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53 rue de Prony, CS80540, 76058 Le Havre Cedex, France
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The thermal convection driven by the dielectrophoretic force is investigated in an-

nular geometry under microgravity conditions. A radial temperature gradient and a

radial alternating electric field are imposed on a dielectric fluid that fills the gap of

two concentric infinite-length cylinders. The resulting dielectric force is regarded as

thermal buoyancy with a radial effective gravity. This electric gravity varies in space

and may change its sign depending on the temperature gradient and the cylinder

radius ratio. The linear stability problem is solved by a spectral-collocation method.

The critical mode is stationary and non-axisymmetric. The critical Rayleigh number

and wavenumbers depend sensitively on the electric gravity and the radius ratio. The

mechanism behind the instability is examined from an energetic viewpoint. The insta-

bility in wide gap annuli is an exact analogue to the gravity-driven thermal instability.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792833]

I. INTRODUCTION

The effect of electric fields on the dynamics of insulating or poorly conducting dielectric liquids

is concerned with the improvements of flow control and heat transfer. In the latter context, the

electric field coupled convection has been investigated by different researchers since Kronig and

Ahsmann’s experiment.1 Experiments and theoretical analyses were reported for different geometri-

cal configurations of electrodes.2 This convection phenomenon has renewed interests in astronautical

engineering, where the thermal management of power consuming devices in microgravity is a cru-

cial technological issue. The electric field can provide an artificial gravity and generate thermal

convection to enhance the heat transfer in the liquids.

The electrohydrodynamic (EHD) force exerted on a dielectric fluid per unit volume is given by3

fe = ρe E −
1

2
E2

∇ǫ + ∇

[

1

2
ρ

(

∂ǫ

∂ρ

)

θ

E2

]

, (1)

where E is the electric field and E is its magnitude. The free electric charge density, the permittivity,

and the fluid mass density are denoted by ρe, ǫ, and ρ, respectively. The three terms of Eq. (1)

represent the electrophoretic, dielectrophoretic (DEP), and electrostrictive forces, respectively. The

permittivity ǫ varies with the temperature. For a small temperature increase θ from a reference

temperature at which ǫ = ǫ2, it is given by

ǫ = ǫ(θ ) = ǫ2 (1 − eθ ) . (2)

As we will assume in the present paper, the thermal coefficient of permittivity e is positive (with

some exceptional polar liquids, e.g., acetic and butyric acids) and takes typically a value of the order

of 10−3–10−2 K−1.

In a liquid subjected to a temperature gradient, convection flow can be generated by applying

an electric field on it. When a static or low frequency alternating field is applied, the free charge
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density ρe appears even in an initially electrically neutral fluid.2 This charge accumulation occurs

over a time scale of the charge relaxation time τ e = ǫ/σ through the coupling of the electric field

with the spatial gradient of the fluid electrical properties. The electrophoretic force on the built up

ρe is usually the dominant component of the EHD force and can give rise to thermal convection.4, 5

When the applied electric field has a high frequency f ≫ τ−1
e , the free charge accumulation does

not occur. The DEP force is then predominant6 and can also develop thermal convection.7–10

In the studies on the DEP force-driven thermal convection, the electric gravity is often introduced

in order to understand the phenomenon intuitively by analogy with the thermal convection due to

the Earth’s gravity. The DEP force FDE P = −E2
∇ǫ/2 can, in fact, be arranged by invoking Eq. (2)

as follows:

FDE P = ∇

(

eθǫ2 E2

2

)

− ραθ ge (3)

with the electric gravity

ge =
e

αρ
∇

ǫ2 E2

2
, (4)

where α is the coefficient of thermal expansion. The first term of Eq. (3) is a gradient force that

can be lumped with the pressure term. It would not influence convection flows when the fluid is

incompressible and has no mobile boundaries. The second term proportional to the temperature is

the electric buoyancy force that drives thermal convection. The electric gravity is proportional to the

gradient of the electrostatic energy stored per unit volume of the dielectric liquid.

The DEP force-driven thermal convection has been considered in different geometries. In the

plane geometry where a liquid fills the gap of two parallel plane electrodes, destabilizing effects

of the electric field to the basic conductive state have been recognized both in horizontal and

vertical configurations.9, 11–13 When the terrestrial gravity is neglected, the linear theories predict an

instability with the critical value 2129 of the Rayleigh number based on the electric gravity (4) and

the critical wavenumber 3.226/d,9, 12 where d is the gap size. These critical parameters are different

from those of the Rayleigh-Bénard problem (1708 and 3.117/d, respectively).

Spherical configuration has also been investigated, having a particular motivation in geo- and

astrophysics where the understanding of the convection in a spatially varying gravity field in spherical

geometry is of primary importance. The DEP force in a liquid layer between two concentric spherical

electrodes enables to simulate geo- and astrophysical convection phenomena in laboratory scale

systems. Linear stability analyses6, 14 and numerical simulations15, 16 with and without rotation of

the inner sphere show the generation of convection beyond a critical Rayleigh number. Recently,

bifurcation properties of the convection have been examined in detail from the viewpoint of the

dynamical systems theory.16 Experiments performed in the Fluid Science Laboratory on the board

of the International Space Station show a favorable agreement with the theoretical predictions.17, 18

In the literature, there are some studies in annular geometry. This geometry is concerned

with applications in heat management for, e.g., motor systems. The linear stability of the Taylor-

Couette flows with a radial DEP force field was considered.19 The research is also motivated by

the geo- and astrophysical applications, regarding the thermal convection in this geometry as a

lower level simulation system.7 Chandra and Smylie7 realized an experiment on the ground with

stationary vertical cylinders, choosing parameters for which the Earth’s gravity is negligible (i.e.,

small Grashof numbers). They performed a linear stability analysis to axisymmetric disturbances

for their experimental parameters and found a reasonable agreement with the experiment. In their

analysis, the influence of the temperature gradient on the electric field was neglected. This thermo-

electric coupling has been taken into account in the linear stability analysis by Takashima8 for narrow

gap situations.

In the present work which is an extension of a recently published work,20 we consider the DEP

convection in the annular geometry under microgravity conditions (Fig. 1), aiming to examine the

stability over a wide range of control parameters (the gap size and the thermal variation of ǫ) and

to unveil the mechanism behind the instability. The cylindrical electrodes are assumed as perfect

conductors and of infinite length in order to examine the instability in its simplest configuration.
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FIG. 1. Schematic illustration of the geometrical configuration in a plane transversal to the annulus axis.

In Sec. II, we present the governing equations and discuss the basic conductive state and the basic

electric gravity. In Sec. III, the linear stability problem is formulated and its symmetry properties

are discussed. Determined critical parameters and eigenmodes are presented in Sec. IV. Section V

is devoted to a discussion on the instability mechanism from an energetic viewpoint. In Sec. VI, we

compare the results with the previous works and give our conclusions.

II. GOVERNING EQUATIONS AND BASIC STATE

A. Governing equations

Equations governing dielectric fluid motion in a high frequency alternating electric field are

presented in Turnbull’s paper11 in their general forms. All the equations are time-averaged over

a period of the electric field with replacing the imposed electric potential
√

2V0 sin(2π f t) by its

effective value V0. This time-averaged description is valid when the frequency is high compared to

the inverse of the viscous time scale d2/ν. It predicted successfully the onset of the DEP thermal

convection.21 The equations include ρ, ν and the thermal diffusion coefficient κ which are functions

of temperature θ . We assume that these parameters are constant, adopting the electrohydrodynamic

Boussinesq approximation,11 in which only the permittivity varies with the temperature. This ap-

proximation is valid as long as the imposed temperature difference is not large.11 We have then the

equations of continuity, motion, and heat conduction and the Gauss’s law of electricity as follows:

∇ · u = 0, (5)

∂u

∂t
+ u · ∇u = −∇π + ν△u − αθ ge, (6)

∂θ

∂t
+ u · ∇θ = κ△θ, (7)

∇ · (ǫ E) = 0 with E = −∇φ, (8)

where u is the velocity field and φ is the electric potential. The generalized pressure π is related to

the hydrodynamic pressure p as

π =
p

ρ
−

eθǫ2 E2

2ρ
−

1

2

(

∂ǫ

∂ρ

)

θ

E2. (9)

Viscous energy dissipation and Joule heating have been neglected in Eq. (7). The former is small

in convection flows of incompressible fluid.22 The Joule heating relative to the heat conduction is

estimated as 6.29V 2
0 f ǫ tan δ/λ.θref (δ: the dielectric loss angle, λ: the thermal conductivity, .θ ref:

temperature difference),6 giving a tiny value in typical conditions, e.g., 0.007 for silicone oils when

f = 60 Hz, V0 = 10 kV, and .θ ref = 1 K.
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In addition to the governing equations (5)–(8), we may refer to the vorticity equation which is

derived from Eq. (6),

∂ζ

∂t
+ u · ∇ζ = ζ · ∇u + ν△ζ − α∇θ × ge, (10)

where ζ is the vorticity: ζ = ∇ × u. The last term in the right-hand-side is the source of vorticity

generation; the electric gravity that is not parallel to the temperature gradient generates vorticity to

develop convection.

We consider the fluid filling the gap of two concentric cylinders as illustrated in Fig. 1, where

R1 and R2 are the radii of the inner and outer cylinders, respectively. These cylinders are kept at

uniform temperatures and electric potentials, with an imposed temperature difference .θ and a high

frequency electric potential over the gap. In the time-averaged description, the boundary conditions

at the cylinders are
{

u = 0, θ = .θ, φ = V0 at r = R1,

u = 0, θ = 0, φ = 0 at r = R2.
(11)

B. Basic conductive state

When |.θ | and V0 are small, the state of the system will be steady, axisymmetric, and axially

invariant. The temperature and the electric potential will depend only on the radial coordinate r:

θ = θ (r ), φ = φ(r ). The temperature gradient and the electric gravity are then collinear with each

other so that the source term in the vorticity equation (10) is null; there is no flow: u = 0.

For this basic state, Eqs. (7) and (8) read in the cylindrical coordinates (r, ϕ, z),

1

r

d

dr

(

r
dθ

dr

)

= 0 and
1

r

d

dr

(

rǫ
dφ

dr

)

= 0, (12)

where ǫ is the permittivity at the local temperature θ(r ). Solving these equations with the boundary

conditions (11), we have

θ =
.θ log (r/R2)

log η
, φ =

V0 log
(

1 − γeθ/.θ
)

log (1 − γe)
, (13)

where η = R1/R2 is the radius ratio and γ e = e.θ is the dimensionless temperature difference that

represents the thermal variation of ǫ. The basic electric field Eer is computed from E = −dφ/dr ,

E =
γeV0

r
(

1 − γeθ/.θ
)

log (1 − γe) log η
. (14)

The resulting electric gravity (4) from this basic electric field is radial and is given by ge = −geer

with

ge =
eǫ2V 2

0

αρ (log η)2 r3
F, where F =

γ 2
e

[

1 − γe

(

θ/.θ + 1/ log η
)]

[

log (1 − γe)
]2 (

1 − γeθ/.θ
)3

. (15)

This electric gravity has two contributing factors. The first is the electric field inhomogeneity due

to the geometry curvature. It brings about the behavior inversely proportional to r3. The second is

the inhomogeneity due to the thermo-electric coupling represented by the factor F. This coupling

makes the electric gravity behavior different for different γ e (Fig. 2(a)). When the heating is

outward (γ e > 0) or inward by a small amount (log η < γ e < 0), the electric gravity is centripetal

everywhere in the gap. For larger inward heating (log η/(1 + log η) < γ e < log η) the gravity is

centripetal and centrifugal, respectively, in the inner and outer sublayers separated at a radial position

r = R2 exp (log η/γ e − 1). Further increase in inward heating (γ e < log η/(1 + log η)) makes the

gravity centrifugal throughout the gap.
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FIG. 2. Basic electric gravity ge = −geer . (a) Its direction as function of the dimensionless temperature γ e and the radius

ratio η. CP and CF mean centripetal and centrifugal, respectively. (b) Some profiles of ge calculated for the electric tension

V0 = 1.08 × 104 V. The cylinder radii and liquid properties are taken from the Chandra and Smylie’s experiment7 (R1

= 1.711 × 10−2 m, R2 = 1.903 × 10−2 m, ρ = 937.7 kg m−3, α = 1.08 × 10−3 K−1, and e = 3.7 × 10−3 K−1).

In the limit of γ e → 0, there is no thermo-electric coupling. The electric gravity is centripetal

independent of the heating direction and exhibits the purely inverse cubic behavior. In another limit

where the gap d (=R2 − R1) is small: d/R1 = η−1 − 1 ≪ |γ e|, the electric gravity (15) recovers that

between two parallel plane electrodes,9

ge =
eǫ2V 2

0 γ 3
e

ραd3
[

log (1 − γe)
]2

(1 − γe + γex)3
, (16)

where x is the dimensionless distance from the inner cylinder: x = (r − R1)/d. The gravity is directed

from the low to high temperature electrodes.

Some profiles of ge are shown in Fig. 2(b) for different values of .θ . The cylinder radii and

the fluid properties are taken from the experiment of Chandra and Smylie.7 With decreasing .θ , the

electric gravity varies from centripetal to centrifugal. The profiles are not symmetric with respect to

the change of heating direction, since the electric gravity (15) is primarily related to the curvature of

the cylindrical geometry and not to the thermal variation of permittivity except for extremely narrow

gaps.

III. LINEAR STABILITY PROBLEM

Using scales d of length, d2/κ of time, g0 of electric gravity, and .θ of temperature, we

nondimensionalize the governing equations (5)–(8). Dimensionless parameters involved are the

radius ratio η, the dimensionless temperature difference γ e, the Prandtl number Pr = ν/κ and the

electric Rayleigh number L,

L =
α.θg0d3

κν
. (17)

The latter number is the Rayleigh number based on the electric gravity. We estimate the representative

electric gravity g0 at the middle of the gap r = r0, where r0 = (1 + η)/ 2(1 − η). The electric Rayleigh

number (17) is positive when the gravity at this reference point is in the same direction as the basic

temperature gradient; otherwise, it takes a negative value.

The nondimensionalized governing equations are linearized about the basic state. The pertur-

bations are developed into normal modes of complex growth rate s, azimuthal mode number n and

axial wavenumber k: (ũ, ṽ, w̃, π̃ , θ̃ , φ̃)est+inϕ+ikz , where ũ, ṽ, and w̃ are the complex amplitudes

of the radial, azimuthal, and axial perturbation velocity components, respectively. Those of the

perturbation pressure, temperature, and electric potential are denoted by π̃ , θ̃ , and φ̃. The resulting



024106-6 Yoshikawa, Crumeyrolle, and Mutabazi Phys. Fluids 25, 024106 (2013)

equations are

1

r
(r ũ)′ +

in

r
ṽ + ikw̃ = 0, (18)

△ũ −
ũ

r2
−

2in

r2
ṽ − π̃ ′ + L

(

geθ̃ − g̃rθ
)

= Pr−1sũ, (19)

△ṽ −
ṽ

r2
+

2in

r2
ũ −

in

r
π̃ − Lθ g̃ϕ = Pr−1sṽ, (20)

△w̃ − ikπ̃ − Lθ g̃z = Pr−1sw̃, (21)

△θ̃ − ũθ
′
= Pr−1sθ̃, (22)

ǫ△φ̃ + ǫ′φ̃′ − γeφ
′
θ̃ ′ − γeθ̃

(

φ
′′
+

φ
′

r

)

= 0, (23)

where the primes signify a derivation with respect to r. The Laplacian operator △ and the components

of perturbation electric gravity (g̃r , g̃ϕ, g̃z) have been introduced

△ =
d2

dr2
+

1

r

d

dr
−

(

n2

r2
+ k2

)

, (24)

g̃r = C(η, γe)
(

E
′
φ̃′ + E φ̃′′

)

, g̃ϕ =
in

r
C(η, γe)E φ̃′, g̃z = ikC(η, γe)E φ̃′. (25)

The coefficient C = C(η, γ e) is given by

C = −
[

log (1 − γe)
]2

r3
0 (log η − γe log [(1 − η) r0])3

γ 2
e

[

log η − γe (log [(1 − η) r0] + 1)
] . (26)

The boundary conditions for perturbations are derived from (11) and read

ũ = ṽ = w̃ = ũ′ = θ̃ = φ̃ = 0. (27)

The Gauss’s law (23) expresses the feedback of the electric field to temperature disturbances

through the thermo-electric coupling. The resulting electric field is transmitted into the dynamical

equations (19)–(21) through the perturbation electric gravity. When the imposed temperature differ-

ence γ e is negligibly small, Eq. (23) admits only the trivial solution under the boundary condition

(27). There is then no feedback effect: no perturbation electric gravity is generated.

Equations (18)–(23) and the boundary conditions (27) form an eigenvalue problem which

determines the stability of the basic state against toroidal (n = 0, k )= 0), helical (n )= 0, k )= 0), or

columnal (n )= 0, k = 0) disturbances. When the instability occurs, these disturbances develop into

convection rolls.

The problem has a geometrical invariance associated with the mirror symmetry with respect to

the meridian plane ϕ = 0; Eqs. (18)–(23) and (27) are invariant by the operation (n, ṽ) → (−n,−ṽ).

Once the eigenvalue s and the eigenfunctions (ũ, ṽ, w̃, π̃ , θ̃ , φ̃) are known for a spatial mode

(n, k), those for the mode (−n, k) are then given by (s, ũ,−ṽ, w̃, π̃ , θ̃ , φ̃). The stability conditions of

both modes are identical to each other. Similar discussion can be made about another invariance to

the operation (k, w̃) → (−k,−w̃) that reflects the mirror symmetry with respect to the transversal

plane z = 0. The stability does not, therefore, depend on the signs of n and k. We solve the eigenvalue

problem for positive n and k by a spectrum collocation method, the details of which are given

in the Appendix.

IV. RESULTS

A. Dispersion relation and marginal curves

Eigenvalues s = sr + isi with the largest real part are computed for a given parameter set

(η, Pr, γ e, L, n) with varying the axial wavenumber k. Obtained dispersion curves sr = sr(k) have
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FIG. 3. Dispersion relation for different azimuthal mode number n. (Pr = 100, η = 0.5, γ e = 0.01, L = 1498).

their maxima at a finite k for small n and at k = 0 for n larger than a certain value m (Fig. 3), where

m is the maximum number of convection roll pairs of the gap size: m = [π (1 + η)/2(1 − η)]. The

square brackets indicate the integer part of the quantity enclosed. The eigenmodes are stationary

(si = 0), implying that the principle of the exchange of stabilities holds as in the Rayleigh–Bénard

problem.11, 22 Turnbull gave a proof for the plane geometry DEP convection with free boundary

conditions.11

An eigenmode is associated with convection rolls whose basic geometrical characteristics are

specified by the wavenumber q measured along the direction transversal to the rolls and by the

inclination angle ψ to the azimuthal direction. Both are estimated on the median cylindrical surface

r = r0 (Fig. 4) and given by

q =

√

4n2 (1 − η)2

(1 + η)2
+ k2, ψ = tan−1 2n (1 − η)

k (1 + η)
. (28)

Figure 5 shows marginal curves as function of q for different azimuthal mode number n. Some

curves come to an end because q is lower bounded by its value at k = 0. For small η, the minima of

different marginal curves are distinct (Fig. 5(a)), while for large η they degenerate with each other

(Fig. 5(b)). This mode degeneration is due to the rotational symmetry with respect to wall normals,

which is recovered locally as η increases.

FIG. 4. Definitions of the wavenumber q and the inclination angle ψ of convection rolls.
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FIG. 5. Marginal curves for different azimuthal mode number n at small and large radius ratios η: (a) η = 0.5 and

(b) η = 0.9. The dimensionless temperature γ e is fixed at 0.01.

B. Critical Rayleigh number

Increase of the magnitude of the control parameter L leads to an instability, but only either in

the case of outward heating (γ e > 0) or in the case of inward heating with narrow gaps (γ e < log η/

(1 + log η)). In these cases, the basic electric gravity is centripetal and centrifugal throughout the gap,

respectively, and in the same direction as the imposed temperature gradient. The electric Rayleigh

number L should hence be positive for the instability. The critical parameters are independent of

the Prandtl number.20 This is consistent with the observation that the instability is stationary: as

Pr appears only in the coefficients of s in Eqs. (18)–(23), its value cannot influence the marginal

stability conditions of the stationary modes.

Figure 6 shows the critical electric Rayleigh number Lc for different imposed temperature γ e.

When the heating is outward (γ e > 0), Lc increases monotonically. The non-smooth behavior is

related to the discontinuous changes of the critical azimuthal mode number nc. For small η (! 0.6),

Lc is independent of γ e and behaves similar to that in the case of γ e ≈ 0. This suggests that for

small η, the instability is driven by the same mechanism as in the gravity-driven ordinary thermal

convection, as no perturbation electric gravity is generated for γ e = 0. At large η, Lc recovers the

value of the Rayleigh-Bénard problem (1708). In the narrow gap limit: η → 1 it converges towards

the larger value (2129) predicted for the DEP convection in plane geometry.9, 12 This final increase

is delayed to larger η for small γ e.

When the heating is inward (γ e < 0), Lc also converges to 2129 in the narrow gap limit. For

η < 1, it becomes larger and diverges as η approaches the boundary between the zones labeled CF

and CP & CF in Fig. 2(a). This behavior different from the outward heating case suggests that there

will be important differences in the instability mechanism.

FIG. 6. Critical electric Rayleigh number Lc as function of the radius ratio η for different dimensionless temperatures γ e. The

horizontal lines show the critical Rayleigh number of the Rayleigh-Bénard instability (1708) and Lc of the DEP convection

in plane geometry (2129).9
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FIG. 7. Critical wavenumber qc and inclination angle ψ for an outward heating (γ e = 0.01).

C. Wavenumber selection

The critical mode number nc increases with η, being roughly equal to the maximum number of

convection roll pairs m.23, 24 The wavenumber qc for outward heating is nearly constant around 3 and

identical to the value of the Rayleigh–Bénard instability (3.117) at large η (Fig. 7). In the narrow

gap limit, q recovers its value predicted by the plane geometry problem (3.226).9, 12 The angle ψ

decreases as long as the mode belongs to an azimuthal mode number n. It does not reach neither

0◦ nor 90◦; the convection rolls are made of helices. When η is large, the variation of the angle ψ

is small. For η close to unity, the angle becomes undetermined due to the mode degeneracy. The

similar behavior of qc and ψ is found for other positive γ e, while the final increase of qc towards

3.226 is delayed to larger η for small γ e.

For inward heating, the angle ψ is undetermined, as the instability occurs only for η close to

unity. As to the wavenumber q, it increases rapidly from 3.226 as η decreases (Fig. 8). The asymmetry

with respect to the heating direction becomes significant as soon as η is lowered from unity.

D. Eigenmodes

Eigenfunctions exhibit a typical thermal convection pattern as seen in Fig. 9 where the pertur-

bation velocity, temperature, electric gravity, and electric potential fields are shown for an outward

heating in transversal and meridian sections. Fluid flows from the inner to the outer walls inside

the regions of positive perturbation temperature, as the basic electric gravity is centripetal. It flows

inversely inside the regions of negative temperature perturbation. When η is small, the perturbation

fields concentrate in an inner region. In particular, the perturbation electric gravity is almost null ex-

cept in the vicinity of the inner wall. This suggests that the thermo-electric feedback would not have

significant effects. In contrast, for large η, fields are more uniformly distributed over the gap. The

perturbation gravity extends over the whole gap, indicating its non-negligible role in the instability.

FIG. 8. Critical wavenumber qc for inward and outward heatings.
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FIG. 9. Critical eigenmodes for small and large radius ratios η. For η = 0.3, n = 2, k = 1.91, and L = 1177. For η = 0.9, n

= 25, k = 1.68, and L = 1732. The heating is outward with the dimensionless temperature γ e = 0.01 for both cases.

For inward heating, eigenfunctions show that the perturbation flow goes from the outer (inner) to

inner (outer) walls inside positive (negative) perturbation temperature zones, since the basic electric

gravity is centrifugal. It also shows that the perturbation electric gravity also extends over the gap;

the thermo-electric feedback would be important as in the case of outward heating with large η.

V. ENERGY ANALYSIS

The kinetic energy of convection is given by K = (|ũ|2 + |ṽ|2 + |w̃|2)/2 per unit volume, where

the energy has been averaged over the spatial periods along ϕ and z. An evolution equation for the

total kinetic energy K =
∫

rKdr is derived from Eqs. (19)–(21). Multiplying Eqs. (19)–(21) by ũ∗,

ṽ∗, and w̃∗, respectively (the asterisks mean complex conjugate), summing them up and integrating

over the gap with a weight r, we have

2sK = WBG + WPG − Dv, (29)

where WBG and WPG are the works done by the basic and perturbation electric gravities, respectively,

and the last term Dv represents the rate of the viscous dissipation

WBG = −PrL

∫

rge

(

θ̃ ũ∗ + c.c.
)

dr, (30)

WPG = γ −1
e PrL

∫

r
(

1 − γeθ
) [(

ũ∗g̃r + ṽ∗g̃ϕ + w̃∗g̃z

)

+ c.c.
]

dr,

Dv = Pr

∫

r3v (ũ, ṽ, w̃) dr. (31)

In these equations, c.c. indicates the complex conjugate of its preceding term and 3v is the viscous

dissipation function in the cylindrical coordinates

3v =
∣

∣ũ′∣
∣

2
+

∣

∣

∣

∣

inũ

r
−

ṽ

r

∣

∣

∣

∣

2

+ k2 |ũ|2 +
∣

∣ṽ′∣
∣

2
+

∣

∣

∣

∣

inṽ

r
+

ũ

r

∣

∣

∣

∣

2

+ k2 |ṽ|2 +
∣

∣w̃′∣
∣

2
+

∣

∣

∣

∣

inw̃

r

∣

∣

∣

∣

2

+ k2 |w̃|2 . (32)
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FIG. 10. Normalized different contributions to the rate of change of the convection flow kinetic energy (Eq. (29)) at critical

conditions.

Figure 10 shows the variation with η of the works WBG and WPG normalized by 2K for the critical

modes. The basic gravity contribution WBG is predominant and supplies energy to perturbation flow.

Two different dynamical regimes can be distinguished according to the importance of WPG: the first

regime where it is almost null; the second regime where WPG takes a non-negligible negative value.

For outward heating (γ e > 0), the first regime is found at small η (!0.6), where smallness of

WPG can be inferred from eigenfunctions (Fig. 9): the perturbation gravity is in fact localized in the

vicinity of the inner cylinder. As the flow is weak in the wall regions, the perturbation gravity does

not perform significant work. Negligible WPG confirms that the feedback through the thermo-electric

coupling can be omitted in the stability analysis in this regime. Convection can hence be regarded as

an exact analogue to the convection by the ordinary thermal instability due to a central gravity field.

The second regime is found at large η. As seen in Fig. 9, the perturbation gravity field extends inside

the gap and can put (draw) energy into (from) perturbation flow locally. The negative contribution

of WPG means that the perturbation gravity has a stabilizing effect in total, being consistent with the

increase of Lc as η → 1 (Fig. 6). Stabilization by WPG explains why Lc of the DEP convection in

plane geometry9, 12 is larger than the value of the Rayleigh-Bénard problem. When the heating is

inward (γ e < 0), the instability occurs only in the second regime. The stabilization is more important

for smaller η, requiring more work to the basic gravity for instability.

Figure 11(a) shows normalized WBG and Dv for different azimuthal mode number n for small η

in an outward heating. The Rayleigh number is fixed at the critical value Lc. The work done by the

perturbation gravity is negligible (WPG/2K ≈ −0.05). As n increases, the WBG curve is first lowered

and then shifts upward, meaning that the energy generation by the basic gravity becomes efficient

beyond a certain n ( )= 0). The viscous dissipation Dv exhibits similar behavior. The critical mode

FIG. 11. Normalized different contributions to the rate of change of the convection flow kinetic energy (Eq. (29)) at critical

Rayleigh numbers: (a) at a small radius ratio η for different azimuthal mode number n in an outward heating (η = 0.2, γ e

= 0.01, and L = 888.4) and (b) at a large η for different heating directions (η = 0.98, L = 2005, and 2355 for γ e = 0.1 and

−0.1, respectively). The Prandtl number is fixed at 10 for all.
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FIG. 12. Stability boundaries in the voltage–temperature plane for different radius ratio η. Theoretical predictions of the

existing theoretical works are also shown (············: Takashima and Hamabata9 for plane geometry; - - - -: Chandra and

Smylie7 for η = 0.89; " and #: Takashima8 for η = 0.91 and η = 0.99, respectively).

(n = 2, q = 3.014) is a compromise from the competition of WBG and Dv. For large η, the work

by the perturbation gravity plays an important role. Figure 11(b) shows its stabilizing contribution

(−WPG) with WBG and Dv. The stabilization by WPG is large for small q, making the critical modes’

wavenumber larger. The WPG contribution in an inward heating is also shown in the figure. The more

significant contribution of WPG results in qc larger than in the outward heating case (Fig. 8).

VI. DISCUSSION AND CONCLUSION

The energy analysis in Sec. V showed that the basic electric gravity (15) provokes thermal

instability against stabilizing effects of dissipations. The stability is hence well described by the

Rayleigh number based on the basic gravity. In experiments, however, the main control parameters

will be the electric potential V0 and the temperature difference .θ . Figure 12 shows stability

boundaries on the temperature-voltage plane for different η. The voltage is nondimensionalized by

the reference voltage Vref defined by Vref = (ρκν/ǫ2)1/2. It takes a value, for example, Vref = 6.2 V

for the electrical grade silicone oil used by Chandra and Smylie.7 For an outward heating (γ e > 0),

the basic state is more stable for larger η and approaches the curve of the plane geometry problem9

(γe = ±
√

2129(V0/Vref)
−1) in the narrow gap limit. For an inward heating (γ e < 0), increase in η

destabilizes the system, indicating again the stability asymmetry with respect to the heating direction.

The theoretical results of Chandra and Smylie7 and those of Takashima8 are also presented in

the diagram. These authors considered annuli with large η, where the mode degeneracy is important

(Sec. IV A). Even though their analyses are restricted to axisymmetric disturbances, hence, the

results will provide good predictions on the instability thresholds. Indeed, the theories agree well

with the present one for small |γ e|. The discrepancy found at large |γ e| is due to the complete and

partial omission of the thermo-electric coupling: Chandra and Smylie neglected the γ e-dependence

of the basic electric gravity as well as the thermo-electric feedback in perturbations; Takashima’s

theory includes the coupling but only on the first order.

In the present paper, we considered the stability of a dielectric liquid layer in an annulus

subjected to a radial temperature gradient and a radial high frequency electric field. The linear

stability problem was formulated with regarding DEP effects as those due to the electric gravity. The

predicted critical mode is made of stationary helices; this aspect is omitted in the previous theoretical

work7, 8 which concerns only axisymmetric perturbations. In the electric gravity, we distinguished

its basic component ge and perturbation component (25): the former is the analogue of the terrestrial

gravity in the ordinary thermal convection problem, while the latter represents the feedback of

electric field to temperature disturbances. A detail analysis from an energetic viewpoint showed that

the basic electric gravity provokes the instability, while the perturbation gravity has a stabilizing

effect. For the outward heating (γ e > 0), its contribution is negligible at small radius ratio η (η

! 0.6). For large η, in contrast, it is responsible for the increase of Lc as η → 1 and explains why the

critical Rayleigh number of the DEP thermal convection in the plane geometry is larger than that of
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the Rayleigh-Bénard problem. In the inward heating, the instability is observed only in narrow gaps

γ e < log η/(1 + log η). The critical Rayleigh number Lc is larger than in the outward heating, as the

stabilization by the perturbation gravity is more prominent. These results validate in the framework

of linear theory the analogy with the gravity-driven thermal instability and clarify its limit.
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APPENDIX: NUMERICAL METHOD

The unknown functions in Eqs. (18)–(23) are developed into a series of the Chebyshev polyno-

mials {Tl(ξ )} (l = 0, 1, . . . , N) with ξ = 2r − (1 + η)/(1 − η), e.g., ũ = U0T0(ξ ) + U1T1(ξ ) + · · · +

UN TN (ξ ). The set of coefficients {Ul} is the spectrum of ũ in the Chebyshev space. We seek flows

that satisfy Eqs. (18)–(23) inside the gap at the Chebyshev-Gauss-Lobatto collocation points ξ = ξ j

= cos (jπ /N) (j = 1, . . . , N − 1) as well as the boundary conditions (27) on the cylinder surfaces.

In terms of the Chebyshev spectra, the governing equations (18)–(23) at the collocation points

are written as follows:
(

2KD +

[

K jl

r j

])

U + in

[

K jl

r j

]

V + ikKW = 0, (A1)

(

L −

[

K jl

r2
j

])

U − 2in

[

K jl

r2
j

]

V − 2KD" + L
[

ge, j K jl

]

# − 2LC
[

θ j E
′
j K jl

]

D$

− 4LC
[

θ j E j K jl

]

D
2$ = Pr−1sKU, (A2)

2in

[

K jl

r2
j

]

U +

(

L −

[

K jl

r2
j

])

V − in

[

K jl

r j

]

" − 2inLC

[

θ j E j K jl

r j

]

D$ = Pr−1sKV, (A3)

LW − ikK" − 2ikLC
[

E j K jl

]

D$ = Pr−1sKW, (A4)

−
[

θ
′
j K jl

]

U + L# = Pr−1sK#, (A5)

−γe

(

2
[

φ
′
j K jl

]

D +

[

φ
′′
j K jl

]

+

[

φ
′
j K jl

r j

])

# +
[

ǫ j L jl

]

$ + 2
[

ǫ′
j K jl

]

D$ = 0, (A6)

where U, V, W, ", #, and $ are the column vectors consisting of the spectra of ũ, ṽ, w̃, π̃ , θ̃ , and

φ̃, respectively, e.g., U = [ U0 U1 . . . UN ]T . The square brackets signify a matrix such that the (j, l)

entry of [Ajl] is Ajl (j = 1, 2, . . . , N − 1; l = 1, 2, . . . , N + 1). The basic fields at r = rj are denoted

such as ge, j = ge(r j ), θ j = θ(r j ), θ
′
j = θ

′
(r j ), and so on. The transformation matrix K = [K jl], the

derivation matrix D = [Dlm] and the Laplacian matrix L = [L jl] are defined as

K jl = cos
jlπ

N
, Dlm =











m − 1 (l = 1; m = 2, 4, · · · ),

2(m − 1) (l ≧ 2; m = l + 1, l + 3, · · · ),

0 (otherwise),

(A7)

L = 4KD
2 + 2

[

K jl

r j

]

D −

[

K jl

r2
j

]

− k2K (A8)

for j = 1, 2, . . . , N − 1 and l, m = 1, 2, . . . , N + 1.

The boundary conditions (27) are written as

HU = HV = HW = HDU = H# = H$ = 0, (A9)
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where H = [H jl] is a 2 × (N + 1) matrix: H1l = 1, H2l = (− 1)l − 1 (l = 1, 2, . . . , N + 1). Its products

with Chebyshev spectra give the values of functions on the inner and outer cylinders.

The 6(N + 1) equations of (A1)–(A6) and (A9) with respect to 6(N + 1) unknowns of U, V, W,

", #, and $ define a generalized eigenvalue problem

A(η, γe, L , n, k)X = sB(Pr)X, (A10)

where X = [UT
V

T
W

T "T #T $T ]T and A and B are coefficient matrices. The eigenvalues and

eigenvectors are computed by employing the QZ-decomposition. The highest order of considered

Chebyshev polynomials is typically set at N = 60 to ensure the convergence.
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