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Selective ℓ1 minimization for sparse recovery
Van Luong Le, Fabien Lauer and Gérard Bloch

Abstract—Motivated by recent approaches to switched linear
system identification based on sparse optimization, the paper
deals with the recovery of sparse solutions of underdetermined
systems of linear equations. More precisely, we focus on the
associated convex relaxation where the ℓ1-norm of the vector of
variables is minimized and propose a new iteratively reweighted
scheme in order to improve the conditions under which this
relaxation provides the sparsest solution. We prove the conver-
gence of the new scheme and derive sufficient conditions for the
convergence towards the sparsest solution. Experiments show
that the new scheme significantly improves upon the previous
approaches for compressive sensing. Then, these results are
applied to switched system identification.

Index Terms—Convex relaxation, sparsity, system identifica-
tion, hybrid systems, switched systems.

I. INTRODUCTION

This paper considers a convex relaxation approach to re-

cover sparse solutions of underdetermined systems of linear

equations, with an application to hybrid dynamical system

identification. Linear hybrid systems are dynamical systems

switching between multiple linear subsystems. More precisely,

we consider single-input single-output systems in switched

autoregressive with external input form as

yi = θ⊤
λi
ϕi + vi, (1)

where λi ∈ {1, . . . , s} is the discrete state or mode with s
the number of submodels, {θj}

s
j=1 are the parameter vectors

of the submodels, vi ∈ R is a noise term and ϕi =
[yi−1, . . . , yi−na

, ui−1, . . . , ui−nb
]
⊤ ∈ R

p is the regression

vector with p = na + nb, where na and nb are the model

orders. Then, the identification problem is, given a collection

S = {(ϕi, yi)}
N
i=1, to estimate: (i) the number of submodels

s, (ii) the parameter vectors {θj}
s
j=1, and (iii) the switching

sequence {λi}
N
i=1 .

Related work. Many hybrid system identification ap-

proaches have been proposed over the last decade [1]. Here,

we focus on methods based on convex optimization and which

offer several guarantees, the first of which being that the

estimates correspond to a global solution of the formulated

optimization problem. In addition, when a convex relaxation

of a nonconvex optimization problem is considered, theoretical

guarantees of equivalence between the two formulations can

be obtained. More particularly, we follow the approach of [2],

which iteratively estimates each parameter vector individually

by maximizing the sparsity of the error vector. This sparse
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optimization problem is solved via its ℓ1-norm convex re-

laxation and the sparsity of the solution is improved by the

iteratively reweighted ℓ1 minimization scheme developed in

the compressive sensing literature [3]. Note that many results

on ℓ1-norm relaxations were also developed in this field [4],

[5], [6].

Contribution. This paper proposes in Sect. II a new itera-

tive method based on ℓ1-norm minimization for the recovery

of sparse solutions. As in the method of [3] (recalled in

Sect. II-A), we consider a weighted form of the ℓ1 convex

relaxation. But, instead of updating the weights in a soft

manner, in Sect. II-B we explicitly set a weight to zero

at each iteration. The proposed scheme offers three major

advantages when compared with the one of [3]: (i) it converges

in a finite number of steps, (ii) theoretical guarantees of

convergence towards the sparsest solution can be obtained, and

(iii) experiments in Sect. IV-A show that it allows the sparsest

solution to be recovered in a larger range of sparsity level. The

advantages of this new sparsity enhancing scheme are used in

Sect. III to improve the approach of [2] for hybrid system

identification, as witnessed by experiments in Sect. IV-B.

II. SPARSE RECOVERY

Consider an underdetermined system of linear equations,

Ax = b, with a full row rank matrix A ∈ R
m×n and a

non-zero vector b ∈ R
m, where m ≪ n. We are interested in

sparse solutions of this system, i.e., solutions with few nonzero

components, which are specifically obtained by solving

min
x∈Rn

‖x‖0 , s.t. Ax = b, (2)

where the ℓ0-pseudo norm is defined as ‖x‖0 = |{i : xi 6= 0}|.
More precisely we concentrate on instances of (2) with a

unique minimizer and assume that the following assumption

holds in the rest of the paper.

Assumption 1. Problem (2) has a unique minimizer.

The following theorem shows that Assumption 1 holds in

many cases.

Theorem 1 (Uniqueness via the spark [7]). If a system of

linear equations Ax = b has a solution x obeying

‖x‖0 <
spark(A)

2
,

where spark(A) is the smallest number of linearly dependent

columns of A, this solution is necessarily the sparsest possible.

Even when having a unique solution, (2) remains a noncon-

vex optimization problem which is intractable for large n due

to its combinatorial search nature. Nonetheless, it has been the

focus of many works over the last decade in various fields and

particularly in the context of compressive sensing [4], [5], [6].
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As discussed in [7] and references therein, a common

alternative for (2) is to consider the convex relaxation based

on the ℓ1-norm. This leads to

min
x∈Rn

‖x‖1 , s.t. Ax = b, (3)

where ‖x‖1 =
∑n

i=1 |xi| is the ℓ1-norm of x. This problem is

convex and can typically be solved efficiently [8]. As shown

in [7], for a column normalized matrix A, problems (2) and

(3) are equivalent if, for a solution of Ax = b, the condition

‖x‖0 <
1

2

(

1 +
1

µ(A)

)

(4)

holds, where µ(A) is the mutual coherence of A [9] which is

defined, for any matrix A = [A1, . . . ,An] ∈ R
m×n, by

µ = µ (A) = max
1≤i,j≤n,i 6=j

∣

∣

∣
A⊤

i Aj

∣

∣

∣

‖Ai‖2 ‖Aj‖2
. (5)

In the case of an unnormalized matrix A, a similar equiv-

alence is obtained by considering a weighted version of

(3), i.e., minx∈Rn ‖WAx‖1, s.t. Ax = b, where WA =
diag (‖A1‖2 , . . . , ‖An‖2).

However, in many applications, the matrix A cannot be

freely chosen and the sufficient condition (4) might be vi-

olated. Yet, the problem defined in (2) may have a unique

solution x0, as stated by Theorem 1. Thus, since 1 + 1
µ(A) ≤

spark(A) [7], there is a range of problems with

1

2

(

1 +
1

µ(A)

)

≤ ‖x0‖0 ≤
spark(A)

2
.

For these problems, recovering the sparsest solution is there-

fore a well-defined problem, but not directly solvable through

the ℓ1 convex relaxation: a solution x1 to (3) may have more

nonzero elements than x0.

A. The classical iteratively reweighted approach

In order to improve the sparsity of the solutions of (3), a

reweighted ℓ1 minimization scheme is proposed in [3]. At each

iteration l, the following problem is solved:

x
(l)
1 ∈ arg min

x∈Rn
‖W lx‖1 , s.t. Ax = b, (6)

where W l = diag(w
(l)
1 , . . . , w

(l)
n ) is a weighting diagonal

matrix which penalizes differently the entries of x. At the

first iteration, the weights are equal, i.e., W 1 = In. Then,

W l is updated with

w
(l+1)
i =

1
∣

∣

∣
x
(l)
1i

∣

∣

∣
+ ǫ

,

where the w
(l+1)
i are the weights at the (l + 1)th iteration, x

(l)
1i

is the ith element of the solution of (6) at the lth iteration and

ǫ > 0 is a parameter preventing a division by zero. Note that

the choice of ǫ has an influence on the convergence of x
(l)
1 .

Important open issues, highlighted in [3], regarding this

scheme are: (i) What are smart and robust rules for selecting

the parameter ǫ? (ii) Under what conditions does the algo-

rithm converge? Though preliminary results on the conver-

gence are given in [10], these rely on a condition involving

both the matrix A and the solution to (2). On the contrary,

the following presents another reweighting mechanism with a

convergence analysis relying only on conditions on A.

Note that other methods have been proposed to recover

sparse solutions, including the greedy algorithm of [11] and

the one in [12] that mixes ℓ1 minimization with a greedy

approach.

B. Selective ℓ1 minimization

In this section, we propose a new method for updating

the weighting matrix W l in (6) in order to improve the

sparsity of the solution. The new method, named Selective

ℓ1 Minimization (Sℓ1M), is given in Algorithm 1, where

‖x‖∞ = maxi |xi| is the ℓ∞-norm of x.

Algorithm 1 Sℓ1M

Require: A ∈ R
m×n and b ∈ R

m.

- Initialize l = 0, W 1 = In.

repeat

- Set l = l + 1.

- Get any x
(l)
1 in the solution set of (6).

- Select the smallest index q(l) ∈ arg max
i=1,...,n

w
(l)
i |x

(l)
1i |.

- Calculate W l+1 with w
(l+1)
i =

{

w
(l)
i , if i 6= q(l),

0, if i = q(l).

until

∥

∥

∥
W lx

(l)
1

∥

∥

∥

∞
= 0 or

∥

∥

∥
W l+1x

(l)
1

∥

∥

∥

∞
= 0.

return x∗
1 = x

(l)
1 .

Algorithm 1 relaxes the optimization of the nonzero vari-

ables by setting their weights wi to 0 in the cost function

of (6), thus putting more weight on the other variables that

are pulled towards 0. When the stopping criterion is met, we

have ‖W lx
(l)
1 ‖0 ≤ 1. Hence, if it returns at iteration l < n,

the algorithm yields a sparse solution.

The following provides an analysis of the proposed iterative

scheme. The convergence in a finite number of steps is proved

and a condition on the matrix A and the sparsity level

guaranteeing the convergence towards the desired solution is

derived.

1) Convergence in a finite number of steps: The following

theorem, based on Lemmas given in Appendix A, guarantees

that the algorithm Sℓ1M converges in a finite number of steps.

Theorem 2. The solution x∗
1, returned by Algorithm 1, is

found in at most m + 1 iterations and ‖x∗
1‖0 ≤ m, where

m is the number of rows in A.

Proof: If Algorithm 1 does not converge after m iter-

ations, Lemma 3 implies that

∣

∣

∣
x
(l)

1q(l)

∣

∣

∣
6= 0, ∀l ≤ m. Then,

according to Lemma 4, the columns Aq(l) , l ∈ {1, . . . ,m}, of

A are linearly independent and b ∈ R
m can be expressed as a

linear combination of these columns. Therefore, the minimum

value of the sum
∑

i/∈{q(l)}m

l=1

|x1i| is 0 and the solution

x
(m+1)
1 to (6) at iteration m+1 satisfies the stopping criterion

of the algorithm as

∥

∥

∥
W (m+1)x

(m+1)
1

∥

∥

∥

∞
= 0.
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In addition, if Algorithm 1 converges at the lth iteration,
∥

∥

∥
x
(l+1)
1

∥

∥

∥

0
≤ l − 1. Thus, ‖x∗

1‖0 ≤ m.

It is worth noting that if ‖x∗
1‖0 < spark(A)

2 , according to

Theorem 1, x∗
1 is the sparsest solution of (2).

2) Convergence towards the sparsest solution: In order for

the iterative algorithm to converge to the solution x0 of (2)

under Assumption 1, we need to ensure that the variables

removed from the weighted sum in the cost function of (6)

correspond to nonzeros in x0. The following proposition

shows under which conditions the choice of the index q(l) in

Algorithm 1 corresponds to a nonzero element in the solution

of (2), x0, for which we define the two sets

I0 = {i : x0i = 0}, I1 = {i : x0i 6= 0}. (7)

Proposition 1. If

∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
< µ+1

2µ ‖W lx0‖∞, where µ

is defined as in (5) with a column normalized matrix A, then

q(l) ∈ I1 for all q(l) ∈ argmaxi w
(l)
i

∣

∣

∣
x
(l)
1i

∣

∣

∣
.

Proof: Assume q(l) /∈ I1, x0q(l) = 0, then
∣

∣

∣

∣

(

x0 − x
(l)
1

)

q(l)

∣

∣

∣

∣

= |x
(l)

1q(l)
| = maxi w

(l)
i

∣

∣

∣
x
(l)
1i

∣

∣

∣
. Let

j ∈ argmaxi w
(l)
i |x0i| and |x0j | = ‖W lx0‖∞ >

2µ
µ+1

∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
. Then, since

∣

∣

∣
x
(l)
1j

∣

∣

∣
≥|x0j |−

∣

∣

∣

∣

(

x0 − x
(l)
1

)

j

∣

∣

∣

∣

,

Lemma 5 in Appendix applied to δ = x0 − x
(l)
1 leads to

∣

∣

∣
x
(l)
1j

∣

∣

∣
> µ

µ+1

∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
. Thus

∣

∣

∣
x
(l)

1q(l)

∣

∣

∣
=

∣

∣

∣

∣

(

x0 − x
(l)
1

)

q(l)

∣

∣

∣

∣

≥
∣

∣

∣
x
(l)
1j

∣

∣

∣
>

µ

µ+ 1

∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
.

(8)

On the other hand, Lemma 5 implies that

∣

∣

∣
(x0 − x

(l)
1 )q(l)

∣

∣

∣
≤

µ
µ+1

∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
, which contradicts (8). Thus, the assump-

tion q(l) /∈ I1 is wrong and we conclude that q(l) ∈ I1.

3) Influence of the weighting matrix on sparse recovery:

The following lemma shows that, with a good choice of W

such that wi = 0, i ∈ I1, the solution to (6) is exactly x0.

Lemma 1. Given a diagonal matrix W , with entries wi ≥ 0,

if for all nonzero δ ∈ Ker(A) the following condition holds
∑

i∈I1

wi|δi| <
∑

i∈I0

wi|δi|, (9)

where I0 and I1 are defined by (7), then the solution x0 to (2)

under Assumption 1 uniquely solves problem (6), i.e., x0 =
argminx∈Rn ‖Wx‖1 s.t. Ax = b.

Proof: x0 uniquely solves problem (6) if, for all nonzero

δ ∈ Ker(A), ‖Wx0‖1 < ‖W (x0 + δ)‖1, or equivalently if
∑

i∈I1

wi (|x0i| − |x0i + δi|) <
∑

i∈I0

wi |δi| ,

which is implied by the condition (9) since
∑

i∈I1
wi (|x0i| − |x0i + δi|) ≤

∑

i∈I1
wi |δi|.

If the condition in Proposition 1 is satisfied for h iterations,

the condition (9) is relaxed to
∑

i∈I1

|δi| −
∑

i∈{q(l)}h

l=1

|δi| <
∑

i∈I0

|δi|. (10)

When this condition is satisfied, the solution of (6) with W l =
W h+1 is the sparsest vector x0 thanks to Lemma 1. We see

that the left-hand side (LHS) of (10) can decrease to zero after

|I1| iterations. This also shows that the algorithm converges

after at most |I1|+1 iterations if the indexes q(l) are all well-

chosen in I1.

4) Sparse recovery condition: We now show, in Theorem 3,

a condition on the matrix A and the sparsity level which can

guarantee the convergence towards the desired solution. But

this requires the following definition using the notation δT for

the subvector of δ containing its components of indexes in T .

Definition 1 (Definition 1 in [5]). A matrix A ∈ C
m×n is

said to satisfy the null space property (NSP) of order k with

constant γ ∈ (0, 1) if

‖δT ‖1 ≤ γ ‖δT c‖1 ,

for all sets T ⊂ {1, . . . , n} with |T | ≤ k, T c = {1, . . . , n} \T
and for all δ ∈ Ker(A).

The following theorem extends Theorem 1 in [5] to cases

where the sparsity level ‖x0‖0 equals k + h with h > 0
and provides a sparse recovery condition for the iterative

Algorithm 1 (proof given in Appendix B).

Theorem 3. Given a matrix A that satisfies the NSP of order

k with constant γ ∈ (0, 1
2 ), if x0 is such that Ax0 = b and

‖x0‖0 ≤ k + h with the integer h ∈ [1, k] satisfying

γ <
1− (4h− 1)µ

1 + (4h+ 1)µ
, (11)

where µ is defined as in (5), Algorithm 1 converges to x0 in

at most h+ 1 iterations.

Note that the NSP of A and the value of γ can be difficult

to determine directly, but can be related to the easier to handle

restricted isometry property (see [5] for details).

III. HYBRID SYSTEM IDENTIFICATION

We now turn to the problem of hybrid system identification,

i.e., of estimating the parameter vectors {θj}
s
j=1 in (1) from

a data set S = {(ϕi, yi)}
N
i=1.

We follow the approach of [2] in which we introduce the

proposed reweighted scheme (Sℓ1M). This yields Algorithm 2

for the estimation of a single parameter vector.

Algorithm 2 requires a number of iterations, Ns, in order

to deal with noisy data (for which true sparsity cannot be

obtained). However, with knowledge of the number of modes,

s, we can set Ns = s−1
s N , since in this case the largest

fraction of points of a mode in the data set is at least N/s.

As in [2], the identification procedure obtains the submodels

one by one. After applying Algorithm 2 to estimate a param-

eter vector θ̂j , the data points verifying the error condition,

|yi − ϕ⊤
i θ̂j | ≤ δ where δ is a fixed threshold, are associated

to this submodel and removed from the data set. Then, the

next parameter vectors are iteratively estimated from reduced

data sets until all data points are removed, at which point

the estimated number of modes ŝ is given by the number

of submodels obtained. Note that, if the noise is unbounded,
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Algorithm 2 Estimation of a single parameter vector

Require: A data set S = {(ϕi, yi)}
N
i=1 and a number of

iterations Ns.

- Initialize l = 0, W = IN .

while l < Ns do

- Set l = l + 1.

- Obtain θ∗ = argmin
θ

‖We (θ)‖1, where e (θ) =
[

y1 −ϕ⊤
1 θ, . . . , yN −ϕ⊤

Nθ
]⊤

is the error vector.

- Select an index in the maximal absolute error set (break

the tie arbitrarily if necessary):

q ∈ argmax
i

wi |ei (θ
∗)| .

- Set the qth entry on the diagonal of W to wq = 0.

end while

return θ∗ and W .

e.g., Gaussian, the procedure should stop before that, i.e.,

when a small and predefined fraction of the data remains, to

avoid creating irrelevant submodels for small groups of points

corrupted by large noise terms.

IV. NUMERICAL EXPERIMENTS

A. Compressive sensing example

We consider a classical example of sparse signal recovery

used in many works to show the efficiency of the proposed

method. The goal is to recover a sparse signal x of length n
with ‖x‖0 = k. The k nonzero positions are chosen randomly,

and the nonzero values are randomly drawn according to a

zero-mean unit-variance Gaussian distribution. The sensing

matrix A ∈ R
m×n is a Gaussian matrix, i.e., with entries

following a zero-mean Gaussian distribution with variance

1/m. The sparsity level k is increased from 10 to 60 to see

the capacity in signal recovery.

To compare with the classical reweighting method, we set

the experiment as in [3] with n = 256,m = 100. For each

value of k, we run 500 trials to estimate the probability

of perfect signal recovery (be successful if ‖x0 − x̂0‖∞ ≤
10−3). Figure 1 reports the successful recovery probability,

Pr(recovery), for the unweighted ℓ1-norm minimization (Un-

weighted ℓ1), the Orthogonal Matching Pursuit (OMP) [11],

the reweighted scheme of [3] (Reweighted), and the proposed

one (Sℓ1M). We see that the requisite oversampling factor for

perfect recovery [3], mink m/k s.t. Pr(recovery)= 1, decreases

from approximately 4 for Unweighted ℓ1 or 3 for the method

of [3] with ǫ = 1 to 100/40 = 2.5 for our method. Moreover,

in our method there is no hyperparameter to tune, whereas ǫ
can influence the results for the classical scheme [3].

From Theorem 1, we must have k < spark(A)/2 ≤ m/2 =
50 to guarantee the uniqueness of the solution to (2). This

explains why all methods have a small successful recovery

probability with the sparsity level k close to 50. Nonetheless,

our method shows a successful recovery probability greater

than 0.9 at k = 45.

These improvements are paid for by the computational cost

of the proposed method, which requires a larger number of
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Fig. 1. Empirical probability of successful recovery versus the sparsity level
k for the OMP method [11], the classical reweighting of [3] with various ǫ

and the proposed one (Sℓ1M).
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Fig. 2. Parametric error (NPE) and estimated number of modes for different
values of the threshold δ used in the switched system identification example.

iterations compared with [3]. This trade-off is consistent with

the results of the OMP [11], which obtains a low probability

of success but at a much lower computational cost.

B. Hybrid system identification example

We now consider the switched linear system with 3 modes

and na = nb = 2 given as an example in Sect. 4 of [2] to test

the identification procedure. Training sets of N = 600 points

are generated with a uniformly distributed random sequence of

λi ∈ {1, 2, 3} and an additive Gaussian noise with σv = 0.1.

We compare the Normalized Parametric Error, NPE =
√

∑s
j=1 ‖θ̂j − θj‖22/

∑s
j=1 ‖θj‖22, of the original method of

[2] (SO) using the reweighting of [3] with the one of the same

method based on Sℓ1M and Algorithm 2 (labeled Sℓ1M for

short). More precisely, over 100 trials with different input,

switching and noise sequences, we report the mean and

standard deviation of the NPE. Since the methods estimate

the parameter vectors one by one until the data set is empty,

the number of modes cannot be fixed. If ŝ > s, the NPE

is computed with the s best parameter vectors that yield the

smallest NPE. The threshold δ used to assign data points

to a submodel is varied in the range [2σv, 7σv]. Due to the

unbounded Gaussian noise, both methods are stopped with

5% of the data left unassigned to a mode.
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Figure 2 shows that the proposed method (with Ns set as

suggested in Sect. III) yields a model with a smaller error and

a better estimate of the number of modes than the SO method.

Moreover, this is true over a large range of values for δ.

V. CONCLUSIONS

The paper proposed a new iterative algorithm to improve the

sparsity of the solution of an ℓ1-norm relaxation. Compared

with the state-of-the-art scheme of [3], the proposed algorithm

benefits from the absence of hyperparameters and a finite

convergence in a number of steps at most equal to the number

of linear equations. In addition, a sparse recovery condition,

guaranteeing the convergence towards the sparsest solution,

was proved and experiments showed that the new scheme can

recover the sparsest solution in more difficult cases. Finally,

we presented an application to hybrid system identification,

where the increased sparse recovery capacity of the method

translates into more accurate parameter estimates.

APPENDIX

Throughout the appendix, for a vector x ∈ R
n and an index

set T ⊂ {1, . . . , n}, we denote xT the subvector of x contain-

ing its components of indexes in T and ‖xT ‖1 =
∑

i∈T |xi|.

A. Useful lemmas and definitions

Lemma 2. Given a solution x1 of minx∈Rn ‖xT ‖1,

s.t. Ax = b, if x1i 6= 0 for some i ∈ T , then, for a solution,

x̃1, of minx∈Rn ‖xT̃ ‖1, s.t. Ax = b, where T̃ = T\i, we

have x̃1i 6= 0.

Proof: We know that ‖x1T ‖1 ≤ ‖x̃1T ‖1 or equivalently

‖x1T̃ ‖1 + |x1i| ≤ ‖x̃1T̃ ‖1 + |x̃1i| while ‖x1T̃ ‖1 ≥ ‖x̃1T̃ ‖1.

Therefore |x̃1i| ≥ |x1i| > 0.

Lemma 3. For b 6= 0, after l iterations, if

∥

∥

∥
W lx

(l)
1

∥

∥

∥

∞
6= 0,

Algorithm 1 yields x
(l)
1 such that

∣

∣

∣
x
(l)

1q(i)

∣

∣

∣
6= 0, ∀i = {1, . . . , l}.

Proof: Lemma 3 is a consequence of Lemma 2 and the

fact that

∥

∥

∥
W 1x

(1)
1

∥

∥

∥

∞
=
∣

∣

∣
x
(1)

1q(1)

∣

∣

∣
6= 0 if b 6=0.

Lemma 4. In Algorithm 1, if, ∀l ≤ m,

∣

∣

∣
x
(l)

1q(l)

∣

∣

∣
6= 0, then the

columns Aq(i) , i = 1, . . . , l, of the full row rank matrix A are

linearly independent.

Proof: To prove that, we show that at the jth iteration,

∀j ≥ 2, if

∣

∣

∣
x
(l)

1q(l)

∣

∣

∣
6= 0, ∀l ≤ j, then Aq(j) is linearly

independent of
{

Aq(l)
}j−1

l=1
. Assume that this is not true, i.e.,

Aq(j) =
∑(j−1)

l=1 βlAq(l) . Then,

b = Ax
(j)
1 =

j−1
∑

l=1

(

x
(j)

1q(l)
+ x

(j)

1q(j)
βl

)

Aq(l) +
∑

i/∈{q(l)}j

l=1

x
(j)
1i Ai,

and we can get another solution x∗(j) of b = Ax

whose elements are given as the coefficients of the

columns of A in the above. In particular, x
∗(j)

q(j)
= 0

and
∥

∥W jx
*(j)

∥

∥

1
=

∑

i/∈{q(l)}j

l=1

∣

∣

∣
x
(j)
1i

∣

∣

∣
< |x

(j)

1q(j)
| +

∑

i/∈{q(l)}j

l=1

∣

∣

∣
x
(j)
1i

∣

∣

∣
=

∥

∥

∥
W jx

(j)
1

∥

∥

∥

1
. But this contradicts the

definition of x
(j)
1 by (6) and we conclude that Aq(j) is linearly

independent of
{

Aq(l)
}j−1

l=1
.

Lemma 5. For any δ ∈ R
n and A ∈ R

m×n such that Aδ = 0

and all columns of A are unit vectors, the bound

|δi| ≤
µ

µ+ 1
‖δ‖1,

where µ is the mutual coherence of A, holds.

Proof: If Aδ = 0, then
(

A⊤A− In

)

δ = −δ. Thus,

|δi| ≤
∑n

j=1 |δj |

∣

∣

∣

∣

(

A⊤A− In

)

i,j

∣

∣

∣

∣

≤
∑n

j=1 µ |δj | − µ |δi| .

Rearranging the terms yields the sought statement.

Definition 2 (taken from [5]). Let Σk =
{x ∈ R

n : ‖x‖0 ≤ k}. The best k-term approximation

error in terms of ℓp-norm of a vector x is defined as

σk(x)p = inf
z∈Σk

‖x− z‖p .

B. Proof of Theorem 3

We now give a condensed proof of Theorem 3, while

full details can be found in chapter 4 of [13]. The proof is

decomposed in two main steps: (i) showing that q(l) ∈ I1,

∀l ≤ h, (ii) showing that, after Step (i), the algorithm

converges to the unique solution x0 at iteration h+ 1.

Step (i). First, we will prove by induction that ∀l ≤ h,
∥

∥

∥
x0 − x

(l)
1

∥

∥

∥

1
<

µ+ 1

2µ
‖W lx0‖∞ , (12)

from which we will use Proposition 1 to conclude that

q(l) ∈ I1, ∀l ≤ h. To prove (12), we follow a path similar

to that of the proof of Theorem 1 in [5]. We define the sets

T
(j)
q =

{

q(i)
}j−1

i=1
, T

(j)
s = {1, . . . , n} \T

(j)
q , T (j) as the set

of index of k entries of x0 with largest magnitude such that

T (j) ∩ T
(j)
q = ∅ and T

(j)
r = {1, . . . , n} \

{

T (j) ∪ T
(j)
q

}

. Let

δ(j) = x0 − x
(j)
1 . We have

∥

∥

∥
δ(l)

∥

∥

∥

1
=

∥

∥

∥
δ
(l)

T (l)

∥

∥

∥

1
+

∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

+
∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1
, where the first term on the right-hand side (RHS)

can be bounded as follows. By the fact that A satisfies the

NSP (Definition 1) and that δ(l) ∈ Ker(A), the definitions of

T (l) and T
(l)
r imply
∥

∥

∥
δ
(l)

T (l)

∥

∥

∥

1
≤ γ

(
∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

+
∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1

)

. (13)

Therefore,

∥

∥

∥
δ(l)

∥

∥

∥

1
is bounded by

∥

∥

∥
δ(l)

∥

∥

∥

1
≤ (1 + γ)

(
∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

+
∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1

)

. (14)

Now, we bound the second term of the RHS of (14) as follows.
For l ≥ 2, we have

‖x0T (l)‖1 +
∥

∥

∥
x

0T
(l)
q

∥

∥

∥

1
+
∥

∥

∥
x

0T
(l)
r

∥

∥

∥

1
= ‖x0‖1 ≥

∥

∥

∥
x

(1)
1

∥

∥

∥

1

≥
∥

∥

∥
x

(2)

1T
(2)
s

∥

∥

∥

1
+
∣

∣

∣
x
(1)

1q(1)

∣

∣

∣
≥
∥

∥

∥
x

(3)

1T
(3)
s

∥

∥

∥

1
+
∣

∣

∣
x
(1)

1q(1)

∣

∣

∣
+
∣

∣

∣
x
(2)

1q(2)

∣

∣

∣
≥ . . .

≥
∥

∥

∥
x

(l)

1T
(l)
s

∥

∥

∥

1
+

l−1
∑

i=1

∣

∣

∣
x
(i)

1q(i)

∣

∣

∣
=
∥

∥

∥
x

(l)

1T (l)

∥

∥

∥

1
+
∥

∥

∥
x

(l)

1T
(l)
r

∥

∥

∥

1
+

l−1
∑

i=1

∣

∣

∣
x
(i)

1q(i)

∣

∣

∣
.
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Then, by using the triangle inequalities,

∥

∥

∥
x
(l)

1T (l)

∥

∥

∥

1
≥

‖x0T (l)‖1 −
∥

∥

∥
δ
(l)

T (l)

∥

∥

∥

1
and

∥

∥

∥
x
(l)

1T
(l)
r

∥

∥

∥

1
≥

∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1
−
∥

∥

∥
x
0T

(l)
r

∥

∥

∥

1
,

and by keeping the term with δ
(l)

T
(l)
r

on the LHS, we have

∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1
≤
∥

∥

∥
δ
(l)

T (l)

∥

∥

∥

1
+ 2

∥

∥

∥
x

0T
(l)
r

∥

∥

∥

1
+
∥

∥

∥
x

0T
(l)
q

∥

∥

∥

1
−

l−1
∑

i=1

∣

∣

∣
x
(i)

1q(i)

∣

∣

∣
.

(15)

The second term of the RHS of (15) can be computed as a

best k-term approximation error (see Definition 2), i.e.,
∥

∥

∥
x
0T

(l)
r

∥

∥

∥

1
= σk (W lx0)1 . (16)

For the two last terms on the RHS of (15), the triangle

inequality yields

∥

∥

∥
x
0T

(l)
q

∥

∥

∥

1
−

∑l−1
i=1

∣

∣

∣
x
(i)

1q(i)

∣

∣

∣
≤

∑l−1
i=1

∣

∣

∣
δ
(i)

q(i)

∣

∣

∣
.

Then, introducing this inequality with (13) and (16) in (15)

gives, by keeping all the terms with δ
(l)

T
(l)
r

on the LHS,

∥

∥

∥
δ
(l)

T
(l)
r

∥

∥

∥

1
≤

1

1− γ

(

γ

∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

+ 2σk (W lx0)1 +

l−1
∑

i=1

∣

∣

∣
δ
(i)

q(i)

∣

∣

∣

)

.

(17)

Thus, introducing (17) in (14) leads to

∥

∥

∥
δ
(l)
∥

∥

∥

1
≤

1 + γ

1− γ

(

2σk (W lx0)1 +

l−1
∑

i=1

∣

∣

∣
δ
(i)

q(i)

∣

∣

∣
+

∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

)

.

(18)

By applying Lemma 5 to δ(j), ∀j ∈ {1, . . . , l}, we have ∀i ∈

{1, . . . , n} ,
∣

∣

∣
δ
(j)
i

∣

∣

∣
≤ µ

µ+1‖δ
(j)‖1. With j = i, i = 1 . . . l−1,

this gives
∑l−1

i=1

∣

∣

∣
δ
(i)

q(i)

∣

∣

∣
≤ µ

µ+1

∑l−1
i=1

∥

∥

∥
δ(i)

∥

∥

∥

1
and, with j =

l,

∥

∥

∥

∥

δ
(l)

T
(l)
q

∥

∥

∥

∥

1

≤ (l − 1) µ
µ+1

∥

∥

∥
δ(l)

∥

∥

∥

1
. On the other hand, the

condition (11) leads to

1 + γ

1− γ
<

µ+ 1

4hµ
. (19)

Then, using these bounds in (18) leads to

∥

∥

∥
δ
(l)
∥

∥

∥

1
≤

2(µ+ 1)

µ (4h− l + 1)
σk (W lx0)1 +

1

4h− l + 1

l−1
∑

i=1

∥

∥

∥
δ
(i)
∥

∥

∥

1
.

(20)

Now, we prove by induction that the inequality (12) holds

∀l ∈ {1, . . . , h}. Let denote x̄0j(i) the ith largest absolute

value of W jx0. For l = 1, Theorem 1 in [5] yields

∥

∥

∥
x0 − x

(1)
1

∥

∥

∥

1
≤

2(1 + γ)

1− γ
σk(x0)1. (21)

Since σk(x0)1 = σk(W 1x0)1 ≤ hx̄01(k + 1) ≤ hx̄01(1) =
h ‖W 1x0‖∞, and (19), the result (21) leads to (12) with l = 1.

Now, assume that (12) is true until l−1 with l ≥ 2. To prove

that it is true for l, we need to bound the sum
∑l−1

i=1

∥

∥

∥
δ(i)

∥

∥

∥

1
involved in (20). We can show, as detailed in [13], that each

term in the sum is bounded by
∥

∥

∥
δ(j)

∥

∥

∥

1
<

µ+ 1

2µ
‖W lx0‖∞ , ∀j ∈ {1, . . . , l − 1} (22)

via (20) and the fact that, for j < l ≤ h ≤ k,

σk (W jx0)1 ≤ (h− j + 1) ‖W lx0‖∞ . (23)

In addition, similar steps can be used to complete the

induction on l and prove that (12) holds ∀l ∈ {1, . . . , h}. Then,

by using Proposition 1 we conclude that q(l) ∈ I1, ∀l ≤ h with

h ≤ k.

Step 2. Now, we prove that in the (h+1)th iteration, solving

(6) yields x0. By using Lemma 1, x0 uniquely solves problem

(6) if for all nonzero δ ∈ Ker(A), the following condition

holds:
∑

i∈I1

w
(h+1)
i |δi| <

∑

i∈I0

w
(h+1)
i |δi|. (24)

Indeed, the LHS of (24) can be rewritten as
∑

i∈I1\T
(h+1)
q

|δi| < γ
∑

i∈I0

|δi|+ γ
∑

i∈T
(h+1)
q

|δi| (25)

since w
(h+1)
i = 0, ∀i ∈ T

(h+1)
q , and the NSP of order k (Def-

inition 1) is applied with T = I1 \T
(h+1)
q and |T | = k. Then,

we apply once more the NSP of order k with T = T
(h+1)
q and

|T | = h ≤ k for the RHS of (25) to get
∑

i∈I1\T
(h+1)
q

|δi| <

γ
∑

i∈I0
|δi|+ γ2

∑

i∈I0
|δi|+ γ2

∑

i∈I1\T
(h+1)
q

|δi|, which we

rewrite as
∑

i∈I1\T
(h+1)
q

|δi| <
γ

1− γ

∑

i∈I0

|δi|. (26)

Thus, the assumption γ < 1
2 guarantees that

∑

i∈I1\T
(h+1)
q

|δi| <
∑

i∈I0
|δi| and that (24) holds. Hence,

we obtain the unique solution x0 in h+ 1 iterations.
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