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Abstract. In this article, a version of the frequency-domain elastodynamic Fast Multipole-Boundary

Element Method (FM-BEM) for semi-infinite media, based on the half-space Green’s tensor (and hence

avoiding any discretization of the planar traction-free surface), is presented. The half-space Green’s tensor

is often used (in non-multipole form until now) for computing elastic wave propagation in the context of

soil-structure interaction, with applications to seismology or civil engineering. However, unlike the full-

space Green’s tensor, the elastodynamic half-space Green’s tensor cannot be expressed using derivatives of

the Helmholtz fundamental solution. As a result, multipole expansions of that tensor cannot be obtained

directly from known expansions, and are instead derived here by means of a partial Fourier transform with

respect to the spatial coordinates parallel to the free surface. The obtained formulation critically requires an

efficient quadrature for the Fourier integral, whose integrand is both singular and oscillatory. Under these

conditions, classical Gaussian quadratures would perform poorly, fail or require a large number of points.

Instead, a version custom-tailored for the present needs of a methodology proposed by Rokhlin and coauthors,

which generates generalized Gaussian quadrature rules for specific types of integrals, has been implemented.

The accuracy and efficiency of the proposed formulation is demonstrated through numerical experiments on

single-layer elastodynamic potentials involving up to about N = 6×105 degrees of freedom. In particular, a

complexity significantly lower than that of the non-multipole version is shown to be achieved.

1 Introduction

The main advantage of the boundary element method (BEM) is that only the domain boundaries
(and possibly interfaces) are discretized, leading to a reduction of the number of degrees of freedom
(DOFs) relative to domain-discretization methods. Moreover, elastodyamic field equations and
radiation conditions are exactly satisfied by the formulation [26], which avoids cumulative effects
of grid dispersion and makes the BEM well suited for modeling wave propagation in unbounded
domains. However, the standard BEM [3] leads to fully-populated matrices, which results in high
computational complexity (O(N2) per iteration using an iterative solver such as GMRES, where N
denotes the number of boundary degrees of freedom (DOFs) of the BE model) and severe problem
size limitations induced by the O(N2) size of the influence matrix.

The advent of accelerated BE methodologies has dramatically improved the capabilities of BEMs
for many areas of application, in a large part owing to the rapid development of the Fast Multipole
Method (FMM) over the last 15-20 years [29]. Such approaches have resulted in considerable solu-
tion speedup, memory reduction and model size increase. The FMM inherently relies on iterative
solvers (usually GMRES), so as to avoid actual computation and storage of the fully-populated
influence matrix, and is known to require O(N logN) CPU time per iteration for Helmholtz-type
equations [10, 11]. Elastodynamic FMM formulations in the frequency domain have been investi-
gated in e.g. [5] and [16] for the computation of seismic waves. The methodology of [16] has later
been improved in [6] for homogeneous semi-infinite elastic propagation domains, through incorpo-
ration of recent advances of FMM implementations for Maxwell equations [10], allowing to run
BEM models of size up to N = O(106) on a single-processor PC. Other investigations address e.g.
the time-domain elastodynamic FMM [35] or spatially periodic media [23].
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All elastodynamic FMM formulations to date are based on the full-space Green’s tensor. How-
ever, many practical situations of interest for modelling e.g. seismic waves or soil-structure inter-
action involve semi-infinite media. Existing formulations therefore entail truncated discretizations
of the free surface. In such cases, both the potentially large number of additional DOFs required
for the free surface and the selection of a suitable truncation radius are serious issues. An accept-
able size of the meshed part of the free surface was empirically estimated in [6, 18] as about 3–5
times the radius of the surface irregularity of interest. Assuming a uniform mesh density (with
element sizes typically set to a fixed fraction, say 1/10, of the shear wavelength), this results in
BE model sizes of 10-15 times that of the meshed irregularity. To avoid meshing (part of) the
free surface, one must resort to BEM formulations based on the half-space elastodynamic Green’s
tensor. The latter is known [2, 24] and applied in dynamic soil-structure interaction [9, 22] since
some time; it is expressed in Fourier-Bessel integral form (involving oscillating integrals over infinite
intervals), with no closed-form expression available. Its numerical evaluation is therefore complex
and time-consuming [21, 28]. Singularity and regularization issues for the half-space Green’s tensor
are addressed in [32], and also [1, 30] for layered half-spaces, with applications to soil-structure
interaction. Formulations based on full-space and half-space Green’s tensors are compared in [31],
the latter being found therein to entail prohibitive computational costs.

Unlike its full-space counterpart, multipole expansions of the elastodynamic half-space Green’s
tensor cannot be obtained directly as it cannot be expressed using derivatives of simpler kernels
having known multipole expansions. This article addresses the resulting current lack of avail-
able accelerated BEMs based on the half-space Green’s tensor. To this aim, the derivation of
the latter is revisited, so as to recast it in a separated-variable form that enables fast compu-
tations. The obtained formulation critically requires an efficient quadrature for the resulting
Fourier integral, whose integrand is both singular and oscillatory. Under these conditions, clas-
sical Gaussian quadratures would perform poorly, fail or require a large number of points. We
adopt instead the methodology proposed by Rokhlin and coauthors [4, 8, 36], which generates gen-
eralized Gaussian quadrature (GGQ) rules for specific types of integrals and is in particular useful
for implementing some forms of the FMM. For instance, GGQ-generating algorithms have been
developed in [36] and [8], respectively, for integrals involved in the low-frequency [19] and wide-
band [7] versions of the FMM for the 3D Helmholtz equation. The tabulated GGQ rules given

Box 1 Notations used in this article.

µ, ν, ρ, ω Shear modulus, Poisson’s ratio, mass density, circular frequency
C Fourth-order elasticity tensor

kP, kS, kR P, S and Rayleigh wavenumbers
κ2 := 1−2ν

2(1−ν)

prime symbol denotes differentiation with respect to y3
a⊗b, a·b, A :B Tensor product, single inner product, double inner product

S := I − 2e3⊗e3 (symmetry with respect to plane y3 = 0)
ξ :=(ξ1, ξ2) transformed coordinates in the Fourier space
ξ2 := ξ21 + ξ22
sa(ξ) :=

√
ξ2 − k2a (a = P,S)

β(ξ) := k2S − 2ξ2 = −(s2S(ξ) + ξ2)
δ(ξ) := β2(ξ)− 4ξ2sP(ξ)sS(ξ)
q±a (ξ) := ±iξ + sa(ξ)e3 (a = P,S)
V ±
S (ξ) := ±

[
sS(ξ) q

±
S (ξ) + k2Se3

]

V ±
P (ξ) := ±s−1

P (ξ)q±P (ξ)
p, r Size of initial Gauss-Legendre rule; rank of discretized input functions
nξ, nα Sizes of final (generalized Gaussian) radial rule and of angular rule
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in [4, 27, 36] cannot be used directly here because the integrals at hand involve a Rayleigh pole,
whereas corresponding representations for Helmholtz problems do not. Instead, the GGQ gen-
eration methodology described in [4] is specialized to, and implemented for, the present needs.
The accuracy and efficiency of the resulting formulation are then demonstrated through numer-
ical experiments on integral operators involving up to about N = 6× 105 DOFs, with emphasis
on the behavior of the GGQ rules generated. In particular, a complexity significantly lower
than that of the non-multipole version of the half-space Green’s tensor is empirically shown to
be achieved. This investigation thus lays a suitable groundwork for a forthcoming full implemen-
tation of elastodynamic fast BEMs based on the half-space Green’s tensor.

The article is organized as follows. After reviewing relevant BIE formulations in Sec. 2, the
proposed FMM-compatible formulation of the half-space Green’s tensor is presented in Sec. 3. An
overview of the resulting fast method is given, and the main quadrature issues are reviewed, in
Sec. 4. The methodology for generating the required GGQ rules is described in Sec. 5. Finally,
numerical tests are reported and discussed in Sec. 6.

Notations. In Box 1, notations used throughout this Article are summarized. Roman letters
denote continuous scalar fields and operators, bold letters denote vectors.

2 Standard boundary integral equation

In this section, relevant continuous BIE formulations for the propagation of elastic waves in semi-
infinite homogeneous regions that may feature topographic irregularities or buried objects are
reviewed. Accordingly, letting ΩF denote the half-space {y = (y1, y2, y3) | y3 < 0} bounded by the
infinite traction-free planar surface ΓF = {y | y3 = 0}, configurations of interest in this article are
semi-infinite domains Ω which deviate from the half-space ΩF (e.g. because of surface irregularities)
only in a region of finite size. The boundary ∂Ω is thus of the form ∂Ω = S ∪ Γt ∪ Γ0, where the
bounded (and possibly non-connected) surface S := ∂Ω\(∂Ω∩ΓF ) defines topographic irregularities
or buried obstacles, the bounded portion Γt of ΓF supports prescribed tractions, and Γ0 ⊂ ΓF is
the unbounded planar component of the traction-free surface (Fig. 1). Boundary conditions on
S, which are necessary for the elastodynamic problem to be well-posed, are left unspecified. The
propagation medium occupying Ω is an homogeneous isotropic elastic solid material characterized
by its shear modulus µ, Poisson’s ratio ν and mass density ρ. Time-harmonic motions with circular
frequency ω are assumed, and the implicit factor e−iωt will as usual be omitted. Cauchy’s first law
for time-harmonic motions relates the displacement u and the stress tensor σ through:

∇·σ + ρω2u = −ρb in Ω, (1)

where ρb is a given body force density. The isotropic linear elastic constitutive equation, expressed
in terms of the fourth-order elasticity tensor C, reads

σ = C :∇u, Cijkℓ = µ
[ 2ν

1− 2ν
δijδkℓ + δikδjℓ + δjkδiℓ

]
(2)

where δij is the Kronecker symbol. In (1), (2) and thereafter, the symbols “·” and “:” respectively
denote simple and double tensor inner products. Combining (1) and (2) yields the well-known
second order Navier equation for u [14].

Γ0(D) Γ0

S
Ω

x

y1, y2

y3

S

Γt

tD

Figure 1: Geometry and notations.
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BIE based on the full-space elastodynamic Green’s tensor. Assuming the absence of
body forces, the displacement u is given at an interior point x ∈ Ω by the well-known integral
representation formula:

u(x) =

∫

S
t(y)·U∞(x,y;ω) dSy +

∫

Γt

tD(y)·U∞(x,y;ω) dSy

−
∫

S∪Γt∪Γ0

u(y)·T∞(x,y;ω) dSy (x ∈ Ω) (3)

where t := n ·σ is the traction vector on S and tD the prescribed value of the traction on Γt;
moreover, U∞(x,y;ω) and T∞(x,y;ω) denote the elastodynamic Green’s tensor, defined such that
U∞ ·F and T∞ ·F are the displacement and traction vector, respectively, generated at any point
y ∈ R

3 of the full space by a unit point force F applied at x ∈ R
3.

Well-known results on the limiting values of elastic potentials as the collocation point x reaches
the boundary [20, 25] allow to deduce from (3) the boundary integral equation

c(x)·u(x) + (P.V.)

∫

S∪Γt∪Γ0

u(y)·T∞(x,y;ω) dSy −
∫

S
t(y)·U∞(x,y;ω) dSy

=

∫

Γt

tD(y)·U∞(x,y;ω) dSy (x ∈ S ∪ Γt ∪ Γ0). (4)

Due to its strong singularity for y = x, integrals of T∞ are defined only in the Cauchy principal
value (CPV) sense (as indicated by the notation P.V.) while a free-term c(x) arises. The latter
is equal to 0.5I (with I denoting the second-order identity tensor) in the usual case where ∂Ω is
smooth at x, and is otherwise a known (second-order tensor-valued) function of the local geometry
of ∂Ω at x. Note that additional information in the form of boundary conditions on S must be
specified to make integral equation (4) well-posed.

BIE based on the half-space elastodynamic Green’s tensor. For the geometrical config-
urations considered in this article, the first integral operator in (4) involves an integral over the
unbounded surface Γ0. Practical implementation of (4) thus requires a truncated version Γ0(D) of
the traction-free surface Γ0, e.g. bounded by a circle of radiusD. As the truncation distanceD must
be sufficiently large relative to the diameter of the irregularity S, the BE discretization of Γ0(D)
usually introduces large numbers of DOFs, with obvious adverse effects on both computational
speed and memory requirements.

The contribution of Γ0 to equation (4) can be removed (and truncation issues avoided) by using
the half-space Green’s tensor UHS,THS [32], which satisfies the field equation (1) in the half-space
ΩF and the traction-free condition

THS(x,y;ω) := e3 ·C :∇yU
HS(x,y;ω) = 0 (y ∈ ΓF ) (5)

on the planar surface ΓF , rather than the full-space Green’s tensor (see Sec. 3 for details on UHS).
In (5) and thereafter, the gradient operator ′∇′ conventionally adds one tensorial order from the
left, i.e. (for example) (∇U)kij = ∂kUij . The integral equation (4) then takes the form (with
collocation now needed on S only)

c(x)·u(x) + (P.V.)

∫

S
u(y)·THS(x,y;ω) dSy −

∫

S
t(y)·UHS(x,y;ω) dSy

=

∫

Γt

tD(y)·UHS(x,y;ω) dSy (x∈S). (6)
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Applying iterative linear solvers, such as GMRES [34], to the integral equation (6) essentially entails
the evaluation of single-layer and double-layer elastic potentials of the form

S[t](x) :=
∫

S
t(y)·UHS(x,y;ω) dSy, D[u](x) :=

∫

S
u(y)·THS(x,y;ω) dSy (7)

for given densities t,u. This article will focus on the single-layer potential S[t], whose fast evaluation
requires a multipole-type expansion for UHS, as a representative computational task involved in
a fast-BEM solution strategy; in particular, the case of D[u] then follows with straightforward
modifications.

In practice, potentials such as S[t](x) need to be evaluated for a finite (large) set X of locations
x, while the boundary element discretization of S reduces integrals to weighted sums over a finite
(also large) set Y of quadrature points y. The set X typically gathers either collocation nodes (when
using collocation BIE formulations such as (6)) or quadrature nodes (when using Galerkin BIE for-
mulations). The main focus of this article will be on the fast evaluation of

(
UHS(x,y;ω)

)
x∈X ,y∈Y

,

and of weighted sums over Y, for large finite sets X ,Y. Upon adaptation to D[u] and in some
cases to potentials involving hypersingular kernels, the proposed treatment is thus applicable not
only to the BIE (6) but also to more-complex BIEs (e.g. formulations of Burton-Miller type) and
to Galerkin BIE formulations.

3 Multipole expansion for the elastodynamic half-space Green’s tensor

Our starting point for deriving a multipole expansion of UHS is the additive decomposition

UHS(x,y;ω) = U∞(x,y;ω) + Ū∞(x,y;ω) +UC(x,y;ω), (8)

where U∞ is the elastic full-space Green’s tensor and Ū∞, given by

Ū∞(x,y;ω) := U∞(S ·x,y;ω)·S, (9)

(with S := I − 2e3⊗e3 denoting the tensor associated with the symmetry with respect to the free
surface y3 = 0) is the image full-space Green’s tensor, i.e. the value at y of the full-space Green’s
tensor for an image point force S ·F applied at the mirror image source point S ·x (Fig. 2). The
complementary Green’s tensor UC must therefore solve the homogeneous field equation (1) in ΩF

and be such that UHS given by (8) satisfies the free-surface condition (5) on ΓF . The single-layer
potential S[t] can accordingly be given, using obvious notation, as the additive decomposition

S[t](x) = S∞[t](x) + S̄∞[t](x) + SC[t](x). (10)

A FMM treatment of integral equation (6) thus may exploit the “standard” FMM associated with
the diagonal form-based decomposition of the full-space Green’s tensor [6], for the evaluation of con-
tributions S∞[t](x), S̄∞[t](x). Attention is therefore focused on fast evaluation of the contribution
SC[t](x) involving the complementary Green’s tensor.

y1, y2

y3
ΓF

ΩF
x

Sx

y

F

SF

Figure 2: Notations for the definition of the image full-space Green’s tensor.
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3.1 Derivation in the Fourier space

The proposed method for formulating the complementary Green’s tensor is based on a partial
Fourier transform with respect to the spatial coordinates y1, y2 parallel to the free surface ΓF (see
Fig. 2), and therefore bears similarities with the method used for defining low-frequency FMMs [11,
19]. The partial Fourier transform û of a generic scalar, vector or tensor field u is defined by

û(ξ, y3) =
1

4π2

∫

R2

e−i(ξ1y1+ξ2y2)u(y1, y2, y3) dy1dy2, (11)

where ξ := (ξ1, ξ2) are the transformed coordinates associated with (y1, y2). Using the prime (′)
symbol to denote partial derivatives with respect to the vertical coordinate y3, one then has

∇̂u(ξ, y3) = iξ⊗ û(ξ, y3) + e3⊗ û′(ξ, y3). (12)

Full-space Green’s tensor. While not necessary for the actual computation of the contribution
S∞[t](x), the partial Fourier transform Û∞ of the full-space Green’s tensor U∞ and its image

counterpart ˆ̄U∞ are needed for formulating the boundary condition THS = 0 on ΓF in partial-

Fourier form (which implies that only the values at y3 =0 of Û∞,
ˆ̄U∞ and Û ′

∞,
ˆ̄U ′
∞ are necessary).

The tensor U∞ is given by ([14], eq. 5.16.23):

U∞(x,y;ω) =
1

4πk2Sµ

[
∇∇

{
G(|y − x|; kS)−G(|y − x|; kP)

}
−∆G(|y − x|; kS)I

]
(13)

where G(r; k) is the full-space fundamental solution for the Helmholtz equation with wavenumber
k:

G(r; k) =
exp(ikr)

r
(14)

and kP, kS are the wavenumbers corresponding to dilatational and shear elastic waves, i.e.:

kS = ω
√
ρ/µ, kP = κkS, with κ2 :=

1− 2ν

2(1− ν)
. (15)

The partial Fourier transform Ĝ of G(r; k) is known [19]; it is given by

Ĝ(ξ, y3;x, ka) =
1

2πsa
eq

−

a (ξ)·x e−sa(ξ)y3 (y3 ≥ x3), a = P, S, (16a)

=
1

2πsa
e−q+

a (ξ)·x esa(ξ)y3 (y3 ≤ x3), a = P, S, (16b)

with sa(ξ) :=
√
ξ2 − k2a, ξ

2 = ‖ξ‖2 and having set

q−a (ξ) := −iξ + sa(ξ)e3, q+a (ξ) := iξ + sa(ξ)e3 (a = P, S). (17)

One notes for later reference that applying (12) to (16a,b) yields

∇̂G(ξ, y3;x, ka) = −Ĝ(ξ, y3;x, ka)q−a (ξ) (y3 ≥ x3), a = P, S, (18a)

= Ĝ(ξ, y3;x, ka)q
+
a (ξ) (y3 ≤ x3), a = P, S. (18b)

Original source point. This case corresponds to x ∈ ΩF , for which one has y3 >x3 since only
the case y3 = 0 needs to be considered for enforcing (5). Taking the partial Fourier transform
of (13) and exploiting (16a) and (18a) therein, one arrives at

Û∞(ξ, y3;x, ω) = ÛP(ξ) e
q−

P (ξ)·x e−sP(ξ)y3 + ÛS(ξ) e
q−

S (ξ)·x e−sS(ξ)y3 (19)

with

ÛP(ξ) =
−1

8π2µk2SsP(ξ)
q−P (ξ)⊗q−P (ξ), ÛS(ξ) =

1

8π2µk2SsS(ξ)

[
q−S (ξ)⊗q−S (ξ) + k2SI

]
.

Then, the traction Green’s tensor T∞ := e3 ·C :∇yU∞ is obtained in Fourier form as

T̂∞(ξ) = D(ξ)·Û∞(ξ, 0) +C ·Û ′
∞(ξ, 0) (20)
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having used (12) and with

C = µ
[
I + (κ−2−1)e3⊗e3

]
, D(ξ) = iµ

[
ξ⊗e3 + (κ−2−2)e3⊗ξ

]

(with κ as defined in (15)). Inserting (19) in (20), one obtains

T̂∞(ξ) = (D(ξ)− sP(ξ)C)·ÛP(ξ) e
q−

P (ξ)·x + (D(ξ)− sS(ξ)C)·ÛS(ξ) e
q−

S (ξ)·x.

The following explicit expression of T̂∞ is then readily obtained by using the previously-given
definitions of C, D and ÛP, ÛS:

T̂∞(ξ) =
1

8π2k2S

{ [
2q−P (ξ)⊗q−P (ξ) + (2κ2−1)k2Ss

−1
P (ξ)e3⊗q−P (ξ)

]
eq

−

P (ξ)·x

−
[
2q−S (ξ)⊗q−S (ξ) + k2S

(
I + s−1

S (ξ)q−S (ξ)⊗e3
) ]
eq

−

S (ξ)·x
}
. (21)

Image source point. This case corresponds to the choice S ·x (x ∈ ΩF ) of source point. Since

(S ·x)3 = −x3 > y3, the derivation of the Fourier transform ˆ̄U∞ exploits (16b) and (18b), with

x replaced by S ·x. The value of ˆ̄U∞ is then given by (19) with the following modifications: (i)
replace q−a by −q+a , (ii) replace x by S ·x and y3 by −y3, and (iii) right-multiply the result by S,
to obtain

ˆ̄U∞(ξ, y3) =
ˆ̄UP(ξ) e

q−

P (ξ)·x esP(ξ)y3 + ˆ̄US(ξ) e
q−

S (ξ)·x esS(ξ)y3 (22)

with

ˆ̄UP(ξ) =
1

8π2µk2SsP(ξ)
q+P (ξ)⊗q−P (ξ) = S ·ÛP(ξ),

ˆ̄US(ξ) =
−1

8π2µk2SsS(ξ)

[
q+S (ξ)⊗q−S (ξ)− k2SS

]
= S ·ÛS(ξ),

having used the fact that S ·q+a = −q−a and q+a ·(S ·x) = −q−a ·x.
Finally, the traction vector on the free surface associated with Ū∞ is found to be given, in

Fourier form, by:
ˆ̄T∞(ξ) =−S ·T̂∞(ξ).

In preparation for formulating the complementary Green’s tensor, summing the full-space and
image Green’s tensors yields

T̂∞ + ˆ̄T∞ = (I−S) · T̂∞ = 2(e3⊗e3) · T̂∞

=
1

4π2k2S
e3⊗

[
2V −

S (ξ) eq
−

S (ξ)·x + β(ξ)V −
P (ξ) eq

−

P (ξ)·x
]

(23)

with β(ξ) = k2S − 2ξ2 = −(s2S(ξ) + ξ2) and

V −
S (ξ) := −sS(ξ) q−S (ξ)− k2Se3, V −

P (ξ) := −sP(ξ)−1q−P (ξ). (24)

Complementary Green’s tensor. Finally, the complementary Green’s tensor solves the homo-
geneous Navier equation in ΩF . Its partial Fourier transform ÛC(ξ, y3) thus satisfies

AÛC +BÛ
′

C +CÛ
′′

C = 0, (y3< 0), (25)

where the matrix C is defined as in (20) and matrices A,B are given (in tensor form) by

A = µ
[
(1−κ−2)ξ⊗ξ − sS(ξ)

2I
]
, B = iµ(κ−2−1)

[
e3⊗ξ + ξ⊗e3

]
.
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Moreover, ÛC must vanish in the limit y3 → −∞. On enforcing next that such ÛC actually
solves (25), one obtains

ÛC(ξ, y3) = Q(ξ, y3)·USP
C ,

where

Q(ξ, y3) =




iesS(ξ)y3 0 iξ1e
sP(ξ)y3/sP(ξ)

0 iesS(ξ)y3 iξ2e
sP(ξ)y3/sP(ξ)

ξ1e
sS(ξ)y3/sS(ξ) ξ2e

sS(ξ)y3/sS(ξ) esP(ξ)y3




and the 3×3 constant matrix USP
C is determined by enforcing the free-surface condition

T̂∞ + ˆ̄T∞ + T̂C = 0 (y3 = 0).

As a result, the complementary Green’s tensor is found after a straightforward derivation to be
given, in Fourier form, by

ÛC(ξ, y3) =
sP(ξ)

4π2δ(ξ)µk2S

[
2V +

S (ξ)esS(ξ)y3 + β(ξ)V +
P (ξ)esP(ξ)y3

]

⊗
[
2V −

S (ξ) eq
−

S (ξ)·x + β(ξ)V −
P (ξ) eq

−

P (ξ)·x
]

(26)

with β(ξ) defined as in (23), δ(ξ) given by δ(ξ) := β2(ξ)− 4ξ2sP(ξ)sS(ξ), and

V +
S (ξ) = sS(ξ) q

+
S (ξ) + k2Se3, V +

P (ξ) = s−1
P (ξ)q+P (ξ). (27)

The unique (real, positive) value kR of ξ such that δ(kR) = 0 is the Rayleigh wavenumber (i.e. kR is,
as expected, a pole of ÛC), and that one has kP<kS<kR. Another important remark is that (26)
has an exponential decay of type O(e−ξ|x3+y3|) for large ξ provided x3+y3 < 0; this stems from the
fact that s±a (ξ, α) = ξ(1+o(1)) for sufficiently large ξ.

3.2 Expression in physical coordinates

The complementary Green’s tensor can now be expressed in terms of physical coordinates by means
of an inverse Fourier integral:

UC(x,y) =

∫

R2

ei(ξ1y1+ξ2y2) ÛC(ξ, y3;x) dξ1dξ2.

Inserting (26) and rearranging terms, the above formula can be recast in the following form:

UC(x,y) =
1

4π2k2Sµ

∑

a,b=P,S

∫

R2

Aab(ξ)
[
exp(q+a (ξ)·y)V +

a (ξ)
]
⊗
[
exp(q−b (ξ)·x)V −

b (ξ)
]
dξ, (28)

with

APP(ξ) :=
β2(ξ)sP(ξ)

δ(ξ)
, APS(ξ) = ASP(ξ) :=

2β(ξ)sP(ξ)

δ(ξ)
, ASS(ξ) :=

4sP(ξ)

δ(ξ)
.

Decomposition (28) takes the form of a superposition of products of functions of x and of y. This
structure, reminiscent of the more usual diagonal form available for U∞ [33], is an essential feature
for the fast evaluation of (7) and other similar quantities. Numerical evaluation of the integral (28)
now requires the definition of an efficient numerical quadrature in Fourier space, which plays the
same role as the integration over the unit sphere involved in diagonal-form multipole expansions of
free-space fundamental solutions. This task will be facilitated by introducing polar coordinates in
the Fourier space, i.e. setting ξ = (ξ1, ξ2) = ξ(cosα, sinα), to obtain

UC(x,y) =
1

4π2k2Sµ

∑

a,b=P,S

∫ +∞

0
ξAab(ξ)

{∫ 2π

0

[
exp(q+a (ξ, α)·y)V +

a (ξ, α)
]

⊗
[
exp(q−b (ξ, α)·x)V −

b (ξ, α)
]
dα

}
dξ. (29)
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3.3 Discussion

Partial Fourier vs. Bessel representations of UHS
C . The angular integrals in (29) can be

expressed analytically using formulas (47) involving Bessel functions, reducing (29) to a one-
dimensional radial integral. Such representation, used in most existing applications of UHS,
e.g. [21, 28], is however not suitable for a fast-multipole treatment as it destroys the sum-of-products
structure of (29). The two-dimensional integral format of (29) is thus an essential feature of the
proposed acceleration approach.

A useful consequence of having used the additive decomposition (8) is the fact that ÛC(ξ, y3),
as given by (26), is a rank-one tensor. This significantly reduces the number of multipole moments
that arise from inserting decomposition (29) into (7). Another possible approach, somewhat less
attractive from a computational standpoint but nevertheless valid, would consist in directly setting
up a partial Fourier representation of UHS by substituting identities (47) into the Bessel-transform
representation of UHS available e.g. in the appendix of [21], leading to a rank-three tensor function
Û(ξ, y3).

Convergence of radial integral. The radial integral in (29) is convergent whenever x3+y3 < 0
since (as already mentioned in Sec. 3.1) the integrand in that case decays exponentially as ξ → +∞.
The case x3 + y3 = 0 requires closer examination. To this aim, one notes that V ±

S = O(ξ2),
V ±
P = O(1), β(ξ) = O(ξ2) and δ(ξ) = O(ξ2) (the latter estimate requiring some straightforward

derivations) for large ξ. The integrand of (29) is thus O(ξ5) if x3 + y3 = 0, making the radial
integral divergent. An alternative possibility consists in expressing the complete Green’s tensor
UHS in Fourier integral form, with the transform ÛHS obtained by summing contributions (19),
(22) and (26) according to (8). After some manipulation, one finds that ‖ÛHS(ξ, α, y3)‖ = O(ξ−1),
which still makes the radial integral divergent. The two-dimensional Fourier integral form of UHS,
and thus the proposed acceleration approach, is thus valid subject to the restriction x3+y3< 0 and
cannot be applied when x3+y3 =0. Furthermore, if the angular integrations are effected analytically
first (using formulae (47)), the integrands in the resulting radial integrals can be shown (from the
large-argument asymptotic behavior of the Bessel functions, see e.g. formulae 8.451 in [17]) to be
equivalent to a linear combination of (2/ξr)1/2 cos ξr and (2/ξr)1/2 sin ξr (with r := ‖y−x‖)). The
corresponding radial integrals are known to be finite (see e.g. formulae 3.751 in [17]). As a result,
the non-multipole evaluation of UHS by means of radial Fourier integration remains available in
this case. One may thus conclude that configuration involving pairs of source and observation
points that are both located on the surface ΓF are permitted, but any Green’s tensor evaluations
involving such pairs must be effected in non-multipole fashion.

Clustering. If convergent (i.e. whenever x3+y3 < 0), integral (29) can be evaluated accurately
by means of a suitably-constructed quadrature rule for any configuration of source and observation
points. In particular, in contrast with more usual forms of the FMM, integral representation (29) of
UC is valid without requiring that clusters of source and observation points be well-separated (both
clusters may well be in fact identical). As a consequence, there is no obligation to define subsets
of points through a division of the spatial region enclosing all points into cubic cells. The simplest
option of applying (29) to all source and observation points at once (i.e., in FMM parlance, of
enclosing all points in one single cell) is available, and is adopted for the remainder of this article.

4 Quadrature strategy for fast evaluation of elastodynamic potentials

4.1 Fast Multipole Method

The evaluation of a single-layer potential S[t](x) of the form (7) for a given density t, which is
typically one of the main computational tasks involved in the iterative solution of integral equations
such as (6), is now addressed. As indicated earlier, attention is focused on the computation of the
complementary potential SC[t](x) introduced in (10), as the other contributions S∞[t](x) and
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S̄∞[t](x) can be evaluated using known FMM procedures. Substituting the representation (29) of
UC into the definition of SC[t](x) and rearranging terms, the complementary potential is given by

SC[t](x) =
1

4π2k2Sµ

∑

a,b=P,S

∫ +∞

0
ξAab(ξ)

{∫ 2π

0
Ra(ξ, α)

[
exp(q−b (ξ, α)·x)V −

b (ξ, α)
]
dα

}
dξ (30)

where the multipole moments are given by

Ra(ξ, α) :=

{∫

S
exp(q+a (ξ, α)·y) t(y) dSy

}
·V +

a (ξ, α). (31)

The Fourier integral (30) is in practice evaluated by means of a product quadrature rule, whose
details will be discussed next, so that one has

SC[t](x) =
1

4π2k2Sµ

∑

a,b=P,S

nξ∑

i=1

wξ
i ξiAab(ξi)

{ nα∑

j=1

wα
j Ra(ξi, αj)

[
exp(q−b (ξi, αj)·x)V −

b (ξi, αj)
]}

+ E(nξ, nα) (32)

where (ξi, w
ξ
i )1≤i≤nξ

and (αj , w
α
j )1≤j≤nα denote the sets of nodes and weights used for the radial

and angular quadratures, respectively, and E(nξ, nα) is the quadrature error.
The computational complexity of the evaluation of SC[t](x) by means of (32) is of order

O(nξnαN) (where nξ and nα depend on N , as discussed in Sec. 6), since the computational work
required by (31) and (32) is (for a fixed quadrature rule) clearly proportional to the O(N) size
of the set of collocation points and that of the BE mesh, respectively. In contrast, when evalu-
ating SC[t](x) in standard (non-multipole) fashion, no angular quadrature is required thanks to
the exact formulae (47) but x and y are no longer separated in UC(x,y), resulting in an overall
computational complexity of order O(nξN

2).

4.2 Behavior of the integrands in the multipole expansion

The construction of quadrature rules suited to the evaluation of (32) is dictated by the following
considerations.

Radial integration: truncation. As already mentioned in Sec. 3.1, the large-ξ behavior of
ÛHS(ξ, α, y3) is of type O(e−ξ|x3+y3|) provided x3+y3 < 0. The radial integral in (29) may thus be
truncated to a finite interval ξ ∈ [0, ξmax]. The upper bound ξmax is here set to the following value,
similar to the one used in [28]:

ξmax = 2kR +
10

min |x3|
(kR is the Rayleigh wavenumber). (33)

Radial integration: Rayleigh pole. The radial integral in (29) has one branch point at ξ = kP
and one pole at ξ = kR. The Rayleigh pole, which corresponds to the velocity of Rayleigh waves
propagating along the free surface, may cause difficulties in the quadrature as it lies on the real
ξ-axis. Its contribution to the radial integral may be evaluated by means of the residue theorem (see
e.g. [13]) or by using the analyticity of the integrand and deforming the integration path to avoid
the singularity (see [22], where this treatment is used for layered viscoelastic media). A simpler
approach, which consists in considering the elastic material as the limiting case of a viscoelastic
material with vanishingly small attenuation [28], is used here through setting the angular frequency
to the complex value ω(1 + iγ) with γ = 10−8. The Rayleigh singularity on the real ξ-axis is thus
avoided.

Radial integration: oscillatory integrands. The radial integrands in (29) are also oscillatory.
Classical (e.g. Gaussian) quadrature rules over the whole interval ξ ∈ [0, ξmax] perform poorly for
highly oscillatory integrands. This difficulty may be overcome by splitting ξ ∈ [0, ξmax] into many
subintervals; the resulting computational burden however becomes unacceptable in the context of
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the FMM. Alternatively, quadrature rules whose weights incorporate analytically-computed con-
tributions of the oscillatory factor in the integrand, initially proposed in [15], may be used (see
e.g. [28] for the non-multipole computation of e3 ·UHS). This approach is however not suitable for
a FMM framework since (for the present context) it relies on Bessel transforms and thus destroys
the separation of variables in (29).

Angular integration. Integrals over α involved in (29) are of the form

In,m :=

∫ 2π

0
eiξ(r1 cosα+r2 sinα) cosnα sinmα dα (0 ≤ n,m ≤ 2, 0 ≤ n+m ≤ 2). (34)

They involve smooth periodic functions. Trapezoidal quadrature rules are well suited to this type
of integral, and are used here; they were also used in [7] for radial Fourier integrals involving Ĝ
given by (16a,b).

4.3 Generalized Gaussian approach for radial quadrature

The previous considerations highlight the need for quadrature rules that perform adequately and
efficiently for the radial integrals, which are both oscillatory and singular. The framework of
generalized Gaussian quadrature [4, 8, 36] (GGQ) allows to generate rules that are custom-tailored
to specific types of problematic integrands such as those involved here, and require much fewer nodes
than standard rules. The Fourier representation (29) of UC involves a singularity not present in
corresponding representations for Helmholtz problems, namely the Rayleigh pole ξ = kR. As a
result, the tabulated GGQ rules given in [4, 27, 36] cannot be used directly here. Instead, the
methodology for GGQ generation described in [4] is specialized to, and implemented for, the class
of integrands involved in the evaluation of (29), as described next in Sec. 5. The version of [4]
is preferred here as their authors deem it to be more robust than their earlier versions [27, 36]
regarding the treatment of singularities appearing in (29).

Principle of generalized Gaussian quadratures. The radial integration featured in (29)
requires a quadrature rule that is suitable for a set of L specific integrals of the form

Iℓ(p) =

∫ ξmax

0
fℓ(ξ;p) dξ (1 ≤ ℓ ≤ L, p ∈ P)

where (fℓ)1≤ℓ≤L are real-valued square-integrable functions, whose (singular, oscillatory...) behavior
may make numerical quadrature difficult (or a priori expensive), and p is a set of parameters
that enter the functions. The fℓ are chosen so that all integrands appearing in (29) are linear
combinations of them (the L=17 such functions needed for this purpose are listed in Appendix C),
while the parameters gathered in p are the frequency ω and the source and observation points x,y.
The quadrature rule then must yield accurate values of the integrals Iℓ(p) for all values of p in a
given parameter domain P, whose definition reflects the clusters of source and observation points
for which UC(x,y) needs to be evaluated and the frequencies of interest. To this aim, a large
number K of sampling values pk ∈ P is introduced, so as to define a large collection of m = KL
input functions φi(ξ) (1≤ i≤m), each φi being of the form φi(ξ) = fℓ(ξ;pk) for some (k, ℓ). GGQ
rules are then constructed so as to integrate accurately the whole collection of input functions
φ1, . . . , φm. For a sufficiently dense sampling of P, the same level of accuracy will then be achieved
on UC(x,y) for any (x,y) within the prescribed parameter range.

Parameters. To specify the parameters involved in (29) and their domain P, it is convenient
to use non-dimensional quantities. Accordingly, setting ξ = kSξ̄ (where ξ̄ is non-dimensional), the
other quantities entering (29) can be expressed in terms of non-dimensional counterparts as follows:
ξ dξ = k2Sξ̄ dξ̄, sa = kSs̄a(ξ̄), q

±
a (ξ, α) = kSq̄

±
a (ξ̄, α), V

±
P (ξ, α) = V̄ ±

P (ξ̄, α), V ±
S (ξ, α) = k2SV̄

±
S (ξ̄, α),
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APP(ξ) = k2SĀPP(ξ̄), APS(ξ) = ĀPS(ξ̄), ASS(ξ) = k−2
S ĀSS(ξ̄), where all overbarred quantities are

non-dimensional and depend only on the non-dimensional integration variable ξ̄. Expression (29)
then takes the form

UC(x,y) =
k2S

4π2µ

∑

a,b=P,S

∫ +∞

0
ξ̄Āab(ξ̄)

{∫ 2π

0

[
exp(kSq̄

+
a (ξ̄, α)·y) V̄ +

a (ξ̄, α)
]

⊗
[
exp(kSq̄

−
b (ξ, α)·x) V̄ −

b (ξ̄, α)
]
dα

}
dξ̄. (35)

Apart from the multiplicative factor k2S/(4π
2µ), which affects neither the quadrature definition nor

the relative quadrature error, the parameters ω, x and y appear in the above integrand only in the
two exponentials. Since, by virtue of definitions (17), one has

exp(kSq̄
+
a (ξ̄, α) · y) exp(kSq̄−b (ξ, α) · x)

= exp
(
ikS[ξ̄1(y1−x1) + ξ̄2(y2−x2)]

)
exp

(
kS(s̄ay3+ s̄bx3)

)
(a, b = P,S),

the relevant non-dimensional parameters involved in (35) are

p1 := kS[(y1−x1)2 + (y2−x2)2]1/2, p2 := kSx3, p3 := kSy3. (36)

The parameter set P may then be defined as a set of points in (p1, p2, p3) space. One notes in
particular that dimensional invariance implies that the same parameter set P corresponds to sets
of points x,y in physical space whose size may vary in inverse relation to the chosen frequency.
Moreover, if all points x and y of interest are located on the same geometrical entity (e.g. the
surface S for potentials (7)), parameters p1 and p2 are sufficient to specify limits on ω, x and y.

Overview of the GGQ-generating algorithm. The required GGQ rule is generated by the
procedure outlined in Box 2. It produces a set of nξ quadrature nodes and weights (ξj , w

ξ
j )1≤j≤nξ

(with nξ much smaller than m) such that

∣∣∣
nξ∑

j=1

φi(ξj)w
ξ
j −

∫ ξmax

0
φi(ξ) dξ

∣∣∣ ≤ ε (1≤ i≤m).

This procedure directly transposes for the present needs the GGQ generation method of [4], to
which the reader is referred for theoretical background.

5 Construction of the custom-tailored generalized Gaussian quadrature

This section is devoted to a detailed explanation of the four main steps of the GGQ-generating
procedure used in this work (Box 2) and their implementation.

The FMM algorithm requires a single quadrature rule for the nine scalar components of UC

as given by (29). The latter can be expressed as linear combinations of a set of 17 functions
f1(ξ; p1, p2), . . . , f17(ξ; p1, p2), given in Appendix C. Them = 17K input functions φ1(ξ), . . . , φm(ξ)
are then defined from the fℓ(ξ; p1, p2) by sampling the parameter region of interest P using a large
number K of values (p1, p2)k ∈P, 1≤ k≤K.

Step 1: adaptive construction of an oversized quadrature. A piecewise-Legendre quadra-
ture rule integrating all products of input functions is constructed. Its p nodes ξ̂k and weights ŵk

are determined so that these integrals are computed with precision ε1, i.e.

∣∣∣
∫ ξmax

0
φi(ξ)φj(ξ) dξ −

p∑

k=1

φi(ξ̂k)φj(ξ̂k)ŵ
ξ
k

∣∣∣ ≤ ε1 (1 ≤ i, j ≤ m). (37)
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Box 2 Generation of generalized Gaussian quadrature rules: main steps of the algorithm.

Input m input functions φ1, . . . , φm defined on the interval [0, ξmax] (Appendix C)
Step 1 Compute nodes ξ̂1, . . . , ξ̂p and weights ŵ1, . . . , ŵp of a p-node piecewise-Legendre quadra-

ture rule (with p large) that integrates accurately all products of input functions (φi)1≤i≤m

(Algorithm 1).
Step 2 Find the (low) numerical rank r of the set of input functions; compress input functions to

r L2-orthonormal functions u1, . . . , ur (Algorithm 2).
Step 3 Construct nodes ξ̃1, . . . , ξ̃r and weights w̃1, . . . , w̃r of a r-point quadrature rule that achieves

the same accuracy as Step 1 (Algorithm 3).
Step 4 Further reduce the number of nodes from r to nξ using non-quadratic optimization (Algo-

rithm 4).

Output nξ-point GGQ rule (nodes ξ1, . . . , ξnξ
, weights wξ

1, . . . , w
ξ
nξ
)

Since the set f1, . . . , f17 is exhaustive with respect to the radial integration in (29), the p-node
quadrature will then evaluate accurately UC(x,y) for any x,y covered in P provided the sampling
of P is fine enough (i.e. K is large enough). The nodes ξ̂k and weights ŵk in (37) are obtained
by adaptively constructing a piecewise Legendre quadrature (Algorithm 1). An order-ℓ Legendre
expansion on [0, ξmax] is sought for each φi. If this expansion is satisfactory (which is decided
on the basis of the L2-norm of the difference between order-ℓ and order-2ℓ being smaller than a
preset tolerance, see step 5 of Algorithm 1), the iterative process is stopped; otherwise the interval
is split into two subintervals of equal length and order-ℓ Legendre expansions are sought on each
subinterval until either no further subdivision is found necessary, or the maximum number of
successive subdivisions (here set to 30) is reached. The order ℓ, which is an adjustable parameter of
the algorithm, must be large enough for detecting singularities yet small enough for the algorithm
to be efficient (ℓ=20 is used here, while examples in [4] use ℓ=30). Because classical quadratures
perform poorly for integrating singular and oscillatory functions, the number p of nodes generated
for this preliminary quadrature is quite large (typically of the order of 103).

Algorithm 1 Adaptive construction of an oversized quadrature.

1: Inputs: (a) m input functions φ1, . . . , φm defined on the interval [0, ξmax];
(b) precision ε1; (c) order ℓ of the piecewise-Legendre expansion

2: for i = 1, . . . ,m do

3: Construct 2ℓ Legendre nodes ξ1, . . . , ξ2ℓ on [0, ξmax]
4: Compute the coefficients α0, . . . , α2ℓ−1 of the Legendre expansion
5: if

∑2ℓ−1
j=ℓ |αj |2 < ε21 then

6: The order-ℓ Legendre expansion of φi is sufficient
7: else

8: Split the interval into two subintervals of equal length
9: Repeat the procedure until convergence or the interval is too small

10: end if

11: Store the endpoints of each subinterval
12: end for

13: Gather all the endpoints obtained for each input function into a single list, sort the list and
eliminate repeated values

14: Construct a quadrature formula on [0, ξmax] by concatenating the ℓ-point Legendre quadratures
on each subinterval defined by the list found by previous step

15: Output: p-point quadrature rule ξ̂1, . . . , ξ̂p, ŵ1, . . . , ŵp
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Algorithm 2 Compression of the input functions to rank r.

1: Inputs: (a) m input functions φ1, . . . , φm sampled at ξ̂k (1≤ k≤ p);
(b) p-point quadrature rule ξ̂1, . . . , ξ̂p, ŵ1, . . . , ŵp; (c) precision ε2

2: Compute the matrix A ∈ R
p×m defined by (38)

3: Compute the rank-revealing QR decomposition to precision ε2 of A, satisfying (39)
4: Construct the r orthonormal functions u1, . . . , ur defined by their values

uj(ξ̃i) := Qij/
√
w̃i (1 ≤ i ≤ p, 1 ≤ j ≤ r)

5: Output : orthonormal functions u1, . . . , ur sampled at Legendre nodes ξ̃1, . . . , ξ̃p

Step 2: compression of the input functions to rank r. The unacceptably large size p of
the quadrature rule produced by Step 1 is now reduced by observing that the values φi(ξ̂k) of the
input functions sampled at the p nodes ξ̂k are highly redundant, i.e. that the matrix A, defined by

A ∈ R
p×m, Aki := φi(ξ̂k)

√
ŵk (38)

has a numerical rank r much smaller than both p and m. Accordingly, an orthonormal basis
u1, . . . , ur of functions is built, and r evaluated, by applying a rank-revealing QR decomposition to
A (see details in Algorithm 2) with precision ε2, i.e. such that

‖A−QR‖2 ≤ ε2. (39)

The initial large set of input functions φ1, . . . , φm is thereby compressed into the smaller set
u1, . . . , ur of (sampled) functions.

Step 3: construction of a r-point quadrature rule. A r-point quadrature rule ξ̃1, . . . ξ̃r,
w̃1, . . . , w̃r that accurately integrates the r orthonormal functions u1, . . . , ur can now be extracted
from the p-point quadrature. The procedure (Algorithm 3) consists in finding the minimum-norm
solution Z ∈R

p of the underdetermined system of equations

BZ = R, (40)

with the matrix B ∈ R
r×p and the vector R ∈ R

r given by

Bik := ui(ξ̂k)
√
ŵk (1 ≤ i ≤ r, 1 ≤ k ≤ p),

Ri :=

p∑

k=1

ui(ξ̂k)ŵk ≈
∫ ξmax

0
ui(ξ) dξ (1 ≤ i ≤ r),

Algorithm 3 Construction of a r-point quadrature rule.

1: Inputs: (a) r orthonormal functions u1, . . . , ur;
(b) p-point quadrature rule ξ̂1, . . . , ξ̂p, ŵ1, . . . , ŵp

2: Form the matrix B ∈ R
r×p and vector R ∈ R

r as defined after equation (40)
3: Construct the rank-revealing QR decomposition

BΠ = Q [R11 R12]

(with Q∈R
r×r orthogonal, R11 ∈R

r×r upper triangular, and Π∈R
p×p a permutation)

4: Compute the solution Z ∈ R
r of R11Z = Q∗r using backsubstitution

5: Form the new r-point quadrature ξ̃1, . . . , ξ̃r, w̃1, . . . , w̃r by setting

ξ̃k = ξ̂ik and w̃k = zkŵik

where ik denotes the row index of the non zero entry in the k-th column of Π
6: Output : r-point quadrature rule ξ̃1, . . . , ξ̃r, w̃1, . . . , w̃r
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and defining the nodes and weights on the basis of the r non-zero entries Zi1 , . . . , Zir of Z by

ξ̃k = ξ̂ik , w̃k = Zikŵik .

This r-point quadrature rule also accurately integrates the input functions φ1, . . . , φm. The size r
of this quadrature rule, equal to the rank of the input functions sampled at the Legendre nodes,
was usually observed to be in the 10–100 range, i.e. about 10 to 100 times smaller than p.

Step 4: Point-by-point reduction of quadrature using non-quadratic optimization.

Observing that the nξ nodes ξk and weights wk of a quadrature exact for the input functions
(φi)1≤i≤m satisfy the nonlinear system of equations,

R(ξ1, . . . , ξn, w1, . . . , wn; φi) :=

nξ∑

k=1

φi(ξk)wk −
∫ ξmax

0
φi(ξ) dξ = 0 (1 ≤ i ≤ m), (41)

the reduction of the number of quadrature nodes is a non-quadratic optimization problem whereby
equations (41) applied to u1, . . . ur instead of φ1, . . . , φm are to be satisfied in the least-squares sense.
Beginning with the quadrature rule ξ̃1, . . . , ξ̃r, w̃1, . . . , w̃r produced by Algorithm 3, a procedure
reducing a n-point quadrature rule ξ1, . . . , ξn, w1, . . . , wn to a (n− 1)-point quadrature rule by
removing one node and rearranging the others so as to satisfy (41) in the least-squares sense is
repeatedly applied until (41) can no longer be satisfied within a preset precision ε3. Algorithm 4
implements this procedure in two steps.

Algorithm 4 Point-by-point reduction of the quadrature rule.

1: Inputs: (i) r-point quadrature rule ξ̃1, . . . , ξ̃r, w̃1, . . . , w̃r;
(ii) p-point quadrature rule ξ̂1, . . . , ξ̂p, ŵ1, . . . , ŵp

2: Initialization: (i) n := r, {ξ1, . . . , ξn} := {ξ̃1, . . . , ξ̃r}, {w1, . . . , wn} := {w̃1, . . . , w̃r},
(ii) flag reduce := 1

3: while flag reduce = 1 do

4: Step 1: renumber nodes ξ1, . . . , ξn according to their significance (Algorithm 5)
5: Step 2: attempt to remove a node from ξ1, . . . , ξn

(Algorithm 6; sets flag reduce := 0 if node removal fails)
6: end while

7: Set nξ := n, {ξ1, . . . , ξnξ
} := {ξ1, . . . , ξn}, {wξ

1, . . . , w
ξ
nξ
} := {w1, . . . , wn}

8: Output : Final nξ-point quadrature rule ξ1, . . . , ξnξ
, wξ

1, . . . , w
ξ
nξ

In step 1 of Algorithm 4, the significance ηj of a quadrature node ξj of the current n-point rule
is defined, for given j, as ηj := ‖∆z(j)‖, where ∆z(j) is the Gauss-Newton step direction associated
with minimizing the L2-norm of the r-vector of residuals {R({ξ1, . . . , ξn}\ξj , {w2, . . . , wn}\wj ; ui)}
after removing (ξj , wj) from the current rule. The significance ηj thus measures the perturbation
induced to the quadrature rule by removal of node ξj . In practice, ∆z(j) is found as the minimum-
norm solution of the underdertermined linear least-squares problem1 minz‖J (j)z −∆R(j)‖2 (with
notations as in Algorithm 5). Algorithm 5 implements step 1, i.e. computes all ηj and reorders
ξ1, . . . , ξn and w1, . . . , wn along increasing ηj .

Then (step 2 of Algorithm 4), to actually downsample the current n-point quadrature rule by
one node, the least-significant node ξ1 is removed from the quadrature rule and equations (41)
are solved in the least-squares sense (using Gauss-Newton iterations) for ξ2, . . . , ξn, w2, . . . , wn,
in the expectation that removing the least-significant node maximises the chances of obtain-
ing a n− 1-node quadrature that achieves an acceptably small norm for the vector of residuals

1There seems to be an error in [4] where the authors state ∆z
(j) = argminz‖J

(j)
z −R‖2
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Algorithm 5 Rank nodes according to their significance (step 1 of Algorithm 4).

1: Input: n-point quadrature rule ξ1, . . . , ξn, w1, . . . , wn

2: Initialization: (i) Form the Jacobian matrix J ∈ R
r×2n defined by

J = [Jξ Jw] with Jξ
ik = u′i(ξk)wk, Jw

ik = ui(ξk) (1 ≤ i ≤ r, 1 ≤ k ≤ n)

(ii) Form the vector ∆R ∈ R
r defined (with R as in Algorithm 3, line 2) by

∆Ri := −Ri +
n∑

ℓ=1

ui(ξℓ)wℓ (1 ≤ i ≤ r)

(iii) Compute the inverse D := (JJ t)−1

3: for j = 1 : n do

4: Use the Sherman-Morisson-Woodbury formula [4] to compute from D the matrix
D(j) := (J (j)J (j)T)−1, where J (j) is obtained from J by deleting its jth and (j+n)th columns.

5: Form the vector ∆R(j) ∈ R
r defined by ∆R(j) := ∆R− u(ξj)wj

6: Compute the damped minimum-norm Gauss-Newton step direction

∆z(j) := J (j)TD(j)∆R(j)

7: Compute the significance ηj of the node j: ηj := ‖∆z(j)‖
8: Renumber the nodes and weights so that ξ1, . . . ξn are listed in order of increasing ηj .
9: end for

10: Output: n-point rule ξ1, . . . , ξn, w1, . . . , wn reordered along increasing significance

R(ξ2, . . . , ξn, w2, . . . , wn; ui) (1 ≤ i ≤ r). If the removal of ξ1 proves unsussessful, it is added back
to the quadrature, and ξ2 is removed instead, and so on until either one node removal is successful
(this removal is then made permanent, and the new n− 1 quadrature is used as starting point
for the next downsampling attempt) or all node removals are unsuccessful (the quadrature before
removal is then deemed to be the final GGQ rule). The iterative node removal producing the final
GGQ rule (i.e. step 2 of Algorithm 4) is implemented in Algorithm 6.

Algorithm 6 Attempt to remove a node from a given quadrature rule (step 2 of Algorithm 4).

1: Inputs: (a) n-point quadrature ξ1, . . . , ξn, w1, . . . , wn; (b) Precision ε3
2: flag remove := 0, j := 1
3: while flag remove := 0 and j ≤ n do

4: Set initial guess {ξ̃01, . . . , ξ̃0n−1} := {ξ1, . . . , ξn} \ {ξj},
5: {w̃0

1, . . . , w̃
0
n−1} := {w1, . . . , wn} \ {wj}

6: Use damped Gauss-Newton to obtain a (n− 1)-point quadrature rule
with nodes ξ̃1, . . . , ξ̃n−1 and weights w̃1, . . . , w̃n−1

7: Compute the approximation error

εj :=
( r∑

i=1

∣∣∣∣
n−1∑

k=1

ui(ξ̃k)w̃k −
∫ ξmax

0
ui(ξ) dξ

∣∣∣∣
2)1/2

8: if εj ≤ ε3 then

9: n := n− 1, {ξ1, . . . , ξn} := {ξ̃1, . . . , ξ̃n}, {w1, . . . , wn} := {w̃1, . . . , w̃n}
10: flag remove:=1 {this quadrature is accepted}
11: else

12: j := j+1 {this quadrature is rejected, the next available removal is tried}
13: end if

14: end while

15: flag reduce = flag remove (=1 if reduction successful, =0 otherwise)
16: Outputs: (a) n, n−point quadrature rule ξ1, . . . , ξn, w1, . . . , wn; (b) flag reduce
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6 Numerical tests

In this section, computational aspects of the proposed multipole expansion of UC are investigated
through numerical tests. The radial and angular quadrature are examined for accuracy assessment
(Sec. 6.1) and empirical size adjustment (Sec. 6.2). Then, the overall complexity of the approach is
estimated (Sec. 6.3). The latter task (and also, to a lesser extent, the former) is based on numerical
experiments on sums of the form

VC[t] :=
{
v[t]T(x1), . . . ,v[t]

T(xM )
}T
, (42)

with

v[t](xi) =

M∑

j=1

UC(xi,xj)t(xj) (xi ∈XM , 1 ≤ i ≤M),

where the discrete set XM consists of M regularly-spaced points located on the surface of the
rectangular box defined (in terms of an arbitrary reference length d) by

−4d ≤ y1, y2 ≤ 4d, −4d ≤ y3 ≤ −d. (43)

Note that the sets of evaluation and source points in (42) are taken identical merely for simplicity,
as this is allowed by the non-singular nature of UC(x,y) if x= y. The matrix-vector product VC[t]
defined by (42) is a somewhat simplified but representative (from a computational work standpoint)
version of the component SC[t] of a discretized single-layer potential (7) evaluated on a BE mesh
involving N = 3M DOFs. Where relevant, all the tests to follow assume material characteristics
such that µ = 3, ρ = 1 (in arbitrary units) and ν = 0.25; moreover, the following definition of a
normalized frequency ηS will be used:

ηS = kSd. (44)

The GGQ-generating procedure features several tunable algorithmic parameters. The values
used for the numerical experiments reported thereafter, given in Table 1, should be considered as
typical (in that they allow the generation of satisfactorily-accurate GGQ rules
for the present needs) rather than mandatory. The most crucial parameter is ε2, which strongly
influences the size nξ and accuracy of the final GGQ rule. Moreover, the initial adaptive Gauss-
Legendre quadrature must be highly accurate, implying a very small value for ε1. The GGQ
generation was found to be less sensitive to the remaining parameters.

6.1 Assessment of quadrature accuracy

Accuracy of the radial quadrature. This first set of comparisons aims at checking the accu-
racy of the generalized Gaussian quadrature, which is a key component of the proposed treatment.
For this purpose, the integral (29) is computed with the angular integration over α performed
analytically (for this set of tests only) in order to focus on the accuracy of the GGQ for the ra-
dial quadrature. The resulting evaluations of UHS are compared to corresponding values (UHS

ij )ref
yielded by a code (provided by B.B. Guzina [22]) which computes the elastic layered half-space

Discretization of P K = 30×30×30

Algorithm 1 ε1 = 10−14; ℓ = 20; Max # of levels = 35

Algorithm 2 ε2 = 10−4

Algorithm 4 ε3 = 10−8

Table 1: Used values of the main algorithmic parameters of the GGQ-generating procedure.
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Green’s tensor in non-multipole fashion (using numerical evaluation of Bessel transforms). The
contributions U∞ and Ū∞ in decomposition (8) of UHS are computed using the closed-form ex-
pression (13). The relative discrepancies εij on the various components, and their maximum ε̄, are
evaluated according to

εij :=
‖UHS

ij − (UHS
ij )ref‖2

‖(UHS
ij )ref‖2

, ε̄ := max
i,j

εij (1≤ i, j ≤ 3). (45)

While the GGQ rule was set to accurately evaluate UHS(x,y) for all (x,y) such that −4d≤ y1, y2 ≤
4d and −4d≤ y3 ≤−d, the discrepancies (45) were evaluated for a source point at x= (2d, 3d, 2d)
and observation points y on the line defined by y1 = 0.5d, y2 = 0.75d and −4d ≤ y3 ≤ −d, with
the normalized frequency set to ηS = 1/

√
3. In Table 2, the relative discrepancies (45) on several

components of UHS are shown for various sizes nξ of the GGQ rule. As expected, the accuracy
achieved on UHS increases with nξ. Importantly, all the components have a similar level of accuracy,
confirming the validity of using the same quadrature for all the components.

It is also important to check whether the accuracy is influenced by the small fictitious atten-
uation γ used for shifting the Rayleigh pole off the real ξ-axis (Sec. 4.2). Table 3 reports the
discrepancy ε̄ (45) on entries of UHS, the rank r of the set of input functions, the total number
of Gauss-Legendre subintervals generated in Step 1 and the length of the smallest subinterval, for
values of γ between 10−3 and 10−10. Stable values of ε̄ that are commensurate to the requested
quadrature precision ε2 are observed for 10−8 ≤ γ ≤ 10−5. Smaller values of γ result in accuracy
degradation, presumably due to the onset of numerical cancellation effects, while larger values sim-
ply distort too much the original integral. Moreover, the depth of the adaptive interval subdivision
of Step 1 is, as expected, seen to increase as γ decreases. The rank r finally appears to be insen-
sitive on γ. Note that the implementation of UHS

ref does not depend on γ, as the frequency is kept
real-valued while the Rayleigh pole is avoided by using an integration path that is deformed into
the complex ξ-plane [22]; this makes the above comparison valid.

Accuracy of the angular quadrature. Since the integrands of the angular integrals (34) of
interest are smooth periodic functions of α, a trapezoidal rule is known to converge rapidly [12]

nξ ε11 ε12 ε13 ε31 ε33
12 4.1×10−2 1.9×10−2 1.5×10−1 2.1×10−1 2.7×10−2

15 4.4×10−3 3.1×10−3 2.3×10−2 4.8×10−2 1.8×10−2

16 1.9×10−3 6.3×10−4 4.8×10−3 6.3×10−3 1.5×10−3

17 1.2×10−3 4.2×10−4 3.2×10−3 4.5×10−3 1.4×10−3

23 5.5×10−5 1.9×10−4 1.7×10−4 1.6×10−4 1.8×10−4

Table 2: Relative discrepancy (45) on entries of the Green’s tensor UHS for various values nξ of the radial
quadrature rule density (ηS = 1/

√
3).

γ 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

ε̄ 2×10−3 3×10−4 2×10−4 2×10−4 2×10−4 2×10−4 5×10−2 100

r 37 37 37 37 37 37 37 37

# of subintervals 27 38 49 59 68 160 170 174

smallest subinterval length 2×10−3 10−4 7×10−6 9×10−7 6×10−8 9×10−10 10−10 10−10

Table 3: Maximum relative discrepancy ε̄ (45) on entries of UHS for various values of the artificial attenu-
ation γ (ηS = 1/

√
3).
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ξr1 = ξr2 1 5 10 15 20 25 30
n̄α 5 15 23 36 40 52 57

Table 4: Accuracy of the angular quadrature: for each value of ξr1 (with ξr1 = ξr2 here), n̄α is the smallest
size nα for which the relative error on all Im,n given by (34) is below 10−4.

and is used in this work:



αj =
2π(j − 1)

nα − 1
(1 ≤ j ≤ nα),

wα
j =

2π

nα − 1
(2 ≤ j ≤ nα − 1) and wα

1 = wα
nα

=
π

nα − 1
.

A quantitative illustration of the performance of this trapezoidal rule on integrals (34) is shown in
Table 4, where the smallest value n̄α of the size nα for which the relative error on all Im,n defined
by (34) (with respect to corresponding exact values (47)) is below 10−4 is shown for a range of
values of the parameter ξr1 (with ξr1 = ξr2 here). As expected, n̄α depends on the chosen value
of ξ, see further elaboration on this issue in Sec. 6.2.

6.2 Adjustment of the radial and angular quadrature rules

The efficiency of the overall FMM dictates that the numbers nξ. nα of quadrature points be as
small as possible. Moreover, for given clusters of source and observation points, the parameter
space P, and thus the size of the quadrature rules, depends on the frequency. Assuming a surface
discretization in the form of a BE mesh (or, more generally, of sets of source and observation points
lying on a surface) whose density is set, for a given configuration, so as to feature a fixed number
of nodes per S-wavelength, one has N = O(η2S), which implies that nξ and nα depend on N for a
given spatial configuration.

Number of points in the generalized Gaussian quadrature. To estimate the dependency
of nξ on N , GGQ rules have been generated for several values of the frequency, such that 1/

√
3 ≤

ηS ≤ 10/
√
3. Table 5 shows the number p of points of the piecewise-Legendre quadrature produced

by Step 1 of the GGQ rule generation for this set of frequencies. As expected, large values of p
(ranging between 2, 540 and 13, 060) were obtained in all cases. Then, Fig. 3 plots the number of
quadrature points r reached after Step 3 (which is equal to the rank of the input functions) and
the number nξ of points of the final GGQ rule against ηS. Again as expected, r (and hence nξ)
is much smaller than p, as it ranges here between 33 and 78. While the final number of points nξ
is smaller than r, the main reduction is achieved by Step 3. Both r and nξ are found by curve
fitting to be of order O(η0.3S ), see Fig. 3. As a result, for surface meshes, one has the estimations
r = O(N0.15) and nξ = O(N0.15).

Step 4 is claimed in [4] to reduce by about half the quadrature size (i.e. nξ ≈ r/2). This is
not quite the case for the GGQ rules reported here (see Fig. 3), which might lead one to suspect a
sub-optimal implementation of step 4. To clarify this, our implementation of the GGQ-generating
algorithm has been also tested on other sets of input functions that are simpler (no singularity or
Rayleigh pole involved) and not directly related to the present context. For example, the set of
input functions (closely related to the one used in [4]) defined by

φℓ(ξ; z) = zℓeiξz (z := x1 + ix2, 1≤ x1, x2 ≤ 4, 1≤ ℓ≤ 3),

√
3ηS 1 2 3 4 5 6 7 8 9 10

p 3, 360 5, 620 9, 560 13, 060 12, 680 12, 160 11, 660 12, 080 10, 560 7, 740

Table 5: Number of quadrature points p obtained after Step 1 of the GGQ rule generation.
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Figure 3: Rank r of the input functions and number of points nξ of the GGQ rule for a range of normalized
frequencies ηS.

where parameters x1, x2 belong to the same domain, and are sampled in the same way, as in the
previous tests, led to GGQ rules satisfying nξ ≈ r/2, i.e. conforming to the behavior predicted
in [4]. The efficiency of the final reduction from r to nξ points thus appears to depend on the
properties of the chosen input functions.

Table 6 shows the relative discrepancies (45) achieved using the quadratures produced by steps
1, 3 and 4 of the GGQ generation, for three normalized frequencies. It is clear that the final GGQ
rule of size nξ achieves on UHS the same accuracy as the initial piecewise-Legendre quadrature of
size p, despite p being considerably larger than nξ.

Finally, one notes that as source and evaluation points are chosen closer to the free surface,
|x3 + y3| decreases, making the O(e−ξ|x3+y3|) exponential decay of ÛHS(ξ, α, y3) slower. This effect
is expected to result in increased sizes of the radial GGQ rule. For example, considering sets of
points χa,b,c

M such that (a) −1.5d≤ y3 ≤−0.5d, (b) −1.25d≤ y3 ≤−0.25d or (c) −d≤ y3 ≤−0.1d and

setting ηS = 10, the generated GGQ rules have sizes n
(a)
ξ = 53 n

(b)
ξ = 82, n

(c)
ξ = 144, respectively,

corroborating the expected trend.

ηS Step ε11 ε12 ε13 ε31 ε33

0.5/
√
3

1 4.3×10−5 2.0×10−4 3.5×10−4 4.9×10−4 2.1×10−4

3 4.6×10−5 2.0×10−4 3.6×10−4 5.1×10−4 2.1×10−4

4 4.4×10−5 2.0×10−4 3.5×10−4 4.9×10−4 2.1×10−4

5/
√
3

1 5.3×10−5 1.5×10−4 1.1×10−4 1.3×10−4 2.0×10−4

3 5.3×10−5 1.5×10−4 1.1×10−4 1.3×10−4 2.0×10−4

4 5.4×10−5 1.5×10−4 1.1×10−4 1.3×10−4 2.0×10−4

10/
√
3

1 1.6×10−4 8.6×10−5 1.3×10−4 1.5×10−4 2.1×10−4

3 1.6×10−4 8.6×10−5 1.3×10−4 1.5×10−4 2.1×10−4

4 1.6×10−4 8.6×10−5 1.3×10−4 1.5×10−4 2.1×10−4

Table 6: Relative discrepancy (45) on entries of the Green’s tensor UHS after each step of the GGQ gen-
eration, for three values of the non-dimensional frequency ηS.
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Figure 5: Number of points nα required to achieve a relative discrepancy of 10−3, 10−4 and 10−5 with the
reference value of (42) against the normalized frequency.

Number of points in the angular quadrature. The oscillation in the angular integrals of (30),
and hence the required size of the trapezoidal quadrature, increases with ξ. Here, the same trape-
zoidal rule is used for all ξ, so that nα should a priori be chosen according to the value of ξmax.
The latter depends in turn on the frequency through (33), which prompts one to seek a relation of
the form nα = f(ηS). An empirical means towards this aim consists in evaluating the discrepancy
between matrix-vector products (42) computed with the separation of variables and a reference
value. Since computing the latter using the 1D non-multipole radial-integral representation of UC

would be too expensive for large N , reference values for (42) are instead evaluated by using the
separation of variables, with a large value of nα (set to nα = 250) to ensure accuracy. In Fig. 4, the
relative discrepancy with the reference value of (42) is represented against nα for five normalized
frequencies ηS = 2.89, 5.77, 8.66, 11.55 and 14.43, while Fig. 5 shows the value of nα required
to achieve a relative discrepancy of 10−3, 10−4 and 10−5 for a range of frequencies. As expected,

21



√
3ηS 1 2 3 4 5 6 7

N = 3M 780 3 696 8 256 15 048 23 328 34 452 46 056√
3ηS 8 9 10 15 20 25

N = 3M 61 248 77 028 96 360 215 496 386 760 601 704

Table 7: Fast evaluation of (42): considered frequencies and corresponding DOF counts.

the value of nα required to achieve a given accuracy increases with the frequency, with the relative
discrepancy decreasing rapidly if nα increases. To achieve a constant accuracy over the range of
frequencies, nα is found by curve-fitting to depend on the frequency according to O(η0.8S ), implying
that nα =O(N0.4). In order to achieve a good compromise between CPU time and accuracy, the
setting nα = ⌊18η0.8S + 6⌋ (where ⌊z⌋ is the largest integer ≤ z) is used in the following, allowing a
relative precision of order 10−4 for the angular integral. Higher accuracy might be obtained by a
modest increase of nα (see Fig. 5), but 10−4 is sufficient for engineering applications. A possible
optimization, not addressed here, would aim at reducing the overall angular quadrature effort by
allowing nα to depend on the location ξ of a GGQ node (and hence take reduced values for small
ξ).

Predicted complexity for the accelerated matrix-vector product. The empirically-deter-
mined complexities of the radial and angular integrations imply that the expected overall complexity
of (for example) one evaluation of an elastic potential is O(Nnξnα) = O(N1.55). Note that this
estimation holds for the specific choice of spatial bounds of the clusters of source and evaluation
points used for these tests, and may be affected by modifications of these bounds.

6.3 Complexity estimation for the accelerated matrix-vector product

Numerical verification of the overall complexity. The overall complexity of the evaluation
of matrix-vector products VC[t] of the form (42) is now investigated, the number and spacing of
points of XM being adjusted in order to achieve a fixed density of twenty points per S-wavelength.

To check whether its actual computation conforms with the O(N1.55) complexity predicted
from the behavior of the quadrature rules, VC[t] is computed for a range of frequencies such that
1/
√
3 ≤ ηS ≤ 25/

√
3, resulting in a DOF count range 780 ≤ N = 3M ≤ 601, 704 (see Table 7).

To simplify matters, a constant density such that t(xi) = (1, 1, 1) (1 ≤ i ≤ M) is used in VC[t]
since this choice does not affect the computational work. The matrix-vector product VC[t] is then
evaluated in two ways for comparison purposes, using either (i) the proposed accelerated method,
or (ii) the non-accelerated method based on analytical angular integration and the radial Bessel
transform (with GGQ also used for radial integration). The expected complexity of method (ii) is
O(nξN

2) = O(N2.15).
Since the complexity depends on the number of GGQ nodes, Fig. 6 shows nξ as a function of

N for the configuration and range of frequencies considered. Curve fitting yields nξ = O(N0.15) as
before.

In Fig. 7, the CPU times recorded for computing (42) either with acceleration (blue symbols) or
without acceleration (red symbols) are plotted against the model size N . The proposed acceleration
method is seen to drastically reduce the CPU time compared to the standard treatment of the
matrix-vector product, with respective observed complexities O(N1.55) and O(N2.15) as expected
(the latter method being also based on a GGQ rule for the radial Fourier-Bessel integral). The
present acceleration method performs a matrix-vector product for about N = 600, 000 DOFs in
about 25mn (on a single-processor PC), whereas the same CPU time would only allow N ≈ 10, 000
DOFs using the standard approach.
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Figure 6: Fast evaluation of (42): size nξ of the GGQ rule against DOF count N .
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Computation of the complete half-space Green’s tensor. A complete FM-BEM for half-
space problems also requires computation of the contributions involving U∞ and Ū∞, see e.g. (10).
In Fig. 7, the CPU time used in computing matrix-vector products (42) with UC replaced by U∞+
Ū∞ and using the standard (diagonal-form) FMM are also shown (in green). While the complexities
are different, the computing times needed for the evaluation of the complementary potential VC[t]
is roughly twice that required for either V∞[t] or V̄∞[t] for the cluster sizes considered in this test.

Meshing the truncated free surface Γ0 typically results in a BE model sizes 10-20 times larger
than that of the meshed irregularity S (for instance, a semi-spherical indentation of radius R with
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a truncated free surface Γ0(5R) [6] leads, with a uniform mesh density, to a DOF ratio of about
13). Hence a several-fold overall computational gain can be expected from using the half-space
Green’s tensor. Moreover, additional advantages in the proposed formulation lie in (i) substantial
memory reduction, and (ii) avoidance of any loss of accuracy caused by artificial truncation.

7 Conclusions

The use of the elastodynamic half-space Green’s tensor in the FM-BEM is a very promising avenue
for enhancing the computational performances of 3D BEM applied to analyses arising from e.g.
soil-structure interaction or seismology. By expressing the Green’s tensor as a 2D Fourier integral
(and, in particular, refraining from performing the angular integration despite the availability of
exact formulae), a representation of the Green’s tensor possessing the separated-variable form that
permits multipole-like accelerated evaluation of elastic potentials was obtained. This is, to the
authors’ best knowledge, the first attempt at a fast multipole formulation of the elastodynamic
half-space Green’s tensor. To address the critical need of an efficient quadrature for the 2D Fourier
integral, whose singular and oscillatory character precludes using usual (e.g. Gaussian) rules, gener-
alized Gaussian quadrature rules have been used instead. The latter were generated by tailoring for
the present needs the methodology of [4]. Numerical tests have been conducted to demonstrate the
accuracy and numerical efficiency of the proposed FMM. In particular, a complexity significantly
lower than that of the non-multipole version was shown to be achieved.

A full FM-BEM based on the proposed acceleration method for the half-space Green’s tensor
is currently under way. Among other things, this will permit comparisons between the accuracy
of this new FM-BEM (which does not require meshing the free surface) and that of the FM-
BEM based on the elastic full-space Green’s tensor (which requires meshing the free surface) on
examples representative of applications in seismology or soil-structure interaction. On the basis
of the preliminary tests presented in this article, the additional computational effort required by
the evaluation of the proposed FM-compatible form of the half-space Green’s tensor will be largely
compensated by the computational savings resulting from the substantial reduction of the BE
model size brought by the free surface removal, with the overall analysis time expected to be
reduced several-fold. Extensions of the present method to be investigated include a fast-multipole
version of the Green’s tensor for the layered half-space.

Acknowledgements. The authors wish to thank Bojan B. Guzina (University of Minnesota,
USA), who kindly provided his code for computing visco-elastic Green’s tensor for layered half-
spaces.

A Closed-form expressions of angular integrals

Closed-form expressions for integrals (34) can be derived straightforwardly from the integral rep-
resentation of the Bessel function Jn, which reads

Jn(z) =
1

π

∫ π

0
cos(z sin θ − nθ) dθ. (46)

This results in the following identities:

I0,0 = 2π J0(ξr), I1,0 = 2πi cosψ J1(ξr),

I0,1 = 2π i sinψ J1(ξr), I2,0 = π J0(ξr) − π cos 2ψ J2(ξr), (47)

I0,2 = π J0(ξr) + π cos 2ψ J2(ξr), I1,1 = −π sin 2ψ J2(ξr).

B Hankel transform form of UC

The complementary part in the half-space Green’s tensor is given by

UC(x,y) =

∫

R2

ei(ξ1(y1−x1)+ξ2(y2−x2)) ÛC(ξ, y3;x) dξ1dξ2,
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with ÛC given by (26). Upon evaluating the angular integral with the help of (46), the following
expressions for the Cartesian components of UC are readily obtained:

U1k
C (x,y, ω) =

1

4πµk2S

[
− (δ1k cos 2ψ + δ2k sin 2ψ)

∫ +∞

0
AJ2(ξr) ξ dξ

+ δ1k

∫ +∞

0
AJ0(ξr) ξ dξ − 2δ3k cosψ

∫ +∞

0
B J1(ξr) ξ dξ

]
,

U2k
C (x,y, ω) =

1

4πµk2S

[
(δ2k cos 2ψ − δ1k sin 2ψ)

∫ +∞

0
AJ2(ξr) ξ dξ

+ δ2k

∫ +∞

0
AJ0(ξr) ξ dξ − 2δ3k sinψ

∫ +∞

0
B J1(ξr) ξ dξ

]
, (48)

U3k
C (x,y, ω) =

1

4πµk2S

[
− 2(δ1k cosψ + δ2k sinψ)

∫ +∞

0
C J1(ξr) ξ dξ

+ 2δ3k

∫ +∞

0
DJ0(ξr) ξ dξ

]
,

where k = 1, 2, 3 denotes the force direction, y and x are the source and observation locations re-

spectively, and with the additional definitions r :=
√

(y1 − x1)2 + (y2 − x2)2, (
y1 − x1

r
,
y2 − x2

r
) =: (cosψ, sinψ).

Moreover, the kernel functions are defined (omitting for brevity the argument ξ in β, sP, sS, δ) by

A(ξ,x,y, ω) =
−ξ2
δsP

[
4s2Ss

2
Pe

sS(x3+y3) + β2esP(x3+y3) + 2βsSsP(e
sPx3+sSy3 + esSx3+sPy3)

]
,

B(ξ,x,y, ω) =
−ξ
δ

[
4ξ2sSsPe

sS(x3+y3) + β2esP(x3+y3) + 2sSsPβe
sPx3+sSy3 + 2βξ2esSx3+sPy3

]
,

C(ξ,x,y, ω) =
ξ

δ

[
4ξ2sSsPe

sS(x3+y3) + β2esP(x3+y3) + 2βξ2esPx3+sSy3 + 2βsSsPe
sSx3+sPy3

]
,

D(ξ,x,y, ω) =
−sP
δ

[
4ξ4esS(x3+y3) + β2esP(x3+y3) + 2βξ2esPx3+sSy3 + 2ξ2βesSx3+sPy3

]

C Input functions for the half-space Green’s tensor

The input functions used in Algorithm 2 to define a quadrature for (29) are given by

f1(ξ̄;p) =
ξ̄3s̄2Ss̄P

δ̄
cos(p1ξ̄)e

(p2+p3)s̄S , f2(ξ̄;p) =
ξ3β̄2

δ̄s̄P
cos(p1ξ̄) e

(p2+p3)s̄P ,

f3(ξ̄;p) =
ξ3β̄s̄S
δ̄

cos(p1ξ̄)e
p2s̄S+p3s̄P , f4(ξ̄;p) =

ξ3s̄2Ss̄P

δ̄
sin(p1ξ̄)e

(p2+p3)s̄S ,

f5(ξ̄;p) =
ξ3β̄2

δ̄s̄P
sin(p1ξ̄) e

(p2+p3)s̄P , f6(ξ̄;p) =
ξ3β̄s̄S
δ̄

sin(p1ξ̄)e
p2s̄S+p3s̄P ,

f7(ξ̄;p) =
s̄Pξ

5

δ̄
cos(p1ξ̄)e

(p2+p3)s̄S , f8(ξ̄;p) =
ξs̄Pβ̄

2

δ̄
cos(p1ξ̄) e

(p2+p3)s̄P ,

f9(ξ̄;p) =
ξ3β̄s̄P
δ̄

cos(p1ξ̄)e
p2s̄S+p3s̄P , f10(ξ̄;p) =

ξ4s̄Ss̄P
δ̄

cos(p1ξ̄)e
(p2+p3)s̄S ,

f11(ξ̄;p) =
ξ2β̄2

δ̄
cos(p1ξ̄) e

(p2+p3)s̄P , f12(ξ̄;p) =
ξ2β̄s̄Ps̄S

δ̄
cos(p1ξ̄)e

p2s̄S+p3s̄P ,

f13(ξ̄;p) =
β̄ξ4

δ̄
cos(p1ξ̄)e

p2s̄P+p3s̄S , f14(ξ̄;p) =
ξ4s̄Ss̄P
δ̄

sin(p1ξ̄)e
(p2+p3)s̄S ,

f15(ξ̄;p) =
ξ2β̄2

δ̄
sin(p1ξ̄) e

(p2+p3)s̄P , f16(ξ̄;p) =
ξ2β̄s̄Ps̄S

δ̄
sin(p1ξ̄)e

p2s̄S+p3s̄P ,

f17(ξ̄;p) =
β̄ξ4

δ̄
sin(p1ξ̄)e

p2s̄P+p3s̄S ,
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where the non-dimensional variable ξ̄ and functions s̄P, s̄S, and also the parameters p= (p1, p2, p3),
are as defined in the “Parameters” paragraph of Sec. 4.3, and with the additional definitions
β(ξ) = k2Sβ̄(ξ̄), δ(ξ) = k4Sδ̄(ξ̄).
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