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Dielectrophoretic force-driven thermal convection in annular geometry

Harunori N. Yoshikawa,1, a) Olivier Crumeyrolle,1 and Innocent Mutabazi1

Laboratoire Ondes et Milieux Complexes, UMR 6294 CNRS – Université du Havre

53, rue de Prony – 76058 Le Havre Cedex, France, European Union

(Dated: 21 November 2013)

The thermal convection driven by the dielectrophoretic force is investigated in an-

nular geometry under microgravity conditions. A radial temperature gradient and a

radial alternating electric field are imposed on a dielectric fluid that fills the gap of

two concentric infinite-length cylinders. The resulting dielectric force is regarded as

thermal buoyancy with a radial effective gravity. This electric gravity varies in space

and may change its sign depending on the temperature gradient and the cylinder

radius ratio. The linear stability problem is solved by a spectral-collocation method.

The critical mode is stationary and non-axisymmetric. The critical Rayleigh num-

ber and wavenumbers depend sensitively on the electric gravity and the radius ratio.

The mechanism behind the instability is examined from an energetic viewpoint. The

instability in wide gap annuli is an exact analogue to the gravity-driven thermal

instability.

a)Electronic mail: Harunori.Yoshikawa@univ-lehavre.fr
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I. INTRODUCTION

The effect of electric fields on the dynamics of insulating or poorly conducting dielectric

liquids is concerned with the improvements of flow control and heat transfer. In the latter

context, the electric field coupled convection has been investigated by different researchers

since Kronig & Ahsmann’s experiment.1 Experiments and theoretical analyses were reported

for different geometrical configurations of electrodes.2 This convection phenomenon has re-

newed interests in astronautical engineering, where the thermal management of power con-

suming devices in microgravity is a crucial technological issue. The electric field can provide

an artificial gravity and generate thermal convection to enhance the heat transfer in the

liquids.

The electrohydrodynamic (EHD) force exerted on a dielectric fluid per unit volume is

given by3:

f e = ρeE − 1

2
E2

∇ǫ+∇

[

1

2
ρ

(

∂ǫ

∂ρ

)

θ

E2

]

, (1)

where E is the electric field and E is its magnitude. The free electric charge density, the

permittivity and the fluid mass density are denoted by ρe, ǫ and ρ, respectively. The three

terms of Eq. (1) represent the electrophoretic, dielectrophoretic (DEP) and electrostrictive

forces, respectively. The permittivity ǫ varies with the temperature. For a small temperature

increase θ from a reference temperature at which ǫ = ǫ2, it is given by

ǫ = ǫ(θ) = ǫ2 (1− eθ) . (2)

As we will assume in the present paper, the thermal coefficient of permittivity e is positive

(with some exceptional polar liquids, e.g., acetic and butyric acids) and takes typically a

value of the order of 10−3–10−2 K−1.

In a liquid subjected to a temperature gradient, convection flow can be generated by

applying an electric field on it. When a static or low frequency alternating field is applied,

the free charge density ρe appears even in an initially electrically neutral fluid.2 This charge

accumulation occurs over a time scale of the charge relaxation time τe = ǫ/σ through the

coupling of the electric field with the spatial gradient of the fluid electrical properties. The

electrophoretic force on the built up ρe is usually the dominant component of the EHD

force and can give rise to thermal convection.4,5 When the applied electric field has a high
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frequency f ≫ τ−1
e , the free charge accumulation does not occur. The DEP force is then

predominant6 and can also develop thermal convection.7–10

In the studies on the DEP force-driven thermal convection, the electric gravity is often

introduced in order to understand the phenomenon intuitively by analogy with the thermal

convection due to the Earth’s gravity. The DEP force FDEP = −E2
∇ǫ/2 can, in fact, be

arranged by invoking Eq. (2) as follows:

FDEP = ∇

(

eθǫ2E
2

2

)

− ραθge, (3)

with the electric gravity

ge =
e

αρ
∇
ǫ2E

2

2
, (4)

where α is the coefficient of thermal expansion. The first term of Eq. (3) is a gradient force

that can be lumped with the pressure term. It would not influence convection flows when

the fluid is incompressible and has no mobile boundaries. The second term proportional to

the temperature is the electric buoyancy force that drives thermal convection. The electric

gravity is proportional to the gradient of the electrostatic energy stored per unit volume of

the dielectric liquid.

The DEP force-driven thermal convection has been considered in different geometries. In

the plane geometry where a liquid fills the gap of two parallel plane electrodes, destabilizing

effects of the electric field to the basic conductive state have been recognized both in hori-

zontal and vertical configurations.9,11–13 When the terrestrial gravity is neglected, the linear

theories predict an instability with the critical value 2129 of the Rayleigh number based

on the electric gravity (4) and the critical wavenumber 3.226/d,9,12 where d is the gap size.

These critical parameters are different from those of the Rayleigh-Bénard problem (1708

and 3.117/d, respectively).

Spherical configuration has also been investigated, having a particular motivation in geo-

and astrophysics where the understanding of the convection in a spatially varying grav-

ity field in spherical geometry is of primary importance. The DEP force in a liquid layer

between two concentric spherical electrodes enables to simulate geo- and astrophysical con-

vection phenomena in laboratory scale systems. Linear stability analyses6,14 and numerical

simulations15,16 with and without rotation of the inner sphere show the generation of convec-

tion beyond a critical Rayleigh number. Recently, bifurcation properties of the convection
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FIG. 1. Schematic illustration of the geometrical configuration in a plane transversal to the annulus

axis.

have been examined in detail from the viewpoint of the dynamical systems theory.16 Exper-

iments performed in the Fluid Science Laboratory on the board of the International Space

Station show a favorable agreement with the theoretical predictions.17,18

In the literature, there are some studies in annular geometry. This geometry is concerned

with applications in heat management for, e.g., motor systems. The linear stability of the

Taylor-Couette flows with a radial DEP force field was considered.19 The research is also

motivated by the geo- and astrophysical applications, regarding the thermal convection in

this geometry as a lower level simulation system.7 Chandra & Smylie7 realized an experiment

on the ground with stationary vertical cylinders, choosing parameters for which the Earth’s

gravity is negligible (i.e., small Grashof numbers). They performed a linear stability analysis

to axisymmetric disturbances for their experimental parameters and found a reasonable

agreement with the experiment. In their analysis, the influence of the temperature gradient

on the electric field was neglected. This thermo-electric coupling has been taken into account

in the linear stability analysis by Takashima8 for narrow gap situations.

In the present work which is an extension of a recently published work,20 we consider the

DEP convection in the annular geometry under microgravity conditions (Fig. 1), aiming to

examine the stability over a wide range of control parameters (the gap size and the thermal

variation of ǫ) and to unveil the mechanism behind the instability. The cylindrical electrodes

are assumed as perfect conductors and of infinite length in order to examine the instability

in its simplest configuration. In the next section, we present the governing equations and

discuss the basic conductive state and the basic electric gravity. In Sec. III, the linear
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stability problem is formulated and its symmetry properties are discussed. Determined

critical parameters and eigenmodes are presented in Sec. IV. Section V is devoted to a

discussion on the instability mechanism from an energetic viewpoint. In Sec. VI, we compare

the results with the previous works and give our conclusions.

II. GOVERNING EQUATIONS AND BASIC STATE

A. Governing equations

Equations governing dielectric fluid motion in a high frequency alternating electric field

are presented in Turnbull’s paper11 in their general forms. All the equations are time-

averaged over a period of the electric field with replacing the imposed electric poten-

tial
√
2V0 sin(2πft) by its effective value V0. This time-averaged description is valid when

the frequency is high compared to the inverse of the viscous time scale d2/ν. It predicted

successfully the onset of the DEP thermal convection.21 The equations include ρ, ν and the

thermal diffusion coefficient κ which are functions of temperature θ. We assume that these

parameters are constant, adopting the electrohydrodynamic Boussinesq approximation11, in

which only the permittivity varies with the temperature. This approximation is valid as

long as the imposed temperature difference is not large.11 We have then the equations of

continuity, motion and heat conduction and the Gauss’s law of electricity as follows:

∇ · u = 0, (5)

∂u

∂t
+ u ·∇u = −∇π + ν△u− αθge, (6)

∂θ

∂t
+ u ·∇θ = κ△θ, (7)

∇ · (ǫE) = 0 with E = −∇φ, (8)

where u is the velocity field and φ is the electric potential. The generalized pressure π is

related to the hydrodynamic pressure p as

π =
p

ρ
− eθǫ2E

2

2ρ
− 1

2

(

∂ǫ

∂ρ

)

θ

E2. (9)
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Viscous energy dissipation and Joule heating have been neglected in Eq. (7). The former

is small in convection flows of incompressible fluid.22 The Joule heating relative to the heat

conduction is estimated as 6.29V 2
0 fǫ tan δ/λ∆θref (δ: the dielectric loss angle, λ: the thermal

conductivity, ∆θref: temperature difference),6 giving a tiny value in typical conditions, e.g.,

0.007 for silicone oils when f = 60 Hz, V0 = 10 kV and ∆θref = 1 K.

In addition to the governing equations (5)–(8), we may refer to the vorticity equation

which is derived from Eq. (6):

∂ζ

∂t
+ u ·∇ζ = ζ ·∇u+ ν△ζ − α∇θ × ge (10)

where ζ is the vorticity: ζ = ∇ × u. The last term in the right-hand-side is the source

of vorticity generation; the electric gravity that is not parallel to the temperature gradient

generates vorticity to develop convection.

We consider the fluid filling the gap of two concentric cylinders as illustrated in Fig. 1,

where R1 and R2 are the radii of the inner and outer cylinders, respectively. These cylinders

are kept at uniform temperatures and electric potentials, with an imposed temperature

difference ∆θ and a high frequency electric potential over the gap. In the time-averaged

description, the boundary conditions at the cylinders are







u = 0, θ = ∆θ, φ = V0 at r = R1,

u = 0, θ = 0, φ = 0 at r = R2.
(11)

B. Basic conductive state

When |∆θ| and V0 are small, the state of the system will be steady, axisymmetric and

axially invariant. The temperature and the electric potential will depend only on the radial

coordinate r: θ = θ(r), φ = φ(r). The temperature gradient and the electric gravity are

then collinear with each other so that the source term in the vorticity equation (10) is null;

there is no flow: u = 0.

For this basic state, Eqs. (7) and (8) read in the cylindrical coordinates (r, ϕ, z):

1

r

d

dr

(

r
dθ

dr

)

= 0 and
1

r

d

dr

(

rǫ
dφ

dr

)

= 0 (12)
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FIG. 2. Basic electric gravity ge = −geer. (a) Its direction as function of the dimensionless

temperature γe and the radius ratio η. CP and CF mean centripetal and centrifugal, respectively.

(b) Some profiles of ge calculated for the electric tension V0 = 1.08 × 104 V. The cylinder radii

and liquid properties are taken from the Chandra & Smylie’s experiment7 (R1 = 1.711× 10−2 m,

R2 = 1.903× 10−2 m, ρ = 937.7 kg m−3, α = 1.08× 10−3 K−1 and e = 3.7× 10−3 K−1).

where ǫ is the permittivity at the local temperature θ(r). Solving these equations with the

boundary conditions (11), we have

θ =
∆θ log (r/R2)

log η
, φ =

V0 log
(

1− γeθ/∆θ
)

log (1− γe)
. (13)

where η = R1/R2 is the radius ratio and γe = e∆θ is the dimensionless temperature difference

that represents the thermal variation of ǫ. The basic electric field Eer is computed from

E = −dφ/dr:
E =

γeV0

r
(

1− γeθ/∆θ
)

log (1− γe) log η
. (14)

The resulting electric gravity (4) from this basic electric field is radial and is given by

ge = −geer with

ge =
eǫ2V

2
0

αρ (log η)2 r3
F, where F =

γ2e
[

1− γe
(

θ/∆θ + 1/ log η
)]

[log (1− γe)]
2 (1− γeθ/∆θ

)3 . (15)

This electric gravity has two contributing factors. The first is the electric field inhomogeneity

due to the geometry curvature. It brings about the behavior inversely proportional to r3. The

second is the inhomogeneity due to the thermo-electric coupling represented by the factor F .

This coupling makes the electric gravity behavior different for different γe (Fig. 2a). When
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the heating is outward (γe > 0) or inward by a small amount ( log η < γe < 0), the electric

gravity is centripetal everywhere in the gap. For larger inward heating (log η/(1 + log η) <

γe < log η) the gravity is centripetal and centrifugal, respectively, in the inner and outer

sublayers separated at a radial position r = R2 exp(log η/γe−1). Further increase in inward

heating (γe < log η/(1 + log η)) makes the gravity centrifugal throughout the gap.

In the limit of γe → 0, there is no thermo-electro coupling. The electric gravity is cen-

tripetal independent of the heating direction and exhibits the purely inverse cubic behavior.

In another limit where the gap d (= R2 − R1) is small: d/R1 = η−1 − 1 ≪ |γe|, the electric

gravity (15) recovers that between two parallel plane electrodes9:

ge =
eǫ2V

2
0 γ

3
e

ραd3 [log (1− γe)]
2 (1− γe + γex)

3 , (16)

where x is the dimensionless distance from the inner cylinder: x = (r −R1)/d. The gravity

is directed from the low to high temperature electrodes.

Some profiles of ge are shown in Fig. 2b for different values of ∆θ. The cylinder radii and

the fluid properties are taken from the experiment of Chandra & Smylie.7 With decreasing

∆θ, the electric gravity varies from centripetal to centrifugal. The profiles are not symmetric

with respect to the change of heating direction, since the electric gravity (15) is primarily

related to the curvature of the cylindrical geometry and not to the thermal variation of

permittivity except for extremely narrow gaps.

III. LINEAR STABILITY PROBLEM

Using scales d of length, d2/κ of time, g0 of electric gravity and ∆θ of temperature, we

nondimensionalize the governing equations (5)–(8). Dimensionless parameters involved are

the radius ratio η, the dimensionless temperature difference γe, the Prandtl number Pr = ν/κ

and the electric Rayleigh number L:

L =
α∆θg0d

3

κν
. (17)

The latter number is the Rayleigh number based on the electric gravity. We estimate the

representative electric gravity g0 at the middle of the gap r = r0, where r0 = (1+η)/ 2(1−η).
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The electric Rayleigh number (17) is positive when the gravity at this reference point is in

the same direction as the basic temperature gradient; otherwise, it takes a negative value.

The nondimensionalized governing equations are linearized about the basic state. The

perturbations are developed into normal modes of complex growth rate s, azimuthal mode

number n and axial wavenumber k: (ũ, ṽ, w̃, π̃, θ̃, φ̃)est+inϕ+ikz, where ũ, ṽ and w̃ are the

complex amplitudes of the radial, azimuthal and axial perturbation velocity components,

respectively. Those of the perturbation pressure, temperature and electric potential are

denoted by π̃, θ̃ and φ̃. The resulting equations are:

1

r
(rũ)′ +

in

r
ṽ + ikw̃ = 0, (18)

△ũ− ũ

r2
− 2in

r2
ṽ − π̃′ + L

(

geθ̃ − g̃rθ
)

= Pr−1sũ, (19)

△ṽ − ṽ

r2
+

2in

r2
ũ− in

r
π̃ − Lθg̃ϕ = Pr−1sṽ, (20)

△w̃ − ikπ̃ − Lθg̃z = Pr−1sw̃, (21)

△θ̃ − ũθ
′

= Pr−1sθ̃, (22)

ǫ△φ̃+ ǫ′φ̃′ − γeφ
′

θ̃′ − γeθ̃

(

φ
′′

+
φ
′

r

)

= 0, (23)

where the primes signify a derivation with respect to r. The Laplacian operator △ and the

components of perturbation electric gravity (g̃r, g̃ϕ, g̃z) have been introduced:

△ =
d2

dr2
+

1

r

d

dr
−
(

n2

r2
+ k2

)

, (24)

g̃r = C(η, γe)
(

E
′

φ̃′ + Eφ̃′′

)

, g̃ϕ =
in

r
C(η, γe)Eφ̃

′, g̃z = ikC(η, γe)Eφ̃
′. (25)

The coefficient C = C(η, γe) is given by:

C = − [log (1− γe)]
2 r30 (log η − γe log [(1− η) r0])

3

γ2e [log η − γe (log [(1− η) r0] + 1)]
. (26)

The boundary conditions for perturbations are derived from (11) and read:

ũ = ṽ = w̃ = ũ′ = θ̃ = φ̃ = 0. (27)
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FIG. 3. Dispersion relation for different azimuthal mode number n. (Pr = 100, η = 0.5, γe = 0.01,

L = 1498)

The Gauss’s law (23) expresses the feedback of the electric field to temperature distur-

bances through the thermo-electro coupling. The resulting electric field is transmitted into

the dynamical equations (19)–(21) through the perturbation electric gravity. When the

imposed temperature difference γe is negligibly small, Eq. (23) admits only the trivial solu-

tion under the boundary condition (27). There is then no feedback effect: no perturbation

electric gravity is generated.

Equations (18)–(23) and the boundary conditions (27) form an eigenvalue problem which

determines the stability of the basic state against toroidal (n = 0, k 6= 0), helical (n 6= 0,

k 6= 0) or columnal (n 6= 0, k = 0) disturbances. When the instability occurs, these

disturbances develop into convection rolls.

The problem has a geometrical invariance associated with the mirror symmetry with

respect to the meridian plane ϕ = 0; Eqs. (18)–(23) and (27) are invariant by the operation

(n, ṽ) → (−n,−ṽ). Once the eigenvalue s and the eigenfunctions (ũ, ṽ, w̃, π̃, θ̃, φ̃) are known

for a spatial mode (n, k), those for the mode (−n, k) are then given by (s, ũ,−ṽ, w̃, π̃, θ̃, φ̃).
The stability conditions of both modes are identical to each other. Similar discussion can be

made about another invariance to the operation (k, w̃) → (−k,−w̃) that reflects the mirror

symmetry with respect to the transversal plane z = 0. The stability does not, therefore,

depend on the signs of n and k. We solve the eigenvalue problem for positive n and k by a

spectrum collocation method, the details of which are given in appendix A.
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FIG. 4. Definitions of the wavenumber q and the inclination angle ψ of convection rolls.

IV. RESULTS

A. Dispersion relation & Marginal curves

Eigenvalues s = sr + isi with the largest real part are computed for a given parameter

set (η,Pr, γe, L, n) with varying the axial wavenumber k. Obtained dispersion curves sr =

sr(k) have their maxima at a finite k for small n and at k = 0 for n larger than a certain

value m (Fig. 3), where m is the maximum number of convection roll pairs of the gap

size: m = [π(1 + η)/2(1− η)]. The square brackets indicate the integer part of the quantity

enclosed. The eigenmodes are stationary (si = 0), implying that the principle of the exchange

of stabilities holds as in the Rayleigh–Bénard problem.11,22 Turnbull gave a proof for the

plane geometry DEP convection with free boundary conditions.11

An eigenmode is associated with convection rolls whose basic geometrical characteristics

are specified by the wavenumber q measured along the direction transversal to the rolls and

by the inclination angle ψ to the azimuthal direction. Both are estimated on the median

cylindrical surface r = r0 (Fig. 4) and given by

q =

√

4n2 (1− η)2

(1 + η)2
+ k2, ψ = tan−1 2n (1− η)

k (1 + η)
. (28)

Figure 5 shows marginal curves as function of q for different azimuthal mode number n. Some

curves come to an end because q is lower bounded by its value at k = 0. For small η, the

minima of different marginal curves are distinct (Fig. 5a), while for large η they degenerate

with each other (Fig. 5b). This mode degeneration is due to the rotational symmetry with
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FIG. 5. Marginal curves for different azimuthal mode number n at small and large radius ratios η:

(a) η = 0.5 and (b) η = 0.9. The dimensionless temperature γe is fixed at 0.01.

respect to wall normals, which is recovered locally as η increases.

B. Critical Rayleigh number

Increase of the magnitude of the control parameter L leads to an instability, but only ei-

ther in the case of outward heating (γe > 0) or in the case of inward heating with narrow gaps

(γe < log η/(1 + log η)). In these cases, the basic electric gravity is centripetal and centrifu-

gal throughout the gap, respectively, and in the same direction as the imposed temperature

gradient. The electric Rayleigh number L should hence be positive for the instability. The

critical parameters are independent of the Prandtl number.20 This is consistent with the

observation that the instability is stationary: as Pr appears only in the coefficients of s in

Eqs. (18)–(23), its value cannot influence the marginal stability conditions of the stationary

modes.

Figure 6 shows the critical electric Rayleigh number Lc for different imposed tempera-

ture γe. When the heating is outward (γe > 0), Lc increases monotonically. The non-smooth

behavior is related to the discontinuous changes of the critical azimuthal mode number nc.

For small η (. 0.6), Lc is independent of γe and behaves similarly to that in the case of

γe ≈ 0. This suggests that for small η the instability is driven by the same mechanism as in

the gravity-driven ordinary thermal convection, as no perturbation electric gravity is gener-

ated for γe = 0. At large η, Lc recovers the value of the Rayleigh-Bénard problem (1708). In

the narrow gap limit: η → 1 it converges towards the larger value (2129) predicted for the

12
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FIG. 7. Critical wavenumber qc and inclination angle ψ for an outward heating (γe = 0.01).

DEP convection in plane geometry.9,12 This final increase is delayed to larger η for small γe.

When the heating is inward (γe < 0), Lc also converges to 2129 in the narrow gap limit.

For η < 1, it becomes larger and diverges as η approaches the boundary between the zones

labeled CF and CP & CF in Fig. 2a. This behavior different from the outward heating case

suggests that there will be important differences in the instability mechanism.

C. Wavenumber selection

The critical mode number nc increases with η, being roughly equal to the maximum

number of convection roll pairs m.23,24 The wavenumber qc for outward heating is nearly
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constant around 3 and identical to the value of the Rayleigh–Bénard instability (3.117)

at large η (Fig. 7). In the narrow gap limit, q recovers its value predicted by the plane

geometry problem (3.226).9,12 The angle ψ decreases as long as the mode belongs to an

azimuthal mode number n. It does not reach neither 0 nor 90◦; the convection rolls are

made of helices. When η is large, the variation of the angle ψ is small. For η close to unity,

the angle becomes undetermined due to the mode degeneracy. The similar behavior of qc

and ψ is found for other positive γe, while the final increase of qc towards 3.226 is delayed

to larger η for small γe.

For inward heating, the angle ψ is undetermined, as the instability occurs only for η close

to unity. As to the wavenumber q, it increases rapidly from 3.226 as η decreases (Fig. 8).

The asymmetry with respect to the heating direction becomes significant as soon as η is

lowered from unity.

D. Eigenmodes

Eigenfunctions exhibit a typical thermal convection pattern as seen in Fig. 9 where the

perturbation velocity, temperature, electric gravity and electric potential fields are shown

for an outward heating in transversal and meridian sections. Fluid flows from the inner

to the outer walls inside the regions of positive perturbation temperature, as the basic

electric gravity is centripetal. It flows inversely inside the regions of negative temperature

perturbation. When η is small, the perturbation fields concentrate in an inner region. In

particular, the perturbation electric gravity is almost null except the vicinity of the inner

14
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and L = 1177. For η = 0.9, n = 25, k = 1.68 and L = 1732. The heating is outward with the

dimensionless temperature γe = 0.01 for both cases.

wall. This suggests that the thermo-electro feedback would not have significant effects. In

contrast, for large η, fields are more uniformly distributed over the gap. The perturbation

gravity extends over the whole gap, indicating its non-negligible role in the instability.

For inward heating, eigenfunctions show that the perturbation flow goes from the outer

(inner) to inner (outer) walls inside positive (negative) perturbation temperature zones, since

the basic electric gravity is centrifugal. It also shows that the perturbation electric gravity

also extends over the gap; the thermo-electric feedback would be important as in the case

of outward heating with large η.

V. ENERGY ANALYSIS

The kinetic energy of convection is given by K = (|ũ|2 + |ṽ|2 + |w̃|2)/2 per unit volume,

where the energy has been averaged over the spatial periods along ϕ and z. An evolution
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FIG. 10. Normalized different contributions to the rate of change of the convection flow kinetic

energy (Eq. 29) at critical conditions.

equation for the total kinetic energy K =
∫

rKdr is derived from Eqs. (19)–(21). Multiply-

ing Eqs. (19)–(21) by ũ∗, ṽ∗ and w̃∗, respectively (the asterisks mean complex conjugate),

summing them up and integrating over the gap with a weight r, we have

2sK = WBG +WPG −Dv, (29)

where WBG and WPG are the works done by the basic and perturbation electric gravities,

respectively, and the last term Dv represents the rate of the viscous dissipation:

WBG = −PrL

∫

rge

(

θ̃ũ∗ + c.c.
)

dr, (30)

WPG = γ−1
e PrL

∫

r
(

1− γeθ
)

[(ũ∗g̃r + ṽ∗g̃ϕ + w̃∗g̃z) + c.c.] dr,

Dv = Pr

∫

rΦv (ũ, ṽ, w̃) dr. (31)

In these equations, c.c. indicates the complex conjugate of its preceding term and Φv is the

viscous dissipation function in the cylindrical coordinates:

Φv = |ũ′|2 +
∣

∣

∣

∣

inũ

r
− ṽ

r

∣

∣

∣

∣

2

+ k2 |ũ|2 + |ṽ′|2 +
∣

∣

∣

∣

inṽ

r
+
ũ

r

∣

∣

∣

∣

2

+ k2 |ṽ|2 + |w̃′|2 +
∣

∣

∣

∣

inw̃

r

∣

∣

∣

∣

2

+ k2 |w̃|2 (32)
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Figure 10 shows the variation with η of the works WBG and WPG normalized by 2K for

the critical modes. The basic gravity contribution WBG is predominant and supplies energy

to perturbation flow. Two different dynamical regimes can be distinguished according to

the importance of WPG: the first regime where it is almost null; the second regime where

WPG takes a non-negligible negative value.

For outward heating (γe > 0), the first regime is found at small η (. 0.6), where smallness

of WPG can be inferred from eigenfunctions (Fig. 9): the perturbation gravity is in fact

localized in the vicinity of the inner cylinder. As the flow is weak in the wall regions, the

perturbation gravity does not perform significant work. Negligible WPG confirms that the

feedback through the thermo-electro coupling can be omitted in the stability analysis in this

regime. Convection can hence be regarded as an exact analogue to the convection by the

ordinary thermal instability due to a central gravity field. The second regime is found at

large η. As seen in Fig. 9, the perturbation gravity field extends inside the gap and can

put (draw) energy into (from) perturbation flow locally. The negative contribution of WPG

means that the perturbation gravity has a stabilizing effect in total, being consistent with

the increase of Lc as η → 1 (Fig. 6). Stabilization by WPG explains why Lc of the DEP

convection in plane geometry9,12 is larger than the value of the Rayleigh-Bénard problem.

When the heating is inward (γe < 0), the instability occurs only in the second regime. The

stabilization is more important for smaller η, requiring more work to the basic gravity for

instability.

Figure 11a shows normalized WBG and Dv for different azimuthal mode number n for

small η in an outward heating. The Rayleigh number is fixed at the critical value Lc. The

work done by the perturbation gravity is negligible (WPG/2K ≈ −0.05). As n increases,

the WBG curve is first lowered and then shifts upward, meaning that the energy generation

by the basic gravity becomes efficient beyond a certain n ( 6= 0). The viscous dissipation Dv

exhibits similar behavior. The critical mode (n = 2, q = 3.014) is a compromise from the

competition of WBG and Dv. For large η, the work by the perturbation gravity plays an

important role. Figure 11b shows its stabilizing contribution (−WPG) with WBG and Dv.

The stabilization byWPG is large for small q, making the critical modes’ wavenumber larger.

TheWPG contribution in an inward heating is also shown in the figure. The more significant

contribution of WPG results in qc larger than in the outward heating case (Fig. 8).
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FIG. 11. Normalized different contributions to the rate of change of the convection flow kinetic

energy (Eq. 29) at critical Rayleigh numbers: (a) at a small radius ratio η for different azimuthal

mode number n in an outward heating (η = 0.2, γe = 0.01 and L = 888.4) and (b) at a large η

for different heating directions (η = 0.98; L = 2005 and 2355 for γe = 0.1 and −0.1, respectively).

The Prandtl number is fixed at 10 for all.

VI. DISCUSSION & CONCLUSION

The energy analysis in Sec. V showed that the basic electric gravity (15) provokes thermal

instability against stabilizing effects of dissipations. The stability is hence well described by

the Rayleigh number based on the basic gravity. In experiments, however, the main control

parameters will be the electric potential V0 and the temperature difference ∆θ. Figure 12

shows stability boundaries on the temperature-voltage plane for different η. The voltage

is nondimensionalized by the reference voltage Vref defined by Vref = (ρκν/ǫ2)
1/2. It takes

a value, for example, Vref = 6.2 V for the electrical grade silicone oil used by Chandra &

Smylie.7 For an outward heating (γe > 0), the basic state is more stable for larger η and

approaches the curve of the plane geometry problem9 (γe = ±
√
2129(V0/Vref)

−1) in the

narrow gap limit. For an inward heating (γe < 0), increase in η destabilizes the system,

indicating again the stability asymmetry with respect to the heating direction.

The theoretical results of Chandra & Smylie7 and those of Takashima8 are also presented

in the diagram. These authors considered annuli with large η, where the mode degener-

acy is important (Sec. IVA). Even though their analyses are restricted to axisymmetric

disturbances, hence, the results will provide good predictions on the instability thresholds.

Indeed, the theories agree well with the present one for small |γe|. The discrepancy found

at large |γe| is due to the complete and partial omission of the thermo-electro coupling:
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FIG. 12. Stability boundaries in the voltage–temperature plane for different radius ratio η. Theo-

retical predictions of the existing theoretical works are also shown ( : Takashima & Hamabata9

for plane geometry; : Chandra & Smylie7 for η = 0.89; N and �: Takashima8 for η = 0.91

and η = 0.99, respectively).

Chandra & Smylie neglected the γe-dependence of the basic electric gravity as well as the

thermo-electro feedback in perturbations; Takashima’s theory includes the coupling but only

on the first order.

In the present paper, we considered the stability of a dielectric liquid layer in an annulus

subjected to a radial temperature gradient and a radial high frequency electric field. The lin-

ear stability problem was formulated with regarding dielectrophoretic (DEP) effects as those

due to the electric gravity. The predicted critical mode is made of stationary helices; this

aspect is omitted in the previous theoretical work7,8 which concerns only axisymmetric per-

turbations. In the electric gravity, we distinguished its basic component ge and perturbation

component (25): the former is the analogue of the terrestrial gravity in the ordinary thermal

convection problem, while the latter represents the feedback of electric field to temperature

disturbances. A detail analysis from an energetic viewpoint showed that the basic electric

gravity provokes the instability, while the perturbation gravity has a stabilizing effect. For

the outward heating (γe > 0), its contribution is negligible at small radius ratio η (η . 0.6).

For large η, in contrast, it is responsible for the increase of Lc as η → 1 and explains why

the critical Rayleigh number of the DEP thermal convection in the plane geometry is larger

than that of the Rayleigh-Bénard problem. In the inward heating, the instability is observed

only in narrow gaps γe < log η/(1 + log η). The critical Rayleigh number Lc is larger than

in the outward heating, as the stabilization by the perturbation gravity is more prominent.
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These results validate in the framework of linear theory the analogy with the gravity-driven

thermal instability and clarify its limit.
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Appendix A: Numerical method

The unknown functions in Eqs. (18)–(23) are developed into a series of the Chebyshev

polynomials {Tl(ξ)} (l = 0, 1, . . . , N) with ξ = 2r − (1 + η)/(1 − η), e.g., ũ = U0T0(ξ) +

U1T1(ξ)+ · · ·+UNTN(ξ). The set of coefficients {Ul} is the spectrum of ũ in the Chebyshev

space. We seek flows that satisfies Eqs. (18)–(23) inside the gap at the Chebyshev-Gauss-

Lobatto collocation points ξ = ξj = cos(jπ/N) (j = 1, . . . , N − 1) as well as the boundary

conditions (27) on the cylinder surfaces.

In terms of the Chebyshev spectra, the governing equations (18)–(23) at the collocation

points are written as follows:

(

2KD+

[

Kjl

rj

])

U+ in

[

Kjl

rj

]

V + ikKW = 0, (A1)

(

L−
[

Kjl

r2j

])

U− 2in

[

Kjl

r2j

]

V − 2KDΠ+ L
[

ge,jKjl

]

Θ− 2LC
[

θjE
′

jKjl

]

DΦ

− 4LC
[

θjEjKjl

]

D2Φ = Pr−1sKU, (A2)

2in

[

Kjl

r2j

]

U+

(

L−
[

Kjl

r2j

])

V − in

[

Kjl

rj

]

Π− 2inLC

[

θjEjKjl

rj

]

DΦ = Pr−1sKV, (A3)

LW − ikKΠ− 2ikLC
[

EjKjl

]

DΦ = Pr−1sKW, (A4)

−
[

θ
′

jKjl

]

U+ LΘ = Pr−1sKΘ, (A5)

− γe

(

2
[

φ
′

jKjl

]

D+
[

φ
′′

jKjl

]

+

[

φ
′

jKjl

rj

])

Θ+ [ǫjLjl]Φ+ 2
[

ǫ′jKjl

]

DΦ = 0. (A6)

where U, V, W, Π, Θ and Φ are the column vectors consisting of the spectra of ũ, ṽ, w̃, π̃,
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θ̃ and φ̃, respectively, e.g., U = [ U0 U1 . . . UN ]T . The square brackets signify a matrix such

that the (j, l) entry of [Ajl] is Ajl (j = 1, 2, . . . , N−1; l = 1, 2, · · · , N+1). The basic fields at

r = rj are denoted like ge,j = ge(rj), θj = θ(rj), θ
′

j = θ
′

(rj), and so on. The transformation

matrix K = [Kjl], the derivation matrix D = [Dlm] and the Laplacian matrix L = [Ljl] are

defined as:

Kjl = cos
jlπ

N
, Dlm =



















m− 1 (l = 1; m = 2, 4, · · · ),
2(m− 1) (l ≧ 2; m = l + 1, l + 3, · · · ),
0 (otherwise),

(A7)

L = 4KD2 + 2

[

Kjl

rj

]

D−
[

Kjl

r2j

]

− k2K (A8)

for j = 1, 2, . . . , N − 1 and l,m = 1, 2, · · · , N + 1.

The boundary conditions (27) are written as

HU = HV = HW = HDU = HΘ = HΦ = 0 (A9)

where H = [Hjl] is a 2×(N + 1) matrix: H1l = 1, H2l = (−1)l−1 (l = 1, 2, · · · , N + 1).

Its products with Chebyshev spectra give the values of functions on the inner and outer

cylinders.

The 6(N +1) equations of (A1)–(A6) and (A9) with respect to 6(N +1) unknowns of U,

V, W, Π, Θ and Φ define a generalized eigenvalue problem:

A(η, γe, L, n, k)X = sB(Pr)X, (A10)

where X = [ UT VT WT ΠT ΘT ΦT ]T and A and B are coefficient matrices. The eigenval-

ues and eigenvectors are computed by employing the QZ-decomposition. The highest order

of considered Chebyshev polynomials is typically set at N = 60 to ensure the convergence.
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