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Abstract: The control of a network of signalized intersections is considered. Previous works
proposed a feedback control belonging to the family of the so-called back-pressure controls that
ensures provably maximum stability given pre-specified routing probabilities. However, this
optimal back-pressure controller (BP*) suffers from two limitations. Controllers are assumed to
have knowledge of routing rates; and more importantly, to have access to the number of vehicles
queuing at a node for each possible routing decision. However, it is an idealistic assumption for
our application since vehicles (going straight, turning left/right, etc.) are all gathered in the
same lane apart from the proximity of the intersection and cameras can only give estimations of
the aggregated queue length. In this paper, we present a back-pressure traffic signal controller
(BP) that does not require routing rates, it requires only aggregated queue lengths estimation
(without direction information) and the measurement of queue lengths on the dedicated lanes
from the proximity of the intersections. This is a more realistic requirement compared to state-
of-the-art back-pressure traffic signal control. Optimal stability is proved for BP*. A theoretical
result on the Lyapunov drift in heavy load conditions under BP control is provided and tends
to indicate that BP should have good stability properties. Simulations confirm this and show
that BP stabilizes the queuing network in a significant part of the capacity region.

Keywords: road traffic, traffic lights, traffic control, transportation control, queuing theory,
back-pressure, network control.

1. INTRODUCTION

In today’s metropolitan transportation networks, traffic is
regulated by traffic light signals which alternate the right-
of-way of users (e.g., cars, public transport, pedestrians).
Congestion is a major problem resulting in a loss of
utility for all users due to delayed travel times over the
network Shepherd (1992). That is why it is of high interest
to find a control policy that can stabilize a network of
signalized intersections under the largest possible arrival
rates.

Under traffic light control, a particular set of feasible
simultaneous movements, called a phase, is decided for a
period of time Papageorgiou et al. (2003). Controlling
a traffic light consists of designing rules to decide which
phase to apply over time.

Pre-timed policies activate phases according to a time-
periodic pre-defined schedule, and the signal settings can
be fixed by optimization, assuming within-day static de-
mand Cascetta et al. (2006); Miller (1963); Gartner et al.
(1975). They are not efficient under changing arrival rates
which require adaptive control. Many major cities cur-

rently employ adaptive traffic signal control systems in-
cluding SCOOT Hunt et al. (1982), SCATS Lowrie (1990),
PRODYN Henry et al. (1984), RHODES Mirchandani and
Head (2001), OPAC Gartner (1983) or TUC Diakaki et al.
(2002). These systems update some control variables of a
configurable pre-timed policy on middle term, based on
traffic measures. Control variables may include phases,
splits, cycle times and offsets Papageorgiou et al. (2003).

More recently, feedback control algorithms that ensure
maximum stability have been proposed both under de-
terministic arrivals Varaiya (2013), and stochastic ar-
rivals Varaiya (2009); Wongpiromsarn et al. (2012). These
algorithms are based on the so-called back-pressure control
presented in the seminal paper Tassiulas and Ephremides
(1992) for applications in wireless communication net-
works and require real-time queues estimation. An optimal
back-pressure traffic signal controller (BP*) is presented in
Wongpiromsarn et al. (2012) and Varaiya (2009). They are
defined under different modelling assumptions but they
are algorithmically equivalent. The key benefit of back-
pressure control is that it can be completely distributed



over intersections, i.e., it requires only local information
and it is of O(1) complexity.

However, the strong assumptions of the model in Varaiya
(2009) (and also implicitly in Wongpiromsarn et al. (2012))
is that controllers are assumed to have a perfect knowledge
of routing rates and to have access to the number of
vehicles queuing at every node of the network for each
possible routing decision. However, in reality, apart from
the proximity of the intersection, vehicles (going straight,
turning left, turning right, etc.) are all gathered, and it
is difficult to estimate the number of vehicles queuing
for each direction (see Figure 1). Cameras can give good
estimations of the total number of vehicles queuing at a
given node, but not the direction of vehicles. However, it is
feasible to detect if there are some vehicles (or no vehicle)
that want to go to a given destination, if we assume the
existence of dedicated lanes from the proximity of the
intersection.

Dedicated lanes indicated by road markings

Fig. 1. Dedicated lanes for turning vehicles. The dedicated
lanes are indicated by road markings when vehicles
approach the intersection. Apart from the proximity
of the intersection, vehicles are all gathered. Note
that most of the time, in standard intersections,
dedicated lanes are required only for vehicles turning
left because the phase giving the right-of-way to
vehicles going straight also gives the right-of-way to
vehicles turning right. Note also that the positioning
of vehicles in the right dedicated lane is not always
respected which can significantly affect the traffic
through the intersection.

By contrast, the back-pressure control (BP) proposed in
this paper requires such vehicle detectors from the prox-
imity of the intersection and an estimation of the total
number of vehicles queuing at each node (gathering all
possible directions). It does not assume any knowledge of
routing rates. We evaluate the performance of BP with
regards to the optimal BP* control. The contribution of
the paper is to provide a back-pressure traffic signal con-
troller based on more realistic assumptions on the available
measurements than state-of-the-art back-pressure traffic
signal control and to show in simulations that stability is
conserved in a significant part of the capacity region.

The paper is organized as follows. Section 2 describes
the queuing network model. Sections 3 and 4 are mainly
expository: Section 3 presents the notion of capacity region
and Section 4 describes BP* highlighting its stability-
optimality. The contributions of the paper are presented
in Section 5 and 6. Section 5 exhibits BP and a theoretical
result on the Lyapunov drift that tends to indicate that

it should have good stability properties. The simulations
of Section 6 confirm this and show that BP stabilizes the
network in a significant part of the capacity region. Section
7 concludes the paper and opens perspectives.

2. MODEL

2.1 The time slot

As standard in queuing network control, time is slotted,
and each time slot maps to a certain period of time during
which a control is applied. It is convenient to use a fixed
pre-defined time slot length, whose size corresponds to
the minimal duration of a phase. When the time slot
size is fixed, the traffic signal control problem consists of
computing at the beginning of each time slot t the phase
to apply during slot t.

2.2 Queuing network topology

The network of intersections is modelled as a directed
graph of nodes (Na)a∈N and links (Lj)j∈L. The graph is
referred as the network graph. Nodes represent lanes with
queuing vehicles, and links enable transfers from node to
node. This is a standard queuing network model.
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Fig. 2. A junction with 4 incoming nodes and 4 outgoing
nodes which corresponds to the intersection depicted
in Figure 3.

A key point for our application in traffic signal control is
that it is a multiple queues one server queuing network.
Every signalized intersection is modelled as a server man-
aging a junction which consists of set of links. Junctions
(Ji)i∈J are supposed to form a partition of links. For every
junction J , I(J) and O(J) denote respectively the inputs
and the outputs of J . Inputs (resp.outputs) of junction
J are nodes N such that there exists a link L ∈ J
pointing from (resp. to) N . The reader should consider
the introduction of junctions in the model as an overlay of
the queuing network model.

For the sake of simplicity, we do not represent links in the
queuing network representation of Figure 2 and we assume
that at every junction, there exists a link from any input



to any output. If the link does not exist physically, the
flow through this link will be constrained to zero.

Every server maintains an internal queue for every in-
put/output, and server work enables to transfer vehicles
from an input to an output of the junction. Due to routing
of vehicles, the internal queue at node Na is a vector Qa
and Qab(t) denotes the number of vehicles in the queue
of node Na entering Nb upon leaving Na. The aggregated
queue length Qa(t) =

∑
bQab(t) denotes the total number

of vehicles at node Na considering all possible routings
after exiting Na. In this paper, queues are supposed to
have infinite capacities: there is no blocking (see Gregoire
et al. (2013b) for an adaptation of back-pressure traffic
signal control in the context of finite capacities).

2.3 Phase-based control

At every time slot t, servers work, resulting in vehicles
transfers. It is convenient to consider the service matrix µ
defined below:

Definition 1. (Service rate, Flow). For all a, b ∈ N ,

• the service rate µab represents the transmission rate
offered by servers to transfer vehicles from Na to Nb,
i.e. the maximum number of vehicles transferred from
Na to Nb during the next time slot;
• the endogenous flow variable fab represents the actual

number of vehicles leaving Na and entering Nb.

Since the number of vehicles transferred is less than or
equal to the transmission rate offered by the servers, the
following inequality holds:

fab ≤ µab. (1)

Only the vehicles which are currently at a node at the
beginning of time slot t can be transferred from that node
to another node during slot t.

The definition below applies to a rate matrix g of any kind,
hence both to the service matrix µ and and the flow matrix
f .

Definition 2. (Input rate, Output rate). Given a matrix
g, for all a ∈ N , the input rate gina and the output rate
gouta with regards to Na are defined as follows:

gina =
∑
b

gba, (2)

gouta =
∑
c

gac. (3)

Under phase-based control, service rates are set by acti-
vating a given signal phase pi at each junction Ji from a
predefined finite set of feasible phases Pi at every time slot
t. Each global phase p = (pi)i∈J ∈ P results in a different
service µ(p) where P =

∏
i∈J Pi denotes the set of feasible

global phases.

Assumption 1. (Phase-controlled service). If Na ∈ I(Ji)
and Nb ∈ O(Ji), the service rate µab satisfies:

µab ∈ {µab(pi) : pi ∈ Pi} . (4)

The service matrix µ satisfies:

µ ∈ {µ(p) : p ∈ P} (5)
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Fig. 3. A typical set of feasible phases at a junction. For
example, supposing that service rates equal 0 or 1, the
non zero service rates for phase (a) are µ31, µ36, µ24

and µ27

The abuse of notation in the above assumption is justified
by the fact that the service rate depends only on the
applied phase p, i.e., can also be considered as a function
of p. Figure 3 depicts the 4 typical phases of a 4 inputs/4
outputs junction.

In this paper, for the sake of simplicity, we do not take
into account any exogenous variable z which would affect
the flow matrix associated to each phase, yielding a service
matrix µ(z, p). However, as proved in previous works Neely
et al. (2005), back-pressure properties can be extended to
this case. As a result, we assume that for each phase the
service rate from one node to another node is zero or equals
the saturation rate:

Assumption 2. (Binary service rates). For all a, b ∈ N ,
there exists sab, the saturation rate from Na to Nb, such
that for all p ∈ P, µab(p) ∈ {0, sab}.

Finally, we make the following assumption which enables
to switch off the service from Na to Nb independently from
other service rates:

Assumption 3. (Service rates independence). For all phase
p ∈ P and for all a, b ∈ N , there exists a phase p̃1 ∈ P
such that µab(p̃1) = 0 and for all (c, d) 6= (a, b), µcd(p̃1) =
µcd(p).

2.4 Exogenous arrivals and routing model

We assume that there are exogenous arrivals at every node
of the network. Let Aa(t) denote the number of vehicles
that exogenously arrive at node Na during slot t.

Definition 3. (Rate convergent process). A process X(t)
is rate convergent with rate x if:

• limt→+∞
1
T

∑T−1
t=0 X(t) = x

• For any δ > 0, there exists an interval size T such that
for any initial time t0 and regardless of past history,



the following condition holds: |E{ 1
T

∑T−1
t=0 X(t)} −

x| ≤ δ
Assumption 4. (Rate convergent arrival process). For all
a ∈ N , the process Aa(t) is rate convergent with rate
λa ≥ 0. For all t, Aa(t) is independent from {Q(τ)}τ≤t.

Under rate convergence assumption, λa represents the
long-term arrival rate at node Na.

When a quantity of vehicles arrives at node Na ∈ I(Ji)
during slot t, exogenously and endogenously, it is split
and added into queues Qab, b ∈ O(Ji), according to an

exogenous routing process R
(t)
ab , defined for all a, b ∈ N .

Assumption 5. (Rate convergent routing process). The ar-
rival process and the routing process are independent,

and for all t, R
(t)
ab is independent from {Q(τ)}τ≤t. R

(t)
ab

takes an integer, returns an integer, and for X ∈ N,∑
bR

(t)
ab (X) ≤ X. For all process X(t) such that for all

t, R
(t)
ab is independent from {X(τ)}τ≤t, there exists a rate

rab ≥ 0 for all a, b ∈ N such that R
(t)
ab (X(t)) − rabX(t) is

rate convergent with rate 0.

As a consequence of the above assumptions:∑
b

rab ≤ 1 (6)

Exits are modelled by assuming that the routing matrix is
non-conservative, i.e.,

∑
b rab ≤ 1. Note that 1 −

∑
b rab

represents the exit rate of vehicles entering node Na.
One could consider an additional node ω representing the
external world playing the role of sink of the exit flow from
Na at rate raω = 1−

∑
b rab.

2.5 Network dynamics

The latter routing assumption closes our model, and the
dynamics of the network is now fully described. Since
service rates depend only on the phase applied at every
junction, controlling the network consists of controlling the
phase applied at every junction.

Definition 4. (Control). A control p(t) for the queuing
network returns the phase to apply at every junction
during slot t. If p(t) can be expressed as a function of
Q(t), p(t) is a feedback control.

The network dynamics under control p follows:

Qab(t+ 1) = Qab(t) +R
(t)
ab

(
Aa(t) + f ina (t)

)
−fab(t) (7)

Qab(t+ 1) ≤ max [0, Qab(t)− µab (p(t))]

+R
(t)
ab

[
Aa(t) + µa

in (p(t))
]

(8)

An inequality holds instead of an equality because the
number of vehicles transferred is less or equal to the
transmission rate offered by the servers.

If p(t) is a feedback control, i.e. a function of Q(t), the
process Q(t) is a Markov chain with long-term stationary
transition probabilities, which depend on the feedback
control.

Note that feedback controllers may differ in the informa-
tion required on Q(t). For example, one feedback controller
may require only aggregated queues, p(t) being in fact a
function of (

∑
bQab(t))a∈N . By contrast, another feedback

controller as BP of Section 4 may require the full knowl-
edge of Q(t), p(t) being a function of all (Qab(t))a,b∈N . It
is a key characteristic of the feedback controller because
it determines the measurements that are assumed to be
available.

3. CHARACTERIZATION OF THE CAPACITY
REGION

3.1 Stability definition

A key property of queuing systems is stability, defined
below:

Definition 5. (Stability). The queuing network is stable if
each individual queue U satisfies:

lim sup
T→+∞

E

{
1

T

T−1∑
t=0

1U(t)>V

}
→ 0 as V → +∞ (9)

This definition of stability is standard and is applicable
to networks with arbitrary inputs and control laws Neely
(2003).

3.2 The capacity region

A remarkable property of queuing networks as modelled in
Section 2 is that it is possible to define a capacity region
which describes the set of arrivals rates vectors that can
be stably handled by the network.

Definition 6. (Capacity region Neely (2003)). Given a rout-
ing matrix r, the capacity region Λr is the closure of the
set of all arrival rate vectors λ that can be stabilized by
some control.

The following theorem provides a characterization of the
capacity region in our particular model:

Theorem 1. (Capacity region characterisation). Given a rout-
ing matrix r, the capacity region Λr is the set of arrival
vectors λ such that there exists g ∈ Γ satisfying:

∀a, b ∈ N , rab(λa + gina ) ≤ gab (10)

where Γ is the set of feasible long-term endogenous service
rates, defined below:

Γ = Convex Hull{µ(p) : p ∈ P} (11)

Moreover,

• λ ∈ Λr is a necessary condition for network stability,
considering all possible controls (including those that
have perfect knowledge of future events)

• λ ∈ int(Λr) is a sufficient condition for the network
to be stabilized by a control that does not have
knowledge of future events.

Proof. Due to space limitations, the full proof is not
provided in this paper and is available in the supplemen-
tary material Gregoire et al. (2013c). It is based on flow
conservation that ensures the existence of rate-convergent
sample paths fab(t) verifying Equation 10 in the long-term.



4. BP* CONTROLLER

4.1 The controller

In the following, we expose BP* signal control. It is an ex-
tension of the algorithm proposed in Varaiya (2009) where
internal/exit links are not differentiated, because exits may
occur at any link of the network. It is quite equivalent
to the back-pressure controller of Wongpiromsarn et al.
(2012), assuming the nodes carry direction information.
Loosely speaking, the idea of back-pressure control is to
compute pressure at every node based on node occupancy
and to open flows which have a high input pressure and a
low output pressure, like opening a tap.

Algorithm 1 BP* control

Require:
Queues lengths matrix Q(t),
Pressure functions Pab(Qab) for all a, b ∈ N ,
Routing matrix r,
Phase selection policy φ in case of equality.

5: function BP*
for i ∈ J do

for a ∈ I(Ji), b ∈ O(Ji) do
Πab(t)← Pab [Qab(t)]

end for
10: for a ∈ I(Ji), b ∈ O(Ji) do

Wab(t)← max (Πab(t)−
∑
c rbcΠbc(t), 0)

end for
p?i (t)← arg max

pi∈Pi

∑
a∈I(Ji),b∈O(Ji)

Wab(t)µab(pi)

end for
15: return Phase p?(t) to apply in time slot t

end function

Algorithm 1 is a generic version of back-pressure. Indeed, it
does not specify neither pressure functions, nor the policy
φ that decides which phase to select at the arg max of Line
13 when an equality holds. For example, the policy φrandom

consists of selecting randomly any phase which maximizes
the weighted sum.

Remark 1. In Wongpiromsarn et al. (2012), assuming that
nodes (”links” in the terminology of Wongpiromsarn et al.
(2012)) carry direction information, they can be indexed
by (a, b). Then, the weight associated to a ”movement” (as
defined in the terminology of Wongpiromsarn et al. (2012))
from Nab to Nbc for a phase p is (Qab−Qbc)ξ(Nab, Nbc, p),
where ξ(Nab, Nbc, p) is the estimation of the flow of vehicles
from Nab to Nbc if phase p is activated as defined in
Wongpiromsarn et al. (2012). If we assume that when
the phase p is activated, the flow of vehicles from Nab
to Nbc is estimated to be rbcsab, the weight associated to
this ”movement” is rbcsab(Qab − Qbc). Hence, the weight
associated to the ”movements” from Nab to all Nbc is∑
c rbcsab(Qab−Qbc). As a result, if

∑
c rbc = 1, we obtain

exactly (Qab−
∑
c rbcQbc)sab. This justifies the equivalence

of the two controllers under the assumption that links
carry direction information and the flow ξ(Nab, Nbc, p) is
given by rbcsab for all ab, bc.

4.2 Optimal stability

The following theorem states that under linear pressure
functions with strictly positive slope, BP* as defined by

Algorithm 1 is optimal in terms of stability. It is an
extension of the results of Varaiya (2009), because vehi-
cles can enter/exit the network at any node, there is no
distinction between exit nodes and internal nodes. More-
over, pressure functions in Varaiya (2009); Wongpiromsarn
et al. (2012) all have the same slope: Pab(Qab) = Qab.
In this paper, pressure functions are just assumed to be
linear with strictly positive slope, but the slopes can be
different: Pab(Qab) = θabQab, θab > 0. Note that the fact
that different slopes θab can be used while conserving the
optimality guarantee has already been proved for back-
pressure control with a multiple-commodity queuing net-
work in the context of a wireless communication network
Neely (2003). As noticed by the authors, this enables to
give priority to some queues.

Theorem 2. (Back-pressure optimality). Assume that the
phase selection policy φ in case of equality always priv-
ileges phases p such that for all a, b ∈ P, µab(p) = 0 if
Wab = 0 and pressure functions are linear with strictly
positive slopes. Then, BP* as defined by Algorithm 1 is
stability-optimal.

Proof. Due to space limitations, the full proof is not pro-
vided in this paper and is available in the supplementary
material Gregoire et al. (2013c). Stability is proved using
the Lyapunov function V (t) = V(Q(t)) =

∑
a,b θabQab(t)

2.
The existence of B, η > 0 such that:

E{V (t + 1) − V (t)|Q(t)} ≤ B − η
∑
a,b

Qab(t), (12)

enables to conclude stability for the queuing network using
the sufficient condition proved in Neely (2003).

5. BP CONTROLLER

5.1 The controller

Back-pressure control proposed in Section 4 requires com-
plete knowledge of the queues lengths matrix Q(t) and the
routing rates. For our application, a complete knowledge
of Q(t) is not realistic because dedicated lanes for turning
vehicles are only from the proximity of the junction. Far-
ther, all vehicles are gathered and the controller does not
have access to the direction of every vehicle in the absence
of vehicle-to-infrastructure communications.

That is why we propose in the present paper a controller
that uses only the aggregated queues lengths Qa(t) =∑
bQab(t), i.e. a queue length without direction informa-

tion. It is defined by Algorithm 2. It computes the phase to
apply at every time slot without requiring neither routing
rates nor complete knowledge of queues lengths matrix
Q(t) and takes as inputs the aggregated queues lengths
Qa(t) =

∑
bQab(t). However, it still requires vehicle de-

tectors variables dab(t) ∈ [0, 1] defined below:

dab(t) = min(Qab(t)/sab, 1) (13)

The variable dab(t) is easier to measure than Qab(t)
because it only requires the knowledge of Qab(t) in the
range [0, sab], i.e. from the proximity of the junction.



Algorithm 2 BP control

Require:
Queues lengths Qa(t),
Pressure functions Pa(Qa),
Vehicle detectors variables dab(t),
Phase selection policy φ in case of equality.

5: function BP
for i ∈ J do

for a ∈ I(Ji) ∪ O(Ji) do
Πa(t)← Pa [Qa(t)]

end for
10: for a ∈ I(Ji), b ∈ O(Ji) do

Wab(t)← dab(t) max (Πa(t)−Πb(t), 0)
end for
p?i (t)← arg max

pi∈Pi

∑
a∈I(Ji),b∈O(Ji)

Wab(t)µab(pi)

end for
15: return Phase p?(t) to apply in time slot t

end function

5.2 Behaviour of the Lyapunov drift under heavy load
conditions

Let consider the Lyapunov function V(Q) and its evolution
through time V (t) defined below:

V (t) = V(Q(t)) =
∑
a

θaQa(t)2 =
∑
a

θa(
∑
b

Qab(t))
2

(14)

Let define heavy load conditions at time slot t as states of
the network such that if the right-of-way is given to any
individual queue, it can be emptied at saturation flow, i.e.
there are enough vehicles in the individual queue to ensure
saturation:

∀a, b ∈ N , Qab(t) ≥ sab (15)

The following theorem proves that under heavy load con-
ditions the Lyapunov drift respects the sufficient condition
for network stability if λ+ ε ∈ Λr, for sufficiently large ε.

Theorem 3. (Lyapunov drift under heavy load conditions).
Assume λ + ε ∈ Λr, BP control as defined in Algorithm
2 is applied and the network is in heavy load conditions,
then there exists B, η > 0 such that :

E{V (t+ 1)− V (t) | Q(t)} ≤ B − η
∑
a

Qa(t) (16)

for sufficiently large ε.

Proof. Due to space limitations, the full proof is not pro-
vided in this paper and is available in the supplementary
material Gregoire et al. (2013c). The key point in the proof
is that summing Equation 7 over all b gives:

Qa(t+ 1)−Qa(t) =
∑
b

(
R

(t)
ab

(
Aa(t) + f ina (t)

)
− fab(t)

)
(17)

The above theorem tends to indicate that the network
should have good stability properties because the condi-
tion for stability is verified in heavy load conditions for λ

sufficiently interior to the capacity region. Unfortunately it
does not enable to conclude that the network is stable in a
significant part of the capacity region. Indeed, heavy load
conditions can not be guaranteed at all time, and when an
individual queue Qab is below the saturation flow sab, it is
a constraint for the emptying of Qa, that can unstabilize
the queuing network. Hence, the characterization of the
stability region of the queuing network under BP control
with the modelling assumptions presented in Section 2
is still a challenging problem. That is why we propose
to implement the two back-pressure controllers and to
compare their behaviour. The results of the simulations
are presented in the next section.

6. SIMULATIONS

6.1 The simulation platform

The model and the algorithms presented in this paper have
been implemented into a simulator coded in Java, which
main specificities are described below:

• It simulates a grid network, as the one depicted in
Figure 4. Every junction has 4 inputs, 4 outputs, and
4 feasible phases as depicted in Figure 3.

• Every individual flow allowed by phases of Figure 3
equals 10.

• Vehicles are generated at each node Na at an arrival
rate λa that can be set as desired. The arrival process
generates individual arrivals as well as batches of 10
vehicles. The routing decisions at each junction are
independent and identically distributed with fixed
routing rates that are set as desired at the beginning
of the simulation.

Fig. 4. The 21 × 21 grid network used for the presented
simulations.

6.2 Behaviour of the two back-pressure controllers

Simulations have been carried out for the grid network
of Figure 4. First of all, we present simulations results in
the case of a network that has been configured with the
same arrival rates and routing rates at every node of the
network.

Simulation results for a particular network and particular
arrival/routing rates The numerical results of Figure 5
correspond to the following parameters:



• Turn left probability when a vehicle enters a node:
0.2,
• Turn right probability when a vehicle enters a node:

0.2,
• Go straight probability when a vehicle enters a node:

0.5,
• Exit probability when a vehicle enters a node: 0.1,
• Probability of a batch: 0.05,
• Pressure functions Pa(Qa) = Qa and Pab(Qab) = Qab

(θa = θab = 1),
• Vehicles are generated at every node with the same

arrival rate λ that can be set as desired at the
beginning of the simulation.

Experiments are carried out at height different arrival
rates: λ = 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.9 vehicles
per time slot. Figure 5 depicts the global queue of the
network over time, i.e.

∑
aQa(t) =

∑
a,bQab(t), for the

height arrival rates, under BP* control and under BP
control. One can observe in Figure 5 that under BP*
control, the queuing network is stabilized for λ ≤ 0.7
and gets unstable from λ = 0.75. Under BP control, it is
stabilized for λ ≤ 0.65 and gets unstable from λ = 0.7.
First of all, it proves that as expected, BP control is
not stability-optimal. However, in the particular setting of
this experiment, (uniform arrivals/routing rates and grid
network), the performance of BP and BP* are very close,
and the optimality gap is around 0.05/0.7 ' 10%, i.e. a
performance of 90%.

However, such a uniform network is not realistic and
the results of the next paragraph try to evaluate the
performance of BP with regards to BP* with less specific
routing/arrival parameters.

Evaluation of BP with regards to BP* on several samples
of parameters In the following simulations, the rout-
ing/arrival process parameters are not uniform over nodes
any more. 10 samples of parameters have been generated.
For each sample, the routing/arrival rates are generated
as follows:

• For each direction (straight, left, right), (uniformly)
random values between 0 and 1 are generated, say
ys, yl, yr;
• a (uniformly) random value between 0 and 0.1 is

generated for exits, say yω;
• and the routing rates are set by normalization of the

generated real values, i.e. for the left direction for
example, the routing rate is yl/(ys + yl + yr + yω).
• The arrivals rates are set by generating a (uniformly)

random value between 0 and 1 for every node, say λ0a.
• At the beginning of the simulation, a parametrizable

scaling value x enables to fix the actual arrival rate
of the current simulation: λa = xλ0a, where x has the
same value over nodes.

The value of 0.1 for the scale of exits is quite arbitrary and,
loosely speaking, fixes the averaged number of travelled
nodes before exiting the network.

Note that the routing rates and the values λ0a are fixed
for a given sample. However, the value of λa depends on
the value of x set at the beginning of the simulation. The
parameter x enables to define a performance for BP with

Fig. 5. Evolution of the global queue of the network
over time for height arrival rates. Comparison of the
behaviour of the network under BP/BP* control.

regards to BP* for a given sample. We let x vary and we
observe the maximum value of x such that the network is
stable under BP versus BP* (say x∗max for BP* and xBP

max
for BP). We define the performance of BP with regards
to BP*, or more shortly the performance of BP (because
BP* is optimal), as follows:

performance(BP) = xBP
max/x

∗
max (18)

As for previously presented simulations, the probability
of a batch is 0.05 and the pressure functions are linear
with slope 1. Figure 6 depicts the performance obtained for
the 10 samples, the average performance and the standard
deviation. The average performance is around 80%, i.e.
the optimality gap is about 20%. The simulation results
prove that the performance of BP is affected by the rout-
ing/arrival rates. Hence, the distribution (over samples) of
the performance would be different for a different distribu-
tion of routing/arrival rates. Nevertheless, in the particular
setting of the experiment, the average optimality gap of
20% seems again a low price to pay with regards to the
much more realistic assumptions on the measurements
available to compute the control.

However, these promising results can not be extended to
any kind of network of intersections and further simula-
tions with a more general structure of network should
be carried out to confirm the closeness of performance.



Fig. 6. Performance distribution for ten samples. The point
above the axis represents the average performance
over samples and the horizontal bar is the standard
deviation.

We are currently implementing our algorithms in a traffic
simulator in order to test the performance of BP control
with real traffic data of the city of Singapore.

7. CONCLUSION AND PERSPECTIVES

The simulation results of this paper prove that BP is not
optimal but tend to indicate that it stabilizes the queuing
network in a significant part of the capacity region. The
benefits of BP originate from the more realistic assump-
tions on queues measurements. Computing the phase to
apply only requires aggregated queues lengths estimation
that can be provided by cameras, and vehicle detectors
from the proximity of the intersections to detect the pres-
ence of vehicles in dedicated lanes. The optimality gap,
around 20% in the particular setting of the experiments,
seems a low price to pay for the benefits of relaxed as-
sumptions on the available measurements.

However, simulations have been conducted in a grid net-
work, which is a particular structure, and with synthetic
data which can strongly differ from real traffic data. To
confirm the closeness of performance, simulations should
be carried out in a more advanced traffic network simula-
tor.

Further work should also focus on the analytical deter-
mination of the stability region of BP. The theoretical
result provided in this paper tends to indicate that BP
should have good stability properties, because the Lya-
punov drift respects the condition for stability in heavy
load conditions. However, this result does not prove the
stability of the queuing network, even in a subset of the
capacity region. Determining a set (ideally the maximal
set) of arrival rates vectors that can be stabilized by BP
control stays a challenging problem.

Finally, the emergence of intelligent vehicles opens avenues
for vehicle-to-infrastructure communications to enhance
traffic signal control. The works of Dresner and Stone
(2008); Kowshik et al. (2011); Mehani and de La Fortelle
(2007); Gregoire et al. (2013a) proved that cars automa-
tion enables much more precise vehicles coordination re-
sulting in decreased travel times. However, these works
do not study the question of stability under given arrival
rates. With vehicle-to-infrastructure communication, the
controllers can have access to much more information, and
in particular, the destination node of every vehicle. As a
result, back-pressure control with a multiple-commodity
queuing network model, as proposed in Neely (2003) in
the context of wireless communication networks, should
be investigated.
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