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it was demonstrated, for multivariate complex Gaussian distribution, that the probability density function (p.d.f.) of the likelihood ratio (LR) for the (unknown) actual covariance matrix does not depend on this matrix and is fully speciÞed by the matrix dimension and the number of independent training samples . This invariance property hence enables one to compare the LR of any derived covariance matrix estimate against this p.d.f., and eventually get an estimate that is statistically "as likely" as . This "expected likelihood" quality assessment allowed signiÞcant improvement of MUSIC DOA estimation performance in the so-called "threshold area," and for diagonal loading and TVAR model order selection in adaptive detectors. Recently, the so-called complex elliptically symmetric (CES) distributions have been introduced for description of highly in-homogeneous clutter returns. The aim of this series of two papers is to extend the EL approach to this class of CES distributions as well as to a particularly important derivative, namely the complex angular central distribution (ACG). For both cases, we demonstrate a similar invariance property for the LR associated with the true scatter matrix . Furthermore, we derive Þxed point regularized covariance matrix estimates using the generalized expected likelihood methodology. This Þrst part is devoted to the conventional scenario ( ) while Part II deals with the undersampled scenario (

).

I. INTRODUCTION

I N A LARGE NUMBER OF RADAR APPLICATIONS, the traditional assumption on training data being a set of independent identically distributed (i.i.d) complex Gaussian random samples is strongly violated due to a signiÞcant in-homogeneity of this data. Examples from airborne moving Y. Abramovich is with W R Systems, Ltd., Fairfax, VA 22030 USA (e-mail: yabramovich@wrsystems.com).
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target indicator or ship-borne radars with strongly in-homogeneous clutter are well-known [START_REF] Rangaswamy | Spherically invariant random processes for modeling non-Gaussian radar clutter[END_REF]. For high-frequency over-the-horizon radars, and speciÞcally for mode-selective multiple input multiple output (MIMO) radars, similar scenario takes place when adaptive MIMO beamformers are trained using Doppler-processed training data [START_REF] Frazer | Mode-selective OTHR: A new cost-effective sensor for maritime domain awareness[END_REF], [START_REF] Frazer | Mode-selective OTH radar: Experimental results for one-way transmission via the ionosphere[END_REF]. If ignored, signiÞcant non-homogeneity of training data has an adverse effect on adaptive processing since it signiÞcantly reduces the effective number of training data and more generally, makes the Gaussian model-based inference inaccurate. In most studies, such in-homogeneous set of data is modeled as a set of spherically invariant random vectors (SIRV) [START_REF] Yao | A representation theorem and its application to spherically invariant processes[END_REF]- [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF]. A SIRV can be viewed as a special case of a broader class, complex elliptically symmetric (CES) distributions which are considered in the sequel. While this model describes in-homogeneous clutter, in-discriminatory application of this model that ignores additive white Gaussian noise, may lead to a number of problems, as demonstrated in [START_REF] Michels | Performance of parametric and covariance based STAP tests in compound-Gaussian clutter[END_REF]. In other words, this approach is suitable in "clutter-limited" applications, where the clutter-only covariance matrix is a full-rank matrix with the minimal eigenvalue that signiÞcantly exceeds the additive white noise power. In such a case, the latter may be ignored and the training data that contains energetic clutter may be described as a set of i.i.d SIRV or CES data.

Yet, so far, the Gaussian assumption has been predominating and much attention has focused on the problem of maximum likelihood (ML) covariance matrix estimation and, more generically, on adaptive detection based on ML principles in the Gaussian case. Within this framework, it was demonstrated that for a limited number of i.i.d training data , a number of adaptive detection-estimation techniques properties, derived under the for ML principle asymptotic condition, are not true. Typical example is provided by MUSIC direction of arrival (DOA) estimation technique proven to be asymptotically efÞcient [START_REF] Stoica | MUSIC, maximum likelihood and Cramér-Rao bound[END_REF], [START_REF] Stoica | MUSIC, maximum likelihood and Cramér-Rao bound: Further results and comparisons[END_REF]. However, as demonstrated in [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], for a certain small enough sample support MUSIC "breaks down" i.e., it starts to generate severely erroneous DOA estimates. Another well-known problem is a relatively poor performance of adaptive Þlters (antennas) and adaptive detectors that adopt the ML covariance matrix estimate under a limited sample support [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. It has been evidenced in various studies that regularization ("shrinkage") of the covariance matrix estimate, such as diagonal loading [START_REF] Abramovich | Controlled method for adaptive optimization of Þlters using the criterion of maximum SNR[END_REF], [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF] can sig-niÞcantly improve detection performance, if the shrinkage parameters are properly chosen. To address these and similar issues that occur under small sample support, in [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF]- [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF] the technique called "Expected Likelihood" (EL) has been proposed. This technique is based on the invariance of the likelihood ratio (LR), constructed for the multivariate complex Gaussian data. More speciÞcally, it uses the fact that the p.d.f. of (where is the true (actual) covariance matrix) does not depend on and is fully speciÞed by matrix dimension and the i.i.d sample volume . This invariance makes it possible to evaluate the "quality" of any (possibly parametric or regularized) covariance matrix estimate by comparing its likelihood ratio against the p.d.f. for . The estimate is then treated as appropriate if is within the support of p.d.f., pre-calculated for given and . In other words, if is statistically as likely as , the EL approach deems it properly regularized. Recall that the unrestricted ML covariance matrix estimate produces the ultimate equal to one LR value irrespective of sample support , while the LR value generated by the true covariance matrix is signiÞcantly smaller for realistic sample support volumes [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. The EL approach was shown to be effective in identifying "broken" MUSIC-produced DOA estimates ("breakdown prediction) and rectifying the set of these estimates to meet the expected likelihood ratio values ("breakdown cure") [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF]. Accordingly, its ability to improve adaptive Þlters has been proved in [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF].

Obviously, this EL methodology could be quite useful in addressing similar problems when dealing with non-Gaussian data. For this reason, the extension of the EL principles over the broader class of complex elliptically symmetric (CES) multivariate random variables constitutes the focus of this study. CES distributions are parameterized by the scatter matrix and a one-dimensional function called the density generator [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Since the latter is usually unknown in practice, we also consider complex angular central Gaussian (ACG) distributions which depend on the scatter matrix only.

The paper is organized as follows. In Section II we introduce the discussed above likelihood ratios and for conventional training conditions and derive their respective invariance properties. In Section III we derive the Þxed point ML covariance matrix estimate, while in Section IV we discuss the application of the EL methodology to selection of the loading factor and order in diagonally loaded and covariance matrix estimates. In Section V we present the results of Monte-Carlo simulations that demonstrate signiÞcant superiority of the regularized Þxed point estimates with respect to the unconstrained (Þxed point) ML estimates for adaptive Þlters (antennas) applications. The summary and conclusions are given in Section VI.

II. LIKELIHOOD RATIO AND ITS INVARIANCE FOR DATA WITH COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTION

A. Complex Elliptically Symmetric Distributions

Description of CES distributions and their properties can be found e.g., in [START_REF] Krishnaiah | Complex elliptically symmetric dsitributions[END_REF]- [START_REF] Micheas | Complex elliptical distributions with application to shape analysis[END_REF]. A very comprehensive review along with application of CES distributions to a number of array processing problems can be found in the recent paper [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. We refer the reader to this paper for details that could be skipped in the short review to be presented now and which is inspired by the presentation in [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Herein we consider the special absolutely continuous case with zero mean, when the p.d.f. of the r.v.

is of the form [START_REF] Rangaswamy | Spherically invariant random processes for modeling non-Gaussian radar clutter[END_REF] for a positive deÞnite Hermitian (PDH) matrix called the scatter matrix, and function called density generator that satisÞes Þnite moment condition to ensure integrability of . Above is a normalization constant ensuring that integrates to 1 and is given by where is the surface area of the unit complex -sphere . We adopt the following notation in the following . Some important properties of CES distributions will be of use in the sequel [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]- [START_REF] Micheas | Complex elliptical distributions with application to shape analysis[END_REF]. First, admits the following stochastic representation [START_REF] Frazer | Mode-selective OTHR: A new cost-effective sensor for maritime domain awareness[END_REF] where the non-negative real random variable , called the modular variate, is independent of the complex random vector possessing a uniform distribution on denoted as . Here, means "has the same distribution as". Second, the p.d.f. of the modular variate is given by [START_REF] Frazer | Mode-selective OTH radar: Experimental results for one-way transmission via the ionosphere[END_REF] which is also the p.d.f. of the Hermitian form as follows from (2). The complex normal distribution is obtained for the particular , yielding as the normalizing constant. Note that if admits Þnite -th order moments, and . Thus, the scatter matrix is proportional to the covariance matrix under Þnite 2nd-order moment assumption.

Given (1), for a set of i.i.d r.v. , we get for (4)

For

, the maximum likelihood estimator (MLE) of the scatter matrix is the matrix that minimizes over the set of PDH matrices the negative log-likelihood function: [START_REF] Conte | Characterisation of radar clutter as a spherically invariant process[END_REF] and hence is the solution (assuming that is continuously differentiable) to the estimating equation [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], [START_REF] Ollila | Robust antenna array processing using -estimators of pseudo-covariance[END_REF], [START_REF] Ollila | Inßuence function and asymptotic efÞciency of scatter matrix based array processors[END_REF] (6a) (6b) where

. For where and from ( 6) follows the well-known sample covariance matrix estimate. In general case, where the weight function is not a constant, the estimation equation is implicit and an algorithm to Þnd its solution is needed. In [ [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], Theorem 6] based on the results of Kent and Tyler [START_REF] Tyler | A distribution-free M-estimator of multivariate scatter[END_REF], [START_REF] Kent | Redescending M-estimates of multivariate location and scatter[END_REF] for the real case, the uniqueness and convergence of the Þxed point iterations to the unique solution of ( 6), for any initial estimate of , has been proven under certain technical conditions on , see [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] for further details.

For distributions that meet these conditions, let us consider the likelihood ratio for any parametric scatter matrix model where is a set of parameters that uniquely specify the scatter matrix model. This may be found as usual [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF]:

From ( 4), we get

With respect to (2) the "expected likelihood", i.e., the LR value for the actual (true) scatter matrix may be presented as

where and . Now, due to the invariance of the MLE under non singular data transformations, is the MLE of the scatter matrix from a distribution. Consequently, does not depend on , only on . This could also be seen by pre and post-multiplying (6) by and using (2) to get [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF] Therefore, the p.d.f. of is invariant with respect to (w.r.t) the true scatter matrix , and is explicitly spec-iÞed by in (3) and parameters and .

B. Angular Central Gaussian Distribution

For all cases where is accurately known a priori and only the scatter matrix (or its parameters) is to be estimated, the EL principle can be applied since the p.d.f. for could be pre-calculated for the given , using Monte-Carlo simulations at least. As discussed in the introduction, in many cases the distribution is not known a priori, and hence are often treated as unknown deterministic parameters. For unknown , the input vectors are often being transformed to the set of normalized vectors [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] 

If

, then the distribution of its projection onto the unit complex -sphere is said to have a complex angular elliptic distribution. In particular, if the CES dis-tribution is a central complex Gaussian, i.e., then the distribution of is said to have a complex angular central Gaussian (ACG) distribution, which we denote as . For non-singular , the p.d.f. of is given by [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF] (12) Note that the matrix can be only identiÞed up to a scale, since and yield the same distribution for any . Note also that for a central (zero mean) case, the central Gaussian distribution for could be replaced by any central CES distribution and the resulting angular distribution would be the same. That is, if then . Note that although the density in [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF] looks like the generic density of a complex elliptical distribution in (1), it does not have a CES distribution itself and does not possess the characterizing stochastic representation (2) [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Yet, the non-singular ACG distribution can be generated using the r.v. as for and non-singular . Assuming independence of the , the joint distribution of is thus given by ( 13)

In [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF] it was demonstrated that the MLE for in this case still corresponds to a solution to [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF] with the weight function being simply . In other words, in the ACG case satisÞes [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF] Moreover in [START_REF] Ollila | Distribution-free detection under complex elliptically symmetric clutter distribution[END_REF] it was demonstrated that the estimate [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF] being the ML estimate of under assumption for is also the ML estimate for a more general case when with the functions being given but not necessarily the same. Clearly this quite a universal property of the complex Tyler's M-estimator, along with the invariance of the likelihood ratio (see below) makes this estimate very attractive. Note that with respect to [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF], the Þxed point iterations [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] converge to which exists and is unique up to a positive scalar [START_REF] Kent | Redescending M-estimates of multivariate location and scatter[END_REF], [START_REF] Kent | Maximum likelihood estimation for the wrapped Cauchy distribution[END_REF]- [START_REF] Chitour | Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[END_REF]. For uniqueness, one may want to restrict in a suitable way, e.g., by assuming (or ). For a (possibly parameterized) scatter matrix , the likelihood ratio in the ACG case is given by [START_REF] Krishnaiah | Complex elliptically symmetric dsitributions[END_REF] We can now specify . Since where or , it follows that [START_REF] Fang | Generalized Multivariate Analysis[END_REF] where veriÞes [START_REF] Anderson | Theory and Applications of Elliptically Contoured and Related Distributions Dep[END_REF] Consequently is distribution-free and therefore, for any given and we can pre-calculate the p.d.f. for with any required accuracy and use it as the expected likelihood p.d.f. for quality assessment of any given scatter matrix model .

III. ML COVARIANCE MATRIX ESTIMATION FOR COMPLEX ANGULAR CENTRAL GAUSSIAN DISTRIBUTION

Let us consider a set of i.i.d -variate complex angular central Gaussian vectors generated by an arbitrary complex central elliptical distribution. Let be an identiÞed scatter matrix parameterized by a set of parameters . Then the likelihood function (LF) can be introduced as follows [START_REF] Micheas | Complex elliptical distributions with application to shape analysis[END_REF] For a model , we have to Þnd the maximum of this LF over the class of structured positive deÞnite (p.d.) Hermitian matrices with which according to [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF], is the only necessary condition for a p.d. matrix to serve as the scatter matrix of a process. Let with for . Then, up to an additive constant,

Since only are subject to optimization, the ML equation may be presented as

(21a) (21b)
Using the fact that [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF] (22a) (22b) it follows that the MLE of in the model satisÞes

(23a) (23b)
The latter means that the ML estimate of the scatter matrix satisÞes the estimation equation [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF] where is the Dym-Gohberg band-inverse transformation of a Hermitian non negative deÞnite matrix, deÞned as [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF] (25a) (25b) Note that is invariant to scaling since . In order to obtain in [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF], we propose to resort to the Þxed point iterations

(26a) (26b)
At this stage, we were unable to prove convergence of the iterative scheme [START_REF] Ollila | Distribution-free detection under complex elliptically symmetric clutter distribution[END_REF] to a unique solution: therefore, this is still an open issue to be solved.

IV. APPLICATION OF THE EXPECTED LIKELIHOOD APPROACH

FOR SCATTER MATRIX ESTIMATION The unrestricted (unstructured) MLE Tyler's M-estimator (Þxed point solution) for provides the globally optimal solution that yields the ultimate value . Hence, even for conventional training conditions this estimate, may not be that effective for adaptive processing applications. For this reason, initially in [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF] and then in [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF], [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF] the "shrinkage" Þxed point (diagonally loaded) estimator has been proposed, where is obtained from the following iterative procedure:

(27a) (27b)
The proof of convergence of this iterative routine to a unique solution has been recently introduced in [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] based on Perron-Frobenius theory. We refer to as FP-DL in the sequel. Yet, the problem of selecting the shrinkage (loading factor) is open and crucial. In [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] the authors suggested to specify the optimal loading factor as the stochastic approximation of the Oracle (clairvoyant) scatter matrix , found as the minimum of the Frobenius norm of the error, i.e., [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF] where [START_REF] Chitour | Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[END_REF] We would like to investigate how this Oracle estimator compares with the EL approach for selecting : for conventional scenario the EL approach selects the loading factor such that [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF] where is the true p.d.f. of the is the complex Tyler's M-estimate [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] and stands for the median value. Comparative analysis of the loading factor selection rules [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF], [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF] is introduced in the next section.

Let us now consider our Þxed point solution [START_REF] Ollila | Distribution-free detection under complex elliptically symmetric clutter distribution[END_REF]. Similarly to [START_REF] Kent | Maximum likelihood estimation for the wrapped Cauchy distribution[END_REF], we may introduce the diagonally loaded Þxed point solution as (provided that this limit exists and is unique, which so far is still an open problem) where is obtained from

(31a) (31b) 
In the sequel, we refer to as FP-DG-DL. It is noteworthy that for conventional Gaussian model , the loaded covariance matrix estimate proved quite an impressive improvement when applied to realistic data [START_REF] Abramovich | Performance analysis of two-dimensional parametric STAP for airborne radar using KASSPER data[END_REF].

There are all reasons to expect similar improvement delivered by diagonal loading in [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF]. Yet, for this model two parameters should be properly selected. Similarly to [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF], parameters or may be treated as being properly selected if the likelihood ratio of the scatter matrices in (24) and in [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF] meet the expected likelihood condition. Finally, observe that while convergence of the Þxed point iterations is an important theoretical issue, practically though, the EL criterion (30) may be used as a "stopping rule" for iterates that approach the EL threshold. Actual improvement adaptive processing performance delivered by the suggested EL-supported regularized estimators is analyzed in the next section.

V. PERFORMANCE ANALYSIS. SIMULATION RESULTS

Let us consider the case of data distributed according to a multivariate Student -distribution with degrees of freedom, deÞned herein as [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF] The r.v.

where stands for the complex chi-square distribution with degrees of freedom, whose p.d.f. is deÞned as . In all simulations below, we set . All algorithms will use the normalized data . Dimension of uniform linear array (ULA) with half wavelength spacing was chosen to be and the true scatter matrix was considered to be as per process Instead of mean-square error in covariance matrix estimation, we assess the quality of our estimates by analyzing the statistical properties of the SNR loss factor deÞned as [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF], [START_REF] Ward | Space-Time Adaptive Processing for Airborne Radar Lincoln Lab[END_REF] (

) 33 
where stands for the steering vector corresponding to the looked direction . In our simulations, we choose and so that the SNR gain provided by the optimal Wiener Þlter compared to a conventional beamformer is about 12 dB. In [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF], is a notation for a generic covariance matrix estimate considered in the sequel.

A. Distribution of the Likelihood Ratio

Let us Þrst illustrate the theoretical results about the distributions of and : both of them are independent of . The latter depends on and only while the former also depends on . The median value of , for both a Gaussian and a Student -distribution with degree of freedom, as well as the median value of are plotted in Fig. 1. Additionally, the p.d.f. of the above likelihood ratios is displayed in Fig. 2 for . The following comments can be made: • The p.d.f. of are seen to be nearly identical and seem to depend weakly on : they are the same for (Gaussian case) and (Student case). Moreover, they are very close to the p.d.f. of . Therefore, the p.d.f. of the LR for the true scatter matrix shows quite an invariance with respect to the distribution of the data. Note that asymptotically, it is known that converges to a distribution, which obviously does not depend on the data distribution: therefore, as , the distribution of the log likelihood ratio should not depend on . It turns out that this is also approximately true in Þnite sample, although the Þnite sample distribution is not close to the asymptotic one.

• The median values are seen to be much inferior to 1, the value obtained with the MLE. These median values increase when increases (for a Þxed ) and when decreases (for a Þxed ). For large values of the LR take very small values.

B. Diagonally Loaded Estimates

We now study diagonally loaded regularized estimates, and more particularly the inßuence of the shrinkage factor on both the LR values and the SNR loss. We consider here the estimate based on shrinkage of the normalized sample covariance matrix (NSCM) , i.e., [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF] (referred to as DL in the Þgures), its Þxed-point version in [START_REF] Kent | Maximum likelihood estimation for the wrapped Cauchy distribution[END_REF] and their Dym-Gohberg regularization [START_REF] Abramovich | Performance analysis of two-dimensional parametric STAP for airborne radar using KASSPER data[END_REF] (referred to as DG-DL in the Þgures) and the Þxed-point TVAR( 1) estimate [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF]. The value of is set to . For the sake of convenience the following table relates the acronyms used in the Þgures with their corresponding estimators:

In Figs. 34we investigate the inßuence of and the relation between LR and SNR loss. The solid line there represents . These Þgures illustrate the fact that selecting the loading factor from the EL principle results in a SNR very close to that of the optimal (clairvoyant) Þlter. Therefore, this validates selection of the loading factor using the EL approach. Observe that selecting is a crucial issue for some estimates which are very sensitive to variations in : this is particularly so for estimates. In such cases, EL principle offers a quite efÞcient solution to the problem of selecting . On the other hand, FP-DL is seen to be less sensitive to variations of in terms of SNR loss: but this is also the case for the corresponding LR. Finally, note (and this will be observed in all simulations) that Þxed-point estimates always outperform their non-iterative counterparts.

We now turn to performance analysis versus . As before, we consider the shrinkage estimate [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF] and its Þxed-point iterative version in [START_REF] Kent | Maximum likelihood estimation for the wrapped Cauchy distribution[END_REF]. For both of them, the loading factor is chosen according to the EL principle in [START_REF] Abramovich | Time-varying autoregressive (TVAR) models for multiple radar observations[END_REF], viz [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF] that is the value of for which is closest to the median value of For comparison purposes, we compare the EL-based estimates with the estimate of [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF]. The latter corresponds to the FP-DL estimate of [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF] where the loading factor is chosen as in [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF], and is given by (37) We refer to as the Oracle estimate. In Fig. 5 we display the average SNR loss, the mean value of the LR and the mean value of the loading factor selected by each method (DL and FP-DL correspond to the choice (36) of ). Interestingly enough, it appears that the Oracle loading factor in (37) results in a matrix whose LR closely matches that of . As a result, the SNR loss achieved by the Oracle estimate is very high. More interesting is the fact that the EL approach yields the same LR value as the Oracle estimate, but slightly different values of the loading factor . Yet, the EL and the Oracle estimate yields the same output SNR. This is because, as illustrated in Fig. 3(a), the FP-DL estimate is not very sensitive to variations in . To summarize, this simulation shows that the Oracle estimate results in a LR value which matches . Since the EL approach selects the loading factor so that the resulting LR is also , the EL approach performs as well as the Oracle. It should also be stressed that FP-DL sig-niÞcantly outperforms the MLE, especially in low sample support, demonstrating the interest of regularization in this regime.

C. Regularization

We now consider simulations with estimates. In Fig. 6, we compare the estimates , and the estimates in [START_REF] Hjorugnes | Complex-Valued Matrix Derivatives With Applications in Signal Processing and Communications[END_REF] and [START_REF] Abramovich | Performance analysis of two-dimensional parametric STAP for airborne radar using KASSPER data[END_REF]. When shrinkage is used in conjunction with Dym-Gohberg approximation, the value of is selected according to the EL principle, i.e., (38) offers the highest output SNR (average SNR loss of about dB for ), followed by a Dym-Gohberg approximation of Tyler's MLE. It appears that shrinkage (or diagonal loading) associated with modeling is not useful. This is further investigated now.

D. Comparison Between DL and Estimates

Our next simulation explores the inßuence of the true underlying model for onto regularized schemes which are based on a model

. More precisely, we study the respective performance of "shrinkage to the structure" (i.e., only without diagonal loading), diagonal loading, and their combination, i.e., Þxed-point diagonally loaded estimates. We still consider the case of an scatter matrix : in this case, we wish to study if only is better than FP-DL, and if diagonal loading can improve estimation. We also consider a case where the element of corresponds to the -th correlation lag of an process whose spectrum (correlation) is close to but different from that of the process considered so far. In any case, is not longer a banded matrix and does not correspond to the covariance matrix of a process. The Þxed-point diagonal loading will be tested with two different choices of the loading factor : either is selected according to [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF] or it is chosen so that . In the latter case, we thus compare only and diagonal loading with the same likelihood ratio. Figs. 7-8 consider while in Figs. 9-10. The following conclusions can be drawn from observation of these Þgures. First, note that if the true scatter matrix belongs to the class , in the instance , shrinkage to the structure alone (i.e., without DL) performs better than FP-DL even if the two estimates have the same LR, see Fig. 7. However, even in this case, a further reduction of LR to the median value leads to additional gains, i.e., is found to be better than alone. In contrast, in the case of an scatter matrix, when is not as per a model, diagonal loading performs better than . It even performs better than diagonally loaded , as if when the two are used jointly, shrinkage to the structure is predominant. Therefore, there is no universally "best" regularization scheme: all depends on how close is the selected model to the true one. If we know or are lucky to select such one that the true matrix belongs to the restricted set, we get best results. If the restricted class does not include the true matrix, this "shrinkage to the structure" may be less efÞcient, and another shrinkage (actually FP-DL) may be more efÞcient.

So far, the order of our estimates was Þxed. We now consider joint estimation of and according to the EL principle. When estimating for Þxed , we followed the rule in (38), i.e., we looked for the matrix whose LR is closest to the median LR. If the same strategy is adopted for estimation of both and , i.e., if we select the couple so that is closest to , then high orders are likely to be chosen. In order to favor models with minimal order, we estimate as the minimal order for which complies with [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF]. More precisely, is estimated as (39) where is the 10% quantile of , i.e., . For comparison purposes, we also display the performance achieved when is Þxed to some value. The results are reported in Figs. 1112where we compare the performance of and in terms of SNR loss. In these Þgures, the black solid lines represent the threshold and the median value. Additionally, we display in Tables I-II an histogram of the values of . As can be seen, in the -type scatter matrix , the estimated order is nearly always , which is the true underlying model order. However for this case all models yield LR values compliant with that of the true scatter matrix, i.e., at least above the threshold . In the case, as increases, one has with high probability: this appears to be the best choice as least for large enough. In fact the estimate results in a LR which is below the threshold, which explains why one has to go to at least . These two simulations show that selecting according to the EL principle yields a close to optimal solution. The is shown to perform quite well, at least it does not penalize too much performance compared to Þxing . In this case, the optimal value of is but the SNR loss of is within 0.4 dB. To summarize, whatever the case, in practice one does not know which value of is optimal, and hence the latter must be set somehow arbitrarily. The EL principle offers an automatic way of estimating which, in most situations, is very efÞcient. Accordingly, selection of only for the FP-DL estimate according to the EL principle is very efÞcient.

VI. SUMMARY AND CONCLUSIONS

In this paper, we extended the expected likelihood methodology introduced in [10], [START_REF] Abramovich | ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] AND with complex elliptically symmetric distributions, and particularly over the class of samples with complex angular central Gaussian distribution. These distributions are appropriate for non-homogeneous clutter description when the covariance (scatter) matrix of this clutter is of full rank and the additive Gaussian internal noise may be ignored. In this Þrst part, for conventional (over-sampled) training conditions, we demonstrated that for the true (a priori unknown) scatter matrix, the p.d.f. of the likelihood ratio does not depend on this matrix.

For angular central Gaussian complex data, this p.d.f. is fully speciÞed by the sample volume and matrix dimension , and does not depend on the density generator as per complex elliptically symmetric data. In those cases where the density generator is not accurately known a priori, it is therefore more appropriate to operate with the normalized training data that are described by the complex ACG distribution. While closed-form analytical formulas for the scenario-invariant p.d.f. have not been derived, Monte-Carlo simulations with i.i.d. white noise Gaussian random vectors could be used to pre-calculate these p.d.f. with any required accuracy. The particular quantiles of these p.d.f., such as median value, are then used as thresholds or target value for appropriate selection of shrinkage parameters in Þxed-point scatter matrix estimation.

In particular, the EL approach was proposed for diagonal loading factor selection in the Þxed-point regularized scatter matrix estimation scheme of [START_REF] Abramovich | Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive Þltering[END_REF]- [START_REF] Wiesel | UniÞed framework to regularized covariance estimation in scaled Gaussian models[END_REF]. Interestingly enough, we observed that the Oracle estimator (which minimizes the MSE) yields a value of the likelihood ratio which is very close to the median LR for the true scatter matrix. Since the latter is the target value for the EL approach, it demonstrates that the EL approach is statistically sound. Furthermore, we explored in this paper another type of regularization, different from diagonal loading, often referred to as shrinkage to the structure. SpeciÞcally, we introduced the Þxed-point ML scatter matrix estimate, along with a diagonally loaded version of it. We that for autoregressive experimental data, estimates perform better than Þxed-point diagonal loading: yet, introduction of DL in conjunction with shows improvement with respect to only. When the true scatter matrix does not belong to the class, then Þxed-point diagonal loading was shown to outperform -based estimates, while the difference is not large. It was also demonstrated that the EL approach allows for an accurate estimation of the best model order. Hence, the EL approach offers a systematic, statistically sound and efÞcient way of Þxing the regularization parameters in regularized covariance matrix estimation schemes. Moreover, the extension to CES and ACG distributions presented in this paper expand our ability to address problems with severe in-homogeneity of training data in adaptive processing applications. Regularized covariance matrix estimates, well developed and proven to be highly effective in adaptive antenna (Þlter) applications with multivariate complex Gaussian data, now got extended over a broader class of CES and ACG distributions.
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