
HAL Id: hal-00904998
https://hal.science/hal-00904998

Submitted on 24 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Observation of large-scale multi-agent based simulations
Gildas Morvan, Alexandre Veremme, Daniel Dupont

To cite this version:
Gildas Morvan, Alexandre Veremme, Daniel Dupont. Observation of large-scale multi-agent based
simulations. MABS 2011, May 2011, Taipei, Taiwan. pp.103-112, �10.1007/978-3-642-28400-7_8�.
�hal-00904998�

https://hal.science/hal-00904998
https://hal.archives-ouvertes.fr

Observation of large-scale multi-agent based
simulations

Gildas Morvan1,2 Alexandre Veremme1,3 Daniel Dupont1,3

1Univ Lille Nord de France, F-59000 Lille, France
2UArtois, LGI2A, F-62400, Béthune, France

3HEI, F-59046, Lille, France

http://www.lgi2a.univ-artois.fr/~morvan/

gildas.morvan@univ-artois.fr

Abstract

The computational cost of large-scale multi-agent based simulations (MABS) can be ex-
tremely important, especially if simulations have to be monitored for validation purposes.
In this paper, two methods, based on self-observation and statistical survey theory, are
introduced in order to optimize the computation of observations in MABS. An empirical
comparison of the computational cost of these methods is performed on a toy problem.

Keywords: large-scale multi-agent based simulations, observation methods, scalability

1 Introduction
Theoretical and practical advances in the field of multi-agent based simulations (MABS) allow
modelers to simulate very complex systems to solve real world problems. However the anal-
ysis and validation of simulations remain engineering problems that do not have "turnkey"
solutions. Thus, MABS users conducting such tasks face two main issues:

1. define validation metrics for the simulation,

2. compute efficiently the metrics.

The first issue is generally solved by constructing a set of ad-hoc qualitative or quantitative
rules on simulation properties. To evaluate these rules, it is then mandatory to observe the
corresponding simulation properties and thus to consider the second issue. A distinctive char-
acteristic of MABS is that global simulation properties are not necessary directly observable:
they may need to be computed from local agent properties. Fortunately, most of modern
MABS platforms come with observation frameworks and toolboxes. Basically, three types of
observation methods are generally available (Railsback et al., 2006):

1

ar
X

iv
:1

31
1.

07
58

v1
 [

cs
.M

A
]

 4
 N

ov
 2

01
3

http://www.lgi2a.univ-artois.fr/~morvan/
gildas.morvan@univ-artois.fr

1. interactive observation: users select observed properties during simulations, e.g., using
a point and click interface,

2. brute-force direct observation: simulation agents sharing a given property are moni-
tored; agent properties are then aggregated by a so-called observer agent that computes
the observation (fig. 1),

3. indirect observation: the observed property is inferred from the observable conse-
quences of agent actions, e.g., in the environment.

observer observation

simulation agents

Figure 1: Brute-force direct observation method

While the first method is clearly unadapted to the observation of large-scale or batch simu-
lations, the second has an important computational cost. This issue is illustrated with a simple
case study inspired by "StupidModel" (Railsback et al., 2005): N agents move randomly in a
two dimensional environment E discretized into 100 ·100 square cells with Moore neighbour-
hood during 1000 steps. An area Z ⊆ E is defined. The number of agents Z in the area Z is
observed at each simulation step. This simulation is implemented on the MadKit/TurtleKit
platform1 (Michel et al., 2005). Figure 2 shows the CPU times needed to compute unobserved
and observed simulations on a Dell Precision 650 workstation2, using indirect and brute-force
direct observation methods, for the given expected value E(Z) = N/5, as a function of the
number of simulation agents N .

This work is based on existing implementations (by MadKit/TurtleKit and MASON) of
the direct observation method. Thus, an empirical computational complexity metric, i.e., the
CPU time needed to compute simulations, is used. This metric, denoted C , depends, in our
case study, on the number of simulation agents, N , and on the expected value of the cardinal
of the subset of simulation agents computed by f i l t e r , E(Z).

These results show that, in this case, indirect observation has a minor impact on the
computational cost of the simulations. Kaminka et al. also note that this method is not
intrusive: simulation agents do not have to be modified or accessed during the observation
process (Kaminka et al., 2002). However, Wilkins et al. underline that the applicability of
this method is limited: the observed property might not be inferred (Wilkins et al., 2003); it
is often true in complex, i.e., in most of the real world, cases. Thus, direct observation often
remains the only available option.

The brute-force direct observation method is, for this particular and very simple toy-
problem, linear in the number of simulation agents3, i.e., C (ob s) ∝ N , while the model is
exponential, i.e., C (mod e l) ∝ αN ,α > 1. However, complex simulations generally involve
non-linear observation problems (Veremme et al., 2010). Thus, improving direct observation
appears to be a good lead to improve the efficiency of large-scale complex MABS.

1All the simulations and observation methods described in this paper have also been implemented on the MA-
SON platform (Luke et al., 2005), leading to similar results.

2CPU: 2 × 3.06 GHz Intel XeonTM, RAM: 4 × 1 GB. Full specification:
http://www.dell.com/downloads/emea/products/precn/precn_650_uk.pdf.
All the results presented in this paper have been computed by this machine.

3Authors would like to thank anonymous reviewers for raising this issue.

2

http://www.dell.com/downloads/emea/products/precn/precn_650_uk.pdf

1

10

100

1000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
PU

tim
e

(s)

Number of agents

no observation
indirect observation

brute-force observation

Figure 2: CPU times (log scale) needed to compute observed and unobserved simulations for
E(Z) =N/5

In this paper, two non-brute-force direct observation methods, based on self-observation
and statistical survey theory are introduced. An empirical comparison of the computational
cost of these methods is performed and discussed on the presented case study.

2 Filtrated direct observation of MABS
Basically, there are two ways to compute a direct observation:

1. a set of agentsA (generally all the simulation agents that share the properties that have
to be observed), statically defined, is probed by an observer agent,

2. a subsetA ′ ofA , computed at runtime, is probed (fig. 3).

ob s ′ observation

AA ′

f i l t e r

Figure 3: Filtrated direct observation

Formally, we consider an observation function

ob s : 2A →I , (1)

where A is a set of agents and I represents the values that can be observed. We define
A ′ ⊆A as the minimal subset of agents, dynamically defined by a set of constraints (e.g., in
the case study, a unique constraint related to the position of the agent), needed to compute
ob s correctly. In other words,A ′ is a set of agents such as

ob s ′(A ′) = ob s(A) and
@A ′′ ⊂A ′ | ob s ′(A ′′) = ob s(A), (2)

3

where ob s ′ is a "simplified" observation function, i.e., that can be computed faster than ob s
because it is specific toA ′:

∀ A ′′ 6=A ′ ⊆A , ob s ′(A ′) = ob s(A ′). (3)

Thus, in the case study, the observation function ob s(A) observes the position of each
agent in A to count only the ones that are situated in Z , while an observation function
ob s ′(A ′) would only returns |A ′| because the agents ofA ′ are by definition situated in Z .

To use ob s ′, it is necessary to consider a filtering function f i l t e r able to identify the
subsetA ′ (in the case study, this subset only contains the agents situated in Z):

f i l t e r : 2A → 2A | ∀A ′,A ′′ ⊆A ,
if f i l t e r (A ′) =A ′′, thenA ′′ ⊆A ′. (4)

The goal is to define and implement a filtering function, such as the cost of the observation
computation is reduced, i.e.,

C (ob s ′(f i l t e r (A)))<C (ob s(A)). (5)

In the following section, two different implementations of this idea are presented.

3 Implementation of filtrated direct observation methods

3.1 Self-observation
The core idea of this method is to implement the filtering function in the simulation agents
themselves. Then, using an organizational structure, denoted group, allows to identify the set
of agents that has to be observed. Thus, a group is defined as the set of agents that contains the
sufficient and necessary information to compute an observation. In other words, a group defines,
for a given observation, the minimal set of agents that is mandatory to compute it. Agents
observe themselves to determine if they have to join, leave or stay in a group. A filtering
function is defined by a set of rules R, that specifies the conditions under which an agent has
to be observed, evaluated at each simulation step (fig. 4).

Thus, in our case study, we consider a group G, that contains the agents situated in Z .
The following set of rules, defined here in natural language, is associated to each agent:

• if the agent is in Z and does not belong to G, then the agent joins G,

• if the agent is not in Z and belongs to G, then the agent leaves G.

The observation system (ob s ′) only probes the agents of G. Figure 5 presents the CPU time
difference between simulations observed with self-observation and brute-force methods as a
function of the number of agents in the simulation, N , and the mean rate of observed agents,
E(Z)/N . The dashed line represents the isoline 0, i.e., the conditions for which there is no
difference between the two methods. Thus, the area below this line maps the cases for which
self-observation is faster.

3.2 Statistical survey
If the equation 2 is rewritten as follows:

ob s(A ′)' ob s(A) and
@A ′′ ⊂A ′ | ob s(A ′′)' ob s(A), (6)

i.e., if imprecise observations are authorized, it becomes possible to filter the observed pop-
ulation on a statistical basis. As a result, we do not consider a specific observation function
anymore as the set of agents returned by the filtering function is not necessary the set of agents
that contains the sufficient and necessary information to compute the observation.

4

ob s ′

f i l t e r : set of rules R

group G

organisational structures

observation

A

if R=>

Figure 4: The self-observation based method

Statistical survey theory4 provides a formal ground to determine optimal sampling method
and size of observed population sample.

Let once again consider our case study; we denote n the size of the observed population,
randomly sampled at each simulation step. An estimator of Z , denoted Ẑ is constructed from
this sample. Many estimator definitions can be found in the literature. In this case, as the pop-
ulation of simulation agents is homogeneous with respect to E(Z) (all the agents have the same
probability to be inZ), n is determined with the Horvitz-Thompson estimator (Horvitz and
Thompson, 1952) :

n−1 =
d 2

4S2 +
1
N

, (7)

where d is the maximal absolute error accepted for the observation and

S2 ' (1−
E(Z)

N
) ·

E(Z)
N

. (8)

Impact on the computational cost is shown in figure 6. The semantic is the same than
figure 5: the left area maps the cases for which the statistical survey based method is faster
than brute-force method.

3.3 Discussion
Figure 7 sums up the previous results qualitatively: conditions for which it is preferable to
use one method over another are identified. These results are specific to our case study and
its implementation; however, they highlight that the choice of an observation method is not
trivial and that the performance of the different available methods should be analyzed on a
set of simulations before using the model in a production context.

In a given context, knowing the map of the fastest observation methods allows to dy-
namically adapt the observation method to use the most efficient one. Impact of dynamic
adaptation of the observation method on CPU time is presented in the context of the first
example (cf. fig. 2) in figure 8.

4Proofs of statistical survey theory results presented in this paper will not be given. Interested readers may
refer to Bethlehem (2009) for an exhaustive presentation of sampling designs, estimator construction and variability
estimation methods.

5

0
5000

10000
15000

20000
0.2

0.4
0.6

0.8
1

-1000
-500

0
500

1000
1500
2000

C
PU

tim
e

(s)
0

N

E(Z)
N

Figure 5: CPU time difference between simulations observed with self-observation and brute-
force methods as a function of the number of agents in the simulation, N , and the mean rate
of observed agents, E(Z)/N (response surface estimation)

0
5000

10000
15000

20000
0.2

0.4
0.6

0.8
1

-1000
-800
-600
-400
-200

0
200

C
PU

tim
e

(s)

0

N

E(Z)
N

Figure 6: CPU time difference between simulations observed with statistical survey (d = 0.08)
and brute-force methods as a function of the number of agents in the simulation, N , and the
mean rate of observed agents, E(Z)/N (response surface estimation)

6

A

B

C

0 5000 10000 15000 20000
N

0

0.2

0.4

0.6

0.8

1

E(Z)
N

Figure 7: Map of the fastest observation methods (response surface estimation); A: self-
observation, B: brute-force, C: statistical survey (d = 0.008)

1

10

100

1000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

C
PU

tim
e

(s)

Number of agents

no observation
brute-force observation

filtrated observation

Figure 8: CPU times (log scale) needed to compute observed and unobserved simulations for
E(Z) =N/5, filtrated observation method being dynamically adapted to the context

7

4 Conclusion and perspectives
Observation methods presented in this paper allow, under specific conditions identified on
a simple case study, to reduce significantly the computational cost of MABS composed of
numerous agents. However, filtering is not the only option. Considering that imprecise
observations are acceptable, while a precision level is guaranteed, the optimal observation
frequency could be determined from the observed property variation. Roughly, the more the
variation, the more the observation frequency. However, MABS are used to simulate complex
systems with nonlinear dynamics. Dynamic adaptation of observation frequency could be an
interesting lead to reduce MABS computational cost.

Moreover, in the statistical survey based method (cf. section 3.2), we consider a simple
random sampling method, assuming the population is homogeneous. Real world MABS of-
ten involve heterogeneous agents for which the distribution of observed individual properties
is not uniform. Clever sampling methods, e.g., a stratified random sampling approach, should
then be used. In very complex cases, a machine learning system should be implemented to
analyze the impact of sampling method properties on the observation quality and compu-
tational cost, and determine the optimal ones. Similarly, the organizational model used to
implement the self-observation based method is very simple: the only organizational struc-
ture that is defined is the "group". Using a more comprehensive one, e.g., AGR (Ferber and
Gutknecht, 1998), would allow to consider very complex and fine observations.

From a methodological point of view, authors experimented that setting up an observa-
tion method, generally improves the design of simulation validity metrics. Indeed, it forces
simulation designers and users to explicitly define local and global observed properties and
their sufficient and necessary conditions of observability, and then the validity constraints
over them.

While this paper focuses on reducing the complexity of observation, many published
works concentrated on agent interactions by dynamically scaling up and down simulated en-
tities or using more structured interaction artifacts (Gaud et al., 2008; Parunak, 2012; Razavi
et al., 2011). Together, these approaches should lead to the conception of highly efficient
large-scale MABS simulators.

References
Bethlehem, J. (2009). Applied Survey Methods: A Statistical Perspective. Wiley.

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of orga-
nizations in multi-agent systems. In Proceedings of the Third International Conference on
Multi-Agent Systems (ICMAS98), pages 128–135.

Gaud, N., Galland, S., Gechter, F., Hilaire, V., and Koukam, A. (2008). Holonic multilevel
simulation of complex systems : Application to real-time pedestrians simulation in virtual
urban environment. Simulation Modelling Practice and Theory, 16:1659–1676.

Horvitz, D. and Thompson, D. (1952). A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47:663–685.

Kaminka, G., Pynadath, D., and Tambe, M. (2002). Monitoring teams by overhearing: A
multi-agent planrecognition approach. Journal of Artificial Intelligence, 17:83–135.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005). Mason: A multia-
gent simulation environment. Simulation, 81(7):517–527.

Michel, F., Beurier, G., and Ferber, J. (2005). The turtlekit simulation platform: Application
to complex systems. In Proceedings of the First International Conference on Signal-Image
Technology and Internet Based Systems, pages 122–127.

8

Parunak, H. (2012). Between agents and mean fields. In Multi-Agent-Based Simulation XII,
volume 7124 of Lecture Notes in Artificial Intelligence, pages 113–126. Springer.

Railsback, S., Lytinen, S., and Grimm, V. (2005). Stupidmodel and extensions: A tem-
plate and teaching tool for agent-based modeling platforms. http://condor.depaul.edu/ slyti-
nen/abm/StupidModelFormulation.pdf.

Railsback, S., Lytinen, S., and Jackson, S. (2006). Agent-based simulation platforms: Review
and development recommendations. Simulation, 82(9):609–623.

Razavi, S., Gaud, N., Mozayani, N., and Koukam, A. (2011). Multi-agent based simulations
using fast multipole method: application to large scale simulations of flocking dynamical
systems. Artificial Intelligence Review, 35(1):53–72.

Veremme, A., Lefevre, E., Morvan, G., and Jolly, D. (2010). Application of the belief function
theory to validate multi-agent based simulations. In First international workshop on the
theory of belief functions.

Wilkins, D., Lee, T., and Berry, P. (2003). Interactive execution monitoring of agent teams.
Journal of Artificial Intelligence Research, 18:217–261.

9

	1 Introduction
	2 Filtrated direct observation of MABS
	3 Implementation of filtrated direct observation methods
	3.1 Self-observation
	3.2 Statistical survey
	3.3 Discussion

	4 Conclusion and perspectives

