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Confinement of the infrared divergence for the

Mumford process

Béatrice Vedel

Friedrich Schiller Universität- Mathematiche Institut
Ernst Abbe Platz 1-4, D07740 Jena (Germany)

Abstract

The Mumford process X is a stochastic distribution modulo constant and can not
be defined as a stochastic distribution invariant in law by dilations. We present two
expansions of X -using wavelet bases- in X = X0 + X1 which allow us to confine
the divergence on the “small term” X1 and which respect the invariance in law by
dyadic dilations of the process.
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1 Introduction

The Mumford process has been introduced by Mumford and Gidas in [8] as the
simplest process which can generate images. In this paper, Mumford and Gidas
define the axioms that a stochastic process shall verify to generate images. Let
us cite, for example,

(1) the scaling invariance which express the fact that an object seems bigger
but does not change of form when one approaches it,

(2) the infinite divisibility which means that an image can be seen as the
superposition of (less complex) independant images.

The Mumford process satisfies these axioms since it is a gaussian stochastic
process with stationary increments and invariant by dilations. Nevertheless,
since it is gaussian, it can only simulate clouds and not complex images.
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This process is defined as a stochastic distribution modulo constants almost
everywhere. It is known that it can be defined as a stochastic distribution,
but with this definition, the property of scaling invariance is lost. Our point
of view is to conserve this scaling invariance. We will see (in Section 2) that it
is then impossible to define the Mumford process as a stochastic distribution,
invariant in law by dilations. In particular, any expansion on a wavelet basis
of the Sobolev space Ḣ1(R2) leads to the phenomenon of infrared divergence
and does not converge in the distributional sense.

Similarly to what has been done in [13] for the confinement of the infrared
divergence of the homogeneous Sobolev spaces Ḣs(Rn), with s − n

2
∈ N, our

goal is to divide the Mumford process X in X = X0 + X1 where X0 can be
defined as a stochastic distribution and X1 is “as small as possible”. Moreover,
we are looking for solutions which can be rapidly and robustly implemented
(the robustness will be given by the unconditionality of the basis on which the
processes are expanded).

We present in this paper two explicit solutions. The first one consists in writ-
ing, in the frequency domain, X̂(ξ, ω) as the sum of a radial term and an
anti-radial term. Expanding the terms on a suitable orthonormal basis, the
infrared divergence is carried by the radial term (Section 3).

The second solution is based on the construction of an adapted basis, the
wavelet basis with pseudo-constant (Section 4). It allows us to confine the
infrared divergence on a smaller term than with the previous solution but the
terms are now correlated (Section 5).

Let us just mention that there exists an orthonormal basis which provides us
a confinement of the same order than the one given by the wavelet basis with
pseudo-constant, but with decorrelated terms. But this ’ideal’ solution is not
constructive (the result can be found in [11]).

Notations. We will denote by S0(R
2) the subspace of the Schwartz class

S(R2) formed by the functions u satisfying
∫
xαu(x)dx = 0 ∀α ∈ N2,

and by S ′
0(R

2) its dual. This space is identified with S ′(R2)/P.

Let us denote by Ḣ1(R2) the subspace of distributions f such that

R(f) :=
(
‖∂x1f‖2

L2 + ‖∂x2f‖2
L2

) 1
2 <∞.

The homogeneous Sobolev space denoted by Ḣ1(R2) is the quotient of Ḣ(R2)
with C and is equipped with the norm ‖ · ‖Ḣ1 = R(·). Its dual space, for the
L2-scalar product, is the homogeneous Sobolev space Ḣ−1(R2).
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2 Definition of the Mumford Process

We will present the definitions of the complex and the real Mumford processes.

The complex Mumford process X(x, ω) is formally defined from the complex
white noise Z(x, ω), for x ∈ R2, by

X(x, ω) = Λ−1Z(x, ω), (1)

where the operator Λ−1 is defined, in the frequency domain for ξ ∈ R2, by

Λ̂−1f(ξ) =
f̂(ξ)

|ξ| .

Applying the Fourier transform, the definition (1) becomes

X̂(ξ, ω) =
1

|ξ|Z(ξ, ω) (2)

since the white noise is invariant on the unitary action of the Fourier transform.

For any orthonormal basis {ψi, i ∈ I} of L2(R2), one has

Z(x, ω) =
∑

i∈I

gi(ω)ψi(x)

where the complex random variables gi are independant and identically dis-
tributed (i.i.d.) of law N (0, 1). It turns out that (1) and (2) can be written
as

X(x, ω) =
∑

i∈I

gi(ω)Λ−1(ψi)(x) (3)

and

X̂(ξ, ω) =
∑

i∈I

gi(ω)
ψ̂i(ξ)

|ξ| (4)

respectively.

Observe that the operator Λ−1 may be defined as the convolution with the
Riesz potential c

|x| on R2. Hence, Λ−1 preserves the real-valued functions. Then

Eq (1) can be applied to the real white noise and provides us a definition of
the real Mumford process. In this case, formula (3) is applied with real-valued
variables gi and real-valued functions ψi.

Consequently, the real Mumford process is the real part of the complex Mum-
ford process. Nevertheless, it is not determined by its Fourier transform.

Lemma 1 The Mumford process belongs ω − a.e. to S ′
0(R

2).
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PROOF. It is sufficient to consider the complex case. We know that the
white noise is ω− a.e. in S ′(R2). Choose ϕn ∈ S0(R

2), n ∈ N, and ϕ ∈ S0(R
2)

such that limn→∞ ϕn = ϕ in S(R2). One has ∂αϕ̂n(0) = ∂αϕ̂(0) = 0 for all
α ∈ N2. It follows that the functions un and u, defined for ξ ∈ R2 by

un(ξ) =
ϕ̂n(ξ)

|ξ| , u(ξ) =
ϕ̂(ξ)

|ξ| ,

belong to S(R2) and limn→∞ un = u in S(R2). Finally, one obtains almost
everywhere,

lim
n→∞

〈X̂(·, ω), ϕn〉 = lim
n→∞

〈Z(·, ω), un〉 = 〈Z(·, ω), u〉 = 〈X̂(·, ω), ϕ〉,

which finishes the proof.

The Mumford process has stationary increments, is invariant by dilations and
isotropic. That means that

(1) for all y ∈ R2, X(· + y, ω)−X(·, ω) is a stationary process,

(2) for all λ > 0, X(λ·, ω)
L
= X(·, ω),

(3) for all ρ ∈ SO(2,R), X(ρ·, ω)
L
= X(·, ω),

where “
L
=” means that the laws of the processes are identical.

It is possible to give a meaning to X(·, ω) as a random tempered distribution,
i.e. to find an expansion of X(·, ω) which belongs ω-a.e. to S ′(Rn). Let us see
how. We consider the orthonormal Meyer wavelet basis of L2(Rn), {ψε

j,k(·) =
2jψε(2j ·−k), j ∈ Z, k ∈ Z2, ε ∈ {1, 2, 3}} with ψε ∈ S0(R

2) (cf. [5] for precise
definition and properties of this basis) . The series (4) becomes

X(·, ω) =
∑

ε∈{1,2,3}

∑

j∈Z

∑

k∈Z2

gj,k,ε(ω)ψε(2j · −k), (5)

where the random variables gj,k,ε are i.i.d. of law N (0, 1). This series does not
converge ω− a.e. in S(R2) since an infrared divergence appears, which means
that the low-frequency term (j ≤ 0) diverges in the distributional sense. To
settle this divergence, we can make an additive renormalization of the low-
frequency part in the wavelet expansion.

Proposition 2 The expansion

∑

ε∈{1,2,3}

∑

j≤0

∑

k∈Z2

gj,k,ε(ω)[(Λ−1ψε)(2j · −k) − (Λ−1ψε)(−k)]

+
∑

ε∈{1,2,3}

∑

j>0

∑

k∈Z2

gj,k,ε(ω)(Λ−1ψε)(2j · −k) (6)
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is convergent ω − a.e. in S ′(R2).

We could then decide to define X(·, ω) as the sum of the series (6) since this
definition coincides with (5) on S ′

0(R
2).

Remark To make this renormalization, we have to introduce an arbitrary
reference scale (j = 0) and the expansion does not preserve the property of

dilation invariance of the Mumford process. We still have X(2jx, ω)
L
= X(x, ω)

in S ′
0(R

2) but it is not true for the renormalization given by (6) in S ′(R2).

Since we want to preserve the dilation invariance, we will not use this definition
in this paper.

It would be interesting to be able to give a meaning to X(·, ω) as a stochas-
tic distribution which preserves the homogeneity. Unfortunately, that is not
possible, which is shown in the following proposition.

Proposition 3 Let us denote by 〈·, ·〉 the duality product S ′(R2) × S(R2).
There is no stochastic distribution M(x, ω) satisfying M(x, ω) = X(x, ω)
in law in S ′

0(R
2), M(λx, ω) = M(x, ω) in law in S ′(R2) and, for all θ ∈

S(R2), E(|〈M(·, ω), θ〉|2) < +∞.

PROOF. Suppose, contrary to our claim, that there exists such a stochastic
distribution. For θ ∈ S0(R

2), one has

E(|〈M(·, ω), θ〉|2) = E(|〈X(·, ω), θ〉|2) = E(|〈Z(·, ω),Λ−1θ〉|2) = ‖Λ−1θ‖2
L2 .

Consequently, the map T defined for θ ∈ S0(R
2) by

T (θ) = ‖Λ−1θ‖L2 ,

can be extended to a map F defined on S(R2) by

F (ϕ) =
√

E(〈M(·, ω), ϕ〉)2

for all ϕ ∈ S(R2). Therefore, F is sublinear on S(R2) (F (u+v) ≤ F (u)+F (v))
and is homogeneous of degree −2 (that is F (f [λ.]) = λ−2F (f) for all λ > 0
and f ∈ S(R2)).

Let us now consider ϕ ∈ C∞
0 (R2) such that Supp ϕ̂ ⊂ {ξ ∈ R2 : |ξ| ≤ 2} and

ϕ̂(ξ) = 1 if |ξ| ≤ 1.

For l ≥ 0, one has

F (ϕ− 22lϕ(2l.)) ≤ F (ϕ) + F (ϕ(2l.)) ≤ 2F (ϕ).

5



But, writing ϕ− 22lϕ(2l·) =
∑l−1

j=0 22jϕ(2j·) − 22(j+1)ϕ(2j+1·), it comes that

F (ϕ− 22lϕ(2l.)) = ‖
l−1∑

j=0

Λ−1[ϕ(2j ·) − 22(j+1)ϕ(2j+1·)]‖2 ≃ l,

and we obtain a contradiction.

As it is the case of the space Ḣ1(R2), the only hope is to confine the infrared
divergence to a “small” term.

Definition 4 A couple of stochastic processes (X0, X1) is a confinement of
the infrared divergence of order m (0 ≤ m ≤ +∞) of the Mumford process if
there exists an unconditional basis {φj,k = φk(2

j·), j ∈ Z, k ∈ K0} ∪ {θj,k =
θk(2

j·), j ∈ Z, k ∈ K1} with CardK1 = m, such that

(1) X = X0 +X1.
(2) For all j ∈ Z, X0(2

j·, ω) = X0(·, ω) in law, and X1(2
j·, ω) = X1(·, ω) in

law (as stochastic distributions modulo polynomials).
(3) X0(x, ω) =

∑
j∈Z

∑
k∈K0

hj,k(ω)φj,k(x), where hj,k are some random vari-
ables.

(4) X1(x, ω) =
∑

j∈Z

∑
k∈K1

Hj,k(ω)θj,k(x), where Hj,k are some random vari-
ables.

(5) The expansion X0(x, ω) =
∑

j∈Z

∑
k∈K0

hj,k(ω)φj,k(x) converges ω − a.e.
in S ′(R2) and, for all j ∈ Z, X0(2

j·, ω) and X0(·, ω) have the same law
(as stochastic distributions).

Proposition 5 In Definition 4, the order of the confinement m depends only
on (X0, X1) and not on the choice of the unconditional basis {φj,k = φk(2

j·), j ∈
Z, k ∈ K0} ∪ {θj,k = θk(2

j·), j ∈ Z, k ∈ K1}.

To prove Proposition 5 we will use the following lemma (shown in [13]).

Lemma 6 Let B be a Banach space, U an automorphism of B and n ∈ N∗,
such that there exist n vectors e1, . . . , en ∈ B for which the collection

{Uk(ei) ; k ∈ Z, i ∈ {1, . . . , n}}

is an unconditional basis of B. Let us assume that there exist some vectors
fj ∈ B, indexed by a set E, such that the collection

{Uk(fj) ; k ∈ Z, j ∈ E}

is also an unconditional basis of B. Then E is finite of cardinality n.

PROOF. [of Proposition 5] Let (X0, X1) be a confinement of the infrared
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divergence and Φ = {φj,k = φk(2
j·), j ∈ Z, k ∈ K0} ∪ {θj,k = θk(2

j·), j ∈
Z, k ∈ K1} (with K0 ∩ K1 = ∅) and Ψ = {ψj,k = ψk(2

j·), j ∈ Z, k ∈
L0} ∪ {τj,k = τk(2

j ·), j ∈ Z, k ∈ L1} (with L0 ∩ L1 = ∅), two unconditional
bases of Ḣ1(R2) such that

X0(·, ω) =
∑

j∈Z

∑

k∈K0

hj,k(ω)φj,k(·) =
∑

j∈Z

∑

k∈L0

fj,k(ω)ψj,k(·) (7)

and

X1(·, ω) =
∑

j∈Z

∑

k∈K1

hj,k(ω)θj,k(·) =
∑

j∈Z

∑

k∈L1

fj,k(ω)τj,k(·) (8)

where hj,k and fj,k, j ∈ Z, k ∈ K0 ∪K1, are some random variables.

We denote by {φ∗
j,k, j ∈ Z, k ∈ K0} ∪ {θ∗j,k, j ∈ Z, k ∈ K1} (resp. {ψ∗

j,k, j ∈
Z, k ∈ L0} ∪ {τ ∗j,k, j ∈ Z, k ∈ L1}) the dual basis of Φ (resp. Ψ) for the

H1-scalar product given, for f and g in Ḣ1(R2), by

〈f, g〉 =
∫
∂x1f(x)∂x1g(x)dx+

∫
∂x2f(x)∂x2g(x)dx.

Let us denote F1 and G1 the closed subspaces of Ḣ1(R2), given by

F1 = Span {θj,k, j ∈ Z, k ∈ K1} G1 = Span {τj,k, j ∈ Z, k ∈ L1}.

On account of Lemma 6, it is sufficient to prove that F1 = G1. For that
purpose, let us consider an orthonormal basis {el, l ∈ Z} of Ḣ1(R2). We have

X(x, ω) =
∑

l∈Z

gl(ω)el(x),

where gl, l ∈ Z, are i.i.d. of law N (0, 1). Moreover, by putting

el =
∑

j∈Z

∑

k∈K0

〈el, φ
∗
j,k〉φj,k +

∑

j∈Z

∑

k∈K1

〈el, θ
∗
j,k〉θj,k,

we get

X(·, ω) =
∑

j∈Z

∑

k∈K0

∑

l∈Z

〈el, φ
∗
j,k〉gl(ω)φj,k +

∑

j∈Z

∑

k∈K1

∑

l∈Z

〈el, θ
∗
j,k〉gl(ω)θj,k. (9)

Comparing 〈X, θ∗j,k〉 from (7), (8) and (9), we obtain, for all j ∈ Z and k ∈ K1,

hj,k(ω) =
∑

l∈Z

〈el, θ
∗
j,k〉gl(ω)

and

X1(·, ω) =
∑

j∈Z

∑

k∈K1

∑

l∈Z

〈el, θ
∗
j,k〉gl(ω)θj,k. (10)

7



By the same argument, we have also

X1(x, ω) =
∑

j∈Z

∑

k∈L1

∑

l∈Z

〈el, τ
∗
j,k〉gl(ω)τj,k. (11)

Combining (11) with the fact that 〈τj,k, ψ∗
j0,k0

〉 = 0, we get E|〈X1(·, ω), ψ∗
j0,k0

〉|2 =
0. But, by (10), we obtain

E|〈X1(·, ω), ψ∗
j0,k0

〉|2 = E|
∑

j∈Z

∑

k∈K1

∑

l∈Z

〈el, θ
∗
j,k〉〈θj,k, ψ

∗
j0,k0

〉gl(ω)|2

=
∑

l∈Z

|
∑

j∈Z

∑

k∈K1

〈el, θ
∗
j,k〉〈θj,k, ψ

∗
j0,k0

〉|2

=

∥∥∥∥∥∥
∑

j∈Z

∑

k∈K1

〈θj,k, ψ
∗
j0,k0

〉θ∗j,k

∥∥∥∥∥∥

2

L2

.

It follows that
∑

j∈Z

∑
k∈K1

〈θj,k, ψ
∗
j0,k0

〉θ∗j,k = 0 and for all j, j0 ∈ Z, k ∈ K1

and k0 ∈ L0, we get 〈θj,k, ψ
∗
j0,k0

〉 = 0.

Now, let us suppose than F1 6⊂ G1 and let f =
∑

j∈Z

∑
k∈K1

cj,kθj,k ∈ F1, f /∈
G1. Then

f =
∑

j∈Z

∑

k∈L0

〈f, ψ∗
j,k〉ψj,k +

∑

j∈Z

∑

k∈L1

〈f, τ ∗j,k〉τj,k

with
∑

j∈Z

∑
k∈L0

〈f, ψ∗
j,k〉ψj,k 6≡ 0. But for j0 ∈ Z and k0 ∈ L0, one has

〈f, ψ∗
j0,k0

〉 =
∑

j∈Z

∑

k∈K1

cj,k〈θj,k, ψ
∗
j0,k0

〉 = 0,

which gives us a contradiction and F1 ⊂ G1. Interchanging the role of the
unconditional bases Φ and Ψ, we obtain also G1 ⊂ F1, which completes the
proof.

3 Confinement of the infrared divergence on the radial term

The Mumford process is defined in the frequency plan by Z(ξ, ω) = |ξ|X̂(ξ, ω).
It is then natural to search an expansion of X̂ in polar coordinates. We have
the following result.

Theorem 7 In the Fourier domain, the Mumford process X̂(ξ, ω) can be writ-
ten as X̂(ξ, ω) = X̂0(ξ, ω) + X̂1(ξ, ω), where

(1) X̂0(ξ, ω) is a radial distribution
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(2) X̂1(ξ, ω) is automatically renormalized. In other words, X̂1(ξ, ω) is ω−a.e.
in D′(R2) and this embedding commutes with the dyadic dilations (for all
j ∈ Z, X̂1(2

jξ, ω) and 22jX̂1(ξ, ω) have the same law).

To prove this result, we begin by expanding the white noise Z(ξ, ω) on an
orthonormal basis of L2(R2). This basis is given in polar coordinates (ρ, θ) by
the tensorial product wj,k(ρ)en(θ), where {wj,k} is an orthonormal basis of the
Hilbert space L2(]0,+∞[, ρdρ) and {en} is the usual trigonemetric system on
[0, 2π] (en(θ) = 1√

2π
einθ, n ∈ Z).

It is sufficient to choose the basis {wj,k} in a suitable way. In the following
subsections we describe two choices. The first is based on the Haar system
and the second on the Malvar-Wilson basis.

3.1 Construction of {wj,k} from the Haar system

We divide the interval ]0,+∞[ into dyadic intervals Ij = [2j, 2j+1[, j ∈ Z. On
each dyadic interval Ij, we use the usual Haar system of L2(Ij , dρ) adapted

to this interval. It is given by the functions hj,k = 2−
j
2h(2−j ·), k ∈ N, where

{hk, k ∈ N} is the Haar system on L2([1, 2[). More precisely, h0 = 1[1,2[ and
for k = 2l + p with l ≥ 0 and 1 ≤ p ≤ 2l,

hk = 2
l
2 (1[1+2−l(p−1),1+2−l(p− 1

2
)[ − 1[1+2−l(p− 1

2
),1+2−lp[). (12)

The functions wj,k, j ∈ Z, k ∈ N, are defined on ]0,+∞[ by

wj,k(ρ) = ρ−
1
2hj,k(ρ) = ρ−

1
2 2−

j
2hk(2

−jρ).

The white noise Z(ξ, ω) is then written, with ξ = ρeiθ, as

Z(ξ, ω) =
∑

n∈Z

∑

j∈Z

∑

k∈N

gj,k,n(ω)wj,k(ρ)en(θ),

where the complex random variables gj,k,n, j ∈ Z, k ∈ N, n ∈ Z, are i.i.d. of
law N (0, 1), and the Mumford process is written as

X̂(ξ, ω)=
∑

n∈Z

∑

j∈Z

∑

k∈N

gj,k,n(ω)ρ−1wj,k(ρ)en(θ)

=
∑

n∈Z

∑

j∈Z

∑

k∈N

gj,k,n(ω)ρ−
3
2 2−

j
2hk(2

−jρ)en(θ). (13)

We define X̂0 and X̂1 by

X̂0(ξ, ω) =
∑

j∈Z

∑

k∈N

gj,k,0(ω)ρ−
3
2 2−

j
2hk(2

−jρ) (14)

9



and X̂1(ξ, ω) = X̂(ξ, ω) − X̂0(ξ, ω).

The expansion (13) of X̂(ξ, ω) satisfies the conclusion of Theorem 7. Indeed,
we have

Proposition 8 The oscillatory part X̂1(ξ, ω) is automatically renormalized
since the series

X̂1(ξ, ω) =
∑

n∈Z, n 6=0

∑

j∈Z

∑

k∈N

gj,k,n(ω)ρ−
3
2 2−

j
2hk(2

−jρ)en(θ) (15)

converges ω − a.e. in D′(R2) and, for all j ∈ Z, X̂1(2
jξ, ω) and 22jX̂1(ξ, ω)

have the same laws. Hence, the couple (X0, X1) (given by (14) and (15)) is a
confinement of the Mumford process of order ∞.

To prove the previous result, we need the following classical lemma.

Lemma 9 Let {gm, m ≥ 2} be a sequence of i.i.d. random variables of law
N (0, 1). Then, the estimate

|gm(ω)| ≤ C(ω)
√

lnm,

holds ω − a.e., for all m ≥ 2.

PROOF. [of Proposition 8] We will show that the series (15) converges uni-
formly on any bounded subset B of C∞

0 (R2). So let B ⊂ C∞
0 (R2) be a set

for which the support of the test functions ϕ ∈ B are embedded in a same
ball B(0, N) and such that ‖∂αϕ‖∞ ≤ C(α) where C(α) does not depend of
ϕ ∈ B. Let ϕ ∈ B one of these test functions. Since the functions wj,k, k ∈ Z,
are supported on the dyadic interval Ij , only the scales j ≤ C(N) have to be
taken into account. We then have to estimate

∑

n∈Z, n 6=0

∑

j≤C(N)

∑

k∈N

|gj,k,n(ω)I(j, k, n)|,

where

I(j, k, n) =
∫ ∫

ρ−
1
2 2−

j
2hk(2

−jρ)en(θ)ϕ(ρ cos θ, ρ sin θ)dρdθ

=
∫ ∫

2−jHk(2
−jρ)en(θ)ϕ(ρ cos θ, ρ sin θ)dρdθ,

with Hk(ρ) = ρ−
1
2hk(ρ). Using the change of variable t = 2−jρ, we get

I(j, k, n) =
∫ ∫

Hk(t)ϕ(2jt cos θ, 2jt sin θ)en(θ)dtdθ.

10



But, for all j ≤ C(N), one has

Hk(|ξ|)ϕ(2jξ) = Hk(|ξ|)ϕ(0) + 2jhk(|ξ|)Rj(ξ),

where Rj belongs to a set B ⊂ C∞
0 (R2), bounded and independent of j. More-

over, Rj is supported on the annulus {ξ ∈ R2; 1
2
≤ |ξ| ≤ 5

2
}.

Indeed, we have

Hk(|ξ|)ϕ(2jξ) −Hk(|ξ|)ϕ(0)=Hk(|ξ|)[ϕ(2jξ) − ϕ(0)]

=hk(|ξ|)
[ϕ(2jξ) − ϕ(0)]

|ξ| 12
=2jhk(|ξ|)Rj(ξ),

with Rj defined for j ≤ C(N) by

Rj(ξ) =

(
[ϕ(2jξ) − ϕ(0)]

2j|ξ| 12

)
θ(ξ)

where θ ∈ C∞
0 (R2) is supported on the annulus {ξ ∈ R2; 1

2
≤ |ξ| ≤ 5

2
} and is

identically equal to 1 on {ξ ∈ R2; 1 ≤ |ξ| ≤ 2}. Since j ≤ C(N), it follows that
the functions Rj belong to a same set B ⊂ C∞

0 (R2), bounded and independent
of j.

Returning to the calculus of I(j, k, n), since n 6= 0, we get

∫ ∫
Hk(t)ϕ(0)en(θ)dtdθ = 0

and
I(j, k, n) = 2j

∫ ∫
hk(t)Rj(t cos θ, t sin θ)en(θ)dtdθ.

The integrals I(j, k, n) are uniformly bounded by K(N)2j(1 + k)−
3
2 (1 + n)−2,

where the constant K(N) does not depend on ϕ, but only on B. This esti-
mation is obtained by using the fact that for k 6= 0, hk is given by (12). In
particular, hk has one vanishing moment (

∫
hk = 0) and its support has a

length of order k−1.

Uniformly for ϕ ∈ B, we thus obtain the following estimation

∑

n∈Z, n 6=0

∑

j≤C(N)

∑

k∈N

|gj,k,n(ω)||I(j, k, n)|

≤C
∑

n∈Z, n 6=0

∑

j≤C(N)

∑

k∈N

C(ω)
√

ln(2 + |j| + k + |n|)K(N)2j(1 + k)−
3
2 |n|−2

≤C(ω)K(N).

11



Figure 1. Simulation of the real part of the radial term in frequency.

Figure 2. Simulation of the anti-radial term in frequency.

Finally, the series X̂1 converges uniformly ω − a.e. on B. Hence, the term X̂1

converges ω − a.e. in the distributional sense.

Remark The constant K(N) has a polynomial growth as a function of N ,
which implies the convergence ω − a.e. of X̂1 in S ′(R2).

Remark Figures 1 and 2 have been realized with MATLAB. Since the pro-
cesses do not converge ponctually, they do not give the behaviour of the pro-
cesses but show the first terms of the expansion in the wavelet basis (10 scales).
Nevertheless, with these few terms, the infrared divergence (ξ = 0) can already
be seen.
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3.2 Construction of {wj,k} from the Malvar-Wilson basis

We now use the orthonormal Malvar-Wilson basis of L2([0,∞[). It is the se-

quence 2
j
2w(2jx) cos[π(k+ 1

2
)2jx], j ∈ Z, k ∈ N, where w ∈ C∞

0 ([1
3
, 3]) satisfies

(1) 0 ≤ w ≤ 1,

(2) w2(x) + w2(2 − x) = 1 for all x ∈ [ 2
3
, 4

3
],

(3) w2(x) + w2(x
2
) = 1 for all x ∈ [4

3
, 8

3
].

This construction can be found in [1].

For j ∈ Z, k ∈ N and m ∈ Z, we define in polar coordinates, the functions
wj,k,m by

wj,k,m(ρ, θ) = ρ−
1
2 2

j
2w(2jρ) cos[π(k +

1

2
)2jρ]

eimθ

√
2π
.

The system {wj,k,m, j ∈ Z, k ∈ N, m ∈ Z} forms an orthonormal basis of
L2(R2). The white noise can then be expanded in, with ξ = ρeiθ,

Z(ξ, ω) =
∑

j∈Z

∑

k∈N

∑

m∈Z

gj,k,m(ω)wj,k,m(ρ, θ),

where the random variables gj,k,m are i.i.d. of law N (0, 1), and the Fourier
transform of the Mumford process is given by

X̂(ξ, ω) =
∑

j∈Z

∑

k∈N

∑

m∈Z

gj,k,m(ω)ρ−1wj,k,m(ρ, θ).

Again, this expansion does not converge in D′(R2). Nevertheless, we get

Proposition 10 The oscillatory part is automatically renormalized, in the
sense that the series

X̂1(ξ, ω) =
∑

m∈Z, m6=0

∑

j∈Z

∑

k∈N

gj,k,m(ω)ρ−1wj,k,m(ρ, θ)

converges ω − a.e. in the (tempered) distributional sense.

The proof is similar to the proof of Proposition 8.
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4 Wavelet basis with pseudo-constant

4.1 Construction

The wavelet basis with pseudo-constant is a modification of the Meyer adapted
wavelet basis (constructed in [7]).

Proposition 11 (Meyer adapted wavelet basis) Let N ∈ N be an odd
integer greater than 3. There exists an orthonormal basis of L2(R2) of real
valued functions, formed by

(1) the Daubechies wavelets ψε
j,k = 2jψε(2j · −k), j ∈ Z, k ∈ Z2 \K, ε ∈ E =

{1, 2, 3} (where K is a finite set), of class Cr with r = r(N) > 0, such
that
i) Suppψε = [0, N ]2,
ii) k /∈ K if and only if Suppψε(· − k)∩] −N,N [2= ∅,
iii)

∫
xαψε(x)dx = 0 for all multi-indices α ∈ Nn with |α| ≤ m (and

m = m(N) ≥ r),
(2) some functions ψε

j,k = ψε
k(2

j·), j ∈ Z, k ∈ K, ε ∈ E , of class Cr, such that
i) Suppψε

k ⊂ [−3N, 3N ]2 \ ] −N,N [2,
ii) there exists a couple (k, ε) ∈ K × E such that

∫
ψε

k(x)dx 6= 0.

Taking finite linear combinations of {ψε
k, k ∈ K, ε ∈ E}, we can reorganized

these wavelets into an orthonormal system {φ} ∪ {φε
k, (k, ε) ∈ Λ = K × E \

(0, 1)} such that

• For all (k, ε) ∈ Λ,
∫
φε

k = 0,
• ∫

φ 6= 0.

For j ∈ Z, (k, ε) ∈ Λ, we put φj = 2jφ(2j·) and φε
j,k = 2jφε

k(2
j·).

Lemma 12 There is a constant C 6= 0 such that, for all x ∈ R2

∑

j∈Z

φ(2jx) = C. (16)

PROOF. We consider the function f = 1[−4N,4N ]2 . Expanding it on the
wavelet basis, we get

f =
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
c(j, k, ε)ψε

j,k +
∑

j∈Z

∑

(k,ε)∈Λ

c(j, k, ε)φε
j,k +

∑

j∈Z

c(j)φj

where c(j, k, ε) =
∫
f(x)ψε

j,k(x)dx if k /∈ K, c(j, k, ε) =
∫
f(x)φε

j,k(x)dx if
(k, ε) ∈ Λ and c(j) =

∫
f(x)φj(x)dx.

14



Let g ∈ L2(R2) be given by

g =
∑

j>0

c(j)φj.

We have f ≡ g on [−N,N ]2. Indeed, if j ≤ 0, then

Suppψε
j,k ∩ ] −N,N [2 = Supp φε

j,k ∩ ] −N,N [2 = Suppφ∩ ] −N,N [2 = ∅.

For j > 0, we have to divide the proof into two cases. If the support of the
wavelet does not intersect ]−2N, 2N [2, the wavelet is identically equal to 0 on
]−N,N [2. If its support intersects ]−2N, 2N [2, then the wavelet is supported
on ]− 4N, 4N [2. Since the corresponding coefficient c(j, k, ε) is the integral of
the wavelet, it is equal to 0.

Finally, we get ∑

j>0

c(j)φj(x) = 1

for x ∈ [−N,N ]2. In addition, one has, for j > 0, c(j) =
∫
φj = c(0)2−j. Thus,

by dilation, we obtain (16), and Lemma 12 follows.

We are now in position to introduce the pseudo-constant θ defined by

θ
L2

=
∑

j≤0

φ(2j·)

and, for j ∈ Z, we put θj = 2jθ(2j·).

Lemma 13 The function θ is of class Cr, is supported on the ball B(0, 3N
√

2)
and, for all x ∈ B(0, N),

θ(x) = 1.

In particular, for all γ ∈ N2 \ {(0, 0)} with |γ| ≤ r, one has

Supp ∂γθ ⊂ {x ∈ R2; N ≤ |x| ≤ 3N
√

2}.

This result is an obvious corollary of Lemma 12.

Proposition 14 The system

{ψε
j,k, j ∈ Z, k ∈ Z2 \K, ε ∈ E}∪{φε

j,k, j ∈ Z, (k, ε) ∈ Λ}∪{θj , j ∈ Z} (17)

is a Riesz basis of L2(R2) called “wavelet basis with pseudo-constant”.
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PROOF. It is easier to prove that the dual system is a Riesz basis of L2(R2).
So, we introduce the functions θ∗ and θ∗j given by

θ∗ = φ− 1

4
φ(

·
2
)

and θ∗j = 2jθ∗(2j·). We denote by E and F the closed subspaces of L2(R2)
defined by

E = Span {φj, j ∈ Z}
and

F = Span {ψε
j,k, j ∈ Z, k ∈ Z2 \K, ε ∈ E} ∪ {φε

j,k, j ∈ Z, (k, ε) ∈ Λ}.

For h = e+ f ∈ L2(R2) with e ∈ E and f ∈ F we define the operator S by

S(h)(·) =
1

4
e(

·
2
).

Finally, the operator T is defined on L2(R2) by T = Id− S, where Id is the

identity operator. Since L2(R2) = E
⊥⊕ F , one has, for h = e+ f ,

‖S(h)‖L2 = ‖1

4
e(

·
2
)‖L2 =

1

2
‖e‖L2 ≤ 1

2
‖f‖L2 .

Hence, ‖S‖L2 < 1 and T is an isomorphism on L2(R2), which maps the basis
{ψε

j,k, j ∈ Z, k ∈ Z2 \K, ε ∈ E} ∪ {φε
j,k, j ∈ Z, (k, ε) ∈ Λ} ∪ {φj, j ∈ Z} to

the system

{ψε
j,k, j ∈ Z, k ∈ Z2\K, ε ∈ E}∪{φε

j,k, j ∈ Z, (k, ε) ∈ Λ}∪{θ∗j , j ∈ Z}. (18)

It follows that the system (18) is a Riesz basis of L2(R2). An easy computation
shows that

T−1∗(φj) =
∑

l≥0

φj(2
l·) = θj .

Consequently, the dual basis of (18) is the system (17) which proves Proposi-
tion 14.

Theorem 15 The wavelet basis with pseudo-constant chosen with wavelets of
class Cr with r > 1 is an unconditional basis of Ḣ1(R2).

4.2 Proof of Theorem 15

We refer to [10] for characterizations and properties of unconditional bi-orthogonal
bases.

It is sufficient to show that
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(i) The systems (17) and (18) are biorthogonal.
(ii) There exists a constant C0 > 0 such that, for any finite sums, one has

‖
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
cj,k,εψ

ε
j,k‖2

Ḣ1 ≤ C0

∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
|cj,k,ε|222j,

‖
∑

j∈Z

∑

(k,ε)∈Λ

cj,k,εφ
ε
j,k‖2

Ḣ1 ≤ C0

∑

j∈Z

∑

(k,ε)∈Λ

|cj,k,ε|222j (19)

and
‖
∑

j∈Z

cjθj‖2
Ḣ1 ≤ C0

∑

j∈Z

|cj|222j. (20)

(iii) There exists a constant C1 > 0 such that, for any finite sums, one has

‖
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
cj,k,εψ

ε
j,k‖2

Ḣ−1 ≤ C1

∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
|cj,k,ε|22−2j ,

‖
∑

j∈Z

∑

(k,ε)∈Λ

cj,k,εφ
ε
j,k‖2

Ḣ−1 ≤ C1

∑

j∈Z

∑

(k,ε)∈Λ

|cj,k,ε|22−2j (21)

and
‖
∑

j∈Z

cjθ
∗
j‖2

Ḣ−1 ≤ C1

∑

j∈Z

|cj|22−2j. (22)

(iv) The wavelet basis with pseudo-constant is a total system in Ḣ1(R2).

By construction of the systems, (i) is satisfied. The estimations (ii) and (iii)
are already known for the functions ψε

j,k, j ∈ Z, k ∈ Z2 \K, ε ∈ E , since they
are classical Daubechies wavelets (cf. [4] or [5] for characterizations of Sobolev
spaces by wavelets).

To obtain the estimations (ii) and (iii) for the other terms, we will use the
properties of localization of functions, which lead to the property of quasi-
orthogonality.

Definition 16 Let H be a Hilbert space equipped with the scalar product 〈·, ·〉.
A system {fk, k ∈ Z} of H is said to be quasi-orthogonal if there exists l ∈ N

such that, for any fixed k ∈ Z,

for all k′ ∈ Z, |k′ − k| ≥ l, 〈fk, fk′〉 = 0. (23)

Before proving the estimations (19) and (20), let us give the following lemma.

Lemma 17 Let H be a Hilbert space equipped with the scalar product 〈·, ·〉
and the norm ‖ · ‖. Let {fj , j ∈ Z} be a quasi-orthogonal system of H and
l ∈ N satisfying (23). Then,

‖
∑

j∈Z

fj‖2 ≤ (2l + 1)
∑

j∈Z

‖fj‖2.
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We now give the proof of estimations (19) and (20). By Lemma 12, the func-
tions ∂x1θ and ∂x2θ are supported on the annulus {x ∈ R2; N ≤ |x| ≤ 3N

√
2}.

Then, the systems {∂x1θj} and {∂x2θj} are quasi-orthonormal in L2(R2) and
we get,

‖
∑

j∈Z

cjθj‖2
Ḣ1 ≤ C(‖

∑

j∈Z

cj∂x1θj‖2
L2 + ‖

∑

j∈Z

cj∂x2θj‖2
L2) ≤ C

∑

j∈Z

|cj|222j .

The same argument can be applied to the functions φε
j,k, j ∈ Z, (k, ε) ∈ Λ, to

obtain (19) since they are supported on dyadic annula.

To obtain the dual estimation, we will use the following lemma (a proof can
be found in [9]).

Lemma 18 Let Ω a connected bounded open set of Rn, which is strongly Lip-
schitz and let f ∈ L2(Ω). One has

∫
Ω f(x)dx = 0 if and only if there exist n

functions f1, ..., fn ∈ H1
0 (Ω) such that

f = ∂x1f1 + ...+ ∂xnfn.

Consequently, since the function θ∗ is supported on the annulus Γ = {N ≤
|x| ≤ 6N

√
2}, there exist two functions Θ1 and Θ2 in L2(R2), supported on

Γ, such that
θ∗ = ∂x1Θ1 + ∂x2Θ2.

It follows that

∑

j∈Z

‖cjθ∗j‖2
Ḣ−1 ≤ C(‖

∑

j∈Z

cjΘ1(2
j·)‖2

L2 + ‖
∑

j∈Z

cjΘ2(2
j·)‖2

L2 ≤ C
∑

j

|cj|22−2j,

where the last majoration is obtained by using the property of quasi-orthogonality
of the systems {2jΘ1(2

j·), j ∈ Z} and {2jΘ2(2
j·), j ∈ Z}.

The functions φε
k, (k, ε) ∈ Λ, have also a vanishing moment and are supported

on an annulus. Then, the same argument can be applied to obtain (22).

To prove (iv), since S(R2) (modulo constant) is dense in Ḣ1(R), it is sufficient
to show that any function f ∈ S(R2) can be written as

f =
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
〈f, ψε

j,k〉ψε
j,k +

∑

j∈Z

∑

(k,ε)∈Λ

〈f, φε
j,k〉φε

j,k +
∑

j∈Z

〈f, θ∗j 〉θj (24)

with

∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
|〈f, ψε

j,k〉|222j +
∑

j∈Z

∑

(k,ε)∈Λ

|〈f, φε
j,k〉|222j +

∑

j∈Z

|〈f, θ∗j 〉|222j <∞.

(25)
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So let f ∈ S(R2). Since the two systems are dual bases in L2(R2), the equality
(24) is true in L2(R2). We then use the following lemma.

Lemma 19 There exists a constant C > 0 such that for any g ∈ Ḣ1(R2),

∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
22j |〈g, ψε

j,k〉|2+
∑

j∈Z

∑

(k,ε)∈Λ

22j |〈g, φε
j,k〉|2+

∑

j∈Z

22j|〈g, θ∗j 〉|2 ≤ C‖g‖2
Ḣ1.

PROOF. The inequality in question is known for the terms in 〈g, ψε
j,k〉, j ∈

Z, k ∈ Z2 \ K, ε ∈ E , since the ψε
j,k are classical Daubechies wavelets (cf.

[4] for a proof). For the other terms, since the wavelets have a vanishing
moment, we can make an integration by part and then use the property of
quasi-orthogonality to obtain the estimation.

Returning to the function f ∈ S(R2), since it belongs to Ḣ1(R2) by the pre-
vious lemma, we get (25). Using the majoration (ii), it turns out that the
series in (24) converges in Ḣ1(R2) and by uniqueness of the limit (in the space
of distributions modulo constants), its sums is f . This finishes the proof of
Theorem 15.

Remark In the PhD thesis [11], the construction is generalized to wavelet
bases with pseudo-polynomials of the order m (m ∈ N) in Rn. These bases
allow us to obtain results of confinement for the Sobolev spaces Hm+ n

2 (Rn).
This study will be presented in a future publication.

5 A more accurate confinement

In this section, the results are given for the real and the complex Mumford
processes (we do not use the Fourier transform of the process).

We consider the orthonormal Meyer wavelet basis {2lg(2l · −k), l ∈ Z, k ∈
Z2, g ∈ {g1, g2, g3}}, where gi ∈ S0(R

2) is real and ĝi is supported in an
annulus, which does not contains 0 (cf. [5] for more details). Thus, the functions
fi = Λ−1gi belong to S0(R

2) and by definition, one has

X(x, ω) = Λ−1Z(x, ω) =
∑

l∈Z

∑

p∈Z2

3∑

i=1

gi,l,p(ω)fi,l,p(x), (26)

where the random variables gi,l,p are i.i.d. of law N (0, 1) and fi,l,p(x) = fi(2
lx−

p). The convergence of the series (26) holds ω − a.e. modulo constants.
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The idea is to make a change of basis of Ḣ1(R2) in order to obtain an expansion
of X(x, ω) in the (non-othonormal) wavelet basis with pseudo-constants (with
the regularity of the wavelets r ≥ 1).

Expanding the functions fi,l,p in the wavelet basis with pseudo-constants, we
formally obtain

X(x, ω) = X0(x, ω) +X1(x, ω)

where
X0(x, ω) =

∑

j∈Z

hj(ω)2−jθj(x) (27)

with

hj(ω) = 2j
∑

l∈Z

∑

p∈Z2

3∑

i=1

〈fi,l,p, θ
∗
j 〉gi,l,p(ω),

and

X1(x, ω) =
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
hε,j,k(ω)2−jψε

j,k(x) +
∑

j∈Z

∑

(k,ε)∈Λ

hε,j,k(ω)2−jφε
j,k(x)

(28)
with

hε,j,k(ω) =





2j ∑
l∈Z

∑
p∈Z2

∑3
i=1〈fi,l,p, ψ

ε
j,k〉gi,l,p(ω) if j ∈ Z, k ∈ Z2 \K and ε ∈ E ,

2j
∑

l∈Z

∑
p∈Z2

∑3
i=1〈fi,l,p, φ

ε
j,k〉gi,l,p(ω) if j ∈ Z and (k, ε) ∈ Λ .

Here 〈·, ·〉 denotes the L2-scalar product. Random variables hε,j,k and hj are
not i.i.d. of law N (0, 1), since the basis is not orthonormal. Nevertheless,
they are linear combinations of gaussians variables and we have the following
estimation.

Lemma 20 For all j ∈ Z, k ∈ Z2 \K and ε ∈ E , we obtain, ω − a.e.,

|hε,j,k(ω)| ≤ C(ω)
√

ln(2 + |j| + |k|).

For all j ∈ Z and for all (k, ε) ∈ Λ, we get ω − a.e.,

|hε,j,k(ω)| ≤ C(ω)
√

ln(2 + |j|)

and
|hj(ω)| ≤ C(ω)

√
ln(2 + |j|).

As we will show it, these estimations are due to the fact that the coefficients of
the “matrix” of change of basis are the scalar products between two “wavelets”.
Let us admit Lemma 20 for the moment and show

Theorem 21 The series (28) converges ω − a.e. in S(R2) and is invariant
in law by dyadic dilations. It follows that the couple (X0, X1) (defined by (27)
and (28)) is a confinement of the Mumford process of order 1.
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PROOF. Let B be a bounded set of C∞
0 (R2). There exists a constant R > 0

such that, for any ϕ ∈ B, Suppϕ ⊂ B(0, R). We will estimate, for ϕ ∈ B,

I1 =
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E

√
ln(2 + |j| + |k|)|〈2−jψε

j,k, ϕ〉|

and
I2 =

∑

j∈Z

∑

(k,ε)∈Λ

√
ln(2 + |j|)|〈2−jφε

j,k, ϕ〉|

by C(R)N(ϕ), where N(ϕ) is a semi-norm on C∞
0 (R2) which does not depend

on the choice of ϕ. If these majorations hold, then by Lemma 9, 〈X1(·, ω), ϕ〉
is defined ω − a.e. by

∑

j∈Z

∑

k∈Z2\K

∑

ε∈E
hε,j,k(ω)2−j〈ψε

j,k, ϕ〉 +
∑

j∈Z

∑

(k,ε)∈Λ

hε,j,k(ω)2−j〈φε
j,k, ϕ〉.

Let us first consider I1. We have 2−jψε
j,k = ψε(2j · −k) and Suppψε(· − k)∩]−

N,N [2= ∅ (cf. (1) of Proposition 11). Thus, there exists a constant C(R) such
that 〈ψε

j,k, ϕ〉 = 0, except eventually for j ≥ C(R) and |k| ≤ C(R)2j. Then,

I1 ≤
∑

j∈Z

∑

k∈Z2\K

|k|≤C(R)2j

∑

ε∈E

√
ln(2 + |j| + |k|)|〈2−jψε

j,k, ϕ〉|.

Using the first vanishing moment of ψε, ε ∈ E , we can write ψε = ∂x1g
ε
1+∂x2g

ε
2

with gε
1, g

ε
2 ∈ L2(Suppψε) = L2([0, N ]2). We get

|〈2−jψε
j,k, ϕ〉|≤C2−j

(
‖gε

1(2
j · −k)‖1 + ‖gε

2(2
j · −k)‖1

)
(‖∂x1ϕ‖∞ + ∂x2ϕ‖∞)

≤C2−3j (‖∂x1ϕ‖∞ + ‖∂x2ϕ‖∞) .

Hence, I1 ≤ K(R)(‖∂x1ϕ‖∞+‖∂x2ϕ‖∞). The case of I2 is easier. The functions
φε

j,k, for j ∈ Z and (k, ε) ∈ Λ, are supported in the annulus {x ∈ R2; N ≤
|x| ≤ 3N

√
2}. Since a finite number of couples of indices (k, ε) appears, it

is not necessary to make an integration by parts after having reduced the
summation on j to j ≥ C(R). So,

I1 ≤
∑

j≥C(R)

∑

(k,ε)∈Λ

√
ln(2 + |j|)2−2j

(
sup

(k,ε)∈Λ
‖φε

k‖1

)
‖ϕ‖∞

≤K(R)‖ϕ‖∞.

The property of invariance by dyadic dilations can be obtained by observ-
ing that to change X1(·, ω) in X1(2

m·, ω) consists to replace hε,j,k(ω) with
hε,j−m,k(ω), i.e. gi,l,p(ω) with gi,l+m,p(ω). Since the variables gi,l,p are i.i.d. of
law N (0, 1), it follows that X1(·, ω) and X1(2

m·, ω) have the same law.
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Remark The proof of Theorem 21 shows that X1(·, ω) is the sum ω − a.e.
of a distribution of order 0 (terms on φε

j,k) and of a distribution of order less
than or equal to 1 (terms on ψε

j,k).

We still have to prove Lemma 20.

PROOF. Let us begin with hε,j,k(ω) for k ∈ Z2 \ K. In this case, we have
the scalar product between the two wavelets fi(2

l ·−k) and ψε(2j ·−k), where
fi ∈ S0(R

2) and ψ ∈ Cr with r > 1 has a compact support and at least one
vanishing moment. Therefore, we have (cf. [6]) for M > 2 and 0 < δ < r,

|〈fi,l,p, ψ
ε
j,k〉| ≤ C2−j2−l2−|j−l|(1+δ)

(
2−j + 2−l

2−j + 2−l + |p2−l − k2−j |

)M

. (29)

To obtain estimation 29, for l ≥ j, we integrate fi,l,p and differenciate ψε
j,k.

For j > l, we differenciate fi,l,p and integrate ψε
j,k. It follows from 29 that

|hε,j,k(ω)| ≤ C(ω)A with

A =
∑

l∈Z

∑

p∈Z2

3∑

i=1

2(j−l)2−|j−l|(1+δ)

(
2−j + 2−l

2−j + 2−l + |p2−l − k2−j|

)M √
ln(2 + |l| + |p|).

We divide A into A = A1 + A2 where A1 corresponds to the summation on
the indices l ≤ j and A2 to the indices l > j. For the term A1, since M > 2,
we get

A1 ≤C
∑

l≤j

∑

p∈Z2

2−(j−l)δ

(
1

1 + |p− k2l−j|

)M √
ln(2 + |l| + |p|)

≤C
∑

l≤j

2−(j−l)δ
√

ln(2 + |l| + |k|2l−j)

≤C
∑

l≤j

2−(j−l)δ
√

ln(2 + |l| + |k|)

≤C
√

ln(2 + |j| + |k|).

For A2 (l > j), since M > 2, we get
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A2 ≤C
∑

l>j

∑

p∈Z2

2(j−l)(δ+2)

(
1

1 + |p2j−l − k|

)M √
ln(2 + |l| + |p|)

≤C
∑

l>j

2(j−l)(δ+2)
√

ln(2 + |l| + |k|2l−j)22(l−j)

≤C
∑

l>j

2(j−l)δ
√

ln(2 + |l| + |k|2l−j)

≤C
√

ln(2 + |j| + |k|),

and the first estimation is proved.

Let us continue with hε,j,k for (k, ε) ∈ Λ. In this case, we have 2−jφε
j,k = φε

k(2
j·),

where φε
k ∈ Cr, Supp φε

k ⊂ B(0, R) for a R > 0 and
∫
φε

k(x)dx = 0. We obtain
the estimation (29) by replacing k2−j with 0 and the calculations for hε

j,k are
similar.

Let us finish with hj(ω). We have to estimate 〈fi,l,p, θ
∗(2j.)〉, with θ∗ ∈ Cr,

Supp θ∗ ⊂ B(0, R′) for a R′ > 0 and
∫
θ∗(x)dx = 0. The result is then given

by the previous case.

Proposition 22 Let 0 < s < 2. The expansion (28) of X1(x, ω) satisfies that
X1(x,ω)

|x|s converges ω − a.e. in D′(R2).

Remark The result shows that the convergence of the term X1 is stronger
than in the distributional sense. It satisfies indeed a “weak Hardy inequality”.
It can be compared to the deterministic case of the Sobolev Ḣ1(R2). We have
indeed given in [13] a confinement of Ḣ1(R2) in Ḣ1(R2) = X ⊕ Y where the
distributions f of the realized part Y (included in S ′(R2)) satisfy the Hardy
inequality

∫ |f(x)|2/|x|2dx < +∞.

PROOF. Again, let B be a bounded subset of C∞
0 (R2) and R > 0 such that

for ϕ ∈ B(0, R), Suppϕ ⊂ B(0, R). Using the estimations for the random
variables given in Lemma 20, it is sufficient to show that, for ϕ ∈ B,

S1 =
∑

j∈Z

∑

k∈Z2\K

∑

ε∈E

√
ln(2 + |j| + |k|)|〈2−j

ψε
j,k

|x|s , ϕ〉|

and

S2 =
∑

j∈Z

∑

(k,ε)∈Λ

√
ln(2 + |j|)|〈2−j

φε
j,k

|x|s , ϕ〉|

can be majorate by C(R)N(ϕ), where N(ϕ) is a semi-norm on C∞
0 (R2) which

does not depend on the choice of ϕ. Let us first estimate S2. Again, there
exists a constant C(R) such that the summation can be reduced to j ≥ C(R).
Since Supp φε

k∩] −N,N [2= ∅, one has |x|s ≥ 2−jN on Supp φε
j,k and we get
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S2 ≤K(R)
∑

j≥C(R)

∑

(k,ε)∈Λ

√
ln(2 + |j|)2js

∫
|φε

k(2
jx)ϕ(x)|dx

≤K(R)
∑

j≥C(R)

∑

(k,ε)∈Λ

√
ln(2 + |j|)2j(s−2)‖φε

k‖1‖ϕ‖∞

≤K(R)‖ϕ‖∞

since s < 2. Let us now estimate S1. We divide S1 in S1 = Sa + Sb, where

Sa =
∑

j∈Z

∑

k∈Z2\K

|k|≤2j/2

∑

ε∈E

√
ln(2 + |j| + |k|)|〈2−j

ψε
j,k

|x|s , ϕ〉|

and

Sb =
∑

j∈Z

∑

k∈Z2\K

2j/2≤|k|≤C(R)2j

∑

ε∈E

√
ln(2 + |j| + |k|)|〈2−j

ψε
j,k

|x|s , ϕ〉|. (30)

To majorate Sa, we use the fact that |x|s ≥ C(|k|2−j)s on Suppψε
j,k =

[k2−j, (k +N)2−j ]2 for k /∈ K (and we have |k| 6= 0 if k /∈ K). Thus,

|Sa| ≤C
∑

j∈Z

∑

k∈Z2\K

|k|≤2j/2

∑

ε∈E

√
ln(2 + |j| + |k|)2js|k|−s

∫
|ψε(2jx− k)ϕ(x)|dx

≤C
∑

j∈Z

∑

k∈Z2\K

|k|≤2j/2

|k|s
√
|j| + 22j(s−2)

(
sup
ε∈E

‖ψε‖1

)
‖ϕ‖∞

≤K
∑

j≥C(R)

√
|j| + 2 2−

j
2
(s−2)2j(s−2)‖ϕ‖∞

≤K(R)‖ϕ‖∞

for s < 2. Let us now consider Sb. We use the fact that ψ has at least two
vanishing moments (since it is a Daubechies wavelet of regularity r > 1). Then
we can write

ψε = ∂2
x1
gε
1 + ∂2

x2
gε
2 + ∂2

x1x2
gε
3

where the functions gε
1, g

ε
2, g

ε
3 are of class Cr+2 and are supported on [0, N ]2.

Since the function ϕ
|x|s is C∞ on Suppψε

j,k, we can make an integration by
parts, and we obtain

∫
ψε(2jx− k)

ϕ(x)

|x|s dx = 2−2j
∫ (

gε
1(2

jx− k)∂2
x1

(
ϕ

|x|s
)

+gε
2(2

jx− k)∂2
x2

(
ϕ

|x|s
)

+ gε
3(2

jx− k)∂2
x1x2

(
ϕ

|x|s
))

dx

and
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∣∣∣∣∣

∫
ψε(2jx− k)ϕ(x)

|x|s dx

∣∣∣∣∣≤C2−4j



∥∥∥∥∥∂

2
x1

(
ϕ

|x|s
)∥∥∥∥∥

L∞(Γj,k)

+

∥∥∥∥∥∂
2
x2

(
ϕ

|x|s
)∥∥∥∥∥

L∞(Γj,k)

+

∥∥∥∥∥∂
2
x1x2

(
ϕ

|x|s
)∥∥∥∥∥

L∞(Γj,k)




with C = ‖gε
1‖1 + ‖gε

2‖1 + ‖gε
3‖1 and Γj,k = Suppψε

j,k = [k2−j , (k + N)2−j ]2.
Moreover,

∥∥∥∥∥∂
2
x1

(
ϕ(x)

|x|s
)∥∥∥∥∥

L∞(Γj,k)

≤
∥∥∥∥∥
∂2

x1
ϕ(x)

|x|s
∥∥∥∥∥

L∞(Γj,k)

+ 2

∥∥∥∥∥∂x1ϕ(x)∂x1

1

|x|s
∥∥∥∥∥

L∞(Γj,k)

+

∥∥∥∥∥ϕ(x)∂2
x1

1

|x|s
∥∥∥∥∥

L∞(Γj,k)

≤ C


‖∂2

x1
ϕ‖∞

∥∥∥∥∥
1

|x|s
∥∥∥∥∥

L∞(Γj,k)

+ ‖∂x1ϕ‖∞
∥∥∥∥∥

1

|x|s+1

∥∥∥∥∥
L∞(Γj,k)

+

+ ‖ϕ‖∞
∥∥∥∥∥

1

|x|s+2

∥∥∥∥∥
L∞(Γj,k)




≤ C
(
‖∂2

x1
ϕ‖∞ + ‖∂x1ϕ‖∞ + ‖ϕ‖∞

)
2

j
2
(s+2),

since |x| ≥ C2
j
2 on Γj,k for |k| ≥ 2

j
2 . By the same kind of estimation for the

other terms, we obtain

∣∣∣∣∣

∫
ψε(2jx · k)ϕ(x)

|x|s
∣∣∣∣∣ ≤ K2−3j2j s

2

∑

|α|≤2

‖∂αϕ‖∞.

Using this majoration in (30), we get

Sb ≤
∑

j≥C(R)

∑

k∈Z2\K

2j/2≤|k|≤C(R)2j

∑

ε∈E

√
ln(2 + |j| + |k|)2−3j2j s

2

∑

|α|≤2

‖∂αϕ‖∞

≤K(R)
∑

|α|≤2

‖∂αϕ‖∞.

Remark We do not know if the result can be extended to the case s = 2.
Because of the logarithmic estimation we have for the random variables, the
answer seems to be negative.

This paper is mainly a part of the PhD thesis [11] and the results -without
proofs- have been presented in the Note [12].
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