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For a given increasing sequence of positive integers A = (a k ) k≥0 and for q, an integer ≥ 2 or eventually q = ∞, let M A,q (n) denote the number of representations of a given integer n by sums k≥0 e k a k with integers e k in [0, q). If a 0 = 1, the sequence A constitutes a numeration system for the natural numbers and A takes the name of scale. The partition problem consists in studying the asymptotic behavior of M A,q (•) and its summation function Γ A,q (•). In this paper we study various aspects of this problem. In the first part we recall important results and methods developed in the literature with attentions to the binary numeration system, the d-ary numeration system and also the Fibonacci and the m-bonacci scales. These cases show that M A,q (•) can be very irregular. In the second part, miscellaneous general results are proved and we investigate in more details sequences A which grow exponentially. In particular, we generalize a result of Dumont-Sidorov-Thomas in proving that if a k ∼ cγ k (with the only natural restriction γ > 1) then Γ A,q (x) = x log γ q H(log γ x) + o(x log γ q ) where H is a function strictly positive, continuous, periodic of period 1 and almost everywhere differentiable. The final part is devoted to a particular family of recurrent sequences G called Pisot scales. We prove in that case that for any suitable q, there exists a set S G,q of positive integers with natural density 1 such that lim s→∞, s∈S G,q log M G,q (s)/ log s exists. The proof uses a previous work of D.-J. Feng and N. Sidorov related to the multiplicity of the radix θ-expansions of real numbers using digits 0, 1, . . . , q -1.

The partition problem

The study of partitions of integers into parts in N (the set of all natural numbers) emerged in 1748 with Euler in his famous Introductio in analysisin infinitorum [START_REF] Euler | Introductio in analysin infinitorum[END_REF] where he considered in particular the number p(n) of partitions of n into integer parts with possible repetitions of parts and the number q(n) of partitions into unequal parts. Classical results of Euler consist in formal identities relating the generating functions f (x) := ∞ n=0 p(n)x n and g(x) := ∞ n=0 q(n)x n to the products f

(x) = ∞ k=1 (1 -x k ) -1 and g(x) = ∞ k=1 (1 + x k ).
Notice that these formulae show that g(x) = f (x)/f (x 2 ). This combinatory approach has been intensively investigated. Many results have been derived from formal identities relating sums and products as above. For example, the classical relation

∞ n=0 q(n)x n = ∞ k=0 1 
1-x 2k+1 , also due to Euler, says that q(n) is the number of partitions of n into odd parts. For an overview of many other formal identities we refer the reader to H.L. Alder [START_REF] Alder | Partition identities -From Euler to the present[END_REF] and for the traditional theory of partitions we refer to the monograph of G.E. Andrews [START_REF] Andrews | The Theory of Partitions, Encyclopedia of mathematics and its applications[END_REF] and the references therein which cover the subject up to 1976.

The partition problem in full generality can be set up as follows. Let A = (a k ) k≥0 be an increasing sequence of positive integers called parts. We naturally assume that there is no common divisor of all a k except 1 (otherwise we divide all parts by their greatest common divisor). Such a sequence A will be called a base of parts.

A partition of a positive integer n into parts in A is defined as a sum

n = e 0 a 0 + • • • + e m-1 a m-1 , (1) 
in which the integers e k , called digits, verify e k ≥ 0 and e m-1 = 0. The digit e k is called the multiplicity (or weight) of the part a k in [START_REF] Alexanderson | The William Lowell Putnam Mathematical Competition Problems and Solutions 1965-1984[END_REF]. Partitions of n are distinguished by their m-tuples (e 0 , . . . , e m-1 ). For a given integer q ≥ 2, or eventually q = ∞, let M A,q (n) denote the number of distinct partitions of n with e k (n) < q for all k = 0, . . . , m -1. In particular M A,q (1) = 1 if a 0 = 1 and M A,q (1) = 0 otherwise. We also set M A,q (0) = 1 and M A,q (n) = 0 for negative integers n. The map M A,q (•) will be called the partition function with base of parts A and multiplicity strictly less than q. If q = 2, each part a k in (1) occurs with multiplicities e k at most 1. If q = ∞, each part a k in (1) may appear with multiplicities e k at most ⌊n/a k ⌋, where ⌊x⌋ denotes the largest integer not exceeding x. Obviously M A,q (•) ≤ M A,q ′ (•) if q ≤ q ′ and M A,∞ (n) = max q M A,q (n).

In case a 0 = 1, the base of parts A will be called a scale. A familiar example is the d-adic scale (d ≥ 2):

E d := (d n ) n≥0 .
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One interest to introduce the notion of scale is that for any natural number n there exists a unique sequence of nonnegative integers e k (n) and a unique nonnegative integer h = h A (n) such that

n = e 0 (n)a 0 + • • • + e h (n)a h , e h (n) = 0, (2) 
with e j (n) = 0 if j > h and

e 0 (n)a 0 + • • • + e k (n)a k < a k+1 (3) 
for all k ≥ 0 (for an account of various arithmetical, combinatory and dynamical properties about scales, see for example [START_REF] Fraenkel | Systems of numeration[END_REF][START_REF] Grabner | Odometers and systems of numeration[END_REF][START_REF] Barat | Propriétés topologiques et combinatoires des échelles de numération[END_REF][START_REF] Barat | Dynamiques associées à une échelle de numération[END_REF]). By construction, a h ≤ n < a h+1 . The successive digits e k (n), k = h, h-1, . . . , 0 can be computed in this order, step by step, applying the so-called greedy algorithm. The right member of equality (2) under constraints (3) will be called the standard A-expansion of n.

The integer e k (n) is then called the standard k-th digit (in the scale A). Of course, one has e k (n) < a k+1 /a k . In case A = N (the set of natural numbers), we use the traditional notations q(n) for M N,2 (n) and p(n) for M N,∞ (n).

The partition problem consists in finding asymptotic formulae for p(n) and q(n) or similar quantities. The first deep progress on this problem emerged in 1918 with G. H. Hardy and S. Ramanujan. In their paper [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF], the authors develop various methods to attack the partition problem. One method was elementary, another one used Tauberian theorems developed in [START_REF] Hardy | Asymptotic formulae for the distribution of integers of various types[END_REF], but the most powerful method, presently known as the circle method, was based on the representation of the coefficients of power series by mean of the integral Cauchy formula. To apply this formula G. H. Hardy and S. Ramanujan took into account that the map η(z) = e iπz 12 /f (e iπz ) (ℑ(z) > 0) already studied by R. Dedeking [START_REF] Dedeking | Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen[END_REF], is analogous to a modular form, and introduced the Farey dissection of [0, 1]. They obtained an accurate asymptotic expansion of p(n) which gives in particular

p(n) ∼ 1 4 √ 3n e π √ 2n/3 . ( 4 
)
where here and afterward, for any positive real-valued sequences u and v, the notation u(n) ∼ v(n) is set for lim n→∞ u(n)/v(n) = 1. Also, a large class of partition problems were exhibited in [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF], including all partition functions M N,q , for which the circle method may be applied in a similar way in order to obtain sharp results. In particular, the authors gave the asymptotic behavior

q(n) ∼ 1 4.3 1/4 n 3/4 e π √ n/3 . (5) 
It was also pointed out in [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] that the number p (k) (n) of partitions of n into parts which are perfect k-th powers does not belong to the class considered above, but for k = 2, by mean of a Tauberian argument H. Hardy and S. Ramanujan got an equivalence of log p (2) (n) and then, using functional relations that exhibit the behavior of the generating function

∞ n=0 p (k) (n)z n = ∞ n=1 (1 -z n k ) -1 (|z| < 1)
near the roots of unity they gave but without proof an asymptotic estimate of p (k) (n). This later result was improved by E. M. Wright [START_REF] Wright | Asymptotic partition formulae, III. Partitions into k th powers[END_REF] who found an asymptotic expansion of p (k) (n). Refining Hardy-Ramanujan circle method, H. Rademacher obtained a series expansion of p(n) in [START_REF] Rademacher | on the expansion of the partition function in a series[END_REF] (see also the monograph of T. Apostol [START_REF] Apostol | Modular Functions and Dirichlet Series in Number Theory[END_REF]). Notice that recently, W. De Azevedo Pribitkin [START_REF] Azevedo Pribitkin | Revisiting Rademacher's Formula for the Partition Function p(n)[END_REF] derived the exact formula of Rademacher, by substituting the circle method for the computation of the Fourier expansion of η -1 (•). The Hardy-Ramanujan's Tauberian theorem ( [START_REF] Hardy | Asymptotic formulae for the distribution of integers of various types[END_REF], Theorem A) is an interesting tool to evaluate the asymptotic behavior of general partition functions by their logarithms. A typical example is the asymptotic formula of N. A. Brigham [START_REF] Brigham | A general asymptotic formula for partitions[END_REF] from which the author derived Hardy-Ramanujan formulae in terms of logarithm for partitions into k-th powers as well as partitions into prime numbers. M. Dutta [START_REF] Dutta | On new partition of numbers[END_REF] using a Tauberian theorem from [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] (see also [START_REF] Hardy | Asymptotic formulae for the distribution of integers of various types[END_REF], Theorem C) obtained

log M N,q (n) = π 2/3 n(q -1)/q 1/2 (1 + o(1))
for any integer q ≥ 2. P. Hagis in [START_REF] Hagis | Partitions with a restriction on the multiplicity of the summands[END_REF] improved this result, obtaining a convergent infinite series for M N,q (n) using the Hardy-Rademacher-Ramanujan circle method.

The elementary side was explored by P. Erdős in [START_REF] Erdős | On an elementary proof of some asymptotic formulas in the theory of partitions[END_REF]. For example, he got p(n) ∼ an -1 e cn (with c = π 2/3) without succeeding to compute the value of a, but a bit later, D. J. Newman [START_REF] Newman | The evaluation of the constant in the formula for the number of partitions of n[END_REF] proved elementarily that a = 1 4 √ 3 . P. Erdős considered also bases A of parts having natural density α > 0 and proved that if the parts have no common prime factor then log

M A,∞ (n) ∼ c √ αn (c = π 2/3) and moreover, if M A,2 (n) > 0 for n large enough, then log M A,2 (n) ∼ c αn/2.
In addition, the converse in both cases is true: each above asymptotic equivalence implies that A is of density α.

It was natural to investigate asymptotic formulae and expansion series for partition functions with parts selected in some interesting bases of parts. There are numerous papers on this topic. One step in this direction was done by K. Mahler in 1940 [START_REF] Mahler | On a special functional equation[END_REF]. Studying solutions of the functional equation f (z+ω)-f (z) ω = f (qz) (ω = 0, 0 < q < 1) he derived the approximate formula log M r (n) ∼ 1 2 (log n) 2 / log r where M r (n) is the number of partitions of n with parts in the set E r of nonnegative powers r n of a given integer r ≥ 2. Combining Mellin transform and saddle point method N. G. de Bruijn in [START_REF] De Bruijn | On Mahler's partition problem[END_REF] improved Malher's result in the following form:

log M r (rh) = Q r (log h, log log h) + ψ log h -log log h log r +O (log log h) 2 log h (6) 
where Q r (•, •) is a quadratic form and ψ(•) is a periodic function mod 1 and analytical in the trip |ℑ(z)| < π 2 log r . Another step was marked by A. E. Ingham who proved in [START_REF] Ingham | A Tauberian Theorem for Partition[END_REF] a very general Tauberian theorem that can be used to deduce asymptotic formulae for p(n), q(n) but also for partition functions M A,2 (•), M A,∞ (•) with various possible bases of parts A including partition of n into integers k 1 -th or k 2 -th powers. In fact, following Ingham's notation, let Λ = (λ ν ) ν≥1 be an increasing sequence of positive real numbers and set Λ(u [START_REF] Ingham | A Tauberian Theorem for Partition[END_REF]) asymptotic behavior for the numbers P (u) (resp.

) := #{ν ; λ ν ≤ u}. Assuming that Λ(u) = Bu θ + R(u) (B > 0, θ > 0) and u 0 R(v)v -1 dv = b log u + c + o(1) when u → ∞, Ingham obtained (Theorem 2,
P * (u)) of solutions λ ν1 +λ ν2 +λ ν3 +• • • < u with ν 1 < ν 2 < ν 3 < • • • (resp. ν 1 ≤ ν 2 ≤ ν 3 ≤ • • • ) and also asymptotic behavior of the discrete derivatives P h (u) = 1 h (P (u) -P (u -h)), P * h (u) = 1 h (P * (u) -P * (u -h))
, with monotonic conditions on P h and P * h . The monotonic assumption on P h was removed by F. C. Auluck and C. B Haselgrove in [START_REF] Auluck | On Ingham's Tauberian theorem for partitions[END_REF] and also by G. Meinardus [START_REF] Menardus | Asymptotische Aussagen über Partitionen[END_REF].

The Tauberian approach of A. E. Ingham stimulated many works, notably those concerning generalizations of the Mahler's problem, in connection with the presence of the periodic term occurring in de Bruijn formula [START_REF] Auluck | On Ingham's Tauberian theorem for partitions[END_REF]. In particular, W. B. Pennington [START_REF] Pennington | On Mahler's partition problem[END_REF] and later W. Schwartz [START_REF] Schwartz | Einige Anwendungen Tauberscher Sätze in der Zahlentheorie. C: Mahler's Partitionsproblem[END_REF] used the Tauberian method of A. E. Ingham combined with the Mellin transform to study unrestricted partitions into parts in Λ = (λ ν ) ν≥1 (not necessarily with integers) verifying a lacunary condition which, following W. Schwartz, takes the form Λ(u) ∼ B(log u) θ with 0 < θ ≤ 1. Notice that the periodic terms in the asymptotic behavior of M A,∞ and M A,2 for bases of parts A that satisfy a k ∼ k were also present in the work of Erdős and B. Richmond [START_REF] Erdős | Concerning periodicity in the asymptotic behavior of partition functions[END_REF].

Roth and G. Szekeres in 1954 (see [START_REF] Roth | Some asymptotic formulae in the theory of partitions[END_REF]) gave a new proof of the asymptotic formulae for q(n) and p(n) using the saddle point method applied to the Cauchy integral formula. In fact, their method can be applied to a rather wide class of partition functions M A,∞ (n) with bases of parts A = (a n ) n≥0 satisfying the following two conditions:

lim k→∞ log a k log k exists; (7) 
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lim k→∞ inf α 1 2a k <α≤ 1 2 1 log k k ν=1 a ν α 2 = ∞ (8) 
where x := min{|x-z| ; z ∈ Z} for any real number x. In particular, A can be the set P of prime numbers or the sets N f := {f (k) ; k ∈ N}, P f := {f (p) ; p ∈ P} where f is a polynomial such that f (N) ⊂ N and no prime number divides all integers f (k). Readily, if a prime number divides a ν for all ν large enough then the condition ( 8) is not satisfied. Following the method of Roth and Szekeres, L. B. Richmond [START_REF] Richmond | Asymptotic relations for partitions[END_REF][START_REF] Richmond | Mahler's partition problem[END_REF] was able to extend somewhat the Pennington's results about M A,∞ (n). For example, his main theorem (Theorem 2.1 [START_REF] Richmond | Mahler's partition problem[END_REF]), can be applied to partitions into the Fibonacci numbers and even more, for any base A of parts defined by a linear recurrence. He obtained asymptotic behaviors similar to the de Bruijn's result. Notice that for any infinite part A of N, a theorem of P. T. Bateman and P. Erdős says that the partition function M A,∞ (•) is strictly increasing if and only if removing any element from A, the remaining elements have no common prime divisor. Of course, this theorem does not apply to A = E r but in that case, setting as above M r (•) for M Er,∞ (•), one has readily the equalities

M r (rn) = M r (rn + 1) = • • • = M r (rn + r -1)
and M r (rn) = M r (r(n -1)) + M r (r⌊n/r⌋))

which imply that M r (•) is increasing. Asymptotic behaviors of partition functions with multiplicity < q have stimulated very a few works probably because these functions can be very irregular according to the choice of parts and q. B. Reznick studied M E2,q (•) in great details [START_REF] Reznick | Some binary partition functions[END_REF]. Notably he showed that M E2,2k (•) is monotonic but M E2,2k+1 (•) alternates its growth: M E2,2k+1 (2n) > M E2,2k (2n + 1) for n > k and M E2,2k+1 (2n + 1) < M E2,2k+1 (2n + 2) for all n. Explicit old and new formulae are also given for particular multiplicity q. For example, according to an easily checked relation

M E2,4 (2n) = M E2,4 (n) + M E2,4 (n -1), one obtains that M E2,4 (n) = ⌊n/2⌋ ([1],
1983, Problem B 2). Using recurrence relations issuing from the product formula verifying by the generating function of M E2,q (•) (see [START_REF] Doudekova | Contribution à l'étude dynamique de translations par intervalles[END_REF]), B. Reznick proved that there are constants 0 < α < β such that

αn log 2 k ≤ M E2,2k (n) ≤ βn log 2 k . ( 9 
)
When q equal to a power of 2 a better result is proved: the limit

c := lim n M E2,2 m (n) n m-1 (10) 
exists and 0 < c < ∞; the odd case q = 2k + 1 cannot be compared to a power of n like M E2,2k (n) but there exist µ i (2k +1) (i = 1, 2), 0 ≤ µ 1 (2k +1) < µ 2 (2k +1) and constants 0 < α < β such that

αn µ1(2k+1) ≤ M E2,2k+1 (n) ≤ βn µ2(2k+1) (11) 
for n large enough. 

F 0 = 1, F 1 = 2 and F k+2 = F k+1 + F k (k ≥ 0) . ( 12 
)
The classical relations

M E2,3 (2n + 1) = M E2,3 (n) and M E2,3 (2n) = M E2,3 (n) + M E2,3 (n -1) (13) 
show that M E2,3 (n) = s(n + 1) where s(n) is the Stern diatonic sequence [START_REF] Stern | Über eine zahlentheoretische Funktion[END_REF] (see [START_REF] Sloane | The On-line Encyclopedia of Integer Sequences: sequence A002487[END_REF] for more details). A straightforward consequence is the equality M E2,3 (2 n -1) = 1, showing that for k = 1 in [START_REF] Brigham | A general asymptotic formula for partitions[END_REF] one has α = 1 and µ 1 (3) = 0. É. Lucas [START_REF] Lucas | Sur les suites de Farey[END_REF] and D. H. Lehmer [START_REF] Lehmer | On Stern's diatonic series[END_REF] proved

max{M E2,3 (n) ; 2 k -1 ≤ n ≤ 2 k+1 -1} = F k+1
while from [START_REF] Lucas | Sur les suites de Farey[END_REF][START_REF] Reznick | Some binary partition functions[END_REF], [START_REF] Cameron | Pn numbers, ambiguity, and regularity[END_REF] are given by

F k = M E2,3 (b k ) where b k := 1 3 (2 k+2 -4) if k is even, 1 3 (2 k+2 -2) if k is odd . Since the Fibonacci numbers F k constructed from
F k = θ k+2 -(θ ′ ) k+2 θ -θ ′ with θ = 1+ √ 5 2 and θ ′ = 1- √ 5 2
(= -1/θ), the above calculation implies that µ 2 (3) = log 2 θ (see [START_REF] Reznick | Some binary partition functions[END_REF][START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF]) and in addition

lim sup n M E2,3 (n)/n log 2 θ = 3 log 2 θ √ 5 .
Explicit value of M E2,3 (n) was computed in [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF]Proposition 6.11]:

Let 1 a2s 0 a2s-1 • • • 0 a1 1 a0 be the word obtained from the usual binary expansion of n by grouping the 0's and the 1's with a k ≥ 1 for 1 ≤ k ≤ 2s, D.-J. FENG -P. LIARDET -A. THOMAS a 0 ≥ 0 and a 0 = 0 if n is even. Then M E2,3 (n) = q s where q s is the denominator of the continued fraction p s q s = 1

a 1 + 1 a 2 + 1 . . . a 2s-1 + 1 a 2s
.

The partition functions of d-adic bases E d with multiplicities q are explored by Y. Protasov in [START_REF] Protasov | Asymptotic behavior of the partition function[END_REF]. He proved that, for fixed d and q ≥ d, there exist positive constants C 1 (d, q), C 2 (d, q) and nonnegative exponents λ 1 (d, q), λ 2 (d, q) such that

C 1 (d, q)n λ1(d,q) ≤ M E d ,q (n) ≤ C 2 (d, q)n λ2(d,q) . ( 14 
)
For d ≤ q < 2d one has readily

M E d ,q (d m -1) = 1 for any integer m ≥ 1. Hence, in those cases C 1 (d, q) = 1, λ 1 (d, q) = 0.
In [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF] the authors mainly focused on the behavior of the sum

N n=0 M E d ,q (n). Nevertheless, using the formal equality n∈Z M E d ,q (n)x n = (1+x+x 2 +• • •+x q-1 )
n∈Z M E d ,q (n)x dn they obtained by induction the bound

M E d ,q (n) ≤ n b(d,q) (15) 
with b(d, q) = log d ⌊(q -1+d)/d⌋ and they gave the exact maximal order λ 2 (d, q) in ( 14) for d ≤ q ≤ d 2 : if r = r(d, q) := ⌊(q -1)/d⌋ and s = s(d, q) := d((q -1)/dr(d, q)) then

λ 2 (d, q) = log d (r + 1) if r ≤ s log d r+ √ r 2 +4s+4 2 if r > s .
Special cases are also considered, namely:

M E d ,d m (n) = 1 d m(m-1) 2 (m -1)! n m-1 + O(n m-2 ) [19, Proposition 6.7] λ 1 (d, du) = λ 2 (d, du) = log d u [19, Proposition 6.8] .
Most of the above results are rediscovered by Y. Protasov in [START_REF] Protasov | Asymptotic behavior of the partition function[END_REF] but using a bit different approach that allows him to calculate explicitly the Reznick's values µ 1 (2k + 1) and µ 2 (2k + 1) for 1 ≤ k ≤ 6.

In this paper, we study the asymptotic behavior of M A,q (•) for a family of linear recurrence scale A related to Pisot numbers (see infra and Section 3). This family includes in particular the d-adic scales E d , the Fibonacci base F =
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(F n ) n≥0 (defined above) and more generally the m-bonacci base F [m] defined by

F [m] n = 2 n for 0 ≤ n < m and F [m] n+m = F [m] n+m-1 + F [m] n+m-2 + • • • + F [m] n (n ≥ 0) .
The calculation of M F,2 (•) was intensively studied by L. Carlitz [START_REF] Carlitz | A problem in partitions related to the Stirling numbers[END_REF][START_REF] Carlitz | Fibonacci representations[END_REF] and also by J. Berstel [START_REF] Berstel | An exercice on Fibonacci représentations[END_REF] who obtained a general formula of M F,2 (•) in terms of products of 2 × 2 matrices associated with canonical F -expansion. His method was extended by P. Kocábová, Z. Masácová and E. Pelantová [START_REF] Kocábová | Ambiguity in the m-bonacci numeration system[END_REF] to the mbonacci base F [m] .

The rest of this paper is organized as follows. In Section 2 we give some definitions and collect miscellaneous results for general bases A of parts. In particular, conditions on A and q assuming M A,q (n) ≥ 1 for all n ≥ 1 are analyzed and partition functions defined from two bases of parts are compared when these bases are related by inclusion up to a finite set of parts. We pay more attention to bases A of parts of exponential order, that is, 0 < αγ k ≤ a k ≤ βγ k for some positive constants α and β and all k. The behavior of

Γ A,q (x) := 1≤n<x M A,q (n) (16) 
is crudely estimated. A more accurate result, in the spirit of [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF], is obtained in the case that a k ∼ cγ k (k → ∞) (see Theorem 14). A scale G = (g n ) n≥0 of the form g n = c(θ)θ n + γ n where θ is a Pisot number (i.e., an algebraic integer over Q whose all its conjugates except itself have modulus < 1), c(θ) ∈ Q(θ) and lim n γ n = 0 will be called a Pisot scale related to θ. Section 3 is devoted to Pisot scales. Recall that the unconstraint partitions (q = ∞) for the particular Pisot scales F [m] but also more generally for bases defined by linear recurrences are special cases of a general result of B. Richmond [START_REF] Richmond | Mahler's partition problem[END_REF]. Our main result in Section 3 says that for any Pisot scale G there exists an integer q 0 such that for q ≥ q 0 there are a subset S G,q of N of density 1 and a value α G,q > 0 such that

lim s∈S G,q s→∞ log M G,q (s) log s = α G,q .
The proof exploits a previous work of D.-J. Feng and N. Sidorov [START_REF] Feng | Growth rate for beta-expansions[END_REF] where the constant α G,q appears in connection with the growth rate of the number of radix θ-expansions of almost all numbers x using digits 0, . . . , q -1.

The various results given above for G = E 2 and q = 2k lead to α E2,2k = log 2 k with S E2,2k = N. Also, for d > 2, one has α E d ,d m = m -1 and more generally α E d ,du = log d u (again with S E d ,q = N). In fact, these values verify α E d ,q + 1 = log d q but if d does not divide q it is known that α E d ,q + 1 < log d q (see [START_REF] Feng | Growth rate for beta-expansions[END_REF]).
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Miscellaneous results

Basic notation and definitions

We denote the set of nonnegative integers by N 0 = N ∪ {0} and recall some usual notation and definitions about combinatorics of words. For any integer q ≥ 2 or for q = ∞ the set S := {s ∈ N 0 ; s < q}, called alphabet of letters (or digits), is equipped with the natural order and S * denotes the monoid of words on the alphabet S. The empty word in S * is denoted by ∧. For any word w set w 0 = ∧ and for any integer k ≥ 1, w k is defined inductively by w k = w k-1 w. Let A = (a k ) k (indexed from 0 in increasing order) be a base of parts. For any word w = w 0 • • • w m in S * (also written as (w 0 , . . . , w m )) of length |w| = m + 1 we associate the integer

val A,q (w 0 • • • w m ) = m j=0 w j a j .
The word w is called a (A, q)-expansion of val A,q (w 0 • • • w m ) with digits (or weights) w i in S. We also set val A,q (∧) = 0 by convention.

The product space Ω q := S N0 of S-valued sequences ε = (ε k ) k≥0 is endowed with the usual compact product topology. For ε in Ω q the cylinder set of length n, relative to ε, is defined by

[ε] n = {ω ∈ Ω q ; ε 0 • • • ε n-1 = ω 0 • • • ω n-1 } .
The compact space Ω q is metrizable and will be equipped with its Borel σalgebra and the uniform Bernoulli measure µ q which is defined on cylinder sets by

µ q ([ε] n ) = 1 q n .
With these notations, the partition function M A,q : N → N 0 can be redefined by

M A,q (n) := # ε ∈ Ω q ; n = ∞ n=0 ε k a k . ( 17 
)
If A is a finite subset of N, we can define a partition function which is also given by [START_REF] Dedeking | Schreiben an Herrn Borchardt über die Theorie der elliptischen Modulfunktionen[END_REF]. Another way to define the partition function M A,q (A finite or infinite) is furnished by the product formula of the generating series

f A,q (z) := ∞ n=0 M A,q (n)z n PARTITION FUNCTIONS IN NUMERATION SYSTEMS WITH BOUNDED MULTIPLICITY of M A,q (n), that is to say f A,q (z) = ∞ k=0 1 + z a k + • • • + z (q-1)a k . ( 18 
)
This equality can be viewed formally or analytically, the series and the infinite product converging both for complex number z with modulus |z| < 1. Two real valued sequences (u n ) n , (v n ) n will be said asymptotically equivalent in growth and we shall write u n ≍ v n (n → ∞) if there exist positive constants α and β and an integer n 0 such that

αu n ≤ v n ≤ βu n for all n ≥ n 0 .
By convention, letters i, j, k, n will be reserved to denote nonnegative integers and q will be a fixed integer, always greater than or equal to 2. Finally, we currently reserve the notation G := (g n ) n≥0 for scales.

Increasing limitation

If the base of parts A increases very fast, the set of integers n such that M A,q (n) > 0 has natural density 0 in N. More precisely:

Pr♦♣♦s✐t✐♦♥ 1✳ Let A = (a k ) k≥0 be a base of parts and assume that there exists a constant C such that a k+1 a k ≥ C > 1 for all k. Set for q ≥ 2, V A,q := {k ∈ N 0 ; M A,q (k) > 0} .

Then the inequality

1 n #(V A,q ∩ [0, n)) ≤ q a 0 q C m ( 19 
)
holds for q ≤ C and a m ≤ n < a m+1 . Moreover, M A,q (k) ≤ 1 for all k.

P r o o f. By recurrence one easily derives from q ≤ C that

(q -1)(a 0 + • • • + a ℓ ) < a ℓ+1 for all ℓ. Consequently, if M A,q (k) > 0 then k admits a (A, q)-expansion k = e 0 (k)a 0 + • • • + e h (k
)a h and this expansion is nothing but the standard A ′expansion of k, where A ′ is the scale obtained from A by adding the part 1 if necessary. This means that M A,q (k) = 1. Now, for a m ≤ n < a m+1 and 0

≤ k < n with M A,q (k) = 1, one has h(k) ≤ m. Therefore 1 n #(V A,q ∩ [0, n)) ≤ q m+1
a m and the inequality [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF] follows from a 0 C m ≤ a m .
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The next proposition determines for a given scale the smallest possible q such that any integer n ≥ 0 has a (G, q)-expansion.

Pr♦♣♦s✐t✐♦♥ 2✳ Let G be a scale, then M G,q (n) ≥ 1 for all integers n ≥ 0 if and only if q ≥ 1 + sup k g k -1 S k-1 where S k := g 0 + • • • + g k . P r o o f. Assume that q < 1 + sup k g k -1 S k-1 ; there exists at least one k with (q - 1)(g 0 + • • • + g k-1 ) < g k -1, hence g k -1 cannot have a (G, q)-expansion.
The converse is proved by induction. Assume q ≥ 1 + g k -1

S k-1 for all k ≥ 1. In particular (q -1)g 0 = (q -1) ≥ g 1 -1, proving that any integer n in [0, g 1 ] has a (G, q)-expansion. Now suppose that any integer in the interval [0, g k-1 ] (k ≥ 2), admit a (G, q)-expansion and choose n in (g k-1 , g k ]. If n = g k we have nothing else to prove, so we assume n < g k . If n < (q -1)g k-1 we choose e k-1 ∈ {0, . . . , q -1} by Euclidian division such that 0 ≤ ne k-1 g k-1 < g k-1 , then ne k-1 g k-1 has a (G, q)-expansion by hypothesis and consequently n has also a (G, q)-expansion. Otherwise (q -1)g k-1 ≤ n. We may assume that n

= (q -1)S k . Since g k -1 ≤ (q -1)S k-1 , there exists s ∈ {1, . . . , k -1} with (q -1)(g k-1 + • • • + g k-s ) ≤ n < (q -1)(g k-1 + • • • + g k-s + g k-s-1 ). The above reasoning applies to n ′ = n -(q -1)(g k-1 + • • • + g k-s ) < (q -1)g k-s-1 leads to a (G, q)-
expansion of n ′ and by the same time a (G, q)-expansion of n. The proof is complete.

If in addition A is a scale, Proposition 2 implies E A,q = N for any q ≥ 1 + sup k g k -1

S k-1 . The case where A is not a scale is resolved by the following result.

Pr♦♣♦s✐t✐♦♥ 3✳ Let A be a base. Assume that sup k g k -1

S k-1 < +∞ and no prime number divides all part a k . Then there exists a computable integer Q such that M A,Q (n) ≥ 1 for all n large enough. P r o o f. From the above results, the proposition is clear if A is a scale. If A is not a scale, by the arithmetical property of A, gcd(a 0 , . . . , a m ) = 1 for some integer m. This implies there exist computable integers K ≥ a 0 and q ′ ≥ 1 such that any integer k in the interval [K, K + a 0 -1] can be written in the form

k = b 0 (k)a 0 + • • • + b m (k)a m with 0 ≤ b i (k) ≤ q ′ for
all i ∈ {0, . . . , m}. Now let G = (g k ) k≥0 be the scale defined by g k+1 = a k (k ≥ 0) and take q = max k ⌈ g k+1 g k ⌉. Then, for any integer n ≥ 0, the standard G-expansion

n = e 0 (n)g 0 + e 1 g 1 + • • • + e h (n)g h
is a also (G, q)-expansion and the integer ne 0 (n) (e 0 (n) < a 0 ) has a (A, q)expansion. Therefore n + K has a (A, Q)-expansion with Q := q + q ′ .
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Proposition 3 justifies the following definition

q A := min{q ; ∃ K, ∀ n ≥ K, M A,q (n) ≥ 1} .
With q A we associate the integer n A defined by

n A := min{k ∈ N ; ∀ ℓ ≥ k, M A,q A (ℓ) ≥ 1} .
If A is a scale G, standard G-expansions may have digits greater than q G . This fact leads us to introduce

q * G = max k g k+1 g k ( 20 
)
in other words q * G is the maximum plus 1 of the set of digits that occur in standard G-expansions. Obviously q G ≤ q * G . The equality holds if G increases regularly. Readily, one has from the definitions:

Pr♦♣♦s✐t✐♦♥ 4✳
Let G be a scale such that there exists a positive integer a verifying the inequalities ag n < g n+1 ≤ (a + 1)g n for all indices n ≥ 0. Then

q G = q * G = a + 1. ❊①❛♠♣•❡ 5✳
The scale defined by g n = a n+1 -1 a-1 , n ≥ 0, satisfies the hypothesis of Proposition 4. This scale arises in combinatorial of graphs and words [START_REF] Cameron | Pn numbers, ambiguity, and regularity[END_REF][START_REF] Allouche | Sur des points fixes de morphismes d'un monoïde libre[END_REF][START_REF] Frougny | On the sequentiality of the successor function[END_REF] but also in symbolic dynamics [START_REF] Doudekova | Contribution à l'étude dynamique de translations par intervalles[END_REF]Chap. 4].

There exist scales G such that q G < q * G . The following family of scales shows that all values q G with 2 < q G < q * G are possible.

Pr♦♣♦s✐t✐♦♥ 6✳ Let a and b be integers such that 1 < b < a and define the scale L := {1, 2, . . . , 2a -1, 1 + a(2a -1), a(2a -1)(b + 1), a(2a -1)(b + 1) 2 , a(2a -1)(b + 1) 3 , . . . }. Then, q L = b + 1 and q * L = a + 1.

P r o o f. The equality q * L = a + 1 is clear due to L 2a-2 = 2a -1 and L 2a-1 -1 = aL 2a-2 < L 2a-1 proving that aL 2a-2 is the standard L-expansion of L 2a-1 -1 and the fact that for all n ≥ 0, by construction, (a+1)L n > L n+1 . To prove that q L = b+1 first notice that any integer n in {1, . . . , a(2a-1)b} has an L-expansion n 0 L 0 +• • •+n 2a-2 L 2a-2 with digits n j satisfying 0 ≤ n j ≤ b. Now, any integer m such that a(2a-1)(b+1) s < m with s ≥ 1 has, by applying the greedy algorithm, a standard L expansion e 0 L 0 + . . . e t L t with t ≥ 2a + s -1 and e j ≤ b if j ≤ 2a. Looking at the remaining standard L-expansion m ′ = e 0 L 0 +

• • • + e 2a-1 L 2a-1 one has two possible cases, namely m ′ = aL 2a-1 = L 0 + L 1 + • • • + L 2a-2
or e i0 = 1 for exactly one index i 0 ∈ {0, . . . , 2a -2} and e 2a-1 ≤ a so that m ′ ≤ (i 0 + 1) + (a -1)(2a -1) ≤ a(2a -1). Hence, in all cases, m ′ and consequently m can be expanded in the scale L with digits less or equal to b.

Set x(s) := (b -1)(1 + • • • + (2a -1) + 1 + a(2a -1)(1 + (b + 1) + • • • + (b + 1) s ) then x(s) = (b -1)(a(2a -1) + 1 + a(2a -1)( (b+1) s+1 -1 b ) and lim s→∞ x(s) a(2a -1)(b + 1) s+1 ) = 1 - 1 b .
Therefore, in particular (b -1)

(L 0 + • • • + L n ) < L n+1 -1
for n large enough so that q L > b proving that q L = b + 1.

Comparison theorems

Pr♦♣♦s✐t✐♦♥ 7✳ Let A and B be disjoint subsets of N, then

M A∪B,q (n) = n j=0
M A,q (nj)M B,q (j) P r o o f. Let f A,q (z) and f B,q (z) be the generating functions of M A,q (•) and M B,q (•). The product formulae show immediately that

f A,q (z).f B,q (z) = f A∪B,q (z) .
If A and A ′ are bases of parts, the inclusion A ⊂ A ′ implies readily M A,q (n) ≤ M A ′ ,q (n), q A ≥ q A ′ and n A ≥ n A ′ . If A is a base of parts which is not a scale, then by Proposition 7,

M A∪{1},q (n) = M A,q (n) + M A,q (n -1) + • • • + M A,q (n -q + 1) (n > q) .
The following result is more interesting:

Pr♦♣♦s✐t✐♦♥ 8✳ Let A, A ′ be two bases of parts. Suppose that A ⊂ A ′ and B = A ′ \ A is finite. Then M A ′ ,q (n) = L ℓ=0 M A,q (n -ℓ)M B,q (ℓ) (21) 
with L = (q -1) b∈B b. In particular

min 0≤ℓ≤L M A,q (n -ℓ) ≤ M A ′ ,q (n) ≤ q #B max 0≤ℓ≤L M A,q (n -ℓ). (22) 
P r o o f. Apply Proposition 7.

This proposition implies, for example, that if M A,q (n) ≍ n α then M A ′ ,q (n) ≍ n α . The converse is not true. A banal counter-example is given by A = {d n ; n ∈ N}, A ′ = A ∪ {1} and q = du. In that case M A ′ ,q (n) ≍ n log d q (see results quoted in Section 1) but M A,q (n) = 0 if n ≡ 0 (mod d).

The following lemma shows that a sum of the form a≤n≤b M G,q (n) has the same order of growth than M G,q (a) or M G,q (b) when a tends to ∞ with ab bounded by a constant.

▲❡♠♠❛ 9✳ Let G = (g k ) k≥0 be a scale and let q ≥ q * G . (i) Any integer n, 0 < n < g k , verifies

1 k ≤ M G,q (n) M G,q (n -1) ≤ k .
(ii) There exists a constant C such that all integers n ≥ 2 verify

1 C log n ≤ M G,q (n) M G,q (n -1) ≤ C log n (C constant, depending on G) provides inf k g k g k 1 > 1. P r o o f. (i) Let 0 < n < g k .
The set of (G, q)-representations of the integer n is the union, for 0 ≤ h < k, of the sets

S k,h,n := {(0, . . . , 0, ε h , . . . , ε k-1 ) ∈ S k ; ε h = 0 and n = ε h g h + • • • + ε k-1 g k-1 }.
To each ε ∈ S k,h,n , we associate

ε ′ := (ε (h) 0 , . . . , ε (h) h-1 , ε h -1, . . . , ε k-1 ),
where (ε

(h) 0 , . . . , ε (h) 
h-1 ) corresponds to the standard G-expansion of g h -1. Since ε ′ is a representation of n -1, one deduces that M G,q (n -1) ≥ #S k,h,n and

kM G,q (n -1) ≥ 0≤h<k #S k,h,n = M G,q (n).
Similarly, the set of (G, q)-representations of n -1 is the union, for 0 ≤ h < k, of the sets

B k,h,n-1 := {(q -1, . . . , q -1, ε h , . . . , ε k-1 ) ∈ S k ; ε h = q -1 and n -1 = (q -1)(g 0 + • • • + g h-1 ) + ε h g h + • • • + ε k-1 g k-1 }. We associate, to each ε ∈ B k,h,n-1 , ε ′ := (q -1 -ε (h) 0 , . . . , q -1 -ε (h) h-1 , ε h + 1, . . . , ε k-1 ),
where (ε

(h) 0 , . . . , ε (h) h-1 ) corresponds to the standard G-expansion of g h -1. Since ε ′ is the representation of n, one deduces M G,q (n) ≥ #B k,h,n-1 and kM G,q (n) ≥ h #B k,h,n-1 = M G,q (n -1). D.-J. FENG -P. LIARDET -A. THOMAS (ii) Let n ≥ 2, and k such that g k-1 ≤ n < g k . Denoting m = inf j≥1 log(g j /g j-1 ) one gets log n ≥ log g k-1 = k-1 j=1 log(g j /g j-1 ) ≥ (k -1)m, hence k ≤ 1 + log n m . Since 1 ≤ 2 log n one obtains k ≤ (2 + 1 m
) log n, and by (i), the inequalities hold with C = 2 + 1 m .

The growth of M A,q and its summation function for exponential base

The following result shows that if the parts a k grow exponentially, then the growth rate of M A,q (n) is at most of polynomial. More precisely:

❚❤❡♦r❡♠ 10✳ Let A be a base of parts a k such that a k ≍ γ k and let q ≥ γ. Then Γ q (N ) = 1≤n≤N M A,q (n) ≍ N log γ q (N → ∞) .
P r o o f. By assumption there are constants α, β and an integer k 0 such that 0 < αγ k ≤ a k ≤ βγ k if k ≥ k 0 . Assume that N is large enough such that the integer i N defined by the inequalities a i N ≤ N < a i N +1 verifies i N ≥ k 0 . Then, any (A, q)-expansion of integer n, 1 ≤ n ≤ N , has the form e 0 a 0 + • • • + e i N a i N . Therefore Γ q (N ) ≤ q i N +1 , while i N ≤ log N/α log γ , hence q i N ≤ (N/α) log γ q . Let j N be the smallest integer verifying N ≤ (q -1)(a 0 + • • • + a j N ), then Γ q (N ) ≥ q j N . Now, assume that N is large enough so that j N > k 0 . A straightforward calculation leads to a constant B and an integer N 1 such that

N ≤ (q -1)(a 1 + • • • + a j N ) ≤ Bγ j N whenever N ≥ N 1 .
Consequently, for such N the inequality log(N/B) ≤ j N log γ holds and so, Γ q (N ) ≥ (N/B) log γ q as expected.

|❡♠❛r❦ 11✳ The above proof can be adapted to show that if

C 1 γ k 1 ≤ a k with C 1 > 0 and γ 1 > 1 (resp. a k ≤ C 2 γ k
2 ), then there exist a positive constants B 1 (reps. B 2 ) such that

Γ q (N ) ≤ B 1 N log γ 1 q (resp. B 2 N log γ 2
q ≤ Γ q (N ) .
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✷

The sum in Theorem 10 is closely related to the uniform Bernoulli measure µ q on Ω q (cf. Section 2.1). For all real number x ≥ 0, if t is any integer verifying x < a t+1 then

Γ q (x) = q t+1 µ q ({ε ∈ Ω q ; ε 0 a 0 + • • • + ε t a t ≤ x}) . (23) 
In the remaining part of this section we assume that the base A of parts a k verifies

a k ∼ cγ k (k → ∞) . (24) 
It is convenient in the sequel to set

a k = cγ k + b k (25) 
so that the asymptotic condition ( 24) is equivalent to the following one

lim n→∞ 1 γ n 0≤k≤n |b k | = 0 . (26) 
Let Y : Ω q → R be the random variable defined by

Y (ε) := ∞ i=0 ε i γ -i (27) 
and let µ γ,q := µ q • Y -1 be the law of Y (•). The measure µ γ,q is supported on the interval I γ,q := [0, (q-1)γ γ-1 ]. Let δ a denote the Dirac measure centered on the point a and set

D n := 1 q q-1 j=0 δ j/γ n ,
then µ γ,q is also the infinite convolution product D 0 * D 1 * D 2 * • • • which is the weak limit of the sequence of discrete probabilities

µ γ,q,n := D 0 * D 1 * • • • * D n .
Let us recall basic well known properties of µ γ,q . First, as a consequence of a theorem of P. Levy [39, Theorem XIII, p. 150], the measure is continuous and from a general theorem of B. Jessen and W. Wintner [36, Theorem 35, p. 86] it is pure, hence µ γ,q is either singular continuous or absolutely continuous (with respect to the Lebesgue measure on I γ,q ). A straightforward computation gives

µ γ,q = 1 q q-1 j=0 µ γ,q • S -1 j ( 28 
)
where S j is the affine contraction on R defined by by

S j (x) = x γ + j . ( 29 
)
In other words, µ γ,q is a self-similar probability on I γ,q associated to the IFS {S j } q-1 j=0 and the probability weight ( 1 q , 1 q , . . . , 1 q ). According to a general result of J. E. Hutchinson [START_REF] Hutchinson | Fractals and self-similarity[END_REF], µ γ,q is the unique probability measure verifying [START_REF] Frougny | On the sequentiality of the successor function[END_REF].

One key result for our next study consists in the fact that the sequence of random variables V k : Ω q → R defined by

V k (ε) := 1 cγ k k i=0 ε i a k-i
converge uniformly to the Y (•). The following lemma quantifies this convergence: ▲❡♠♠❛ 12✳ Let A be a base of parts as above. For all k and all ε in

Ω q , | k i=0 ε i a k-i -c ∞ i=0 ε i γ k-i | ≤ σ k with σ k = q c γ -1 + k i=0 |b i | .
The proof is straightforward and left to the reader. Let F Y and F k denote respectively the distribution functions of Y and V k respectively. By definition, for any integer k ≥ 0 and x ∈ [0, cγ k ],

F Y (x/cγ k ) = µ q ({ε ∈ Ω q ; c ∞ i=0 ε i γ k-i ≤ x})
and

F k (x/cγ k ) = 1 q k+1 # (ε 0 , . . . , ε k ) ∈ {0, . . . , q -1} k ; k i=0 ε i a k-i ≤ x .
Clearly a k belongs to the interval

I k = [cγ k -σ k , cγ k + σ k ] and the assump- tion (26) implies σ k ∈ o(γ k ) .
Hence, there exists an index k 0 such that the intervals I k for k ≥ k 0 are mutually disjoint and the inequality x ≤ cγ k + |b k | implies the inequality x < a k+1 . Therefore Γ q (x) = q k+1 F k (x/cγ k ) . We are ready to compare F Y (x/cγ k ) and Γ q (x) using Lemma 12.
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▲❡♠♠❛ 13✳ Let x ∈ [0, ∞) and let t = t(x) be the smallest integer verifying x ≤ cγ t . According to above notations, set x t = cγ tσ t and x ′ t = cγ t + σ t . Then for t ≥ k 0 , one has

F Y (x t /cγ t ) ≤ F t (x/cγ t ) ≤ F Y (x ′ t /cγ t ) ( 30 
)
and

F t (x t /cγ t ) ≤ F Y (x/cγ t ) ≤ F t (x ′ t /cγ t ) . ( 31 
)
The proof of this lemma is analogous to the one of Lemma 1.2 in [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF]. It is an easy consequence of Lemma 12. The next result is the natural generalization of Theorem 2.1 in [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF] which considered scales related to Perron numbers.

❚❤❡♦r❡♠ 14✳ Let A be a base of parts satisfying

a k ∼ cγ k (k → ∞)
with c > 0 and γ > 1. Then one has asymptotically

Γ q (x) = x log γ q H(log γ x) + o(x log γ q ) (x → ∞) (32) 
where H(•) is the continuous periodic function of period 1, strictly positive and a. e. differentiable defined by

H(ξ) = q ⌈ξ-log γ c⌉+1-ξ F Y (γ ξ-⌈ξ-log γ c⌉ /c) (ξ ∈ R) .
P r o o f. Taking into account the continuity of F Y , one derives from the above lemma that Γ q (x) = q t(x)+1 F Y (x/cγ t(x) ) + o(q t(x)+1 ) and the equality [START_REF] Hardy | Asymptotic formulae for the distribution of integers of various types[END_REF] holds with H(•) defined by

H(log γ x) = q t(x)+1-log γ x F Y (x/cγ t(x) ) .
The periodicity 1 of H(•) is clear and, by construction, H(•) is continuous except eventually at the reals numbers ξ m = m + log γ c (m ∈ Z). The left and right limits at ξ m are respectively H(ξ m -) = H(ξ m ) = q 1-log γ c F Y (1) and

H(ξ m +) = q 2-log γ c F Y (1/γ). But looking at F Y (•) one observes the equal- ity 1 q F Y (1) = F Y (1/γ). The continuity of H at ξ m follows. The differential property of H(•) is inherited from F Y and the positivity of H follows from H(ξ) ≥ q 1-log γ c F Y (γ -1 ) > 0.
|❡♠❛r❦ 15✳ It is not required in Theorem 14 that the sequence of parts a k verifies a linear recurrence. A typical example is given by any scale [START_REF] Feng | The smoothness of L q -spectrum of self-similar measures with overlaps[END_REF] with a bounded sequence (b k ) k . Concrete examples are the scale a k = 2 k+1 -1 or the scale a k = ⌈(3/2) k ⌉. A remarkable fact is that the principal term in (32) depends only on γ, c and q. The error term has been improved for Perron numbers in [START_REF] Dumont | Number of representations related to linear recurrent basis[END_REF]. ✷

The following result gives a bound for M A,⌊γ⌋+1 (n), the proof is elementary.

Pr♦♣♦s✐t✐♦♥ 16✳ Let A be base of parts satisfying the hypothesis of Theorem 14 with γ > 1+ √ 5 2 and γ = 2. Then M A,⌊γ⌋+1 (n) ∈ O(n), that is, there exists C > 0 such that M A,⌊γ⌋+1 (n) ≤ Cn for n ∈ N. P r o o f. From the hypothesis on a k , given ε > 0 there exists an integer k ε ≥ 2 such that, for k ≥ k ε and integer p ≥ 1

a k -p k-2 i=0 a i ≥ (1 -ε)cγ k -p(1 + ε)c k-2 i=0 γ i -K (with K = p k1 i=0 a i ) (33) ≥ c γ k-1 (1 -ε)(γ 2 -γ -p) -2pε γ -1 -K.
Set q = ⌊γ⌋ + 1 for short and choose p = ⌊γ⌋. If γ is an integer not equal to 2 then γ 2 -γ -p > 0. If γ is not an integer and γ > 2 then

γ 2 -γ -p > γ 2 -2γ > 0. If 2 > γ > 1+ √ 5 
2 , then p = 1 and again γ 2γp > 0. Now, take ε such that (1ε)(γ 2γp) -2pε > 0 and then choose k 1 , k 1 ≥ k ε , such that the right hand side of ( 33) is positive for k ≥ k 1 . Therefore k ≥ 2 and

a k > (q -1) k-2 i=0 a i . ( 34 
)
Let C be a constant such that inequality M A,q (n) ≤ Cn holds for 1 ≤ n < a k1 . We prove by induction the validity of this inequality for all integers n. Suppose M A,q (n ′ ) ≤ Cn ′ for all n ′ ≤ n -1 and define k by a k ≤ n < a k+1 . There exists an integer ν ≥ 0 such that

νa k-1 + (q -1) k-2 i=0 a i < n ≤ (ν + 1)a k-1 + (q -1) k-2 i=0 a i . (35) 
As n < a k+1 , each (A, q)-expansion of n = e 0 a 0 + e [START_REF] Ingham | A Tauberian Theorem for Partition[END_REF]. To each such (A, q)-expansion of n with e k = 0, we associate the (A, q)-expansion of na k , replacing the digit e k by e k -1. To each (A, q)-expansion of n with e k = 0, we associate the (A, q)-expansion of n -(ν + 1)a k-1 , replacing e k-1 by e k-1 -(ν + 1). Hence

1 a 1 + • • • (if such expansion exists) satisfies e i = 0 for i ≥ k + 1. If e k = 0 then e k-1 ≥ ν + 1 by
M A,q (n) ≤ M A,q (n -a k ) + M A,q (n -(ν + 1)a k-1 ) ≤ C(n -a k ) + C(n -(ν + 1)a k-1 ),
and we obtain M A,q (n) ≤ Cn from inequalities [START_REF] Hutchinson | Fractals and self-similarity[END_REF] and [START_REF] Ingham | A Tauberian Theorem for Partition[END_REF].
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|❡♠❛r❦ 17✳ For the Fibonacci scale F , I. Pushkarev [START_REF] Pushkarev | The ideal lattices of multizigzags and the enumeration of Fibonacci partitions[END_REF] obtained

M F,2 (n) ∈ O( √ n).
This bound is optimal, due to results of L. Carlitz who computed in [START_REF] Carlitz | Fibonacci representations[END_REF] numerous values of M F,2 (•), in particular (with our notations)

M F,2 (F 2 2n+1 -1) = F 2n+1 . Notice that F 2 2n+1 -1 = F 2 + F 6 + • • • + F 4n+2 . ✷

Pisot scales

Definitions and main result

Let θ be a given positive Pisot number of degree r, with conjugates θ 0 = θ, θ 1 , . . . , θ r-1 and let

P θ (X) = X r -a 1 X r-1 -a 2 X r-2 -• • • -a r denote the monic irreducible polynomial of θ over Q. By definition θ > 1 and |θ i | < 1 for 1 ≤ i ≤ r -1.
Let G = (g n ) n≥0 be a Pisot scale related to θ, that is, g n is of the form

g n = c(θ)θ n + γ n , (36) 
where c(θ) belongs to Q(θ) and lim n γ n = 0. An equivalent characterization of ( 36) is given as follows.

▲❡♠♠❛ 18✳ A scale G = (g n ) n≥0 is a Pisot scale related to θ if and only if there exists an integer n 0 such that for all n ≥ n 0 , one has

g n+1 = a 1 g n + • • • + a r g n+1-r . (37) 
P r o o f. Assume that G = (g n ) n≥0 is a Pisot scale related to θ of the form [START_REF] Jessen | Distribution functions and the Rieman zeta function[END_REF]. Since θ is a Pisot number and lim n c(θ)θ n = 0 by assumption, we know from a result of Pisot (see [START_REF] Pisot | Répartition (mod 1) des puissances successives des nombres réels[END_REF] and [START_REF] Cassels | An introduction to diophantine approximation[END_REF]) that there exists ν ∈ N such that θ ν c(θ) belongs to the dual of Z[θ] (with respect to the bilinear trace map (x, y)

→ Tr Q(θ)/Q (xy)). More explicitly, there exits b(θ) ∈ Z[θ] such that c(θ) = b(θ) θ ν P ′ (θ) . Set η n := r-1 j=1 c(θ j )θ n
j where c(θ j ) denote the conjugate of c(θ) corresponding to θ j and set h n = c(θ)θ n + η n for n ≥ 0. A priori, h n is a rational number. We claim that h n is an integer for any n large enough. In fact, let N := r-1 j=0 P ′ (θ j ). Then N is a non zero rational integer and by construction N c(θ)θ n is an algebraic integer as soon as n ≥ ν, so that h n ∈ 1 N Z. But lim n ||c(θ)θ n || = 0 and lim n η n = 0, hence h n is a rational integer for n large enough. As a straightforward consequence, there exists an index n 0 such that for all n ≥ n 0 , one has g n = h n (γ n = η n ) and so

g n+1 = a 1 g n + • • • + a r g n+1-r . (38) 
Conversely, if a scale G satisfies [START_REF] Lehmer | On Stern's diatonic series[END_REF] for all n ≥ n 0 where θ is a positive Pisot number of minimal polynomial P (X) = X ra 1 X r-1a 2 X r-2 -• • •a r , then the equality [START_REF] Jessen | Distribution functions and the Rieman zeta function[END_REF] holds with c(θ) ∈ Q(θ) and lim n γ n = 0 but we have a stronger property. Due to the fact that G verifies ultimately the recurrence [START_REF] Lehmer | On Stern's diatonic series[END_REF], the series

∞ n=0 |γ n | converges.
The main result of the paper is the following estimate that says, roughly speaking, that M G,q (n) is in general close to n α for a suitable exponent α: ❚❤❡♦r❡♠ 19✳ Let G be a Pisot scale associated to the Pisot number θ as above and let q ≥ q * G where q * G is defined by [START_REF] Dutta | On new partition of numbers[END_REF]. There exist a real number α G,q ≥ 0 and a subset S G,q of N of natural density 1, such that

lim s∈S G,q s→∞ log M G,q (s) log s = α G,q . (39) 
Moreover, if q > θ one has α G,q = 0.

We can give bounds of the constant α G,q thanks to Theorem 10:

❈♦r♦••❛r② 20✳ Let G = (g k ) k≥0
be a scale satisfying g k ∼ cθ k and assume that the conclusion (39) of Theorem 19 holds. Then

1 ≤ log θ q -α G,q . (40) 
P r o o f. Set β = α G,q for short. Let ε ∈ (0, β/2] and define

S ε := {n ∈ N ; M G,q (n) ≥ n β-ε } and N (ε) := #(S ε ∩ [1, N ]
). Theorem 19 implies there exists an integer K ε such that N (ε) ≥ N/2 for all N ≥ K ε . Therefore

n∈Sε∩[1,N ] M G,q (n) ≥ n∈Sε∩[1,N ] n β-ε ≥ 1≤n≤N (ε) n β-ε ≥ 1 (1 + β/2)2 1+β/2 N β-ε+1
and Theorem 10 implies log θ q ≥ βε + 1. The inequality (40) follows.

|❡♠❛r❦ 21✳ 1) If G = E d , obviously q * G = d and for q = d one has M E d ,d (•) ≡ 1, hence α E d ,d = 0.
2) We shall see later that the constant α G,q in Theorem 19 is related to the constant γ in [26, Theorem 1.1] by the equation α G,q = γ log θ .
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This already implies that α G,q > 0 for q > θ. Notice that in fact, if θ is not an integer the inequality q ≥ q * G implies q > θ.

3) As we have already pointed out at the end of Section 1, the inequality [START_REF] Lucas | Sur les suites de Farey[END_REF] is in fact an equality for any d-ary base E d whenever d divide q. But for any other Pisot scale, this inequality is strict according to [START_REF] Feng | Growth rate for beta-expansions[END_REF]Proposition 1.4] and the above remark.

Before starting the proof of Theorem 19 we need some preliminary results.

Discrete subsets of N[θ]

In this subsection, we assume that θ is a Pisot number and q is an integer ≥ θ.

Define

Λ n = Λ (q) n := n-1 j=0 ε j θ j ; ∀ j ∈ N 0 , ε j ∈ {0, 1, . . . , q -1} (41) 
and

Λ = Λ (q) := n≥1 Λ (q) n . (42) 
The following result is well known. The reader is referred to Erdős and Komornik [22, Theorem I, Lemma 2.1] for a proof.

▲❡♠♠❛ 22✳

There exist two positive constants C 1 = C 1 (θ, q) and C 2 = C 2 (θ, q) such that (i) |a -b| ≥ C 1 for all a and b, a = b, in Λ (q) -Λ (q) . (ii) Any interval J in [0, +∞) of length greater that C 2 , contains an element of Λ (q) .

(iii) #Λ (q) n ≍ θ n (n → ∞).
|❡♠❛r❦ 23✳ We can rephrase Property (i) in Lemma 22 as follows:

For all positive real numbers r the set B θ (r, q) = [-r, r] ∩ (Λ (q) -Λ (q) ) is finite. As it is stated, the property (i) implies that the overlapping iterated function system {S i (x) = x/θ + j} q-1 j=0 satisfies the finite type condition introduced in ([25, condition (1.1)]), namely, there exists a finite set Γ ⊂ R such that for all ε 0 , . . . , ε ′ n-1 and ε

′ 0 , . . . , ε ′ n-1 in S, either θ n |S ε0 • • • • • S εn-1 (0) -S ε ′ 0 • • • • • S ε ′ n-1 (0)| > δ or θ n (S ε0 • • • • • S εn-1 (0) -S ε ′ 0 • • • • • S ε ′ n-1 (0)) ∈ Γ
with δ = θ(q-1) θ-1 . In the special case considered here, due to

θ n S ε0 • • • • • S εn-1 (0) = n-1 j=0 ε j θ n-j (∈ θ Λ (q) ) ,
one can take Γ = [-δ, δ] ∩ (θ(Λ (q) -Λ (q) )). Notice that the attractor of {S j } q-1 j=0 is [0, δ]. ✷

Two level sets

We continue to assume that g k = cθ k + γ k where θ is a Pisot number, c = c(θ) ∈ Q(θ) and lim k→∞ γ k = 0 (but in fact ∞ n=0 |γ n | < +∞). Let q be an integer ≥ θ. We introduce the following notations for finite or infinite sequences ε with terms ε k in S := {0, 1, . . . , q -1}:

val θ (ε 0 , . . . , ε k-1 ) := k-1 h=0 ε h θ h , val(ε 1 , . . . , ε k ) := k h=1 ε h θ h , val ∞ ((ε k ) k≥1 ) := ∞ k=1 ε k θ k . The two last sums belong to [0, ρ], with ρ := q -1 θ -1 .
Recall the previous notation val G (ε 0 , . . . , ε k-1 ) = k-1 h=0 ε h g h . A sequence ε in S N such that x = val ∞ (ε) will be called a θ-representation of the real number x ∈ [0, ρ]. An element of the set

E k (x) = {(ε 1 , . . . , ε k ) ∈ S k ; ∃ ε ′ ∈ [ε 1 , . . . , ε k ], x = val(ε ′ )} (43) 
= {ε ∈ S k ; x -ρ θ k ≤ val(ε) ≤ x} will be called a (θ, k)-representation of x. The first level set we defined is related to E k (x).

❉❡❢✐♥✐t✐♦♥ 24✳ For any nonnegative real number α, denote

E 1 (α) := x ∈ [0, ρ] ; lim k→∞ log #E k (x) k log θ = α .
In the sequel, we need the following key result:

❚❤❡♦r❡♠ 25 (D.-J. Feng and N. Sidorov [START_REF] Feng | Growth rate for beta-expansions[END_REF], Theorem 1.1)✳ For any Pisot number θ and integer q ≥ θ, there exists a constant α(θ, q)≥0 such that the set E 1 (α(θ, q)) has Lebesgue measure ρ. Moreover, α(θ, q) > 0 whenever q > θ.

The second level set we consider is related to the local dimension of the Bernoulli convolution ν θ,q associated to θ with multiplicity q and which is the normalization of µ θ,q built previously but now defined on [0, 1]:

ν θ,q ([a, b]) = µ q val ∞ -1 ([ρa, ρb]) .
❉❡❢✐♥✐t✐♦♥ 26✳ For any nonnegative real number α,

E 2 (α) := x ∈ [0, 1] ; lim r→0 log ν θ,q ([x -r, x + r]) log r = α .
A consequence of Theorem 25 is the following:

❚❤❡♦r❡♠ 27 (D.-J. Feng and N. Sidorov [START_REF] Feng | Growth rate for beta-expansions[END_REF], Corollary 1.2)✳ With definitions and notions of Theorem 25, E 2 (log θ qα(θ, q)) has Lebesgue measure 1.

Some properties of the number of representations in base θ

In the sequel, the Pisot number θ, the Pisot scale G such as [START_REF] Jessen | Distribution functions and the Rieman zeta function[END_REF] and the integer q ≥ q * G (≥ ⌈θ⌉) are fixed. Some notations will be simplified when the reference to G or θ can be omitted without ambiguity. For any nonnegative real number λ let

U k (λ) := # (ε 0 , . . . , ε k-1 ) ∈ S k ; λ = k-1 h=0 ε h θ h .
be the number of k-representations of λ in base θ. By construction U k (λ) is positive if and only if λ belongs to the discrete set Λ k introduced in [START_REF] Mahler | On a special functional equation[END_REF]. In this subsection we compare the number of representations of integers in the scale G and the number of k-representations of positive real numbers in base θ and then deduce relations between the two level sets.

According to the following lemma, the two levels can be expressed by means of the function U k (•).

▲❡♠♠❛ 28✳ (i) For x ∈ [0, ρ], #E k (x) = λ∈Λ k θ k x-ρ≤λ≤θ k x U k (λ) . (ii) For any k ∈ N and [a, b]⊆[0, 1], 1 q k aρθ k ≤λ≤bρθ k -ρ U k (λ) ≤ ν θ,q ([a, b]) ≤ 1 q k aρθ k -ρ≤λ≤bρθ k U k (λ). P r o o f. (i) Indeed E k (x) is by definition the set of (ε 1 , . . . , ε k ) in S k such that ε 1 θ k-1 + • • • + ε k θ 0 belongs to [θ k x -ρ, θ k x].
(ii) By definition, ν θ,q ([a, b]) is the probability with respect to µ q (on Ω q ) of the event

ρ -1 ∞ h=1 ε h θ h ∈ [a, b] . (44) 
But [START_REF] Parry | On the β-expansion of real numbers[END_REF] 

holds if ρ -1 k h=1 ε h θ h ∈ [a, b - 1 θ k ] which is equivalent to ε k + ε k-1 θ + • • • + ε 1 θ k-1 ∈ [aρθ k , bρθ k -ρ] .
Similarly, (44) implies

ε k + ε k-1 θ + • • • + ε 1 θ k-1 ∈ [aρθ k -ρ, bρθ k ] .
The next lemma gives inequalities between the partition function M G,q (•) and the function U k (•).

▲❡♠♠❛ 29✳ (i) There exists a constant K such that for integer ℓ ≥ 1 and finite sequence ε = (ε 0 , . . . , ε ℓ-1 ) with terms in S, the integer n = val G (ε) and the real number λ = val θ (ε) verify, |nc(θ)λ| ≤ K.

(ii) For any k ∈ N and 0

≤ a ≤ b < g k , a≤n≤b M G,q (n) ≤ λ∈Λ k c(θ) -1 (a-K)≤λ≤c(θ) -1 (b+K) U k (λ). ( 45 
) (iii) For any k ∈ N and 0 ≤ a ≤ b, λ∈Λ k a≤λ≤b U k (λ) ≤ c(θ)a-K≤n≤c(θ)b+K M G,q (n). ( 46 
) P r o o f. (i) Recall that g k = c(θ)θ k + γ k with ∞ k=0 |γ k | < ∞. Write c = c(θ) for short. Since the ε k in the given ε do not exceed q -1 one has |n -cλ| ≤ (q -1) ∞ k=0 |γ k |. (ii) Let n ∈ [a, b]. Since b < g k , any sequence ε (with terms in S) such that n = val G (ε) cannot have more than k digits, the number λ = val θ (ε) is in Λ k .
The inequality in [START_REF] Pennington | On Mahler's partition problem[END_REF] holds because U k (λ) is the number of representations of λ by sequences of k digits; the inequality c

-1 (a -K) ≤ λ ≤ c -1 (b + K) is a consequence of n ∈ [a, b] and |n -cλ| ≤ K. (iii) Let λ ∈ Λ k and λ = val θ (ε) ∈ [a, b]; the integer n = val G (ε) satisfies |n -cλ| ≤ K hence ca -K ≤ n ≤ cb + K.

Proof of Theorem 19

We start by defining the set

R(α, η, k) := x ∈ [0, ρ] ; log #E k (x) k log θ ∈ [α -η, α + η]
for α > 0, η > 0 and k ∈ N.

Recall that α(θ, q) denotes the positive real number such that E 1 (α(θ, q)) has full Lebesgue measure in [0, ρ] (Theorem 25). In other words, the Lebesgue measure of R(α(θ, q), η, k) tends to 0 when k tends to infinity.

▲❡♠♠❛ 30✳ (i) There exists A > 0 such that the distance between two distinct elements of 

Λ k ∪ (Λ k + ρ) is at least A. (ii) For any ε ∈ S k , val(ε) ∈ R(α, η, k) ⇒ val(ε), val(ε) + A θ k ⊂ R(α, η, k). (iii) Setting Λ ′ k = 1 θ k Λ k we have lim k→∞ 1 θ k # Λ ′ k ∩ R(α G,q , η, k) =
∈ Λ k + ρ. Recall that ρ = q-1 θ-1 . Setting b k := k h=0 (q -1)θ h we arrive to (θ -1)x + b k ∈ Λ (2q-1) k+1 and (θ -1)y + b k ∈ Λ (3q-2)
k+1 . Hence, with the notation of Lemma 22 the property (i) follows with A = min{C 1 (θ, q), C 1 (θ, 3q -2)/(θ -1)}.

(ii) The definition of E k (x) means that

E k (x) = ε ∈ S k ; x ∈ val(ε), val(ε) + ρ θ k . Now real numbers of the form val(ε) or val(ε) + ρ θ k are elements of the set 1 θ k Λ k ∪ (Λ k + ρ) . From (i) the interval (val(ε), val(ε) + A θ k ) does not contain any element of 1 θ k Λ k ∪ (Λ k + ρ) . Therefore, for all ε ′ ∈ S k , under the condi- tion x ∈ (val(ε), val(ε) + A θ k ), both relations val(ε) ∈ [val(ε ′ ), val(ε ′ ) + ρ θ k ] and x ∈ [val(ε ′ ), val(ε ′ ) + ρ θ k ] are equivalent to the relation (val(ε), val(ε) + A θ k ) ⊂ [val(ε ′ ), val(ε ′ ) + ρ θ k ]. Hence, for all x ∈ (val(ε), val(ε) + A θ k ) one has E k (val(ε)) = E k (x). Consequently val(ε) ∈ R(α, η, k) ⇐⇒ x ∈ R(α, η, k)
and the implication in (ii) holds.

(iii) Since Λ ′ k = {val(ε) ; ε ∈ S k }, property (ii) shows that the Lebesgue measure of R(α(θ, q), η, k) is at least A θ k #(Λ ′ k ∩ R(α(θ, q), η, k)). This ends the proof of the lemma.

To continue the proof of Theorem 19 we set (see Theorem 25) β := α(θ, q) and we introduce the subset of integers

N k (η) := {n ∈ [g k-1 , g k [ ; log M G,q (n) log n ∈ [β -η, β + η]}
for η > 0 and k ∈ N.

To each integer n ∈ N k (η) we are going to associate a real number ϕ(n) in Λ k and then will set ψ(n 

) := θ -k ϕ(n) that will belong to Λ ′ k = 1 θ k Λ k . The construction of ϕ(n) depends on whether log M G,q (n) log n < β -η or log M G,q (n) log n > β + η. If log M G,q (n) log n < β -η
#E k (ψ(n)) = λ∈Λ k ϕ(n)-ρ≤λ≤ϕ(n) U k (λ) ≤ cϕ(n)-cρ-K≤m≤cϕ(n)+K M G,q (m) ≤ n-cρ-2K≤m≤n+2K M G,q (m) .
Using Lemma 9 (ii) and the inequality M G,q (n) < n β-η we conclude that for n large enough

#E k (ψ(n))) ≤ M G,q (n) • n η 2 < n β-η 2 ≤ θ k(β-η 3 ) . (47) 
In the case that

log M G,q (n) log n > β + η, Lemma 29 (ii) implies that M G,q (n) ≤ λ∈Λ k c -1 (n-K)≤λ≤c -1 (n+K)
U k (λ).

PARTITION FUNCTIONS IN NUMERATION SYSTEMS WITH BOUNDED MULTIPLICITY

By Lemma 22 (i), the number of λ in Λ k such that c -1 (n-K) ≤ λ ≤ c -1 (n+K) is bounded by a constant K 1 , so that at least one of these λ satisfies

M G,q (n) ≤ K 1 U k (λ) . (48) 
Let ϕ(n) be the smallest λ verifying (48) and now, using the inequality M G,q (n) > n β+η one deduces for n large enough:

#E k (ψ(n)) ≥ U k (ϕ(n)) > n β+ η 2 ≥ θ k(β+ η 3 ) . (49) 
Finally, collecting [START_REF] Protasov | Asymptotic behavior of the partition function[END_REF] and [START_REF] Rademacher | on the expansion of the partition function in a series[END_REF] we have proved that for any n ∈ N k (η), ψ(n) belongs to R β, 3 η , k . According to the inequality |ncϕ(n)| ≤ K, the number of preimages -by the function ψ -of any λ ′ in Λ ′ k is bounded by a constant K 2 . Therefore

#N k (η) ≤ K 2 # Λ ′ k ∩ R β, η 3 
, k and, by Lemma 30 (iii),

lim k→∞ 1 g k -g k-1
#(N k (η)) = 0 .

We are ready to finish the proof of Theorem 19.

From above, we can choose a non decreasing sequence of positive integers (k(j)) j≥1 such that for all j ∈ N and all k ≥ k(j), the inequality

1 g k -g k-1 # N k 1 j ≤ 1 j (50) 
holds. Then, define the set S G,q announced in Theorem 19 by its complement:

(S G,q ) c := j∈N k(j)≤k<k(j+1)

N k 1 j .

Using [START_REF] Rényi | Representation for real numbers and their ergodic properties[END_REF], for all integers j > 0, k ∈ [k(j), k(j + 1)[ and n ∈ [g k-1 , g k [ we derive the inequality

1 n #((S G,q ) c ∩ [1, n]) ≤ k(j) n + j ′ ∈[1,j) k ′ ∈[k(j ′ ),k(j ′ +1)) g k ′ -g k ′ -1 j ′ + k ′ ∈[k(j),k) g k ′ -g k ′ -1 j + g k -g k-1 j j ′ ∈[1,j) k ′ ∈[k(j ′ ),k(j ′ +1)) (g k ′ -g k ′ -1 ) + k ′ ∈[k(j),k) (g k ′ -g k ′ -1
) .

This implies both the density of (S G,q ) c is 0 and the constant α G,q in Theorem 19 is equal to α(θ, q). ✷

|❡♠❛r❦ 31✳ The constant α G,q in Theorem 19 essentially depends on θ. In fact, formula (39) is true for any scale G = (g n ) n≥0 that verifies the recurrent relation [START_REF] Lehmer | On Stern's diatonic series[END_REF] from a given rang. In particular, we are free to change a finite numbers or terms g n but in preserving the structure of scale.

Theorem 19 says in particular that for all ε > 0, the set {n ∈ N ; log M G,θ (n) log n > α G,θ + ε} has density 0. We can give more information if G is a scale E d and q is not a multiple of d.

❈♦r♦••❛r② 32✳ Let d be an integer, ≥ 2, and assume that q is not divisible by d. Then, for all ε 1 and ε 2 such that 0 < ε 1 < log d qα E d ,q -1 and 0 < ε 2 < log d qlog d q -1 + d d one has

# n < N ; log M E d ,q (n) log n > α G,q + ε 1 ≥ N ε2 (51) 
for N large enough. with α 1 = log d q. From (15), M G,q (n) ≤ n α2 for all n, where α 2 = log d q-1+d d . Let A(N ) denote the left hand side of (51); a simple evaluation gives, as soon as N is large,

N α1-ε ≤ n<N M G,q (n) ≤ (N -A(N ))N α+ε1 + A(N )N α2
with α := α E d ,q , whence N α1-ε -N α+1+ε1 ≤ A(N )N α2 . Since ε 1 < α 1α E d ,q -1, by selecting ε such that α 1ε > α + 1 + ε 1 we arrive to N α1-2ε ≤ A(N )N α2 .

But clearly α 1 > α 2 so that (51) holds due to ε 2 < α 1α 2 .
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A third level set

The third level set, which we will define below, is related to the standard θ-expansion of real numbers t ≥ 0. Such an expansion

t = h>k ε h (t) θ h k ∈ Z determined by 1 θ k+1 ≤ t < 1 θ k
is given by the greedy algorithm which constructs the digits ε h (t)∈ {0, 1, . . . , ⌊θ⌋} step by step, starting with ε k+1 , so that the following inequalities

h>s ε h (t) θ h < 1 θ s
are satisfied for all integers s ≥ k. These inequalities guarantee the uniqueness of the digits. Recall that 0 ≤ ε h (t) < θ for all h > k and if t belongs to [0, 1) its standard θ-expansion correspond to the one introduced by A. Rényi [START_REF] Rényi | Representation for real numbers and their ergodic properties[END_REF] and refined by W. Parry [START_REF] Parry | On the β-expansion of real numbers[END_REF]. Notice that the Parry θ-expansion of 1 is not the standard one; it starts with ε 0 (1) = 0, ε 1 (1) = ⌊θ⌋ and the remainder digits come from the standard θ-expansion of 1 -⌊θ⌋/θ. For more details on β-expansions (β > 1) in general we refer to [START_REF] Frougny | Numeration systems, Chapter 7 in M. Lothaire, Algebraic Combinatorics on words[END_REF]. The integer Ip(t) := ε k+1 (t)g -k-1 + • • • + ε -1 (t)g 1 + ε 0 (t)g 0 if k < 0 , 0 otherwise , will be called the integral part of t ≥ 0 subordinated to θ and G. Of course, Ip(t) = ⌊t⌋ if θ is an integer.

❉❡❢✐♥✐t✐♦♥ 33✳ For any nonnegative real number α, E 3 (α) := x ∈ (0, 1) ; lim k→∞ log M G,q (Ip(θ k x)) k log θ = α .

In the above definition, the condition that x ∈ (0, 1) has no effect because the set of all nonnegative reals x such that lim k→∞ log M G,q (Ip(θ k x)) k log θ = α is stable by multiplication by θ.

Pr♦♣♦s✐t✐♦♥ 34✳ (i) Let G be a Pisot scale associated to the Pisot number θ. For any nonnegative real number α, E 3 (α) = (ρ • E 2 (log θ qα)) ∩ (0, 1) .

(ii) E 3 (α G,q ) has full Lebesgue measure.

  0. P r o o f. (i) Let x and y in Λ k ∪ (Λ k + ρ). If x and y both belong to Λ k or Λ k + ρ the result follows from Lemma 22 (i). It remains the case x ∈ Λ k and y

  and n = val G (ε) where ε corresponds to the standard G-expansion of n we define ϕ(n) := val θ (ε). Write c = c(θ) for short. Lemma 29 (i) implies |ncϕ(n)| ≤ K and by Lemma 28 (i) and Lemma 29 (iii)

P r o o

  f. The possible choice of ε 1 is valid by Remark 21-3. From [19, Theorem 2.1] or Theorem 10, given any ε > 0 one has for N large enough n<N M G,q (n) ≥ N α1-ε
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D.-J. FENG -P. LIARDET -A. THOMAS P r o o f. (i) This equality follows from the inequalities lying between ν θ,q ([xr, x + r]) and M G,q (n k ), with ρx ∈ (0, 1) and n k = Ip(θ k ρx). More precisely, from Lemma 29 (i) one has

and by Lemmas 28 (ii) and 29 (iii), if r > 0 is small enough,

We obtain in the same way a lower bound for ν θ,q ([xr, x + r]):

with the condition, from Lemma 29 (ii), that

The last inequality in ( 54) is satisfied for r small enough and k large enough, because we have assumed that ρx < 1 and lim k→∞

so that: r ≍ 1 θ k , the first inequality in ( 54) is satisfied and moreover the intervals of summation in [START_REF] Richmond | Mahler's partition problem[END_REF] are nonempty.

Finally we deduce from ( 52), [START_REF] Richmond | Mahler's partition problem[END_REF] and Lemma 9 (ii) two constants

Passing to the logarithm and noticing that the choices of r and k (depending on r) verify asymptotically log r ∼ -k log θ we derive that

The set E 2 (log θ qα G,q )) has full Lebesgue measure by Theorem 27. Consequently, (i) implies that E 3 (α G,q ) has also full Lebesgue measure. 
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