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Multiscale deformation of a liquid surface in interaction with a nanoprobe 

R. Ledesma-Alonso, P. Tordjeman, and D. Legendre 
Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse (IMFT), 1 Allée du Professeur Camille Soula, 

31400 Toulouse, France 

The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on 
physical and geometrie parameters, which are depicted by employing three dimensionless parameters: Bond 
number B0 , modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the 
deformation is described by a strongly nonlinear partial differentiai equation, which is solved by means of 
numerical methods. The dynarnic analysis of the liquid profile points out the existence of a critical distance D::W,, 
below which the irreversible wetting process of the nanoprobe happens. For D* ;;;:: D::W,, the numerical results 
show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. 
Different deformation length-scales, characterizing the stable liquid equilibrium interface, define the near-and 
the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide 
simple relationships between the parameters, which leads to determine the optimal conditions when performing 
atomic force microscope measurements over liquids. 

I. INTRODUCTION 

The study of fluids and their properties at the nanoscopic 
scale by means of local probe techniques is still today a 
big challenge. Involving molecular interaction forces, several 
apparatuses and techniques have been in constant development 
for the past four decades, mainly the surface force apparatus 
(SFA) and the atornic force microscope (AFM). Even though 
the SFA gives a vertical distance resolution of about 0.1 nm 
and a force sensitivity of 10 nN [1], its lateral resolution 
is lirnited by the radius of the two approaching cylinders, 
around 1 cm, on which the technique is based. Nevertheless, its 
configuration is optimum for studying rheological properties 
of thin films [2]. On the other band, the AFM provides a 
sirnilar vertical resolution and an augmented force sensitivity 
of 10 pN [3], whereas its lateral resolution is given by the 
size of the tip radius, commonly between 10-20 nm. Hence, 
AFM techniques allow the acquisition of detailed topographies 
and the visualization of different material phases, among other 
properties involving molecular interactions [4-7]. However, 
in spite of its advantages and possible applications, the 
characterization of liquid surfaces by means of AFM methods 
bas been delayed due to the difficulties induced by the interface 
deformation, the jumping capillarity phenomenon, and the 
inherent probe wetting. 

The geometry of an ordinary SFA experiment allows the 
employment of the Derjaguin approximation, which bas been 
proven to be appropriate in most cases. For common AFM 
nanoprobes, it is not applicable because the tip radius bas 
a smaller or sirnilar size compared to the gap between the 
deformed liquid surface and the tip [8]. Previously, the basis of 
a theoretical model to compute the liquid surface deformation 
were developed [9], in which no geometrie hypothesis was 
made, providing a valid analysis at any length-scale. Taking 
into account the molecular attractive interaction, represented 
by a modified Hamaker number, and neglecting the effect of 
gravity, depicted by the Bond number, the height of the defor-
mation profile was estimated. Good agreement between AFM 
experiments and the deformation force computed with the 
model were achieved, validating the introduced methodology. 

Herein, we present an extensive analysis, which deepens into 
the parametric study and its consequences over the dynarnic 
evolution of the interface profile, at different length-scales. The 
results show that the deformation extends beyond the tip radius, 
and as far as the capillary length, which for the case of local 
probes (tip radius ｾｷＭｳ＠ m) is several orders of magnitude 
greater (capillary length ｾＱＰＭ Ｓ＠ m). Different deformation 
zones are portrayed and delirnited by different characteristic 
length-scales: from the origin of an axisymmetric reference 
system up to a length-scale given by the Hamaker interaction 
force, a near-field is found; from a transition length-scale up 
to the capillary length, a far-field spans; and between the two 
previous zones, a transition or linking zone is located, which 
extension depends on the combined effect of the attractive 
interaction and capillarity parameters. Keeping in rnind the 
different length-scales, we find that the deformation profile 
shows a self-sirnilar behavior. 

In addition, a particular relationship between the apex 
deformation and its curvature is found. The resulting fit serves 
to calculate the minimum distance at which the probe can 
approach the liquid without being wetted, as well as its 
corresponding maximum deformation. These quantities result 
to be functions of the dimensionless parameters, and can be 
employed to determine the optimal experimental conditions 
when AFM measurements are performed over liquid surfaces. 

II. INTERFACE DEFORMATION 

A. Model 

Considering that the London-van der Waals (London-
vdW) interaction force between molecules acts over a rel-
atively short distance, only the rounded extreme of the tip 
generates a reaction at the interface [9]. Consequent! y, in order 
to understand the nature of the noncontact interaction between 
a local probe and a deformable material surface, we model the 
tip as a sphere of radius R. Within a cylindrical coordinate 
system, a perfectly rigid sphere is placed at a fixed position 
over a serni-infinite liquid body, which is deformed like the one 
shown in Fig. 1, the gap between them being filled with air. 
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FIG. 1. Scheme of the liquid surface deformation in interaction 
with a probe. Parameters defined in the text. 

The interface is initially fiat and located at z = O. Based on the 
Hamaker theory [10], the pressure field (or attractive potential) 
n exerted by the sphere at a distance D over the bulk liquid is 

4HR3 1 
ll = ｾ＠ [(D- z'fl +r2- R2]3' 

(1) 

where H is the Hamaker constant of the probelairlliquid 
system, while z and r are the vertical and the radial co-
ordi.n.ates of any point in the liquid, as shown in Fig. 1. 
Equation (1) is obtained from integrating the London-vdW 
interaction potential between the sphere atoms and a differ-
entiai. volume at a given distance from the sphere surface. 
As shown in Fig. 2, the radial cxtent of the pressure field 
is smaller than the spbere radius. As well. consîdering the 
dilated vertical axis, which allows the visualization of the 
corresponding equilibrium liquid surface, the depth barely 
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FIG. 2. Pressure field over the liquid body generated by the 
interaction with the spherical probe, obcained from Eq. (1), and the 
corresponding interface deformed position for H = 4 x 10-2D Nm 
and R = to-1 m. The vertical axis is m.agnificd to facilitate the 
interface visual recognition. 

reaches 0.1 times the sphere radius. In brief, the interaction 
effect is restricted to a very small zone over the liquid phase. 

In tum, this attractive potential tends to deform the 
interface, which provokes a capillary pressure difference and a 
hydrostatic pressure in order to balance the system, as weil as a 
dynamic contribution entailed by the viscous dissipation of the 
system. As a first approach, we have disregarded the inertia1 
effect with respect to the viscous contribution. Thence, the 
genera1ized Young-Laplace's equation without mass transfer, 
which describes the interface behavior, is expressed as 

rr - !l.pgJ7 +!!.. E . !!. = 2Ky, (2) 

where !ip is the density difference between the liquid phase 
and the air, g is the gravitational acceleration. !!. • :E • !!. is 
the normal viscous stress difference across the interface 
characterized by the unit normal vector !!_, " is the local 
interface mean curvature, y is the surface tension, and '1 is the 
local interface position, which within an axisymmetric mode1 
is given as a function of the radial position r and the time t. 
Within this portrayal, inertia was disregarded with respect to 
viscous dissipation because, at the AFM scale, the Reynolds 
number is of the order of Re e [1 o-9 ,1 d']. 

Additionally, considering a general case for which large 
deformations are envisaged, the expression of the curvature in 
cylindrical coordinates is given by 

Ｒｴ｣］ＭＡ｟Ａ｟｛ｲ｡ＧｾｻＨ｡ＧｾＩＲ＠ +1}-'J. (3) 
r ar ar ar 

As well, in the more simplistic case, the viscous stresses at the 
air-side are negligible with respect to those at the liquid-side. 
Hence, for an incompressible single-directional viscous flow, 
which moves mainly in ｴｨ･ｾ＠ direction, and considering that 
in cylindrical coordinates!!. is approximated by nr ｾ＠ -a7j jar 
and nl ｾ＠ 1, we have 

a (a11)2 
n · :E ·n ｾ＠ _,_ -- - .-at ar . (4) 

where IL represents the viscosity of the liquid. We can introduce 
the definitions of the capillary length, l.c = .Jy /(Apg), and 
the relaxation time, l' = ＨｒｾＮｴＩｦｹＬ＠ of the system. As weil, 
considering R as the characteristic length-scale and T as the 
characteristic t:im&-scale of the system, we find the dimension-
lesa variables: D• = D / R the distance from the center of the 
sphere to the originally undefonned interface, r• = r 1 R and 
z• = z/ R the horizontal and vertical coordinates, 11* = 11/ R 
and ｾ･Ｊ＠ = "R the deformation and curvature, l.ê = l.c 1 R the 
dimensionless capillary length, and t" = t f'r the dimension-
less time. Thus, matching Eqs. (1)-{4), the nonlinear partial 
differentiai equation that describes the instantaneous position 
of the interface is written as the following dimensionless 
expression: 



in which we find two dimensionless parameters: the Bond 
number B0 = (R/Àci and the modified Ramaker number 
Ha= 4Hj(3rryR2

). 

This dimensionless analysis gives rise to an equation that 
is valid for a system of any length-scale. In addition, as it is 
clearly observed from the parameter definitions, Ha and B0 

are coupled by R. Renee, their values are restricted according 
to the product of physical properties given by: 

HaBo = 
3
: ( H ::g). (6) 

Considering real probe/air/liquid systems [1 ,11- 13], for 
which HE [10-21,10-19]J, y E [lo-2,10-1]N/m, l:!..p E 

[102, 104]kgjm3, and IL E [10-3, 10°]Pa s, and common AFM 
probes, with R E [10-8, 10-7], the range of the dimension-
less parameters remains within Ha E [1 o-8, 10-1] and B0 E 
[10-11 , 10-8]. 

For simplicity, the deformation, and its first and sec-
ond derivatives with respect to r* are written as TJÔ• 
｛ｔｊＪ｝ｾＮ＠ and ｛ｔｊＪ｝ｾＮ＠ respectively, when evaluated at r* = 0, 
and as TJè, ｛ｔｊＪ｝ｾＮ＠ and ｛ｔｊＪ｝ｾＮ＠ respectively, when evaluated 
atr* = Àê. 

At r* = 0, a symmetry boundary condition, ｛ｔｊＪ｝ｾ＠ = 0, 
should be considered. Meanwhile, far from the axis at Àè » 0, 
where the interaction potential, which decays as (r*r6, is 
negligible (TI :::::i 0), the boundary condition cornes from the 
quasistatic asymptotic solution ofEq. (5), also considering that 
in this outlying region the surface is nearly flat ([TJ*l' « 1). 
The exact solution, which leads to the corresponding faraway 
boundary condition, is 

TJ* = G Ko( ...[ii; r*), (7) 

with the coefficient G = TJè! Ko(1), and Ko being a zero-order 
modified Bessel function of the second kind. Renee, the 
boundary condition at r* = Àè is given by 

(8) 

where K 1 is a first -order modified Bessel function of the second 
kind. 

We suppose that the interface is undeformed and completely 
flat before the dynarnic process starts. Renee, the initial 
condition at t = 0, is given by TJ* = [TJ*l' = K* = 0 for all 
r* ｾ＠ 0, which is equivalent to say that the sphere is suddenly 
set at t =O. 

After a time interval close to r, a steady-state profile is 
expected to be obtained. Considering real probe/air/liquid 

systems, we find rE [10-6,10-10]s for AFM situations. 
Because of the relatively small magnitude of this char-
acteristic time-scale compared to the common laboratory 
measured time-scales, as a second approach, we consider 
that the steady state is reached instantaneously. At equilib-
rium, liquid and interface are motionless, viscous stresses 
do not appear and the temporal derivative in Eq. (5) is 
ornitted. Thus, Eq. (5) is transformed into a dimensionless 
nonlinear ordinary differentiai equation and, as expected, the 
equilibrium profile is obtained when the interaction pressure 
field is totally compensated by the gravity and the capillary 
contributions. 

A posteriori, it was verified that ([TJ*l'i « 1, which 
supports the employment of the small interface dis placements 
hypothesis in our theoretical analysis. Taking this into account, 
the dimensionless mean curvature K* is decomposed in two 
principal curvatures 

2K* = ｋｾ＠ + K: (9a) 

* d
2

TJ* * 1 dT]* 
K = -- K = ---, (9b) 

m dr*2 a r* dr* 

where ｋｾ＠ is the dimensionless meridional curvature-the 
axisymmetric curvature of the interface that determines the 
behavior of the profile at any axial plane-while K; is 
the dimensionless azimuthal curvature-the curvature projec-
tion of the circle describing isodeformation contour lines in 
the direction normal to the interface. 

B. Numerical method 

Due to the impossibility of solving analytically the strongly 
nonlinear Eq. (5), a numerical method was implemented. 
Firstly, taking care of the singularity present at r* = 0, we 
consider the Taylor expansion 

1 d * 
- _!!____ :::::i [TJ*]" + O(r*). (10) 
r* dr* 0 

Additionally, employing the finite difference method to dis-
cretize the time derivative, we can write the dynarnic term 
as 

a ( aTJ* )2 1 1 ( aTJ* )21n ( aTJ* )21n-1} 
at* ar* = l:!..t* ar* - ar* ' (ll) 

where n and n - 1 indicate two consecutive time-steps, and 
l:!..t* is the dimensionless time-s tep of the simulation. 

Now, writing Eq. (5) as a system of nonlinear ordinary 
differentiai equations, we have to solve 

(12a) 

(12b) 



where u is the fust spatial derivative of the liquid surface 
position, 11* = TJ*In for sirnplicity, and A = (dTJ* jdr*) 21n-l 
is a numerical method parameter. The problem represented 
by Eqs. (12) must be solved to obtain the profile of the 
interface at any time n, with the knowledge of the profile at the 
previous instant n - 1. This system is a two-point boundary 
value problem, which is worked out using a MATLAB routine 
including the function bvp4c.m, which employs the so-called 
Sirnpson's method [14]. Because of the smooth shape of the 
composing functions of the system expressed in Eqs. (12), the 
solution is easily found with the proposed method. 

The boundary and initial conditions are 

r* = 0 ::::} u=O (13a) 

r* ］ｾ＠ ::::} 
JB:Kt(1) * 

u = - Ko(1) l'Je (13b) 

t = 0 1 { •• ｾ＠ •7(1- ;;l 
::::} 

ｾｾ＠
(13c) 

0 ｾ＠ r* ｾ＠ Àc u = ＭＩＮｾＧ＠

where '17 is the initial guess of the interface apex position. 
Due to the nonlinearity of the system, two different shapes of 
the interface profile can be found as simultaneous solutions 
of Eq. (5), depending on the value of '17 (this point is 
discussed in Sec. III C). For the dynamic calculation of the 
profile evolution, the surface is initially placed at '17 = O. For 
steady-state calculation, the dynamic system is transformed 
into the equivalent system of equations, which describes the 
static case. The previous and the current instants are then 
nullified, and we take A = u2 and suppress the superindex n. 
For ali the situations, dynamic or static, interface profiles are 
calculated with a relative tolerance of w-4 • 

DI. LIQUID SURFACE DEFORMATION 

A. Transient state 

From the results presented in the literature [9], for a given 
combination of the parameters Ha and B0 , the evolution of the 
interface profile depends completely on the relative value of 
D*. If D* is greater than a threshold value, Drin, a bumplike 
equilibrium profile is attained. On the other band, if D* is 
smaller than Drin, the profile deformation grows until the 
liquid touches the sphere, developing the so-called jump-
to-contact processes and the formation of a liquid capillary 
bridge [15]. 

A typical interface profile evolving and reaching an equi-
librium state is shown in Fig. 3(a). As well, the different 
evolution paths that the interface apex can follow, depending 
on D*, are shown in Fig. 3(b ). For ali the considered 
values of D*, the instantaneous application of the attractive 
force at t = 0 directly results into an abrupt acceleration of 
the interface. In turn, surface tension generates a restoring 
force, which acts to oppose the interface deformation. As a 
consequence, the driving force in the next instant results from 
the balance between attractive and surface tension forces, both 
increasing along with the deformation. At the initial stage, the 
interface speed decreases monotonically due to the viscous 
dissipation within the liquid phase, which tends to damp 
the bulk liquid motion. If D* > Drin• the attractive force is 
sufficiently small to be controlled by the surface tension, and 
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FIG. 3. Interface dynamic evolution obtained from solving 
Eqs. (12) for Ha= 10-3, Bo = 10-10, and !:!.t* = 10-3 • (a) Instan-
taneous dimensionless profiles forD* = 1.2 > Dri,, corresponding 
to increments of lO!:!.t* (from bottom to top). (b) Time-dependent 
dimensionless apex position for: [- -] D* < Dri,, [-] D* = Dri,, 
and[···] D* > Dri,. 

the interface motion slows down until a steady-state profile 
is achieved, as represented by the dotted curves in Fig. 3(b ). 
The solid curve indicates the critical dynamic evolution, for 
which D* = Drin and the profile converges slowly toward 
an equilibrium state, attained near t* ｾ＠ 1. In contrast, when 
D* < Drin• the attractive force is large enough togo beyond 
the tension force, and the motion grows without a regulating 
mechanism, leading to the sphere-liquid contact. The profile 
begins normally its deformation and the speed decreases until it 
reaches a temporary shrinkage, followed by arise of the speed, 
the profile divergence, and the subsequent wetting process. 
Also in Fig. 3(b ), the dashed curves describe this behavior, 
characterized by the so-called jump-to-contact process. 

B. Steady-state equilibrium profile 

The interface profile converges toward a final steady-state 
solution on1y if D* ｾ＠ Drin. An example of the typical 
equilibrium deformation profiles are shown in Fig. 4, for fixed 
values of Ha and B0 , and an initially flat surface placed at 
'17 = 0, but for different values of D*. The corresponding 
curvatures, K! andK* [seeEq. (9)], aredisplayedinFig. 5. Asit 
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D* with increments ｯｦＰＮＰＵｄｾ＠ (from top to bottom). In this case, it 
was found that ｄｾ＠ = 1.168. 

is clearly depicted in the deformation profile shown in Fig. 4( a), 
the sphere pulls the interface towards itself only at a very 
reduced zone near the symmetry axis, as shown in Fig. 4(b ), 
which is a central region zoom. From r* ｾ＠ 102 - 103 and 
beyond, the asymptotic solution expressed in Eq. (7) perfectly 
describes the declining capillary behavior of the deformation. 
In addition, the meridional and mean curvatures are shown 
in Figs. S(a) and S(b), respectively. There is a passage from 
a negative to a positive value of K:,, near r* = 0.37, which 
indicates a change in the sense of the surface tension force 
in the axial plane. On the contrary, K* remains always within 
positive values, showing a narrow logisticlike behavior, barely 
covering a projected radius. In short, from the curves in Figs. 4 
and 5, reducing D* provokes an increment in the magnitude 
of the attractive force, leading to greater deformation and 
curvature states, as well as a slight variation of the radial 
extension of both. 

C. Bifurcation diagrams 

In fact, for each combination of the parameters Ha, B0 , 

and D*, two solutions for the deformation profile arise from 
the initial value chosen for TJ7. By taking D* and the two 
corresponding values of TJÔ as coordinate pairs, we obtain a 
bifurcation curve. Examples are shown in Fig. 6(a) for a fixed 
value B0 = w-10• WhenD* = Drin, thereisonlyonesolution 
profile, corresponding to the maximum apex deformation ｔｊｾ＠
and the minimum gap Erin between the liquid surface and the 
sphere. There is no solution for the deformation profile further 
to the left than this critical point ＨｄｲｩｮＬｔｊｾ｡ｸＩＬ＠ from which the 
two branches emerge. 

As observed from Fig. 6(a), the curve showing the highest 
apex deformation is thus an unstable branch from the energetic 
point of view. As well, the curve reporting the lowest apex 
position, associated to the minimum deformation energy, is a 
stable branch and thus describes the only possible interface 
profile. For the stable apex position, the dependency of TJÔ 
on D* seems to take the form of a rectangular hyperbola: 
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FIG. 5. Steady-state dimensionless equilibrium (a) meridional 
curvatures and (b) local mean curvatures obtained from solving the 
steady-state Eq. (5), with the same parameter values and variables as 
in Fig. 4. 

the shorter the gap between the probe and the undeformed 
surface, the larger the deformation becomes. In Figs. 6(b) and 
6( c ), the derivative of TJÔ with respect to D* and the curvature 
of the stable branch are shown, respectively. In both cases, 
Drin marks the location of a vertical asymptote, at which the 
stable branches are completely halted. 

An increase of Ha generates a displacement of the bifur-
cation curve to larger values of D*, as well as a proportional 
scaling. Conversely, an increase of Bo provokes a very small 
decrease of D*, which is negligible in comparison with those 
provoked by Ha. In general, the impact of Ha is significant, 
while the effects of a change in B0 are negligible within 
the range of common liquids, as it is summarized in Fig. 7. 
Increasing Ha provokes an enlargement of ｔｊｾ＠ and Drin; 
while, if B0 increases, both ｔｊｾ＠ and Drin show slightly smaller 
values. 

D. Geometrie relations 

Noncontact AFM experiments require to control the 
tip/liquid distance, which is a function of their physical 
properties. This can be done by considering the geometrie 
relations that are presented below. When analyzing the apex 
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behavior for a given combination of Ha and B0 , it is found that 
KÔ grows along with TJÔ, which in turn becomes larger when 
D* decreases, as observed in Fig. 8. The curvature KÔ shows a 
remarkable simple dependency on TJÔ, given by 

(14) 

in which the prefactor C Rj 0.4(B2·06 / ｈｾﾷ Ｕ Ｉ＠ is obtained from 
fitting the solutions of Eq. (5) for the range of parameters 
considered. From Fig. 8, a horizontallogarithmic displacement 
is produced when modifying the dimensionless numbers: 
significantly toward larger values of TJÔ when Ha increases; 
barely noticeable to smaller values of TJÔ when B0 grows. 
While TJÔ moves towards TJ::rnx, KÔ reaches its maximum value 

0.25 
0.25 

0.2 
0.2 

ｾ＠ 0.15 
*E 0.1 

0.15 
!::"" 

ｾ＠ 0.05 -*E 
!::"" 0 

0.1 10-11 10-10 10-9 10-8 

(a) 

Ba 

0.05 

0 

1.8 

1.6 
1.6 -5 

*E 1.4 
Cl 

1.2 
-5 

,. 
*E 1.4 
Cl 1 

10-11 10-10 10-9 10-8 

(b) 

Ba 
1.2 

Ｑ ｇＭｾｾｾ ｾｾ ＭＭｾＭＭＭＭＭＭｾｾ＠

10-8 

FIG. 7. (a) Maximum apex deformation and (b) minimal dimen-
sionless distance as functions of Ha for a fixed Bo = 10-10, and 
(insets) as functions of Bo for a fixed Ha= 10-3• [a] solution of the 
steady-state Eq. (5), and[-] tendency curve from the combination 
ofEqs. (16), (18), and (19). 

K:UU. Rj 3.3 x 10-2, whichstaysnearlyconstantforany Ha and 
B0 • TJ::rnx and K:UU. indicate the limits ofvalidity ofEq. (14). 

For the case of local probes, R is always much smaller 
than Àc, and as a consequence B0 « 1. Thence, the effect of 
the capillarity is negligible compared to that of the attractive 
term at the symmetry axis, which corresponds to say that TJÔ is 
fully controlled by the London-vdW potential. Following this 
statement, disregarding the hydrostatic term in the steady-state 
Eq. (5), and analytically solving for D* at r* = 0, we obtain 

D* = TJÔ + 1 (Ha )1/3 
+ 2 * ' Ko 

(15) 

which, when substituting Eq. (14), gives the dependency of 
D* on TJÔ, leading to the bifurcation diagram's construction. 
The resulting relationship supplies the two physically possible 
solutions of Eq. (5), both stable and unstable branches. 
Bifurcation curves obtained using Eqs. (15) and (14) are also 
shown in Fig. 6(a), corresponding to a fixed B0 = 10-10 and 
a range Ha E [1 o-8, 10-1]. Furthermore, the derivative of TJÔ 
with respect to D*, as well as KÔ, are compared to the stable 
branch results in Figs. 6(b) and 6( c ), respectively. In a11 cases, a 
very good accordance with the numerical solution is observed. 
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FIG. 8. Apex mean curvature Ko as a function of T/Ô obtained for 
different modified Hamaker numbers in the range Ha E [1 o-8, 10-1] 

and a fixed Bond number of Bo = 10-10 and (inset) for different Bond 
numbers in the range B0 E [10-11 , IQ-8] and a fixed Ha = IQ-3• [- ·-] 

indicates 1/:;.ax obtained from the evaluation in Eq. (14) of 1/::.U. in turn 
obtained when solving Eq. (18). Arrows indicate the growth of the 
corresponding parameter. 

From Fig. 1, the separation distance D between the liquid 
surface and the probe center, and the height of the interface 
apex 1Jo are related by an evident geometrie relation 

ｄＪ］ｬＫｲｊｾＫｅｾＬ＠ (16) 

where ｅｾ＠ = Eo/ R is the dimensionless gap between the 
deformed interface and the sphere surface. Combining Eq. (16) 
with Eq. (15) gives the exact expression of the dimensionless 
gap 

( 
H )1/3 

ｅｾ＠ = 1 + 2KJ - 1, (17) 

which, once more with the employment of Eq. (14), also 
relates ｅｾ＠ and rJÔ. Considering that the apex position diverges 
at Drin, thus ､ｲｊｾｦ､ｄＪ＠ --+ oo, we obtain Drin by calculating 
analytically the minimum of Eq. (15). Combining the latter 
with Eq. (14), the acquired polynomial 

* 3 Ha * 512 1 Ha ( Ｉ ｾ＠ ( Ｉｾ＠
(rJmax) + 2C (rJmax) - 16 2C = O, (18) 

is meant to be solved in order to find the maximum deforma-
tion, and used to determine the minimum separation distance 
and the corresponding gap. The minimum gap is now given by 

Erin= 1 + (Ha)l/3_1_ -1 
2C ｾ＠ ' 

(19) 

while Drin is obtained when substituting ＱＱｾ＠ and Erin in 
Eq. (16). 

In conclusion, the employment of Eq. (14) leads to find 
expressions, with which we can easily determine Ｑ｝ｾＬ＠ Erin, 
and Drin. Together with the knowledge of Ha and B0 , which 
are determined using data from the literature [1,11,12] or ex-
periments [9], the optimal AFM scanning separation distance 

range ]Dmïn,2R] is found. Such information is important for 
imaging liquid topographies and material properties at the 
nanoscale. 

Iv. DEFORMATION SCALING 

A. Characteristic length-scales 

Taking rr• = 3:;rr R3 ITj4H, wewritethesteady-stateEq. (5) 
as follows: 

(20) 

The absolute value of the terms appearing in Eq. (20) and the 
curvature decomposition terms in Eq. (9), which contribute to 
achieve an equilibrium steady state, are depicted in Fig. 9. The 
existence of three important length-scales, already introduced 
in Fig. 1, is emphasized. 

Firstly, corresponding to the position for which K:;. = 0 
(inflection point of the meridional profile), ｾ＠ indicates the 
boundary of a near-field zone, and the beginning of a transition 
zone, where ali the variables contribute to the deformation. 
At r* E [O,ÀM, the attractive term HaiT* (positive) is mostly 
opposed by 2K* (positive), whereas the hydrostatic term B0 1J* 
(positive) is negligible. Characterized by Ha, the equilibrium 
profile in this near-field range is directly controlled by the 
balance between attractive potential and capillary pressure, 
both showing constant magnitudes that slowly decay when 
r* ＭＭＫｾＮ＠

Then, at the radial extent for which 2K* = 0 (zero-
curvature), À} marks the end of the transition region and 
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FIG. 9. Characteristic length-scales determination. Different 
terms (a) xj from Eq. (20), for which L: xj = o, and (b) Yj from 
Eq. (9), for which L yj = 2K*, as functions of r*' for Ha = w-3' 
B0 = IQ-10,andD* = D::Un = 1.168. TheuppercaselettersN, T,and 
F designate the near-field, transition, and far-field zones, respectively, 
which extents are bounded by the characteristic length-scales ｾＬ＠ ｾＬ＠

andÀê. 
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with the same parameter values and variables as in Fig. 8, as well as 
the same considerations for the insets. Arrows indicate the growth of 
the corresponding parameter. 

the beginning of the far-field zone, which corresponds to a 
capillarity dominated decay. When r* ｅ｝ｾＬｽＨＬ＠ K; with-
stands both Ha II*, which quickly loses its intensity, and 
K;;,, which has adopted a negative value. In this region, 
K;;, and K;, the latter al ways showing a positive value, are 
antagonists. B0 TJ* remains nearly constant as it slowly gains 
weight while both Haii* and 2K* decrease at the same 
rate. 

Finally, the dimensionless capillary length Àc shows the 
extension at which the effect of all terms tend to disappear. 
Within r* E]À},Àè], Hai1* has become negligible whereas 
2K*, which has become negative, attains the order of magnitude 
of B0 TJ*. In this zone, B0 TJ*, which diminishes gradually, is 
opposed by 2K*, while K;;, and K; are still contending. The 
shape of the interface profile in this far-field zone is completely 
given by B0 • Beyond r* = Àc, the interface returns to its 
unperturbed fiat state. 

In Fig. 10, ｾ＠ and À} are shown as functions of TJÔ for 
different Ha and B0 • For a given combinations of parameters, 
ｾ＠ and À} decline as functions of TJÔ, following rectangular 
hyperbolalike behaviors. This tendency continues until the 
values of ｄｾ＠ and ｔｊｾ｡ｸ＠ are reached, for which the limiting 
equilibrium profile and the minimum radial positions of ｾ＠
and À} are attained. The numerical results indicate that 
ｾ＠ shifts toward higher values when Ha increases in the 
range Ha E [10-8, 10-1 ]. On the other hand, the impact 
of B0 on ｾＬ＠ within B0 E [10-11 ,10-8], is not significant. 
Likewise, À} follows the same tendency when Ha augments; 
however, we observe an important decrease of À} when Bo 
grows. 

The curves in Fig. 10 can also be analyzed as follows. 
For a given Ha, a decrease of D* provokes the growth of 
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FIG. 11. Near-field self-similar dimensionless (a) curvature and 
(b)interfaceprofilefor Ha E [10-8,10-1] andB0 E [10-11,10-8]. [o] 
numerical solution of the steady-state Eq. (5) and [-] approximations 
obtained from Eqs. (21) and (23), for the curvature and the interface 
profile, respectively. 

TI* and TJÔ, leading to a decrease in both ｾ＠ and À}, which 
is the action of the capillary pressure to restrain the radial 
extent of the deformation. From another viewpoint, an increase 
of Ha generates a given TJÔ at a larger D*, and both ｾ＠
and À} are subsequently increased, which indicates that the 
attractive potential spans over a larger zone. Because D* 
and its induced TJÔ are not significantly affected by B0 , a 
change in this parameter has a faint effect over ｾＮ＠ On the 
other hand, an increase of B0 directly provokes a decrease 
of À}, which corresponds to enlarging the heaviness of the 
interface. 

B. Self-similarity 

Taking into account the length-scales, ｾ＠ and Àc, we find 
master curves that display the self-similarity of the deforma-
tion profile in the near-and far-field zones, respectively. For 
r* E ｛ｏＬｾ｛Ｌ＠ the reduced variables K* /KÔ and r* Ｏｾ＠ allow us 
to find the dimensionless curvature presented in Fig. 11(a). 
This curve exhibits a logisticlike probability function 
shape 

4exp {-br;.) 
H (21) 

[1 +exp{- br;. )]2' 
H 

where b is a fitting parameter, which is deterrnined below. 
The relative error between the numerical solution of K* /KÔ 
and Eq. (21) is w-3, for a radial position up ｴｯｲＪｾ＠ ＵｾＮ＠



In addition, the reduced curvature K* / KÔ can be tak:en as 
negligible for radial positions beyond r* Rj 1 Ob ｾＮ＠

Matching Eq. (21) with Eq. (3), for small displacements of 
the liquid surface, and integrating we find 

_..!:_ dTJ* - 8K*(b ｾＩ＠ { exp (- ｾＩ＠
r* dr* - 0 r* 1 +exp ( - br;. ) 

H 
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FIG. 12. Self-sunilar deformation profile obtained with the di-
mensionless variables in (a) Eq. (23) and (b) Eq. (24). [o] numerical 
solution of the steady-state Eq. (5) and[-] approximations obtained 
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the corresponding dimensionless parameter grows: shifting Ha E 

[10-8,10-1] for a fixed Bo = 10-10, and varying BoE [10-11,10-8] 

for Ha = 10-3• 

where B is an integration constant. From the boundary 
conditions ｛ｔｊＪ｝ｾ＠ = 0 and the corresponding Taylor expansion 
of the logarithmic term, we find B = 2. As well, evaluating 
Eq. (22) and (21) atr* ］ｾＬ＠ where 2K* = K;, wededucethe 
value of b = 3.89 x 10-1. Afterward, performing a second 
integration of Eq. (22), we obtain the expression of the 
dimensionless deformation profile 

TJ*- TJo 2{ 1 [ ( r* )] * * 2 =8b -ln- 1+exp --b * 
Ko(ÀH) 2 ÀH 

1r• f(b >.;,.) 1 dx } 
+ ln -[1 +exp (-x)]- , 

0 2 x 
(23) 

where x is an integration variable. Once more, the relative error 
between the numerical solution and Eq. (23) is also 10-3, for a 
radial position up tor* ｾ＠ ＵｾＮ＠ In Fig. ll(b) , the self-similar 
profile given by Eq. (23) is compared to the numerical results, 
showing a very good agreement within 0 ｾ＠ r* ｾ＠ ｾＮ＠ for Ha E 
[10-8,10-1] and B0 E [10-11,10-8]. Therefore, it is proven 
that (TJ*- ｔｊｯＩＯｋￔＨｾＩ Ｒ＠ and r* Ｏｾ＠ are the dimensionless 
variables that characterize the self-similar behavior of the 
deformation in the near-field zone. The logarithmic plot of 
these parameters, depicted in Fig. 12(a), exposes that this 
self-similarity spans largely over the transition zone. 

Forr* ｅ｝ｾＬ￪｝Ｌ＠ thecoupleofreduced variables TJ* !TJê and 
r* /Àê, where TJê = TJ*(r* = Àê), leads us to find the far-field 
self-similar deformation profile 

KoG:) 
c 

Ko(1) ' 
(24) 

As shawn in Fig. 12(b), Eq. (24) gives a quite good de-
scription of the far-field results within ｾ＠ < r* ｾ＠ Àê, and 
even spanning over the whole transition zone. The decaying 
behavior, described by the far-field self-similarity, is observed 
for r* ｅ｝ｾＬｯｯ｛Ｎ＠

V. CONCLUDING REMARKS 

An extensive anal y sis of the deformation of a liquid surface, 
due to its interaction with a nanoprobe, was presented. The 
phenomenon was portrayed by a strongly nonlinear equation, 
and the effects of physical and geometrie parameters over the 
system were considered. Mainly when the interaction within 
a nanoscale system is considered, our madel generates a more 
accurate description of the interface deformation than previous 
works [16,17], which employ the Derjaguin approximation. 
Furthermore, the application of our results is possible at any 
scale, considering realistic situations, due to the performed 
dimensionless approach. 

The interface profile evolution, whether the system attains 
equilibrium or not, depends on the relative magnitude of D* 
with respect to the threshold distance v::nn. which in tum is 
given by the combination of the remaining parameters, B0 and 
Ha. Bifurcation diagrams relating TJo and D* are established, 
in which a zone with nonexistent equilibrium is uncovered and 
explained, when D* < n::nn. On the other band, steady-state 
stable and unstable equilibrium profiles are obtained when 
D* ｾ＠ v::nn. thus the attractive force is thwarted mostly by the 
capillary pressure. 



Three different length-scales were obtained from the 
analysis of the steady-state equilibrium profiles, all of them 
being function of Ha and/or B0 • They determine the existence 
of: a near-field zone, r* E [O,ÀM, controlled by the attractive 
interaction/surface tension balance; a far-field zone, r* E 

｝ＩＮＮｽＬＩＮＮｾ｝Ｌ＠ dominated by the gravity/surface tension interplay; 
and a transition zone, r* E]À1J,À}[, where all the variables 
take an important role. It was found that the two interior 
length-scales are affected by the size of the probe: ÀH ;S R 
and Àr ｾ＠ lOR, while the capillary length remains fixed Àc "' 
10-3. These length-scales are responsible for the liquid surface 
self-similar deformation profile. 
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