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In the Þrst part of these two papers, we extended the expected likelihood approach originally developed in the Gaussian case, to the broader class of complex elliptically symmetric (CES) distributions and complex angular central Gaussian (ACG) distributions. More precisely, we demonstrated that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual scatter matrix does not depend on the latter: it only depends on the density generator for the CES distribution and is distribution-free in the case of ACG distributed data, i.e., it only depends on the matrix dimension and the number of independent training samples , assuming that . Additionally, regularized scatter matrix estimates based on the EL methodology were derived. In this second part, we consider the under-sampled scenario which deserves speciÞc treatment since conventional maximum likelihood estimates do not exist. Indeed, inference about the scatter matrix can only be made in the -dimensional subspace spanned by the columns of the data matrix. We extend the results derived under the Gaussian assumption to the CES and ACG class of distributions. Invariance properties of the under-sampled likelihood ratio evaluated at are presented. Remarkably enough, in the ACG case, the p.d.f. of this LR can be written in a rather simple form as a product of beta distributed random variables. The regularized schemes derived in the Þrst part, based on the EL principle, are extended to the under-sampled scenario and assessed through numerical simulations.

I. INTRODUCTION

T he Gaussian assumption has been historically the domi- nating framework for adaptive radar detection problems, partly because of the richness of statistical tools available to derive detection/estimation schemes and to assess their performance in Þnite sample problems. The most famous examples include the celebrated Reed Mallet Brennan rule for O. Besson is with the University of Toulouse, ISAE, Department Electronics Optronics Signal, 31055 Toulouse, France (e-mail: olivier.besson@isae.fr).

Y. I. Abramovich is with the W. R. Systems, Ltd., Fairfax, VA 22030 USA (e-mail: yabramovich@wrsystems.com). characterization of the signal to noise ratio loss of adaptive Þlters [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF] or, for detection problems, the now classic papers by Kelly [START_REF] Kelly | An adaptive detection algorithm[END_REF]- [START_REF] Kelly | Adaptive detection and parameter estimation for multidimensional signal models[END_REF] about generalized likelihood ratio test (GLRT) in unknown Gaussian noise or the adaptive subspace detectors of [START_REF] Kraut | The cfar adaptive subspace detector is a scale-invariant GLRT[END_REF]- [START_REF] Kraut | The adaptive coherence estimator: A uniformly most powerful invariant adaptive detection statistic[END_REF] in partially homogeneous noise environments. All of them highly beneÞt from the beautiful and rich theory of multivariate Gaussian distributions and Wishart matrices [START_REF] Goodman | Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction)[END_REF]- [START_REF] Muirhead | Aspects of Multivariate Statist. Theory[END_REF] and have served as references for decades. At the core of adaptive Þltering or adaptive detection is the problem of estimating the disturbance covariance matrix. It is usually addressed through the maximum likelihood (ML) principle, mainly because ML estimates have the desirable property of being asymptotically efÞcient [START_REF] Scharf | Statist. Signal Processing: Detection, Estimation and Time Series Anal. Reading[END_REF], [START_REF] Kay | Fund. of Statist. Signal Processing: Estimation Theory[END_REF]. However, in low sample support, their performance may degrade and they can be signiÞcantly improved upon using regularized covariance matrix estimates (CME), such as diagonal loading [START_REF] Abramovich | Controlled method for adaptive optimization of Þlters using the criterion of maximum SNR[END_REF], [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF]. Moreover, the ML estimator results in the ultimate equal to one likelihood ratio (LR), a property that is questionable, as argued in [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: application to antenna array detection-estimation with perfect wavefront coherence[END_REF]- [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. In the latter references, it is proved that the LR, evaluated at the true covariance matrix , has a probability density function (p.d.f.) that does not depend on but only on the sample volume and the dimension of the observation space, i.e., number of antennas or pulses. More importantly, with high probability the LR takes values much lower than one and, therefore, one may wonder if an estimate whose LR signiÞcantly exceeds that of the true covariance matrix is reasonable. Based on these results, the expected likelihood (EL) principle was developed in [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: application to antenna array detection-estimation with perfect wavefront coherence[END_REF]- [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] with successful application to adaptive detection or direction of arrival (DoA) estimation. In the former case, regularized estimation schemes were investigated with a view to drive down the LR to values that are compliant with those for , the true underlying covariance matrix. As for DoA estimation, the EL approach was instrumental in identifying severely erroneous MUSIC DoA estimates (breakdown prediction) and rectifying the set of these estimates to meet the expected likelihood ratio values (breakdown cure) [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | Glrt-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF].

However, in a number of applications, the Gaussian assumption may be violated and detection/estimation schemes based on this assumption may suffer from a certain lack of robustness, resulting in signiÞcant performance degradation. Therefore, many studies have focused on more accurate radar data modeling along with corresponding detection/estimation schemes. In this respect, the class of compound-Gaussian models, see e.g., [START_REF] Yao | A representation theorem and its application to spherically invariant processes[END_REF]- [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF], has been extensively studied. The radar return is here modeled as the product of a positive valued random variable (r.va.) called texture and an independent complex Gaussian random vector (r.v.) called speckle, and is referred to as a spherically invariant random vector (SIRV). Since exact knowledge of the p.d.f. of the texture is seldom available, the usual way is to treat the textures as unknown deterministic quantities and to carry out ML estimation of the speckle covariance matrix [START_REF] Gini | Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[END_REF]- [START_REF] Chitour | Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[END_REF]. This approach results in an implicit equation which is solved through an iterative procedure. SIRV belong to a broader class, namely complex elliptically symmetric (CES) distributions [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Anderson | Theory and applications of elliptically contoured and related distributions[END_REF] which have recently been studied for array processing applications, see [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] and references therein. A CES distributed r.v. has a stochastic representation of the form where is the scatter matrix, is called the modular variate and is independent of the complex random vector which is uniformly distributed on the complex -sphere. In most practical situations, the p.d.f. of is not known, and therefore there is an interest to estimate irrespective of it. A mechanism to achieve this goal is to normalize as whose p.d.f. is described by the complex angular central Gaussian (ACG) distribution and is speciÞed by the scatter matrix only. There is thus a growing interest in deriving scatter matrix estimates (SME) within the framework of CES or ACG distributions, see the comprehensive reviews of Esa Ollila et al. in [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] and Ami Wiesel in [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF]. In the Þrst part [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] of this series of papers, we addressed this problem using the EL approach. More precisely, we extended the EL principle from the Gaussian framework to the CES and ACG distributions, and proved invariance properties of the LR for the true scatter matrix . The over-sampled scenario only was considered in [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF]. However, in some applications the number of antenna elements exceeds the number of i.i.d. training samples and therefore the under-sampled scenario is of utmost importance. This case deserves a special treatment as MLE do not longer exist and inference about the scatter matrix is possible only in the -dimensional subspace spanned by the columns of the data matrix [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF]. The goal of this paper is thus to extend the results of [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], which deals with Gaussian data, to CES and ACG distributed data and to complement [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] by considering . Accordingly, the regularized estimation schemes developed in [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] will be adapted to this new case. As we hinted at above, CES distributions rely on the knowledge of the p.d.f. of the modular variate while ACG distributions do not. Therefore, in the sequel, we will concentrate on the ACG case.

More precisely, in Section II, we derive the LR for ACG distributions in the under-sampled case. We demonstrate its invariance properties and show that, for , it coincides with the over-sampled LR of [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF]. The case of CES distributions is addressed in the Appendix. In Section III we brießy review the regularized estimates of [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] and indicate how their regularization parameters are chosen in the under-sampled case. Numerical simulations are presented in Section IV and our conclusions are drawn in Section V.

II. LIKELIHOOD RATIO FOR COMPLEX ACG DISTRIBUTIONS IN

THE UNDER-SAMPLED CASE As said previously, the likelihood ratio (and its p.d.f. when evaluated at the true (covariance) scatter matrix) is the fundamental quantity for the EL approach. In this section, we de-rive this likelihood ratio for under-sampled training conditions in the case of complex ACG distributed data. For Gaussian distributed data, the under-sampled scenario has been studied in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], [START_REF] Johnson | GlRT-based outlier prediction and cure in under-sampled training conditions using a singular likelihood ratio[END_REF] where the EL approach was used to detect outliers produced by MUSIC DoA estimation, and in [START_REF] Abramovich | Use of an under-sampled likelihood ratio for GLRT and AMF detection[END_REF], [START_REF] Abramovich | A modiÞed likelihood ratio test for detection-estimation in under-sampled training conditions[END_REF] for adaptive detection using regularized covariance matrix estimates. As explained in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], this scenario requires a speciÞc analysis since (unstructured) maximum likelihood estimates do not longer exist, and information about the covariance matrix can be retrieved only in the -dimensional subspace spanned by the data matrix. Moreover, in deriving an under-sampled likelihood ratio , some requirements are in force. Of course, should lie in the interval and maximization of the likelihood ratio should be associated to maximization of the likelihood function, at least over a restricted set. Additionally, the p.d.f. of , when evaluated at the true covariance matrix, should depend only on and , so as to implement an EL approach. Finally, when , should coincide with its over-sampled counterpart. In the sequel, we build upon the theory developed in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] and extend it to the case of ACG distributions.

A vector is said to have a complex angular central Gaussian (ACG) distribution, which we denote as , if it can be written as where follows a complex central Gaussian distribution, i.e.,

. For nonsingular , the p.d.f. of is given by [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF], [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF], [START_REF] Chikuse | Statistics on Special Manifolds[END_REF] (

where means proportional to. In fact, for any vector which follows a central CES distribution with scatter matrix and density generator , the p.d.f. of is still given by (1), and therefore (1) is the density for a large class of scaled vectors. Note that in (1) is identiÞable only up to a scaling factor and can be seen as a shape matrix. Let us assume that we have a set of i.i.d. samples drawn from the p.d.f. in [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF]. Then, the joint distribution of can be written as [START_REF] Kelly | An adaptive detection algorithm[END_REF] Let us then consider the likelihood ratio for testing a parametric scatter (or shape) matrix model where is a set of parameters that uniquely specify the scatter matrix model. In [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF], we derived the LR for over-sampled training conditions (

) and showed that

where is the maximum likelihood estimate of , and is the unique (up to a scaling factor) solution [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] to [START_REF] Kelly | Adaptive detection and parameter estimation for multidimensional signal models[END_REF] Let us now turn to the under-sampled scenario with . Obviously, with training samples, any inference re-garding the scatter matrix may be provided only regarding its projection onto the -dimensional subspace spanned by the columns of , or equivalently by the columns of the -variate matrix of eigenvectors associated with the non-zero eigenvalues of the sample matrix , where stands for the diagonal matrix of the eigenvalues. As already noted, whether or , we still have the normalized vectors . Therefore, without loss of generality, we may consider the vectors as being generated by complex Gaussian random vectors . For any given candidate , we need to Þnd the full rank Hermitian matrix 1 , such that the construct is "closest" to the model . In [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] it was demonstrated that may be speci-Þed by the condition that the generalized non-zero eigenvalues of the matrix pencil are all equal to one, i.e., . Since , the generalized eigenvalues , are the same as the non-zero eigenvalues of the -variate Hermitian matrix or, since , the non-zero eigenvalues of the -variate Hermitian matrix , which immediately leads to the solution [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] (5) and [START_REF] Kraut | Adaptive subspace detectors[END_REF] Note that for any (arbitrary) matrix , we might construct the corresponding and : the latter gathers what can be inferred of from the observation of snapshots. It is important to note that for the given generating set of i.i.d Gaussian data , , the scatter matrix may be treated as an admissible singular covariance matrix model.

At this stage, we need to deÞne ACG distributions with singular covariance matrices and we will follow the lines of Siotani et al. [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF] who considered singular Gaussian distributions. Let be Gaussian distributed with a rank-deÞcient covariance matrix where is a orthonormal matrix whose columns span the range space of and is a positive deÞnite Hermitian (PDH) matrix. Note that fully resides in the subspace spanned by with probability one [START_REF] Muirhead | Aspects of Multivariate Statist. Theory[END_REF], [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF]. Let denote an orthonormal basis for the complement of , i.e., and . Let and let us make the change of variables 1 We should have denoted and to emphasize that these matrices are constructed from but, for the ease of notation, we simplify to and .

Then and its p.d.f. is given by where stands for the exponential of the trace of the matrix between braces. Since the Jacobian from to is 1, [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF] deÞnes a singular Gaussian density as [START_REF] Kraut | The adaptive coherence estimator: A uniformly most powerful invariant adaptive detection statistic[END_REF] for those vectors such that and .

Let us now consider and deÞne

Then follows an ACG distribution with p.d.f. Following Siotani et al., one can thus deÞne a singular ACG density as [START_REF] Goodman | Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction)[END_REF] for and . A set of independent snapshots can thus be represented as , with density [START_REF] Khatri | Classical statistical analysis based on a certain multivariate complex Gaussian distribution[END_REF] Let us assume that is known. For , differentiating (9) with respect to (for Þxed ), it follows that the MLE of satisÞes, see also (4) [START_REF] Muirhead | Aspects of Multivariate Statist. Theory[END_REF] Furthermore, let us consider the speciÞc case where the rank of equals the number of available observations, i.e., . Assuming that the matrix is non-singular, one has [START_REF] Scharf | Statist. Signal Processing: Detection, Estimation and Time Series Anal. Reading[END_REF] Indeed, in this case, one has . Hence [START_REF] Kay | Fund. of Statist. Signal Processing: Estimation Theory[END_REF] which proves that veriÞes [START_REF] Muirhead | Aspects of Multivariate Statist. Theory[END_REF] for , and hence is the MLE in this case. This observation is of utmost importance when we consider the under-sampled case.

Indeed, for our speciÞc application with in (6) being an admissible singular covariance matrix, we get [START_REF] Abramovich | Controlled method for adaptive optimization of Þlters using the criterion of maximum SNR[END_REF] The previous equation provides the likelihood function for the parameterized scatter matrix . In order to obtain the likelihood ratio in under-sampled conditions , we need to Þnd the global ML maximum of over the PDH matrix . As proved in [START_REF] Scharf | Statist. Signal Processing: Detection, Estimation and Time Series Anal. Reading[END_REF], this MLE is simply [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF] where is the diagonal matrix of the eigenvalues of . Therefore, for an under-sampled scenario, we may use the under-sampled likelihood ratio which can be written in the following equivalent forms: [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: application to antenna array detection-estimation with perfect wavefront coherence[END_REF] It is noteworthy that is invariant to scaling of . Let us now investigate the properties of this under-sampled likelihood ratio.

Let us Þrst prove that, for T = M, the under-sampled LR [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: application to antenna array detection-estimation with perfect wavefront coherence[END_REF] coincides with its over-sampled counterpart in (3). To do so, one needs to derive an expression for Tyler's MLE in (4). In fact, using derivations similar to those which led to [START_REF] Muirhead | Aspects of Multivariate Statist. Theory[END_REF], one can show that, for , since and hence [START_REF] Abramovich | Glrt-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF] Reporting this value in (3) yields, for [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] which coincides with in (15) when . Let us now prove that similarly to the over-sampled case, for the true scatter matrix , the p.d.f. for does not depend on . Observing that where or , it ensues that [START_REF] Yao | A representation theorem and its application to spherically invariant processes[END_REF] which is obviously distribution-free. More insights into the distribution of can be gained by noticing that the matrix has a complex Wishart distribution with degrees of freedom, i.e., . Let us consider the Bartlett decomposition where is an upper-triangular matrix and all random variables are independent [START_REF] Goodman | Statistical analysis based on a certain multivariate complex Gaussian distribution (An introduction)[END_REF]. Moreover, where stands for the complex central chi-square distribution with degrees of freedom, whose p.d.f. is given by . Additionally, one has for . It then ensues that [START_REF] Conte | Characterisation of radar clutter as a spherically invariant process[END_REF] where stands for the beta distribution. The representation [START_REF] Conte | Characterisation of radar clutter as a spherically invariant process[END_REF] makes it very simple to estimate the distribution of . Additionally, the average value of can be obtained in a straightforward manner as [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF] This average value (or the median value) can serve as a target value for the likelihood ratio associated with any scatter matrix estimate.

To summarize, for under-sampled ( ) training conditions and ACG data with , we introduced the likelihood ratio that for the true scatter matrix is described by a scenario-invariant p.d.f. fully speciÞed by parameters and . While an analytical expression for the above mentioned p.d.f. is not available, it can be pre-calculated for some given and by Monte-Carlo simulations, using either simulated i.i.d Gaussian r.v.

, cf. Equation [START_REF] Yao | A representation theorem and its application to spherically invariant processes[END_REF] or beta distributed random variables, cf. Equation [START_REF] Conte | Characterisation of radar clutter as a spherically invariant process[END_REF]. In the Appendix, we derive the under-sampled likelihood ratio for CES distributed samples . We show that, when evaluated at , its p.d.f. does not depend on but still depends on the density generator , similarly to what was observed in the over-sampled case [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF].

III. REGULARIZED SCATTER MATRIX ESTIMATION USING THE EXPECTED LIKELIHOOD APPROACH

For the sake of clarity, we here brießy review the regularized scatter matrix estimates (SME) which were introduced and studied in part 1 for . More precisely, we focus on the schemes which were shown to achieve the best performance. The Þrst estimate is the conventional diagonal loading estimate [START_REF] Gini | Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[END_REF] We also consider the Þxed point diagonally loaded estimator [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF], [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF], [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] where is obtained from the following iterative algorithm

(22a) (22b)
We refer to as FP-DL in what follows. Both estimates are governed by the loading factor which is chosen according to the EL principle, i.e., [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF] where is the scenario-invariant p.d.f. of the -th root of in [START_REF] Conte | Characterisation of radar clutter as a spherically invariant process[END_REF], stands for the median value and is the undersampled LR of ( 15): [START_REF] Chitour | Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[END_REF] In other words, the loading factor is such that is closest to the median value of . For comparison purposes, we will consider the Oracle estimator of [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] deÞned through the following choice of : [START_REF] Fang | Generalized Multivariate Analysis[END_REF] where is given by [START_REF] Anderson | Theory and applications of elliptically contoured and related distributions[END_REF] We will also consider regularized TVAR( ) estimates, namely the Dym-Gohberg regularization of ( 21) [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] where is the Dym-Gohberg band-inverse transformation of a Hermitian non negative deÞnite matrix, deÞned as [START_REF] Abramovich | Timevarying autoregressive (TVAR) models for multiple radar observations[END_REF] (28a) (28b) Accordingly, we investigate the Þxed point diagonally loaded TVAR( ) estimate [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] deÞned as (a formal proof of convergence of this iterative scheme is still an open issue) where (29a) (29b) will be referred to as FP-DG-DL in the sequel. For those (Þxed-point) diagonally loaded TVAR( ) estimates, the value of is also selected according to the EL principle, i.e., [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] IV. NUMERICAL SIMULATIONS Similarly to [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF], we consider the case of data distributed according to a multivariate Student -distribution with degrees of freedom: [START_REF] Johnson | GlRT-based outlier prediction and cure in under-sampled training conditions using a singular likelihood ratio[END_REF] In all simulations below, we use . We consider a ULA with elements. The true scatter matrix was considered to be as per AR(1) process with . The SNR loss factor (32) will serve as the Þgure of merit for quality assessment of the estimators. Above, is a generic SME and stands for the steering vector corresponding to the looked direction which is set to . We Þrst examine the distribution of . Fig. 1 displays the median value of versus : we also plot in this Þgure the mean value of in the over-sampled case. This Þgure conÞrms that for , the under-sampled and over-sampled median values coincide. As can be observed, the median value of decreases when increases, achieves a minimal value for and then increases when increases. Figs. 2-3 display the p.d.f. for and respectively. As can be seen, can take very small values and, as increases, the support of this p.d.f. is smaller. Our second simulation deals with the inßuence of the loading factor on the SNR loss as well as on the LR, see Fig. 4. As can be observed, the diagonally loaded estimates are not very sensitive to variations in , at least when the SNR loss is concerned. Their LR however is seen to vary. In contrast, TVAR( ) estimates (especially DG-DL) have a SNR loss which exhibits large variations when is varied: the latter should be chosen rather small in order to have a good SNR loss. One can also observe a correlation between SNR loss and LR: when increases, both of them decrease. Whatever the estimate, it appears that choosing according to the EL principle ( 23)-( 30) results in negligible SNR losses, although the LR could be quite far from the median without penalizing too much SNR for the diagonally loaded estimates.

Fig. 5 displays SNR loss versus number of snapshots. The average value of the loading factor selected from the EL principle is also plotted, as is the average value of for the Oracle estimator. A few remarks are in order here. First, it can be seen that the LR for the Oracle estimator is close but slightly different from : at least, it is not as close as in the over-sampled case. More important is the fact that the FP-DL with the EL principle for choosing outperforms the Oracle estimator: this is due to the fact that EL selects a higher loading level, i.e., , in order to have a lower LR. This is a quite remarkable result which shows that the minimization of the MSE between and does not result in the highest SNR in low sample support. As a second observation, notice that the FP diagonally loaded TVAR(1) estimate provides the highest SNR, which was also observed in the over-sampled case.

Similarly to Part 1, we now consider estimation of both and for estimates. We use the same procedure as in [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF]. For Þxed , we follow the rule in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] to select . Then, we estimate as the minimal order for which is above a threshold: [START_REF] Abramovich | A modiÞed likelihood ratio test for detection-estimation in under-sampled training conditions[END_REF] where is the quantile of , i.e., . Since the minimum value of is , is necessarily in the interval . If none of the orders yield a LR which exceeds the threshold, then we select the model order which results in the LR closest to the median. As in Part 1, we still consider the case of an AR(1) scatter matrix and we also consider a case where the element of corresponds to the -th correlation lag of an process whose spectrum (correlation) is close to but different from that of the AR(1) process. The SNR loss and average LR for the FP-DL, and are displayed in Fig. 6 for the AR(1) case and Fig. 7 for the noteworthy that in the AR(1) case, the EL principle selects in the vast majority of cases which corresponds to the true model order. However, in contrast to the over-sampled case, this may not be the best choice as orders results in better SNR at the price of lower LR. For instance, it seems that yields the highest SNR but the corresponding LR is below the threshold . Next, note that FP-DG-DL outperforms FP-DL, which is reasonable since belongs to the class of TVAR( ) matrices. The ARMA( ) case yields different results. As noted in [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF], FP-DL is now better than Þxed-point diagonally loaded TVAR( ) estimates: the latter have lower SNR and LR which are below the threshold, yielding matrices that are not admissible. These two simulations conÞrm that FP-DL is an ubiquitous estimate which can accommodate various types of scatter matrices. 

V. CONCLUSIONS

In this paper, we extended the EL approach of [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] to the class of CES and ACG distributions in the under-sampled case, where the number of samples is less than the dimension of the observation space. Together with the over-sampled case treated in Part 1 [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF], this offers a general methodology to regularized scatter matrix estimation for a large and practically important class of distributions. We demonstrated that the LR evaluated at the true scatter matrix still enjoys the same type of invariance properties that were found in the Gaussian case. This invariance makes it possible to assess the quality of any scatter matrix estimate, and a useful tool to tune the regularization parameters of regularized SME. This was demonstrated in the case of Þxed-point diagonally loaded estimates, where the Oracle estimator was shown to achieve a LR very close to the median value of which also corresponds to the target LR of the EL-based estimate. Accordingly, we developed regularized estimation schemes based on modeling and investigated their use in conjunction with diagonal loading. For this shrinkage to the structure methodology, the EL approach was also efÞcient in providing estimates of both the model order and the loading factor that yields SNR values very close to that of the optimal (clairvoyant) Þlter. The framework and methodology of this two-part paper has been demonstrated for adaptive Þltering, but it can also serve as a useful framework for other problems that call for Þtting of a parametrically-controlled covariance or scatter matrix to under-sampled data.

APPENDIX LIKELIHOOD RATIO FOR CES DISTRIBUTIONS IN THE UNDER-SAMPLED CASE

In this appendix, we derive the likelihood ratio for undersampled training conditions in the case of CES distributions. Let us start with a r.v.

where is a rankmatrix which can be decomposed as where is a orthonormal matrix whose columns span the range space of and is a positive deÞnite Hermitian matrix. can be represented as [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF] (34)

where

. Let denote an orthonormal basis for the complement of and let . Let us make the change of variables Then and its p.d.f. is given by Since the Jacobian from to is 1, one may deÞne a singular CES density as [START_REF] Chikuse | Statistics on Special Manifolds[END_REF] for vectors such that . The joint density of a set of independent snapshots can thus be written as [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF] Assuming that is known, for , the MLE of satisÞes, see [START_REF] Ollila | Complex elliptically symmetric distributions: survey, new results and applications[END_REF], [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF] Let us now consider snapshots . As noted in the ACG case, inference about the scatter matrix is possible only in the -dimensional subspace spanned by the columns of the -variate matrix of eigenvectors associated with the non-zero eigenvalues of the sample matrix . Again, for any given , we need to Þnd the rank-Hermitian matrix , such that the construct is "closest" to the model which yields and . From the previous deÞnition of singular CES distributions, we may write the joint p.d.f. of as [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF] In order to obtain the LR, we need to maximize over the PDH matrix . As argued in [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF], the MLE of is the solution to [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] It follows that, for , the under-sampled likelihood ratio is given by [START_REF] Abramovich | Timevarying autoregressive (TVAR) models for multiple radar observations[END_REF] Let us now prove that, for , the under-sampled LR [START_REF] Abramovich | Timevarying autoregressive (TVAR) models for multiple radar observations[END_REF] coincides with its over-sampled counterpart , which is given by [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part 1: The oversampled case[END_REF] (41) where corresponds to the MLE of and satisÞes (42) with . Similarly to the ACG case, we need to obtain the MLE in this special case . Let us then prove that for
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where is given in [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF]. First, observe that is a square non-singular matrix so that in (43) 

Note that is a generalized inverse of , i.e., and . Unlike the Moore-Penrose pseudo-inverse, the generalized inverse is not unique. In this regard, note that is the unique Moore-Penrose pseudo-inverse of the matrix . Therefore, by specifying a particular (Hermitian say) square root of we uniquely specify the matrices and . Finally, from (47), the properties of the matrices and are entirely speciÞed by a set of i.i.d complex uniform vectors . This means that the distribution of does not depend on but of course depends on , similarly to the over-sampled case. It results that the p.d.f. of is independent of .