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A linear stability analysis of the flow confined in a differentially rotating cylindrical

annulus with a radial temperature gradient has been performed. Depending on values

of control parameters (the Taylor number, the Grashof number, and the Froude

number), it has shown flow destabilization to axisymmetric or non-axisymmetric

modes. Analysis of different terms involved in the evolution rate of the perturbation

kinetic energy has allowed us to isolate the dominant terms (centrifugal force or

buoyancy force) in the destabilization process. We have shown that the centrifugal

buoyancy can induce the asymmetry of the temperature gradient on critical states.
C⃝ 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4829429]

I. INTRODUCTION

In many mechanical systems, there is a need to remove heat through fluid between stationary

and rotating elements.1–3 The purpose of the present investigation is to explore the condition under

which vortices can appear in a flow between two coaxial vertical cylinders with a radial temperature

gradient and with rotating the inner cylinder. This problem has been investigated both experimentally

and numerically, leading to controversial results. In their experimental study with a large radius ratio

system, Snyder and Karlsson4 have found that small temperature gradients stabilize the flow, while

large values destabilize it. In the destabilized region, vortices are uneven spirals with an almost

constant wavelength and an azimuthal wavenumber that varies with temperature gradient. The flow

pattern has no axial motion but it moves along the azimuth with an angular velocity almost a half

of the inner cylinder velocity. Sorour and Coney5 performed experiments with two values of radius

ratio and two different highly viscous oils. They found a continuous destabilization effect of the

temperature gradient and observed that critical modes appeared in the form of toroidal vortices of an

uneven size, traveling along the azimuth but without axial motion. It should be mentioned that both

experiments of Snyder and Karlsson4 and Sorour and Coney5 have plotted the critical value of the

Taylor number against the temperature gradient but not against any dimensionless control parameter

such as Grashof or Rayleigh number.

Most of theoretical studies performed on this problem have made drastic assumptions such as

negligible Archimedean buoyancy6 or axisymmetric perturbations7, 8 so that they could not explain

experimental results in the vertical annulus. Using flow visualization, Ball and Farouk3, 9 have

studied the effects of buoyancy on circular Couette air flow in a cylindrical annulus with three

different values of the radius ratio. They found that the Taylor vortices become distorted before

transition to a spiral vortex flow as the buoyancy is increased. They classified flow regimes using the

mixed convection parameter Ri, which is the ratio of the buoyancy to inertia forces and is identical

to the Richardson number: For Ri < 0.01, the flow pattern is almost the Taylor-Couette pattern

as the rotation is dominant over the buoyancy; for Ri ∈ [0.01, 10], rotation and buoyancy forces
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affect the flow properties and for Ri > 10, only the buoyancy force has a strong influence in the

flow destabilization. A thorough linear stability analysis has been performed by Ali and Weidman.10

These authors included in their analysis the Archimedean buoyancy and tested stability to both

axisymmetric and non-axisymmetric perturbations varying the radius ratio and the Prandtl number.

They found that the stabilization by the temperature gradient depended both on the radius ratio and

the Prandtl number of the working fluids. This study discussed in detail the discrepancies between

their theoretical results and experimental results, especially the range of stabilization. They have also

developed the arguments of symmetries that should exhibit flow pattern observed in experiments.

However, this study has neglected the centrifugal buoyancy.

In a wide-gap experiment, Lepiller et al.11 have shown that the radial temperature gradient is

destabilizing independently of its sign, the critical modes appear in the form of a helicoidal vortex

flow and the vortex size increases with the radial temperature gradient to a certain value, beyond

which the pattern becomes insensitive to the increase of the radial temperature gradient. Motivated

by these experimental results, we have revisited the linear stability analysis for this experimental

configuration in order to explain the origin of the observed vortical structures. We have formulated

the flow problem with minimum assumptions compared to previous studies, i.e., with only adopting

the Boussinesq approximation. We have retained both Archimedean and centrifugal buoyancies

in our study and we have tested the stability against both axisymmetric and non-axisymmetric

perturbations.

The paper is organized as follows: in Sec. II, we present the flow equations, including base

flow solution and linearized equations of perturbations. In Sec. III, we address the inviscid limit

of the linearized equations. The results from the linear stability analysis are presented in Sec. IV.

Section V contains discussion and Sec. VI addresses the conclusion.

II. FLOW EQUATIONS

We consider a Newtonian fluid (with the density ρ, the viscosity ν, the thermal diffusivity κ ,

and the thermal expansion coefficient α) in the annular gap between two coaxial cylinders of infinite

length. The inner and outer cylinders with radii R1 and R2 (=R1 + d) are maintained at temperatures

T1 and T2, respectively. The inner cylinder rotates with the angular frequency %1, while the outer

one is at rest. The fluid in the annular gap then pertains to a temperature gradient, which is assumed

small so that the Boussinesq approximation remains valid. The density will vary with the temperature

only in the Archimedean and centrifugal buoyancy terms.11 The equations of conservation of mass,

momentum, and energy read in the cylindrical coordinates (r, ϕ, z):
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where we have introduced the following scaling to make the flow equations dimensionless: the gap

size d for length, R1%1 for velocity, d/R1%1 for time, ρ(R1%1)2 for pressure, and the temperature

difference )θ = T1 − T2 for temperature. The radial, azimuthal, and axial velocity components are
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denoted by u, v, and w, respectively. The temperature θ is measured with taking T2 as reference:

θ = T − T2. The Laplacian operator in the cylindrical coordinates is given by

△ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
. (6)

The velocity and temperature fields must satisfy the boundary conditions at cylinder surfaces:

(u, v, w; θ ) = (0, 1, 0; 1) at r =
η

1 − η
, (u, v, w; θ ) = (0, 0, 0; 0) at r =

1

1 − η
. (7)

In Eqs. (1)–(5), we have introduced the following control parameters: the radius ratio η, the

Prandtl number Pr, the Reynolds number Re, the Grashof number Gr, and the Froude number Fr:
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κ
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ν2
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The parameter GrFr2 = α)θ accounts for the centrifugal buoyancy. This term was neglected in

the most previous studies10, 12 except in the work by Kedia et al.13 The prefactor Gr/Re2 of the

Archimedean buoyancy in Eq. (4) is identical to the Richardson number Ri, representing the ratio

of the buoyancy to inertia forces.

A. Base flow state

At a small rate of cylinder rotation and a small temperature gradient, the flow is invariant to

translation in time (stationarity), to translation along the cylinder axis, and to rotation. The base

flow state has two velocity components which are functions of the sole radial coordinate r: the

azimuthal component vb induced by inner cylinder rotation and the axial component wb induced

by the temperature gradient. These velocity components and the temperature field θb satisfy the

following equations:
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where D = d/dr.

The base state has hence the velocity and temperature profiles given by10, 11
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where the coefficient C is
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The axial velocity component is ascendant near the hot cylindrical surface and descending near

the cold one. The base flow has an azimuthal baroclinic vorticity due to temperature gradient as well

as an axial vorticity due to inner cylinder rotation. The total vorticity of the base flow is

ζ = −Dwbeϕ +
1

r
D

(

r2%b

)

ez, (17)

where %b is the angular velocity of the flow: %b(r ) = vb/r . The pressure distribution can be

determined by direct integration of Eq. (9), and one will see that radial heating modifies the flow

pressure.

B. Stability analysis

We superimpose infinitesimal perturbations (u′, v′, w′, p′, θ ′) on the base flow state. Substitution

of the perturbation fields into the flow equations, linearization about the base state, and expansion

of the perturbations into normal modes,
(

u′, v′, w′, p′, θ ′) = (U, V, W,+,,) est+i(kz+nϕ), (18)

give rise to the following set of equations:
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where s = σ + iω is the complex growth rate, n is the azimuthal mode number, and k is the axial

wavenumber. For brevity, we have set

ϖ = n%b + kwb, △k,n = D2 +
1

r
D −

n2

r2
− k2. (24)

Ali and Weidman10 have shown that the Couette-Taylor flow with a radial temperature gradient,

but without centrifugal buoyancy, possesses the following symmetries:

If (U, V, W,+,,; Re, Gr, k, s, n) is a solution of the set of equations (19)–(23),

! then (U,−V, W,+,,; Re, Gr, k, s,−n) is also a solution which corresponds to the inner

cylinder counter-rotating at the same velocity, this symmetry will be denoted by SC/r(%b);
! then (−U ∗, V ∗, W ∗,+∗,,∗; Re,−Gr, k, s∗,−n) is also a solution for the same rotation of the

inner cylinder, this symmetry will be denoted by SC/r()θ ), where X∗ means complex conjugate

of X.

The presence of the centrifugal buoyancy term in Eq. (20) breaks these symmetries. In the present

study we will precise the conditions under which this term can be neglected.
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The experimental state diagram of Snyder and Karlsson4 does not exhibit the symmetry SC/r()θ ),

while that of Lepiller et al.11 is relatively symmetric. Snyder and Karlsson4 attributed the lack of the

symmetry to the Rayleigh instability in the centrifugal field. The present study attempts to explain

the origin of this asymmetry.

III. INVISCID THEORY

The system of linear stability equations can be truncated in order to investigate the stability

criterion in the inviscid limit. This analysis is valid in almost infinite medium in the radial direction

(i.e., no-slip boundary conditions cannot be imposed at the cylindrical surfaces). The resulting system

can be written in the form:14, 15

s" + M" = −∇P. (25)

The inertial operator M and the vectors " and ∇P are given by
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where A = Gr Fr2 (= α)θ ). According to Bayly,14 the eigenvalues of the inertial operator allow to

predict the necessary condition for flow instability. We found, as the eigenvalues of M,

s1,2 = iϖ ±
√

−0, s3,4 = iϖ, (27)

where

0 (r ) = 0cent (r ) + 0th (r ) (28)

is the generalized Rayleigh discriminant. The ordinary centrifugal Rayleigh discriminant 0cent is

given by16, 17
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and the centrifugal buoyancy contribution to the discriminant 0th is given by
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The same expression shall be obtained by the application of the so-called displaced particle

argument:15, 18 0 is proportional to the density of restoring force acting on displaced particle from

its equilibrium position. The term 0th induces an asymmetry between heating the inner cylinder

and the outer cylinder. In fact, if A < 0 (i.e., the inner cylinder is cooler than the outer one), the

centrifugal instability is reinforced, while it is weakened if A > 0 (the outer cylinder cooler than

the inner one). This result is in a good agreement with the result of Yih19 on revolving fluids with

variable density. The inviscid analysis shows that the centrifugal buoyancy breaks the symmetries

SC/r(%b) and SC/r()θ ).

Assuming that the operator M is diagonalizable,14 we have found an eigenbasis {ei } (i = 1, 2,

3, 4) and its adjoint {e
+
i } in which the vector " is represented by the components {1̃i } (= " · e

+
i )

satisfying the following equations:
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together with the incompressibility condition

1

r

∂

∂r

(

r1̃1 + r1̃2

)

+
σ

2%br

∂

∂ϕ

(

1̃2 − 1̃1

)

+
∂ 1̃3
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where σ =
√

−0. The component 1̃4 is the temperature perturbation (temperature mode). It

oscillates at the frequency ϖ and is decoupled from the hydrodynamic fields (1̃1, 1̃2, 1̃3). The

eigenvectors {ei } and {e
+
i } are given in the Appendix.

IV. VISCOUS THEORY

The system of equations (19)–(23) together with the homogenous boundary conditions on

cylinder surfaces yield an eigenvalue problem F(T a, Gr, Pr, Fr, η; q, n, s) = 0, where we have

introduced the Taylor number Ta and the total wavenumber q defined at the median surface

T a = Re

√

1 − η

η
, q =

√

k2 + k2
ϕ, (36)

where kϕ is the wavenumber in the azimuthal direction: kϕ = 2n(1 − η)/(1 + η). We solved

the eigenvalue problem F = 0 by a Chebyshev collocation method: the velocity, pressure, and

temperature perturbations (U, V , W , +, ,) were expanded into Chebyshev polynomials. The highest

order of the polynomials N was typically set at N = 30, which is sufficient for the convergence. The set

of equations (19)–(23) were then discretized and considered only at the Chebyshev-Gauss-Lobatto

collocation points. Completed by the boundary conditions, they yielded a generalized eigenvalue

problem in a matrix form. Its eigenvalues and eigenvectors were computed by the QZ-decomposition.

The linear stability analysis has been largely investigated by Ali and Weidman10 without the

centrifugal buoyancy term. We have reproduced the same shape of the marginal stability curves.

We will focus only on new effects which were not presented in their study. We have concentrated

our attention to fixed value of Pr = 5.5 and η = 0.8 (Fig. 1) corresponding to the experiments of

Lepiller et al.,11 in which the Froude number is Fr ∼ 10−4. We have also computed some critical

states corresponding to other experiments for comparison.

For Gr ∈ [−22.5, 22.5], critical modes are stationary vortices (Fig. 2(a)) and their threshold is

slightly larger than that of the isothermal case Tac(Gr = 0) = 47.43. It means that small temperature

gradients stabilize the flow. For |Gr| > 22.5, critical modes have non-zero frequency and non-zero

azimuthal wavenumber n. Therefore, these modes are inclined with respect to the cylinder axis and

traveling along the azimuth, i.e., the pattern is a spiral vortex flow (Figs. 2(b) and 2(c)). The azimuthal

wavenumber n counts the number of spirals which are packed around the cylindrical annulus. This

number increases with Gr but remains smaller than nmax = int[π (1 + η)/2(1 − η)] = 14 for

η = 0.8. The increase of n leads to the increase of the inclination angle θ = tan −1(kϕ /k) of the roll

which saturates to about 80◦. The present flow cannot exhibit vertical rolls (columns). The threshold

Tac decreases with Gr, i.e., the flow is destabilized by the temperature gradient. The critical axial

wavenumber decreases also with Gr, meaning that the radial heating increases the roll size. The total

wavenumber of the critical modes decreases with Gr from qc = 3.12 for Taylor vortices to a value

around 2 (Fig. 1(b)). For |Gr| > 1500, there is no significant variation of the critical values of Ta

and q.

For Gr = 7932, there are two marginal curves with the same critical value of Tac ≃ 10 but

distinct critical values of wavenumbers and frequency. The corresponding point in the plane (Gr, Tac)

is called a codimension-two point (Fig. 1(a)). The coordinates (Gr++, Ta++) of the codimension-two

points are given in Table I. The corresponding modes are shown in Fig. 2(e) for Gr = 7932. For

Gr > 7932, critical modes are stationary and the threshold falls rapidly to Tac = 0 for Gr = 7958,

which corresponds to the onset of natural convection in the case of stationary annulus.20

Kinematic description of the critical modes is obtained with the axial phase velocity cz = ω/k

and azimuthal phase velocity cϕ = ω/kϕ , where ω = Im(s). It is found that the axial phase velocity cz

varies linearly with Gr for |Gr| ∈ [22.5, 7932], while cϕ remains constant in the same interval, i.e., it
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)b()a(

)d()c(

FIG. 1. Variation of the critical parameters with Gr for Pr = 5.5, η = 0.8, and Fr = 7.3 × 10−4: (a) Tac, (b) qc, (c) phase

velocity components, and (d) inclination angle.

is not modified by the radial temperature gradient. The linear variation of cz with Gr was predicted

by the inviscid model.

The flow patterns are illustrated in Fig. 2 for different vales of Gr by their eigenfunctions. For

small values of Gr, the isotherms are circular lines and the velocity field is similar to that of Taylor

vortices. As Gr increases, the velocity and temperature fields are distorted and the separatrices are

inclined lines with respect to the horizontal direction.

V. DISCUSSION

There exist four experiments3–5, 11 that can be discussed within the present model. Lepiller et al.11

have plotted the critical Taylor numbers in the Gr-Ta plane from different experiments.4, 5, 11 It was

found that stabilization occurs even in the experiment.5 The experiments of Lepiller et al.11 were

performed with relatively large temperature gradient for which |Gr| > 150, so that they may have

missed the stabilization zone. The flow stabilization by weak temperature gradient can be explained

as the dominance of the axial velocity of the critical mode compared to the axial velocity induced

by the temperature gradient. The present theory predicts the stabilization for weak temperature

gradient, i.e., for |Gr| < Grs and the destabilization effect observed in the three experiments for

|Gr| > Grs. The value of Grs was discussed in Ali and Weidman10 but its origin remains unclear. In

the stabilization zone, critical states were Taylor vortices. In the destabilization zone, critical states

appeared in the form of inclined vortices traveling around the cylinder with drift velocity cϕ that
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FIG. 2. Critical eigenfunctions for η = 0.8, Pr = 5.5, and Fr = 7.3 × 10−4: Perturbation velocity and temperature fields

are shown by arrows and colors, respectively. (a) Gr = 5 (nc = 0), (b) Gr = 200 (nc = −2), (c) Gr = 1000 (nc = −8),

(d) Gr = 7958 (nc = 0), and (e) at a codimension-two point (Gr = 7932, T a = 9.88) : nc = −10 (left), nc = 0 (right).

scales with ⟨%b⟩:11

⟨%b⟩ = −
η

1 + η

[

1 +
log η2

1 − η2

]

. (37)

The independence of azimuthal phase velocity with the radial temperature gradient (Fig. 1(c)) is due

to the fact that it is scaled by the average rotation frequency of the inner cylinder.11

The present problem is sensitive to boundary conditions. Eagles and Soundelgekar21 have shown

that for mixed thermal boundary conditions (Dirichlet and Neumann conditions at the inner and outer

surfaces, respectively), the flow is more unstable to axisymmetric perturbations as the heating is

increased.

The analysis of the critical curves in Fig. 1 shows that the variation of the critical parameters

with Gr exhibits three distinct zones: the stabilization zone, a destabilization zone where the critical

parameters strongly decrease with Gr, and a zone where the critical parameters are almost constant.

To get a comprehensive explanation of this behavior, we have performed analysis of the kinetic

energy equation of the perturbations.

TABLE I. Values of the intersection of the hydrodynamic and thermal modes.

Pr η Fr Ta+ Gr+ Ri+ Ta++ Gr++ Ri++

0.71 0.5 0 45.3 1606 0.78 28.3 8833 11.0

5.5 0.8 7.3 × 10−4 29.4 488.3 0.14 9.88 7932 20.3

5.79 0.958 2.2 × 10−3 18.6 743.7 0.094 6.86 7854 7.32
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FIG. 3. Variation of different terms contributing to the rate of variation of perturbation kinetic energy K (Eq. (38)). The terms

have been averaged over a period of oscillations and normalized by 2K (η = 0.8, Pr = 5.5, Fr = 7.3 × 10−4).

The variation of the perturbation kinetic energy is governed by

d K

dt
= WT a + WH y + Wθ + WcB − Dv, (38)

with

K =

∫

1

2

(

u′2 + v′2 + w′2) dV, WT a = −Re

∫

(

Dvb −
vb

r

)

u′v′dV,

WH y = −Re

∫

Dwbu′w′dV, Wθ =
Gr

Re

∫

θ ′w′dV,

WcB = −ReGr Fr2

∫

u′ vb

r

(

θ ′vb + 2θbv
′) dV, Dv =

∫

0vdV,

where WT a represents the power performed by the centrifugal force on perturbation, WH y is the power

performed by the Reynolds stress on the baroclinic vorticity, Wθ is the power of the Archimedean

buoyancy force, WcB is the power of the centrifugal buoyancy, Dv is the viscous dissipation. The

expression of the viscous dissipation function 0v in cylindrical coordinates can be found, e.g., in

Bird et al.22

There are three terms (WT a, Wθ , WH y) that always contribute to the increase of the perturbation

kinetic energy. The viscous dissipation always dampens the kinetic energy. Two of the three

destabilizing terms play a strong influence on the nature of critical mode, as they compete strongly

enough depending on the value of Gr (Fig. 3). For weak Gr, the term WT a is the dominant power

contribution in the variation of the perturbation kinetic energy, while for large Gr, the term Wθ

takes over WT a and dominates. In Fig. 4(a), we have plotted the marginal stability curve Ta(q) for

Gr = Gr+ where both powers contribute equivalently to the increase of the kinetic energy K. In

Fig. 4(a), the line of equal centrifugal–thermal power, WT a = Wθ , is superimposed: the critical

state corresponds to the intersection point of the marginal stability curve and the dotted line. The

selection of the critical state is therefore determined by the competition between power inputs

from centrifugal force and Archimedean buoyancy. The centrifugal buoyancy and the baroclinic

vorticity perform weak power for all values of the Grashof number Gr < 7932. Thus, the flow

destabilization is mainly due to either the centrifugal force for small Gr or Archimedean buoyancy

for large Gr. The two mechanisms play an equivalent role for values of Gr = Gr+ and Ta =

Ta+ which depend on Pr and η (Table I). For η = 0.8 and Pr = 5.5, we found Gr+ = 488.3,
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(a)  )b(

FIG. 4. Marginal stability curves of different modes for Pr = 5.5, η = 0.8, and Fr = 7.3 × 10−4. (a) Gr = 488.3.

(b) Gr = 7932.

Ta+ = 29.4 corresponding to Ri+ = 0.14. Borrowing the classification of Ball et al.,3 we can say that

for the experimental system used in Lepiller et al.,11 for Ri < 0.002, the centrifugal force dominates

and the flow is almost similar to the isothermal case. For 0.002 < Ri < 0.1, the centrifugal force still

dominates but the Archimedean buoyancy affects increasingly the flow and modifies its properties.

For 0.1 < Ri < 3.75, the centrifugal force decreases, and then for |Gr| > 1500, or Ri > 3.75, it has

no more effect on the stability. Its power becomes vanishingly small and the Archimedean buoyancy

force provides the dominant power in the variation of the perturbation kinetic energy. In this zone,

the flow pattern is the result of an excitation of the temperature mode (from the inviscid model) by

the rotation. The contribution from the power performed by the Reynolds stress on the baroclinic

vorticity remains small until the value of Gr = Gr++ where a new instability mode occurs and this

contribution pertains a jump to a large value (see inset of Fig. 3). This mode is called hydrodynamic

mode and is due to the destabilization of the profile wb(r ) that has an inflexion point.17

In Fig. 5, we have plotted the normalized values of kinetic energy in the radial, azimuthal, and

axial directions, panels (a)–(d), and the power inputs from different contributions, panels (e)–(h).

When centrifugal force is dominant, the azimuthal contributions (Kϕ, WT a) are the most dominant

components and when the Archimedean buoyancy is dominant, the axial contribution to the kinetic

energy Kz and the thermal power Wθ are the most important.

The contribution from centrifugal buoyancy can be estimated from the analysis of the terms

with the Froude number as a prefactor in Eq. (20). For this aim, we have computed the critical values

of Taylor number as function of Gr for five values of the Froude number (Fig. 6(a)). For small values

of Fr, the buoyancy term plays a minor role and the threshold of the instability is almost constant

and independent of the sign of Gr. In this case, the symmetries SC/r(%b) and SC/r()θ ) are preserved

as investigated by Ali and Weidman.10 This is the case for the experiment of Lepiller et al.11 for

which Fr ∼ 10−4 and where it was shown that the critical values were symmetric with respect to the

sign of Gr. For relatively large values of Fr, the threshold of the instability depends on the sign of

Gr, the heating of the outer cylinder is more destabilizing than the heating of the inner cylinder. The

symmetries SC/r(%b) and SC/r()θ ) are broken by the centrifugal buoyancy. This is in agreement with

the generalized Rayleigh discriminant of Eqs. (28)–(30). The power performed by the centrifugal

buoyancy is negative for Gr > 0, i.e., stabilizing, and positive for Gr < 0, i.e., destabilizing

(Fig. 6(b)). This is another signature that the centrifugal buoyancy breaks the symmetries SC/r(%b)

and SC/r()θ ). In most applied situations where the present flow system is encountered (e.g., cooling

circuitry of rotating machinery), the gap width is very small and the working fluids can have large

values of viscosity, leading to values of Fr of the order 10−2–10−1. Therefore, the sign of Gr has a

practical importance on the prediction of the instability threshold. A similar asymmetry induced by

temperature gradient was reported in the study of the stability of a vertical curved channel flow.23
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

FIG. 5. Radial profiles of the different components of the perturbation kinetic energy K (a)–(d) and of the different energy

generation terms (e)–(h). Pr = 5.5, η = 0.8, and Fr = 7.3 × 10−4. (a) Gr = 5, (b) Gr = 200, (c) Gr = 1000, (d) Gr = 7958,

(e) Gr = 5, (f) Gr = 200, (g) Gr = 1000, and (h) Gr = 7958.

)b()a(

FIG. 6. Effects of the centrifugal buoyancy for η = 0.8 and Pr = 5.5: (a) Variation of the critical Taylor number Tac with the

Grashof number Gr for different values of the Froude number Fr, (b) different energy generation terms for Fr = 0.08.
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VI. CONCLUSION

We have performed linear stability analysis of the flow in differentially rotating cylindrical

annulus with a radial temperature gradient for fixed values of the Prandtl number Pr and of the

radius ratio η. We have shown that except a small stabilization zone near the isothermal situation,

extent of which depends on Pr and η, the radial temperature gradient destabilizes the flow and leads

to spiral vortices traveling in the azimuth and with large wavelengths compared to the stationary

Taylor modes. Energy analysis has allowed us to elucidate the role of each force intervening in the

flow: the centrifugal force and the Archimedean buoyancy interact to generate spiral vortex flow; the

centrifugal buoyancy force is responsible for the heating asymmetry. In the codimension-two points,

the system can exhibit critical states with different modes. The present analysis has allowed us to

have a better understanding of the available experimental results on this flow system. These results

call for a detailed numerical simulation to obtain more quantitative data in postcritical regime.
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APPENDIX: EIGENVECTORS OF THE INERTIAL OPERATOR M

The direct eigenvectors of the matrix M are

e1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

− σ
2%b

Dwb − Ri Dθb

σ
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σ
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⎠
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− 1
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⎟
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. (A1)

It has left eigenvectors {e
+
i } (i = 1, 2, 3, 4) given by

e
+
1 =
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. (A2)

The perturbation vector " can be expressed in the right basis {ei } (i = 1, 2, 3, 4): " =
∑

i 1̃i ei .

The components 1̃i (=e
+
i · ") are given by

⎛
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2
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V
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W

−Ri,
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⎟

⎟

⎟

⎟

⎟

⎠

. (A3)

In this new basis, 1̃1 describes the amplified centrifugal mode with frequency ϖ ; 1̃2 is a

decaying centrifugal mode; 1̃3 is a hydrodynamic wave with frequency ϖ ; 1̃4 = −Ri, describes

the temperature wave with frequency ϖ .
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