above results, numerical experiments indicate that the FDP control should
hold under (ρ-equi) for many values of ρ and µ, see Section 5. However, we were not able to
provide a valid proof of the latter statement.

Now, in the step-up case, Proposition 3.1 (ii) implies the following bound when applied
with k-FWE-based critical values:

Corollary 3.2. Consider some bounding device B0
m and the associated k-FWE-based critical

values (τℓ)1≤ℓ≤m, being either adaptive or not and computed either in the fixed mixture model
or in the uniform mixture model. Then the corresponding step-up procedure (SU) is such that

P
(
FDPm(τℓ̂) > α

)
≤ P

(
Vm(ν0

k̂
) ≥ k̂

)
= P

(
q(k̂) ≤ ν0

k̂

)
, (16)

for k̂ = Vm(τℓ̂), where q(1) ≤ · · · ≤ q(m0) denotes the ordered p-values under the null and
where

ν0k = max{t ∈ [0, 1] : B0
m(t, k,m0) ≤ ζ}. (17)
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The proof is provided in Section 6.2. It relies on the same idea than the proof of Theorem 3.1
in Guo et al. (2013). Unfortunately, by contrast to the step-down case, using the k-FWE-based
critical values into a step-up procedure does not lead in general to a valid finite sample FDP
control. This is shown in the simulations of Section 5. As proved by Theorem 3.1 of Guo
et al. (2013), however, a valid FDP control holds when using the Lehmann-Romano critical
values (8) and when Simes’ inequality is valid. Namely, by considering the B0

m associated to
Markov’s inequality, that is, B0

m(t, k,m0) = m0t/k or equivalently ν0k = ζk/m0, inequality
(16) entails a finite sample FDP control when the celebrated Simes’ inequality applies (see
Simes (1986)),

P

(
m0⋃

k=1

{
q(k) ≤ ζk/m0

}
)

≤ ζ. (18)

The latter holds under positive dependence conditions, see Sarkar (2008b) for instance. As
an illustration, this is the case when ρ ≥ 0 under Assumptions (ρ-equi) (see also Benjamini
and Yekutieli (2001)).

3.2. A second unifying bound

When the FDP control cannot be established, an alternative approach is to upper-bound the
RHS of (15) by a computable quantity. The next proposition is to be proved in Section 6.3.

Proposition 3.3. In the setting of Proposition 3.1, assume moreover that there exists a
family of random variables (Zℓ,ℓ′)1≤ℓ,ℓ′≤m satisfying: for all ℓ, ℓ′,

1
{
Vm(τℓ) ≥ d(ℓ′,m,m0)

}
≤ Zℓ,ℓ′ a.s. (19)

and, a.s., Zℓ,ℓ′ is nondecreasing in ℓ and nonincreasing in ℓ′. Then for all θ ∈ Θ,

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

(Eθ (Zℓ,ℓ−1)− Eθ (Zℓ−1,ℓ−1)) ∧ (Eθ (Zℓ,ℓ)− Eθ (Zℓ−1,ℓ)) , (20)

by letting Z0,ℓ′ = 0 and Zℓ,0 = 1 for ℓ′ ≥ 0, ℓ ≥ 1.

Starting from arbitrary critical values, Proposition 3.3 provides conservative upper-bounds
from inequalities of the type (19). For instance, choosing Zℓ,ℓ′ = Vm(τℓ)/d(ℓ

′,m,m0), Zℓ,ℓ′ =
(Vm(τℓ))

2/(d(ℓ′,m,m0))
2 and Zℓ,ℓ′ = 1 {Vm(τℓ) ≥ d(ℓ′,m,m0)}) leads to upperbounding (20)

by

max
1≤u≤m



u

bα(u)∑

ℓ=1

τℓ − τℓ−1

d(ℓ,m, u)



 ; (21)

max
1≤u≤m





bα(u)∑

ℓ=1


u(τℓ − τℓ−1) + u(u− 1) max

θ∈Θ
m0(θ)=u

{
F

(2)
θ (τℓ)− F

(2)
θ (τℓ−1)

}

 (d(ℓ,m, u))−2



 ;

(22)

max
1≤u≤m





bα(u)∑

ℓ=1

max
θ∈Θ

m0(θ)=u

{(Pθ (Vm(τℓ) ≥ d(ℓ− 1,m, u))− Pθ (Vm(τℓ−1) ≥ d(ℓ− 1,m, u)))

∧ (Pθ (Vm(τℓ) ≥ d(ℓ,m, u))− Pθ (Vm(τℓ−1) ≥ d(ℓ,m, u)))}
}
, (23)
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where F
(2)
θ is defined by (9). While the upper-bound (21) has been established in Romano and

Shaikh (2006a) in the step-down case and Romano and Shaikh (2006b) in the step-up case,
Proposition 3.3 allows to derive a sharper upper-bound (23) when additional informations
are available concerning the joint null-distribution. The new bound also improves the recent
result of Guo et al. (2013), which combines the Markov and pairwise approaches, see Figure 4.
Remember that the step-down and step-up procedures using Markov-based (i.e., Lehmann-
Romano) critical values (8) provably control the FDP in the (nonnegative) equi-correlated
setting. From the left column of Figure 4, the new proposed (“Exact”) bound shows that, if
the equi-correlation ρ is known and large enough, an improvement over the Lehmann-Romano
procedure is possible by incorporating the dependence structure (the bound is below ζ). This
is, to the best of our knowledge, the first time that such improvement is proved to be possible.
By contrast, the bound proposed in Guo et al. (2013) is always above the targeted level ζ.
Nevertheless, to be completely fair, we should notice that their bound was established under
slightly weaker assumptions (pairwise Gaussian rather than multivariate Gaussian).

Markov critical values Exact critical values
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Fig 4. Bounds derived from (21) (Markov), (22) (Pairwise) and (23) (Exact), displayed in function of ρ,
the equicorrelation between the Gaussian test statistics (while assuming (ρ-equi)). Two k-FWE-based adaptive
critical values are used as initial critical values: Markov (see (8), first column) or exact (see (13), second
column). The step-down (first row) and step-up (second row) algorithms are considered.

Finally, when using the Exact-based critical values (right column in Figure 4), however,
there is no room left for such improvement: the “Exact” bounds are above ζ. Since simulations
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indicate that the FDP control is close to be achieved in these cases (see Section 5), these
bounds are still not totally satisfactory to understand the subtle behavior of k-FWE-based
approaches. The next section complements this view by studying an asymptotic framework
(w.r.t. m), for which ζ is a valid asymptotic bound (in the step-up case).

4. Asymptotic results

The present section validates the use of k-FWE-based critical values into a step-up procedure
for controlling the FDP as the number of hypotheses m tends to infinity. Roughly speaking,
the essence of the argumentation is as follows: when ℓ̂/m converges in probability to some
deterministic quantities, then the fluctuations of ℓ̂ asymptotically disappear in (4), and thus
this probability is bounded by ζ from (Bound). This argument is rigorously formalized in this
section.

4.1. Setting and assumptions

We consider the convergence of probabilities of the type (4) when m is tending to infinity.
Hence, we should formally consider a sequence of models (Θ(m),m ≥ 1) and a sequence of
parameters (θ(m),m ≥ 1) with θ(m) ∈ Θ(m) for all m ≥ 1. The latter sequence is assumed to
be fixed once for all throughout this section.

Roughly speaking, we make two kinds of assumptions to get our results: first, the bounding
device should have some “appropriate” convergence properties (typically the case for the
Markov, pairwise and exact devices, as we will see in Section 4.2). Second, and maybe more
importantly, we should make distributional assumptions, that is, we should make assumptions
on the sequence (θ(m),m ≥ 1). The latter are given and discussed below. Also, with some
abuses, we denote here m0(m) the number of true nulls (possibly random in the Bernoulli
mixture model).

The first assumption on (θ(m))m relies on the behavior of the (rescaled) process Vm(·).




There is a rate rm → ∞ such that the process

Zm(t) = rm (Vm(t)/m− (m0(m)/m)t)

satisfies, for any K = [a, b] ⊂ (0, 1), the convergence (Zm(t))t∈K  (Z(t))t∈K (for
the Skorokhod topology), for a process (Z(t))t∈K with continuous paths and such
that the random variable Z(t) has a continuous increasing c.d.f. for all t ∈ K.

(FLT)

For instance, if the following technical condition holds

m0(m)/m → π0, where π0 ∈ (0, 1) (in probability), (24)

Assumption (FLT) holds (with rm =
√
m) when the p-values (pi, Hi = 0) are i.i.d. by Donsker

Theorem. More generally, dependencies satisfying “mixing” conditions also lead to Donsker-
type theorems and thus to (FLT), see, e.g., Dedecker and Prieur (2007); Doukhan et al. (2010)
or Farcomeni (2007). Recently, some efforts have been undertaken to consider others type of
dependence, not necessarily locally structured, see Bardet and Surgailis (2013); Soulier (2001)
and Delattre and Roquain (2012). The latter can be more suitable to model high dimensional
data, see Friguet et al. (2009).
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While providing an exhaustive review of settings encompassing Assumption (FLT) exceeds
the scope of the paper, let us discuss this assumption in the multivariate Gaussian case. In
that case, condition (FLT) only relies on the behavior of the m0(m) × m0(m) submatrix
(Γi,j)i,j:Hi=0,Hj=0 as m grows. Since the positions i for which Hi = 0 are unknown, it is
certainly more desirable to assume

(FLT) holds for the full null process V ′
m(t) defined by (14), (FLT’)

which involves the whole matrix Γ (known) and not an unknown portion of it. Lemma 7.3 in
Section 7.5 shows that, in the Bernoulli random mixture model, Assumption (FLT’) entails
Assumption (FLT). Hence, to the price of adding a random effect on m0, (FLT’) can be used
to derive sufficient conditions on (the sequence) Γ = Γ(m) to ensure (FLT). For instance,
either of the two following conditions is sufficient:

- Stationary: Γ
(m)
i,j = r(|i − j|), where r is a nonnegative function, fixed with m, with

r(0) = 1, that satisfies either
∑

n≥1 r(n) < +∞ (short-range Csörgő and Mielniczuk

(1996)) or r(n) = n−DL(n), 0 < D < 1, L being a function slowly varying at infinity
(long-range Dehling and Taqqu (1989));

- “Vanish-second-order” Delattre and Roquain (2012): for ρm = 1
m(m−1)

∑
i 6=j Γ

(m)
i,j , rm =

(
m−1 + |ρm|

)−1/2
,

r2m
m2

∑

i 6=j

(
Γ
(m)
i,j

)2
→ 0;

r4+ε0
m

m2

∑

i 6=j

(
Γ
(m)
i,j

)4
→ 0, for some ε0 > 0.

As a particular case, under equi-correlation (ρ-equi) with parameter ρ = ρm, the latter
is equivalent to ρm → 0, see also Delattre and Roquain (2011).

The second type of assumption on (θ(m))m concerns the process Rm(·).
{
The process Ĝm(t) = Rm(t)/m, t ∈ [0, 1], is such that ||Ĝm − G||∞ = oP (1), for
some G : [0, 1] → [0, 1] continuous.

(Consist)

Condition (Consist) is a “law of large number”-type assumption (by contrast to (FLT)
which is of the “central limit”-type). In the Gaussian multivariate setting, (Consist) is satisfied
under (24) and if the following conditions hold (see Lemma A.1):

(m1(m))−1
m∑

i=1

Hiδµi

weak−−−→ ν, for some distribution ν on R
+ with ν({0}) = 0, (Conv-alt)

m−2
m∑

i,j=1

(Γi,j)
2 → 0. (LLNdep)

Here, G(t) = π0t+π1F1(t) and F1(t) =
∫∞

0 Φ(Φ−1(t)− β)dν(β). Note that H can be random
in Condition (Conv-alt): in that case, the weak convergence means that the distance between
the two distributions tends to zero in probability. Condition (Conv-alt) extends the usual
situation where the p-value distribution is fixed with m under the alternative (as assumed in
Delattre and Roquain (2011); Delattre and Roquain (2012); Genovese and Wasserman (2004);
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Neuvial (2008)). Similarly to above, (Conv-alt) depends on the unknown H, which can be
seen as a limitation, because it is unknown. To circumvent this problem, we can use that, in
the Bernoulli model, (Conv-alt) is implied by

m−1
m∑

i=1

δµi

weak−−−→ ν, for some distribution ν on R
+ with ν({0}) = 0, (Conv-alt’)

as stated by Lemma 7.3 in Section 7.5. As an illustration, when µi = f(i/m) for some
continuous function f on [0, 1] which is positive on (0, 1], then (Conv-alt’) holds by taking ν
equal to the image distribution of the Lebesgue measure on [0, 1] via f .

Finally, let us underline that under (ρ-equi), assumptions (LLNdep) and (FLT) are both
satisfied whenever ρ = ρm → 0 (see Delattre and Roquain (2011)).

4.2. A general result and applications

In this section, we consider a sequence of parameters (θ(m),m ≥ 1) (in the fixed, uniform or
Bernoulli model), some bounding device B0

m and the associated k-FWE-based critical values
(τℓ)1≤ℓ≤m as in Definition 2.1, being either adaptive (6) or not (5). Let us underline that when
(θ(m),m ≥ 1) is taken in the Bernoulli model, inequality (Bound), on which the bounding
device relies on, is assume to hold either in the fixed or in the uniform model.

Theorem 4.1. Consider the step-up procedure associated to the κ-kapped critical values τ ′ℓ =

τℓ ∧ κ, ℓ = 1, . . . ,m with rejection number ℓ̂, for some κ ∈ (0, 1). Assume that θ(m) satisfies
(FLT) and assume

τ ′
ℓ̂
converges in probability to t⋆, for some t⋆ ∈ (0, 1). (Conv-threshold)

Then we have

lim sup
m

{
Pθ(m)

(
FDPm

(
τ ′
ℓ̂

)
> α

)}
≤ ζ. (25)

Theorem 4.1 is proved in Section 7.1. Note that the FDP control is established for the κ-
capped critical values and not the original critical values. The smaller κ, the more restrictive
the kapping. We will see that choosing κ ∈ (0, 1), arbitrary close to 1, is often possible so
that this condition is not very restrictive. Next, Theorem 4.1 introduces the novel Assump-
tion (Conv-threshold). The following result identifies sufficient conditions to ensure it (see
Section 7.2 for a proof).

Proposition 4.2. Denote by fm the rejection curve associated to the critical values τℓ on
[0, κ], that is, for t ∈ [0, κ],

fm(t) = m−1 ×min{ℓ ∈ {0, . . . ,m+ 1} : τℓ ≥ t}, (26)

(with the convention τ0 = 0, τm+1 = 1). Assume that θ(m) satisfies (Consist) for some function
G and assume the following for the rejection curve fm:

fm(t) converges to f∞(t) for all t ∈ [0, κ] where f∞ : [0, κ] → [0, 1]
is continuous with f∞(t) > 0 for t ∈ (0, κ].

(27)
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Let
t⋆ = sup{t ∈ [0, κ] : G(t) ≥ f∞(t)} (28)

and assume further

t⋆ > 0 and
{
G(t⋆) = f∞(t⋆) ⇒ G(up) > f∞(up) for all p for some up ↑ t⋆

}
.

(StableLastCross)

Then the step-up procedure associated to the κ-kapped critical values τ ′ℓ = τℓ∧κ, ℓ = 1, . . . ,m,
satisfies (Conv-threshold).

Let us discuss the conditions introduced by Proposition 4.2. As mentioned in Section 4.1, a
typical situation for which (Consist) holds is the Gaussian setting satisfying (24)-(Conv-alt)-
(LLNdep). Under these assumptions, we easily check that condition (27) holds for the three
types of device defined in Section 2.3, see Lemma 7.1 in Section 7.3. Figure 5 displays the
resulting limiting functions

f∞(t) =
t

αλ1 + (1− α)tλ2
∧ 1 , (29)

where λ1 and λ2 are given in each case in Table 1. As for (StableLastCross), it is implied for
instance by the two conditions

G(t) = f∞(t) has at most one solution on (0, κ]; (Unique)

lim
t→0+

G(t)/f∞(t) ∈ (1,+∞]; (Noncritical)

Assumption (Unique) and (Noncritical) hold for instance for G given by (Conv-alt) and
f∞ given by (29) with λ2 = 0 (non adaptive case). In the adaptive case, that is λ2 = 1,
(Noncritical) holds but we can find very specific parameter values for which f∞ has several
intersection points with G (e.g., for λ1 = 1, α = 0.009, π0 = 0.01, β ≡ 2.7). In that case, κ
can always be chosen small enough to ensure (Unique).

In conclusion, we are able to state the following corollaries.

Corollary 4.3. In the Gaussian setting, consider the non-adaptive k-FWE-based critical
values τℓ, ℓ = 1, . . . ,m, computed in the uniform mixture model, and associated to the Markov,
pairwise or exact device. Then, in the Bernoulli mixture model, the asymptotic FDP control
(25) holds for the step-up procedure with critical values τℓ, ℓ = 1, . . . ,m, for a covariance
matrix Γ(m) satisfying (FLT’) and alternative means µi, i = 1, . . . ,m, satisfying (Conv-alt’).
Moreover, the same conclusion holds for the adaptive case, except that the asymptotic FDP
control holds for the κ-capped (adaptive) critical values, where κ ∈ (0, 1) is taken small enough
to ensure that G(t) = π0t+ π1

∫∞

0 Φ(Φ−1(t)− β)dν(β) satisfies (Unique).

Corollary 4.4. In a non-necessarily Gaussian setting, consider the Lehmann-Romano critical
values (8) (adaptive or not). Then, for the corresponding step-up procedure, the asymptotic
FDP control (25) holds in a fixed mixture model satisfying Assumptions (FLT), (Consist) and
under condition (StableLastCross), taken with κ = ζα (non adaptive) or κ = ζ (adaptive).

Note that the FDP control of Lehmann-Romano step-up procedure stated in Corollary 4.4
is markedly different from the state-of-the-art finite sample control of Guo et al. (2013): while
it is asymptotic, it does not relies on Simes’ inequality (see (18)), but rather on a central limit
type assumption for the dependencies. Hence, it can be seen as “relaxing” the assumption of
positively regressively dependent p-values, which is often used to ensure Simes’ inequality.
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Device Markov Pairwise Exact

λ1 ζ ζ1/2 1

Adaptive No Yes

λ2 0 1

Table 1

Values of λ1 and λ2 to be used in (29) for each set of critical values.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Markov
Pairwise
Exact

Fig 5. f∞(t) given by (29) in function of t, for the different bounding devices and α = 0.3, ζ = 0.5. Non
adaptive (solid lines) ; adaptive (dashed). The thin solid black line is G(t) = π0t + (1 − π0)Φ(Φ

−1(t) − β) in
the one-sided Gaussian case for π0 = 0.5 and alternative means all equal to β = 3.

Remark 4.5. The threshold of the exact-k-FWE-based step-up procedure asymptotically co-
incides with the limit threshold of the original BH procedure (or AORC procedure in the adap-
tative case). This is due to our “weak dependence” type assumptions. However, please note
that it does not imply that they are asymptotically equivalent in terms of FDP distribution:
while it is well known that the BH/AORC procedures do not control the FDP asymptotically
(even under independence, see Neuvial (2008)), our analysis shows that this is the case for
the k-FWE-based step-up procedures.

5. Numerical experiments

This section complements Sections 3 and 4 by evaluating the probability that the FDP exceeds
α for a fixed m with numerical experiments.

We consider the Gaussian multivariate framework defined in Section 1.2, where µi = β
for all i (all alternative means are equal) and the random set {i : Hi = 0} is uniformly
distributed among the subsets of {1, . . . ,m0} of cardinal m0 (uniform mixture model). This
section presents the result in the case where the matrix Γ is assumed to be ρ-equicorrelated,
see (ρ-equi). The case of a 3-factor model provides similar results and is postponed to the
supplement Delattre and Roquain (2013), see Figures S-2 and S-3 therein. Figure 6 displays
P(FDPm(τℓ̂) > α), computed with 3×105 simulations, for a procedure coming from a Markov,
pairwise or exact device, being either adaptive (solid) or not (dashed) and being either step-
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down (SD, lines 1 and 2 on Figure 6) or step-up (SU, lines 3 and 4 on Figure 6). The
parameter values/ranges are as follows: α = 0.1, m = 100, ρ ∈ {0.1, 0.5}, ζ ∈ {0.05, 0.5},
m0 ∈ {50, 90}, β ∈ {0.01, 1, 1.1, . . . , 4.9, 5}. Remember that Theorem 4.1 only provides the
(asymptotic) FDP control when ρ is small (ρ = ρm → 0), so certainly not when ρ = 0.5.
Also, for an arbitrary ρ ≥ 0, it is known that the FDP control holds for the Markov device
(because Simes’ inequality holds here, see Section 3.1).

First, Figure 6 shows that the pairwise and Markov devices are conservative (and sometimes
very conservative) in the sense that the actually achieved exceedance probability is much
smaller than the targeted level ζ. By contrast, the exact device is much more accurate and
often has a probability very close to ζ in its adaptive form. This seems fair since the exact
device uses the full joint distribution of the null p-values. Second, it is worth to note that the
adaptive procedures improve over their non-adaptive counterparts, especially when m0/m is
small (= 0.5 here) and β is large (say, β ≥ 2). Here, some “signal” (in quantity and strength) is
needed to make the adaptation effective. This corroborates previous studies designing adaptive
procedures, see, e.g., Benjamini et al. (2006); Blanchard and Roquain (2009).

Third, while for step-up procedures the probability can exceeds ζ (e.g., π0 = 0.9, ζ = 0.05,
ρ = 0.1, β = 3), this is not the case for the step-down procedures. Moreover, this observation
is also true in the 3-factor model. This intriguing fact might suggest that a formal FDP
controlling result exists. To investigate deeper this issue, we reproduced the experiment with
a perfect adaptation step, that is, by taking τ0ℓ (see (7)) instead of τ̃ℓ (see (6)). The result,
displayed in the supplement in Figure S-1, shows that the FDP control is not maintained.
This shows that the FDP control appearing on Figure 6 is a very subtle phenomenon that
might be hard to capture formally (because a proof valid for τ̃ℓ should fail for τ0ℓ ).

Finally, note that we only study here the type I error control, not the power. The reason is
that we find it clear from the critical values (see Figures 2 and 3) that the exact device leads
to more discoveries (and thus more power) than Markov/pairwise devices.

6. Proofs for finite sample results

6.1. Proof of Proposition 3.1 (ii)

Since FDPm(τℓ̂) > α implies ⌊αℓ̂⌋ + 1 ≤ m0, we have ℓ̂ ≤ bα(m0). Also, ℓ̂ = Rm(τℓ̂) ≤
m1 + Vm(τℓ̂), which implies Vm(τℓ̂) ≥ ℓ̂−m1. This implies (15) in case (ii).

6.2. Proof of Corollary 3.2

Let k̂ = Vm(τℓ̂) and note that k̂ ≤ m0 and {FDPm(τℓ̂) > α} = {k̂ ≥ ⌊αℓ̂⌋+ 1}. First, in the
non-adaptive case, we have by definition of Bm, for all t and k ≤ m0,

Bm(t, k) = sup
k≤u≤m

{
B0

m(t, k, u)
}
≥ B0

m(t, k,m0).

Hence, we have by definition of the (non-adaptive) critical values, whenever k̂ ≥ ⌊αℓ̂⌋+ 1,

ζ ≥ Bm(τℓ̂, ⌊αℓ̂⌋+ 1) ≥ B0
m(τℓ̂, ⌊αℓ̂⌋+ 1,m0),

which is larger than or equal to B0
m(τℓ̂, k̂,m0). Hence, we obtain

{
FDPm(τℓ̂) > α

}
⊂
{
B0

m(τℓ̂, k̂,m0) ≤ ζ
}
⊂
{
τℓ̂ ≤ ν0

k̂

}
,
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Fig 6. FDP exceedance probability P(FDPm(τℓ̂) > α) in function of β for several model parameters and Γ
satisfying (ρ-equi), see text.

and thus (16). Second, in the adaptive case, we use that m0 ≤ m− ℓ̂+ k̂. Thus, we have for
all t,

B̃m(t, k̂, ℓ̂) = sup
k̂≤u≤m−ℓ̂+k̂

{
B0

m(t, k̂, u)
}
≥ B0

m(t, k̂,m0).
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Hence, whenever k̂ ≥ ⌊αℓ̂⌋+ 1, we have

ζ ≥ B̃m(τℓ̂, ⌊αℓ̂⌋+ 1, ℓ̂) ≥ B̃m(τℓ̂, k̂, ℓ̂) ≥ B0
m(τℓ̂, k̂,m0). (30)

Hence, τℓ̂ ≤ ν0
k̂
and the proof is finished.

6.3. Proof of Proposition 3.3

From (15), we derive

Pθ

(
FDPm(τℓ̂) > α

)
≤

bα(m0)∑

ℓ=1

Pθ

(
Vm(τℓ) ≥ d(ℓ,m,m0), ℓ̃ = ℓ

)

≤
bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ = ℓ

})
.

Now, the RHS of the previous display is equal to

bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ

})
−

bα(m0)−1∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ+ 1

})

=

bα(m0)∑

ℓ=1

Eθ

(
Zℓ,ℓ1

{
ℓ̃ ≥ ℓ

})
−

bα(m0)∑

ℓ=1

Eθ

(
Zℓ−1,ℓ−11

{
ℓ̃ ≥ ℓ

})

=

bα(m0)∑

ℓ=1

Eθ

(
(Zℓ,ℓ − Zℓ−1,ℓ−1)1

{
ℓ̃ ≥ ℓ

})

≤
bα(m0)∑

ℓ=1

Eθ (Zℓ,ℓ−1 − Zℓ−1,ℓ−1) ∧ Eθ (Zℓ,ℓ − Zℓ−1,ℓ) ,

which proves the result.

7. Proofs for asymptotic results

7.1. Proof of Theorem 4.1

Denote τ ′
ℓ̂
by t̂ for short. Let us consider q0m(t) the (1−ζ)-quantile of the distribution of Vm(t),

for all t ∈ [0, 1]. We have by (Bound) and (30), P
(
FDPm(t̂) > α

)
≤ P

(
Vm(t̂) > q0m(t̂)

)
. Let

us now consider the process

Um(t) = rm(Vm(t)/m− q0m(t)/m) = Zm(t)− rm
(
q0m(t)/m− (m0/m)t

)

and consider a compact set K ⊂ (0, 1) containing t⋆. Applying Lemma A.3, we have that the
function sequence

rm
(
q0m(t)/m− (m0/m)t

)
t∈K

converges uniformly to (qζ(t))t∈K , where qζ(t) is the (1−ζ)-quantile of Z(t). This entails that
Um(·) is a C-tight process with

(Um(t))t∈K  (Z(t)− qζ(t))t∈K .
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Next for any ε > 0 and η > 0, by using (Conv-threshold), we have

P
(
FDPm(t̂) > α

)
≤ P

(
FDPm(t̂) > α, |t̂− t⋆| ≤ ε

)
+ P

(
FDPm(t̂) > α, |t̂− t⋆| > ε

)

≤ P
(
Um(t̂) > 0, |t̂− t⋆| ≤ ε

)
+ o(1)

≤ P
(
{Um(t̂)− Um(t⋆)}+ Um(t⋆) > 0, |t̂− t⋆| ≤ ε

)
+ o(1)

≤ P

(
sup

s∈K∩[t⋆−ε,t⋆+ε]
{Um(s)− Um(t⋆)} > η

)
+ P (Um(t⋆) > −η) + o(1).

By letting m → ∞ and then ε → 0, we get

lim sup
m

{
P
(
FDPm(t̂) > α

)}
≤ P (Z(t⋆) > qζ(t

⋆)− η)

Since the c.d.f. of Z(t⋆) is continuous, we obtain the result by making η converging to zero in
the last display.

7.2. Proof for Proposition 4.2

First observe that since fm is a nondecreasing function and since f∞ is continuous, then
the convergence of fm to f∞ is uniform on [0, κ]. Also, f∞ is a nondecreasing function. By
Lemma A.2, we have τ ′

ℓ̂
= t̃, where

t̃ = sup{t ∈ [0, 1] : Ĝm(t) ≥ fm(t)}. (31)

Note that t̃ ≤ κ. For some realization such that supt∈[0,1] |Ĝm(t) − G(t)| → 0, assume that t̃
converges to some t ∈ [0, κ] and let us prove that t is equal to t⋆ given by (28).

First, since Ĝm(t̃) ≥ fm(t̃), we have G(t) ≥ f∞(t) and thus t ≤ t⋆. Let us prove t ≥ t⋆. First,
if G(t⋆) 6= f∞(t⋆), that is, G(t⋆) > f∞(t⋆), we have Ĝm(t⋆) ≥ fm(t⋆) for m large enough and
thus t ≥ t⋆. Second, if G(t⋆) = f∞(t⋆), we have by (StableLastCross), that G(up) > f∞(up)

for all p, for some up ↑ t⋆. This entails, for all p, for m large enough, Ĝm(up) > fm(up) and
thus t ≥ up. Hence, t ≥ t⋆ by making p tends to infinity.

Finally, by using a subsequence argument, this implies that on the event {supt∈[0,1] |Ĝm(t)−
G(t)| → 0}, we have that t̃ converges to t⋆. This gives the result because of Assump-
tion (Consist).

7.3. Computing f∞ for Markov, Pairwise and Exact devices

Lemma 7.1. Condition (27) holds with κ = 1 for each rejection curve fm corresponding to
the devices defined in Section 2.3: Markov under no assumption ; Pairwise and Exact in the
Gaussian setting satisfying (LLNdep) and in the uniform model. Additionally, the limiting
rejection curves are given by (29).

To prove Lemma 7.1, we use Lemma 7.2 in Section 7.4. First, for Markov device, it is
clear that the assumption of Lemma 7.2 holds with g(u) = ζαu (non-adaptive) or g(u) =
ζαu/(1− u(1− α)) (adaptive). This gives the result.

Second, consider the pairwise device in the Gaussian case, in the uniform model, with the
assumption (LLNdep). Remember that, from Section 2.3, we have

Bm(t, ℓm) =
m0(ℓm)t+m0(ℓm)(m0(ℓm)− 1)F

(2)
Γ (t)

(⌊αℓm⌋+ 1)2
,
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with Bm(t, ℓm) = Bm(t, ⌊αℓm⌋+1),m0(ℓm) = m (non adaptive) or Bm(t, ℓm) = B̃m(t, ⌊αℓm⌋+
1, ℓm), m0(ℓm) = m−ℓm+⌊αℓm⌋+1 (adaptive). From (LLNdep), we have ΓI,J that converges
in probability to 0 (I and J being two indexes independent and uniformly distributed in
{1, . . . ,m}). Hence, by the continuous mapping theorem, for all t,

∫ t

0
Φ


Φ−1(t)− ΓI,J Φ−1(x)√

1− Γ2
I,J


 dx

converges in probability to t2 and thus F
(2)
Γ (t) → t2. This entails that whenever ℓm/m → u,

Bm(t, ℓm) converges to (t/(αu))2 (non adaptive) or (t(1− (1−α)u)/(αu))2 (adaptive). Hence,
by applying Lemma 7.2, we obtain condition (27).

Third, consider the exact device under the same assumptions. The exact device is such that

Bm(t, ℓm) = Pm0=m0(ℓm)(Vm(t) ≥ ⌊αℓm⌋+ 1),

with m0(ℓm) defined as above. By assuming (LLNdep), we have that Vm(t)/m0(ℓm) converges
in probability to t. Letting g(u) = αu (non adaptive) or g(u) = αu/(1− (1−α)u) (adaptive),
this implies that whenever ℓm/m → u and t 6= g(u), Bm(t, ℓm) converges to 1 {t ≥ g(u)}.
Hence, Lemma 7.2 can be applied, which gives that condition (27) holds.

7.4. A useful result to prove the convergence (27)

Lemma 7.2. Let us consider some bounding device B0
m as in (Bound) and the corresponding

critical values τℓ, ℓ = 1, . . . ,m, being either adaptive or not. Assume that there exists a
function g : [0, 1] → [0, g(1)] that is one to one with g(0) = 0, and such that for all sequence
ℓm ∈ {1, . . . ,m} with ℓm/m converging to some u ∈ [0, 1], we have ∀t ∈ [0, 1],

- limmBm(t, ℓm) < ζ for all t < g(u);
- limmBm(t, ℓm) > ζ for all t > g(u);

where Bm(t, ℓm) denotes either Bm(t, ⌊αℓm⌋+1) (non adaptive case) or B̃m(t, ⌊αℓm⌋+1, ℓm)
(adaptive case). Then, fm defined by (26) (with κ = 1), satisfies that for any t ∈ [0, 1],
fm(t) → f∞(t), with f∞(t) = g−1(t) for t ∈ [0, g(1)] and f∞(t) = 1 for t ∈ (g(1), 1].

From an intuitive point of view, in Lemma 7.2, a natural candidate for g(u) is the value of
t solving the equation limmBm(t, ℓm) = ζ.

We now prove Lemma 7.2. First, let us prove the following assertion:

for any sequence ℓm/m → u ∈ [0, 1], we have τℓm converges to g(u). (32)

By assumption, for all ε > 0, limmBm(g(u) − ε, ℓm) < ζ. This implies that, for large
m, Bm(g(u) − ε, ℓm) < ζ and thus g(u) − ε ≤ τℓm by definition of τℓm . Similarly, since
limmBm(g(u) + ε, ℓm) > ζ, g(u) + ε ≥ τℓm for large m. This provides that τℓm converges to
g(u).

Let us now prove Lemma 7.2. Note that, by (32), we have τ1 → g(0) = 0 and τm → g(1).
Also, fm(0) = 0 and fm(1) = 1 + 1/m → 1 (because τm < 1). Take t ∈ (0, 1) and consider
any limit point u ∈ [0, 1] of fm(t). The result is proved if we show that u = f∞(t). First,
if t ∈ (g(1), 1], then t > τm for m large enough and thus fm(t) = 1 + 1/m which entails
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fm(t) → 1 = f∞(t). Second, if t ∈ (0, g(1)), we have for m large enough that t ∈ [τ1, τm]
(because τ1 → 0 < t and τm → g(1) > t). Hence, by definition of fm, we have

τ(mfm(t)−1)∨1 ≤ t ≤ τ(mfm(t))∧m.

Applying (32) twice with ℓm = (mfm(t)−1)∨1 and ℓm = (mfm(t))∧m (along the appropriate
subsequence), we obtain that τ(mfm(t)−1)∨1 and τ(mfm(t))∧m both converge to g(u). Hence,
g(u) = t, which gives u = g−1(t) = f∞(t). Third, if t = g(1), since fm is nondecreasing,
fm(g(1) − ε) ≤ fm(g(1)). Hence, by making m tends to infinity, we have f∞(g(1) − ε) ≤
lim infm fm(g(1)) ≤ 1. Now making ε tends to 0, we get fm(g(1)) → f∞(g(1)) = 1. This
concludes the proof.

7.5. Assumptions (Conv-alt) and (FLT) in Bernoulli mixture model

Lemma 7.3. In the Bernoulli random mixture model with π0 ∈ (0, 1) and in the multivariate
Gaussian setting, we have the following:

- Assumption (Conv-alt’) entails Assumption (Conv-alt);
- Assumption (FLT’) (with a rate rm s.t. rmm−1/2 has a limit in [0,∞]) entails Assump-
tion (FLT).

Proof. Assume that the Hi’s are i.i.d. Then for any continuous bounded function Ψ,

m−1
m∑

i=1

HiΨ(µi) = π1m
−1

m∑

i=1

Ψ(µi) + oP (1) = π1

∫
Ψdν + oP (1),

by using Assumption (Conv-alt). This implies Assumption (Conv-alt’) because m1(m)/m
converges almost surely to π1.

Let us now turn to the second result and assume (FLT’) (we denote the rate by r′m and
the limit by Z ′) and observe that, defining rm = min(r′m,

√
m),

rm(Vm(t)/m− (m0/m)t) = (rm/
√
m) (ξmt − tξm1 ) + π0(rm/r′m) r′m(V ′

m(t)/m− t) (33)

with

ξmt = m−1/2
m∑

i=1

(1−Hi − π0)1 {Φ(Yi) ≤ t}.

Since (FLT’) entails (LLNdep) in the Gaussian case, and up to consider a subsequence, we
can assume that, a.s.,

sup
t∈[0,1]

∣∣∣∣∣m
−1

m∑

i=1

1 {Φ(Yi) ≤ t} − t

∣∣∣∣∣→ 0.

Next, we merely check that the process (ξmt )t∈[0,1] is a martingale (conditionally on (Yi)i) with
quadratic variation

m−1
m∑

i=1

(1−Hi − π0)
21 {Φ(Yi) ≤ t} = π0π1m

−1
m∑

i=1

1 {Φ(Yi) ≤ t}+ op(1).

Since the latter converges to π0π1t (a.s.), Theorem VIII.3.11 in Jacod and Shiryaev (2003)
shows that (ξmt )t∈[0,1] converges in distribution in the Skorokhod space to

√
π0π1 Bt (con-

ditionally on (Yi)i), where Bt is a Brownian motion. Hence, unconditionally on Y , we have
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that the couples (ξmt − tξm1 , r′m(V ′
m(t)/m − t))t∈[a,b] converge in distribution to (

√
π0π1(Bt −

tB1), Z
′(t))t∈[a,b] where the processes B and Z ′ are independent. Finally, by using (33), we

get (FLT) with the rate rm and a limit Z(t) = θ1
√
π0π1(Bt− tB1)+π0θ2Z

′(t) with θ1, θ2 two
nonnegative numbers such that θ1 + θ2 > 0.

Appendix A: Auxiliary results

Lemma A.1. In the Gaussian setting, conditions (24), (Conv-alt) and (LLNdep) imply
(Consist).

Proof. From (LLNdep) and (24), Proposition 2.1 in Delattre and Roquain (2012) (for in-
stance) ensures that, for all t, Vm(t)/m converges in probability to π0t. Similarly, letting for i
with Hi = 1, p′i = Φ(Φ−1(pi)−µi) = Φ(Yi). We have that for all t, m−1

∑m
i=1Hi1 {p′i ≤ t} con-

verges to π1t. Let us now consider the case of Sm(t)/m = m−1
∑m

i=1Hi1
{
p′i ≤ Φ(Φ−1(t)− µi)

}
.

For this, we define the uniform random index I ∼ m−1
1

∑m
i=1Hiδi. By (Conv-alt), we have

µI  ν. Moreover, it is not difficult to see that, up to consider a subsequence, a.s., the joint
convergence (p′I , µI) U(0, 1)⊗ ν holds. Hence, Sm(t)/m is converging to π1F1(t).

Lemma A.2. Let us consider a step-up procedure with critical values (τk)1≤k≤m and a rejec-

tion threshold τℓ̂, where ℓ̂ is defined by (SU). Consider the function fm defined by (26) and

t̃ be defined by (31). Then the supremum into (31) is a maximum, that is, Ĝm(t̃) ≥ fm(t̃).
Furthermore, t̃ = τk̂.

Proof. The first point holds because fm is left-continuous. Next, since fm(t) ≤ k/m is equiv-
alent to τk ≥ t, we have

τk = max{t ∈ [0, 1] : fm(t) ≤ k/m}.

Hence, Ĝm(τk̂) ≥ k̂/m ≥ fm(τk̂) and τk̂ ≤ t̃. Conversely, let us prove t̃ ≤ τk̂. Since fm(t̃) ≤ 1,

we have t̃ ≤ τm. We can thus define

k̃ = min{k ∈ {0, . . . ,m} : t̃ ≤ τk}.

By definition of k̂, the result is shown if we prove Ĝm(τk̃) ≥ k̃/m. Assume k̃ ≥ 1 (otherwise

the result is trivial). By definition of k̃, τk̃−1 < t̃, which in turn implies fm(t̃) > (k̃−1)/m (by

definition of τk̃−1). This gives Ĝm(t̃) ≥ fm(t̃) > (k̃ − 1)/m. Hence, Ĝm(τk̃) ≥ Ĝm(t̃) ≥ k̃/m,
which concludes the proof.

Lemma A.3. Let γ ∈ (0, 1) and Vm be a process valued in D([0, 1]). Assume that for some
compact K ⊂ [0, 1], the following convergence holds

(Vm(t))t∈K  (V (t))t∈K ,

where V ∈ C(K), a.s., and where for all t ∈ K, V (t) as a continuous increasing c.d.f. Let

qm(t) = min{x : P(Vm(t) ≤ x) ≥ γ}.

Then the function sequence qm converge uniformly on K to the function

q(t) = min{x : P(V (t) ≤ x) ≥ γ}.
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Proof. Consider an arbitrary sequence tm ∈ K tending to t ∈ K and show that qm(tm) tends
to q(t). Up to consider a subsequence assume that qm(tm) is tending to some q⋆. Then we
have

γ ≤ lim
m

P(Vm(tm) ≤ qm(tm)) = P(V (t) ≤ q⋆),

because Vm(tm) = {Vm(tm) − Vm(t)} + Vm(t)
P−→ V (t) and the c.d.f. of V (t) is continuous.

Similarly, for all ε > 0,

γ ≥ lim
m

P(Vm(tm) ≤ qm(tm)− ε) = P(V (t) ≤ q⋆ − ε).

By making ε decreases to zero, we get P(V (t) ≤ q⋆) = γ which entails q⋆ = q(t) because the
e.d.f. of V (t) is one to one.
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