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Abstract

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering the Pareto front or the

Pareto set from a limited number of function evaluations are challenging problems. A popular approach in the case of

expensive-to-evaluate functions is to appeal to metamodels of the objective functions. Kriging has been shown efficient

as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation

and exploration such as the Expected Hypervolume Improvement. Here we consider kriging metamodels not only for

selecting new points, but as a tool for estimating the whole Pareto Front and quantifying how much uncertainty remains

on it at any stage of kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian

Process interpretation of kriging, and bases upon conditional simulations. Using concepts from random set theory,

we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated

points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how

Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of kriging-based

multi-objective optimization algorithms to accurately learn the Pareto front.

Keywords: Kriging, Gaussian Process conditional simulations, Multi-objective black-box optimization, Uncertainty

quantification, Attainment function, Vorob’ev Expectation

1. Introduction

The interest in Multi-Objective Optimization (MOO) has been growing over the last decades, resulting in the de-

velopment of numerous dedicated methods, especially in Evolutionary MOO [1]. The latter are able to cope with

challenging problems occurring when few information about the properties of the objective functions is available

(black-box optimization). One specific difficulty is a limited budget of evaluations, because of expensive experiments

or high fidelity simulation, as for example in car crash safety design [2].

In this context, see e.g. [3] for a review, a common approach is to rely on a surrogate model or metamodel to alle-

viate the computational costs of the optimization process. In particular, kriging metamodels have proven to be efficient

because they not only give a response surface but also a quantification of prediction uncertainty. In mono-objective

optimization, this property has been extensively used following the EGO algorithm [4] based on the Expected Improve-

ment to balance between exploitation and exploration. Extensions to MOO have been developed, from scalarization

approaches [5, 6] to the use of multi-objective improvement criteria such as the Expected Hypervolume Improvement

[7, 8].

While results about the optimality of solutions from aggregation approaches have been reported (see e.g. [9]),

things are more difficult to analyze for MOO and even more in metamodel based MOO, where an additional source of

uncertainty due to surrogate modeling must be taken into account. Monitoring the convergence empirically has been
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proposed [10] while in EGO the values of the Expected Improvement provide a stopping rule [4].

Similarly to what has been proposed for excursion sets in Chevalier et al. [11, 12], we propose here to use notions

from the theory of random sets [13] for quantifying uncertainty on Pareto fronts, through conditional simulations. We

show that it is possible to obtain a metamodel-based estimation of the Pareto front, with a value for the deviation and

an illustration of the remaining uncertainty. Possible applications for the practitioner include convergence assessment

as well as visualization of areas where Pareto-optimal solutions could be found in the objective space.

The paper is organized as follows: Section 2 details the framework of multi-objective optimization based on Gaus-

sian process models. In Section 3 we propose an original definition of uncertainty using the Vorob’ev expectation and

deviation. Finally, Section 4 is dedicated to applications of the proposed methodology to two different test cases, where

the potential of the approach to quantify uncertainty and monitor convergence within a sequential MOO algorithm is

illustrated.

2. Multi-objective optimization using Gaussian Processes

2.1. Notions in MOO

Multi-objective optimizers aim at minimizing (say) several objectives at once: f1(x), . . . , fm(x) with x = (x1, . . . , xd)T

a vector of decision variable in E (usually E ⊂ R
d) and f : E → R

m the vector valued function whose coordinates

are the fi, i = 1, . . . ,m. As the objectives are usually in competition, there is no optimal solution minimizing every

objective at once. This leads to the definition of a compromise solution following the Pareto dominance: a vector is

said to be dominated if there exists another vector which is not worse in any objective and better for at least one. If a

vector is not dominated by any other vector, it is optimal in the Pareto sense.

The set of optimal (or non-dominated) points in E is called Pareto set and the corresponding image by f , composed

of non-dominated vectors, is called Pareto front. The optimization process aims at finding non-dominated objective

vectors as close as possible to the true underlying Pareto front, creating a discrete approximation sometimes called a

Pareto front approximation [14].

2.2. Kriging / Gaussian Process Regression

A common solution to perform optimization even with a tight evaluation budget is the construction of a probabilis-

tic model relying on random fields for prediction. Originating from geostatistics and spatial statistics with a technique

named kriging [15], it is known in the machine learning community under the term Gaussian Process Regression [16].

Such models have the property to interpolate the data. Furthermore, due to their probabilistic nature, they also provide

a quantification of the prediction uncertainty.

Without loss of generality, here the responses are supposed to be independent (non-correlated) as advised in [17, 18]

where no significant gain of using a dependent model has been shown. Following the settings of Gaussian Process

Regression [19, 20], each of the objective functions fi is supposed to be the realization of a centered Gaussian process

Yi :

Yi(.) = gT (.)β(i) + Zi(.) (Universal Kriging)

where g(.)T is a vector of known basis functions, β(i) a vector of unknown coefficient and Zi(.) is a zero mean Gaussian

process with given covariance function, or kernel, k(i). The responses are here considered to be deterministic but noise

could be considered. By conditioning on n evaluations
{

Yi(x1) = y
(i)

1
, . . . ,Yi(xn) = y

(i)
n , i ∈ {1, . . . ,m}

}

denoted An, the

best predictor (or kriging mean) and the prediction covariance (also referred to as kriging covariance) are expressed as:

m(i)
n (x) = E(Yi(x)|An) = g(x)T β̂

(i)
+ k(i)

n (x)T K(i)−1
n

(

y(i)
n −Gnβ̂

(i)
)

,

c(i)
n (x, x’) = cov (Yi(x),Yi(x’)|An)

= k(i)(x, x’) − k(i)
n (x)T K(i)−1

n k(i)
n (x’) +

(

g(x)T − k(i)
n (x)T K(i)−1

n Gn

)T (

G
T
n K(i)−1

n Gn

)−1 (

g(x’)T − k(i)
n (x’)T K(i)−1

n Gn

)
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where y
(i)
n =

(

y
(i)

1
, . . . , y

(i)
n

)

, K
(i)
n =

(

k(i)(xs, xt)
)

1≤s,t≤n
, k

(i)
n (x) =

(

k(i)(x, x1), . . . , k(i)(x, xn)
)T

, Gn =
(

g(x1)T , . . . , g(xn)T
)T

and β̂
(i)
=

(

G
T
n K

(i)−1
n Gn

)−1
G

T
n K

(i)−1
n y

(i)
n .

The covariance functions are chosen according to prior hypothesis about the unknown functions, such as regularity,

sparsity, possible symmetries, etc. [21]. While there exists a variety of admissible covariance functions, the most com-

monly chosen are the stationary “Gaussian” and “Matérn” kernels [19]. Maximum likelihood is often used to estimate

values for the kernel hyperparameters [16]. An example of kriging model is proposed in Figure 1, a).

2.3. Multi-objective expected improvement

Sequential approaches in MOO aim at adding new observations with a balance between exploration and exploita-

tion. Similar to [4], several extensions of the EGO algorithm have been proposed for MOO. The main idea is to derive

criteria in the vein of the Expected Improvement by defining a generalization of the notion of improvement for multiple

objectives. Popular methods include scalarization approaches like ParEGO [5] or MOEAD-EGO [6] or truly multi-

objective methods based on the definition of improvement functions over the current Pareto front Pn with respect to

the observations. Considered improvement functions are respectively based on Euclidean distance [22], Hypervolume

[7] or Maximin distance [18] i.e. the distance to the closest point of Pn, the volume added over Pn and an axis-wise

distance to Pn.

In the application of Section 4, we use the Expected Hypervolume Improvement to sequentially add points. This

criterion has been efficiently applied to problems with limited budget [23], enjoys some theoretical properties ([8, 24])

and furthermore is related to the concept of attainment function which is of particular importance in what follows.

2.4. Conditional simulations

Following 2.2, let us consider that the unknown objective functions are sample paths from Yi (i = 1, . . . ,m) interpo-

lating the observations, more precisely realizations of Yi conditionally onAn (i.e. realization of a conditional Gaussian

process). Besides, under the Gaussian process assumptions, the kriging predictor corresponds to the theoretical expec-

tation of those sample paths and for a given x, the probability for a conditional simulation to be in a given interval is

related to the kriging variance.

Conditional simulations can be generated using a variety of methods, from matrix decomposition to spectral

method, as presented in [25, 26, 27, 28]. They have been applied in mono-objective optimization in [29] as a tool

to estimate an information gain when no analytical formula is available, as opposed to the Expected Improvement.

Examples of conditional simulations are displayed Figure 1, b). In the multi-objective case, conditional simulations

have not been used since some analytical formulas exist in few cases. This leads to the main question of this article:

how can conditional simulation apply for MOO?

3. Quantification of uncertainty

In this section we assume that a kriging model (see Section 2.2) is fitted to each objective function, given a set of

n observations An. We denote YC
1
, . . . ,YC

m the corresponding conditional Gaussian processes. The YC
j

( j = 1, . . . ,m)

allow us to generate conditional Pareto front realizations and further estimate the uncertainty on the Pareto front.

Indeed, they provide a convenient framework to apply concepts from random sets theory.

3.1. Conditional simulation for MOO: generation of conditional Pareto fronts and corresponding attained sets

Here we use conditional simulation to generate so-called conditional Pareto fronts (CPF). It is done by producing

conditional GP simulations YC
j

modeling the objectives at some simulation points in the design space, before selecting

the non-dominated responses, as described in Algorithm 1. Doing this provides conditional Pareto sets and fronts, as

illustrated in Figure 2.

Note that what we denote by CPF are actually approximations of theoretical conditional Pareto fronts, just like

conditional simulations of Gaussian random fields are generally approximated realizations relying on a finite number

3
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Figure 1: a) Example of kriging model based on the observations (points), with kriging mean (bold line) and kriging 95% confidence intervals

(shaded area). The Gaussian predictive distribution for x = 0.7 is represented by the vertical dashed line. b) Conditional simulations (thin lines)

from the fitted Gaussian process model.

of points.

Algorithm 1 Simulation of N conditional Pareto sets and fronts

for i = 1, 2, . . . ,N do

Choose p simulation points x1, . . . , xp in E (fixed or different at each iteration).

for j = 1, 2, . . . ,m do

Generate a conditional simulation at x1, . . . , xp for the jth objective: Y
C,(i)

j
=

(

Y
C,(i)

j
(x1), . . . ,Y

C,(i)

j
(xp)

)

.

end for

Determine the Pareto set and front of
{

Y
C,(i)

1
, . . . ,Y

C,(i)
m

}

.

end for

From now on we focus on the use of the CPFs uniquely, since the practitioner is mostly interested in visualizing

results in the objective space. Each of the CPF is composed of non-dominated points in the objective space. They have

been considered to assess the performance of MO optimizers [30, 14] under the term Random Non-dominated Point

(RNP) sets: sets of random vectors in R
m, non-dominated with respect to each other and with random finite cardinality

(see e.g. [31]). An alternative view is to consider the set of all objective vectors dominated by a realization of a RNP

set, called an attained set. Realizations of RNP sets and the corresponding attained sets are presented in Figure 3.

Similarly to the definition of the kriging mean and confidence intervals with conditional simulations, it would be

interesting to define their equivalent for the simulated CPFs and corresponding attained sets. Nevertheless, defining

an expectation and/or an index of variability for those is not straightforward and requires concepts from random sets

theory [13].

3.2. Basics from random sets theory: quantifying uncertainty with the Vorob’ev deviation

Set-valued random elements, in particular random closed sets [13] have gained in popularity over the last decades.

There exists several candidate notions to define the mean of a random closed set, see [13] (Chapter 2). We choose a

rather intuitive one, based on the notion of coverage function:
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Figure 2: Conditional Pareto sets and fronts corresponding to the GP models YC
1
,YC

2
, based on the observations An represented by blue triangles.

Left and center: examples of two conditional Pareto sets (top) and fronts (bottom) simulations, where the simulations are performed on a regular

100 × 100 grid. The simulation points and simulated responses are plotted with dots. The corresponding non-dominated points are represented by

red squares. Right: contour plot of the probability density of optimal points in the decision space estimated from 30 conditional simulations (top)

and superposition of simulated conditional Pareto fronts (bottom).

f2

f1

Figure 3: Example of 3 realizations of RNP sets (points, triangles and squares) and the corresponding attained sets (shaded areas).
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Definition 1 (Coverage function). Let Y be a random closed set on a space D (here D ⊂ R
m). The coverage function

pY is defined by pY : x ∈ D 7→ P(x ∈ Y).

This definition has been applied in the kriging framework to estimate sets of critical input values [11, 12]. It uses

the Vorob’ev expectation, based on the upper level sets Qβ = {z ∈ Rm, pY(z) ≥ β}, called β-quantiles.

Definition 2 (Vorob’ev expectation). Denote µ the Lebesgue measure on R
m. Assuming that E(µ(Y)) < +∞, the

Vorob’ev expectation is the β∗-quantile Qβ∗ such that E(µ(Y)) = µ(Qβ∗ ) if this equation has a solution, if not it is

defined from the condition µ(Qβ) ≤ E(µ(Y)) ≤ µ(Qβ∗ ), ∀β > β∗.

The Vorob’ev deviation is then defined by:

Definition 3 (Vorob’ev deviation). Assuming that E(µ(Y)) < +∞, E(µ(Qβ∗∆Y)) is called the Vorob’ev deviation of

Y, where ∆ denotes the symmetric difference between sets.

The Vorob’ev expectation is a global minimizer of the deviation among all deterministic closed sets with volume

equal to the average volume of Y (see [13] for a proof).

3.3. Application to the uncertainty quantification on Pareto fronts

Attained sets are closed1 and unbounded subsets in R
m. Hence, the attained sets obtained with the simulated CPFs

are modeled as realizations of a random closed set and are denoted by Yi, (i = 1, . . . ,N).

In the MOO literature, the study of distribution location and spread of an attained set X rely on the attainment

function αX [31]: the probability for a given point in the objective space to be dominated by a RNP set, which is in

fact a coverage function of X. For proofs about the equivalence of the distribution of a RNP set and the corresponding

attained set as well as for a definition of the attainment function in terms of coverage function, the interested reader is

referred to [31].

In practice the attainment function is estimated by taking the mean number of RNP sets dominating a vector in the

objective space:

Definition 4 (Empirical attainment function). α̂N(z) = 1
N

N
∑

i=1

I{z ∈ Yi}

In our context this empirical attainment function is simply computed by taking the average of the number of con-

ditional simulations dominating a given value in R
m, as presented in Algorithm 2. An example of empirical attainment

function is presented in Figure 4, showing where in the objective space there is a high probability to improve on the

current Pareto front.

Algorithm 2 Empirical Attainment of the Yi, i = 1, . . . ,N

Select q points z1, . . . , zq for the computation of the attainment function (typically a grid) in the objective space

for j = 1,2,. . . , q do

Compute the frequency of CPFs dominating z j: α̂N(z j)

end for

It should be emphasized that Y is required to be bounded for its Vorob’ev expectation to exist. Hence it is neces-

sary to define a reference point to bound the integration domain, similarly to the choice of the reference point for the

hypervolume quality indicator [24]. Unless there is a previous knowledge about the range of the objectives, we choose

the extremal non-dominated points reached by conditional simulation to bound the integration domain.

We can now determine the value of the Vorob’ev threshold β∗: the value of β corresponding to the Vorob’ev

expectation, as described in Algorithm 3. The Pareto frontier of the Vorob’ev expectation provides us with an estimate

of the Pareto front, as illustrated in Figure 4.
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Algorithm 3 Estimation of the Vorob’ev threshold

1: Define the integration domain by finding the extremal values for the objectives over the RNP sets realizations:

Ω =

[

min
i∈(1,...,N)

Y
(i)

1
, max

i∈(1,...,N)
Y

(i)

1

]

× · · · ×
[

min
i∈(1,...,N)

Y
(i)
m , max

i∈(1,...,N)
Y

(i)
m

]

2: Determine the average volume of the attained sets Yi by calculating the average dominated hypervolume over Ω:

1

N

N
∑

i=1

∫

Ω

I{z ∈ Yi}µ(dz)

3: Find the value of β∗ by dichotomy.
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Figure 4: Example of empirical attainment function (left) and corresponding Vorob’ev expectation in the shaded area (right). The estimation of the

underlying Pareto front (dashed line) is the Pareto frontier of the Vorob’ev expectation. The observations are marked by blue triangles.

Finally, given β∗, we can compute the Vorob’ev deviation. This is done by taking the average volume of the sym-

metric difference between the Vorob’ev expectation and each simulated CPF. The value of the Vorob’ev deviation gives

an idea about the variability of the simulated CPF and can be monitored as observations are added.

From a practical point of view, it is also useful for visualization purposes to display the superposition of all the

symmetric differences by defining an analogue of the attainment function:

Definition 5 (Symmetric-deviation function). The function δY : z ∈ R
m 7→ P(z ∈ Qβ∗∆Y) is called the symmetric-

deviation function of Y.

δY is the coverage function of Qβ∗∆Y. It is estimated with the empirical symmetric-deviation function:

δ̂N(z) =
1

N

N
∑

i=1

I{z ∈ Qβ∗∆Yi}.

Figure 5 presents an example of a symmetric difference between two sets and an empirical symmetric-deviation

function. This shows the variability around the estimated Pareto front: the darker an area is, the more often it is only

dominated by either the attained set or the Vorob’ev expectation. White areas denotes regions where both agree.

1as a finite union of closed sets (hyper quadrants)
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Figure 5: Left: symmetric difference between the Vorob’ev expectation (the level line of the Vorob’ev threshold is represented by the dashed line)

and a simulated CPF’s attained set (dotted line). Right: illustration of the deviation around the estimated Pareto front with an example of empirical

symmetric-deviation function (level plot).

4. Application

In this section, we illustrate the benefits of the proposed methodology for estimating the Pareto front. We consider

the following bi-objective optimization problems from the literature:

(P1) The problem presented in [32], which has a convex Pareto front:

f1(x) =

(

b2 −
5.1

4π2
b2

1 +
5

π
b1 − 6

)2

+ 10

[(

1 − 1

8π

)

cos(b1) + 1

]

f2(x) = −
√

(10.5 − b1)(b1 + 5.5)(b2 + 0.5) − 1

30

(

b2 −
5.1

4π2
b2

1 − 6

)2

− 1

3

[(

1 − 1

8π

)

cos(b1) + 1

]

where b1 = 15x1 − 5, b2 = 15x2 and x1, x2 ∈ [0, 1].

(P2) The ZDT3 problem [33] which has a disconnected Pareto front.

For each example, we start with a set of few observations that allow fitting initial Gaussian process models for

the two objective functions. Then we add new points sequentially by maximizing the Expected Hypervolume Im-

provement, based on the formula detailed in [34]. At each step, the Gaussian process models are updated and their

hyperparameters re-estimated. These models are then used to simulate CPFs, from which we compute the estimates

of the Vorob’ev mean and the measures of uncertainty: Vorob’ev deviation and symmetric difference deviation. Since

the integration domain varies as points are added, the values are displayed divided by the volume of this integration

domain. The following test problems are fast to compute, so it is possible to compare the outcome of the proposed

workflow to a reference Pareto front by using the volume of the symmetric difference.

The results are presented in Figure 6 and Figure 7, showing the evolution of the estimated Pareto fronts with the

corresponding uncertainty around it. For the problem (P1) the sequence is detailed, demonstrating the strength of the

proposed approach for giving insights of the uncertainty on the Pareto front. In particular, the uncertainty measures are

helpful for choosing a minimal number of observations for approximating the Pareto front: while 10 initial observa-

tions may not be enough (Figure 7, a) regarding the large symmetric-deviation, adding 10 observations more reduces

dramatically the uncertainty (Figure 7, c).

The conclusions are similar for problem (P2), where the Pareto front is disconnected, starting this time with 20

observations and adding again ten by optimization.
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(b) 15 observations
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(c) 20 observations
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Figure 6: Evolution of the deviation with new observations added using Expected Hypervolume Improvement for Problem (P1). The shaded area

represents the image of E by f with a thicker border for the Pareto front. Observations are marked with blue triangles and the blue solid line

represents the current Pareto front. The dashed line is the estimated Pareto front, with the corresponding values of the symmetric-deviation in level

plot. Bottom right: evolution of the scaled Vorob’ev deviation (black solid line with circles) and of the volume of the symmetric difference between

the Pareto front and its estimation (red dotted line with crosses).
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Figure 7: Evolution of the deviation with new observations added using Expected Hypervolume Improvement for Problem (P2). The figure descrip-

tion is the same than Figure 6
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Comments on the conditional simulations

• The aforementioned methodology depends on the number and location of simulation points used to obtain the

CPFs from the Gaussian process models. As a first study, we have compared two sampling strategies: uniform

sampling and space-filling sampling relying on a Sobol sequence. The objective functions are taken as sample

paths of centered Gaussian processes with Matérn covariance kernel (ν = 5/2), with parameters equal to 0.3/
√

3

for f1, and 0.5/
√

3 for f2. We compute the approximation error over the set of non-dominated points obtained

from the two sampling strategies. Three error indicators are used: Hypervolume difference, epsilon and R2

quality indicators [35]. The tests are repeated one hundred times. The results presented on Figure 8 show that

space-filling sampling outperforms uniform sampling to get an accurate estimation of the Pareto front.

• The error due to conditional simulation must be mitigated and put into perspective with the considered problems.

Until now optimization methods based on kriging have been applied with up to six variables/objectives [36],

giving the hope of getting reliable estimates with conditional simulations using smart sampling schemes.
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Figure 8: Hypervolume difference, epsilon and R2 quality indicators for the Pareto front, obtained by uniform sampling (points) or with a Sobol

sequence (crosses) for an increasing number of points. The reference needed to compute the indicators corresponds to the best points obtained by

both sampling strategies and an extra 50 × 50 regular grid.

5. Conclusion and perspectives

We presented an original methodology to estimate and visualize the uncertainty of Pareto front approximations,

based on Gaussian process conditional simulations. Two uncertainty measures were defined relying on the theory of

random sets, through the concept of Vorob’ev deviation. As illustrated on two bi-objective problems with convex or

disconnected Pareto fronts, these measures can be used as a basis to define stopping criteria in a sequential framework.

Further work is needed to analyze the different kinds of uncertainty and biases that may occur when applying the

proposed methodology. Perspectives also include the integration of the proposed uncertainty estimate in a SUR-strategy

[37] to possibly reduce the uncertainty faster.
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