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Abstract

The beam on elastic foundation is a general model used in physical, biological, and technological problems

to study delamination, wrinkling, or pattern formation. Recent focus has been given to the buckling of beams

deposited on liquid baths, and in the regime where the beam is soft compared to hydrostatic forces the wrinkling

pattern observed at buckling has been shown to lead to localization of the deformation when the confinement is

increased. Here we perform a global study of the general case where the intensity of the liquid foundation and

the confinement are both varied. We compute equilibrium and stability of the solutions and unravel secondary

bifurcations that play a major role in the route to localization. Moreover we classify the post-buckling solutions

and shed light on the mechanism leading to localization. Finally, using an asymptotic technique imported form

fluid mechanics, we derive an approximated analytical solution to the problem.

1 Introduction

If submitted to a large enough axial load a slender elastic beam experiences a buckling instability, as first described
by Euler more than two centuries ago. The length L of the beam determines both the buckling threshold (the critical
force scales as L−2) and the shape of the buckling mode (the lateral deflection scales with L). Whenever the beam
rests on a compliant substrate, buckling involves a competition between the bending of the beam and the deformation
of the foundation. The former tends to select large wavelengths for the buckling mode, as in Euler problem, while
the latter tends to select small wavelengths. This leads to the definition of another characteristic length-scale in the
problem λ ∼ (B/K)1/4, with B the bending stiffness of the beam and K the rigidity of the foundation [1, 2]. If L ≫ λ
this new length-scale determines both the threshold for the instability, which now scales as λ−2, and the shape of the
buckling mode. In the post-buckling regime the shape of the buckled beam is first sinusoidal, as predicted by the
linear stability analysis, but then a rich scenario opens as nonlinearities come into play.

The paradigm of the beam resting on an elastic foundation has been used to model and investigate many phenomena.
Previous studies include for example the appearance of wrinkles in the human skin [2, 3], large folds or creases in
membranes [4, 5], or delamination of thin films [6, 7]. Problems arising in very different physical contexts and with
length scales going from microscopic (Langmuir monolayers [8], lipid membranes [9], bacterial pellicles [10], hydrogels
[11]) to macroscopic (foams [12], metallic thin films [13], particle rafts on a liquid [14]) seem to be amenable to models
involving beams on elastic foundations. Consequently understanding and predicting the post-buckling behavior of such
beams and membranes could have a wide impact on physics and biology, together with technological applications. For
example fabrication of micro-lens and stretchable electronics based on wrinkling and creasing have recently been
proposed [15, 16]. The variety of post-buckling responses depends on the mechanical properties of both the beam and
the foundation [2, 17]. Many references exist on this classical problem of structural mechanics, see e.g. the works by
Potier-Ferry [18] or Hunt et al. [19] in which the dynamical phase space analogy has proven most useful [20]. Recent
studies on thin strips buckling either above elastomer [21] or liquid [4] foundations clearly show that, depending on the
substrate, different evolutions take place. In the first case the sinusoidal buckling pattern has been shown to exhibit
secondary, period doubling, bifurcations eventually leading to spatial chaos, while in the case of a liquid substrate the
sinusoidal buckling pattern has been shown to localize into a well-defined fold, see [22] for a review. This manifestation
of a localized buckling pattern has been explained in the case of an infinitely long beam (L → ∞) [23] where the shape
of the beam is associated to an homoclinic orbit in the corresponding phase space [24]. In this homoclinic case,
closed-form solutions have been found [25, 26, 27].
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Figure 1: An elastic beam buckling on a liquid foundation under the action of an external force P . The beam is
clamped at both ends. The deformation of the beam is described by the angle θ(S) between the tangent to the beam
and the x-axis, where S ∈ [0, L] is the arc-length along the beam.

In this paper we focus on the finite-length case of a beam on a liquid foundation and we show that, as for other
elastic beams problems [28], the response of the finite-length elastic structure is different and more complex than that
with infinite lengths. We describe both the buckling instability and the post-buckling regime, and show the existence
of secondary bifurcations. These secondary bifurcations induce shape changes in the system as it deforms to a fold,
giving it a mode branching route to localization.

The paper is organized as follows. In section 2 we present the problem and derive equilibrium equations. In section
3 we perform a linear stability analysis of the straight beam and predict the buckling threshold and modes. In section
4 we describe the non-linear response of the system in terms of equilibrium solutions and their stability, and we show
that the system exhibits mode branching. In section 5 we perform an asymptotic expansion analysis and give an
analytical approximated solution.

2 The floating elastica problem

We consider an elastic beam resting on a liquid surface and we study its equilibrium configurations under the action
of a compressive load. As indicated in Fig. 1, we consider planar deformations of the beam, x and y denoting the
horizontal and vertical directions respectively. The density of the liquid is noted ρ and the acceleration of gravity g.
The beam has length L, width w, thickness e, and density ρs. We work under the slender (L ≫ w ∼ e) Euler-Bernoulli
hypotheses where the beam is considered inextensible and unshearable. Configurations are thus fully described by
the position and orientation of the centerline. We use the arc length S ∈ (0, L) and note θ(S) the angle between the
tangent of the beam and the horizontal. Force and torque balance for the internal force N(S) = Nx(S) ex + Ny(S) ey

and the internal moment M(S) = M(S) ez yield

N ′

x(S) = +f(S) sin θ(S) (1a)

N ′

y(S) = −f(S) cos θ(S) (1b)

M ′(S) = Nx(S) sin θ(S) − Ny(S) cos θ(S) (1c)

These equations are written per unit width. Here, ()′ = d()/dS denotes the derivative with respect to the arc-length
S and f(S) is the distributed force along the beam. As we neglect the weight of the floating beam, f(S) is simply
given by the hydrostatic pressure in the liquid:

f(S) = −ρg Y (S) . (2)
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Kinematics and bending constitutive relation yield three supplementary equations between the position (X(S), Y (S))
of the beam, its orientation θ(S), and the bending moment M(S):

X ′(S) = cos θ(S) (3a)

Y ′(S) = sin θ(S) (3b)

Bθ′(S) = M(S) , (3c)

where B = E e3 w/12 is the bending stiffness, E being the Young modulus. Buckling is the consequence of the action
of the horizontal compressive load P = Nx(L) = −Nx(0), and we monitor the post-buckled configurations with the
end displacement ∆ = L − [X(L) − X(0)]. Introducing dimensionless quantities

s =
S

L
; x =

X

L
; y =

Y

L
; δ =

∆

L
; n =

NL2

B
; p =

PL2

B
; m =

ML

B
(4)

we rewrite the full set of equilibrium equations (1)-(3) as

n′

x(s) = −η4 y sin θ , n′

y(s) = +η4 y cos θ(s) (5a)

m′(s) = nx sin θ − ny cos θ , θ′(s) = m (5b)

x′(s) = cos θ , y′(s) = sin θ (5c)

where we have introduced the dimensionless parameter η = L/Leh. The elasto-hydrostatic length Leh = (B/ρgw)1/4

compares the bending stiffness of the beam to the weight of the liquid [4, 29]. Here η is a measure of the intensity
of the liquid foundation on which the beam rests. The case η = 0 corresponds to classical Euler buckling [30] while
the case η → ∞ corresponds to either an infinitely long beam or a infinitely heavy liquid, and has been studied in
[23, 25, 26, 27]. In this case, the solution is called homoclinic since in the phase space of Eq. (7) its trajectory describes
an homoclinic connection to the origin.

We consider rigid boundary conditions where the beam position and orientation are prescribed at both extremities:

x(0) = 0 ; y(0) = 0 ; θ(0) = 0

x(1) = 1−δ ; y(1) = 0 ; θ(1) = 0 .
(6)

We will compute equilibrium and stability of the system for increasing values of the imposed horizontal displacement
δ. We remark that it is possible to recast the system of equations (5) into one equation for the variable θ(s) [25]:

θ′′′′(s) +
3

2
θ′′(s) θ′(s)2 −H θ′′(s) + η4 sin θ(s) = 0 (7)

where H = 1

2
m2(s)+nx(s) cos θ(s)+ny(s) sin θ(s) is the Hamiltonian, a conserved quantity along the beam: dH/ds ≡

0. Its value is then evaluated at, for example, s = 0: H = 1

2
θ′

2
(0) − p.

3 Buckling threshold and modes

3.1 Linear analysis and buckling threshold

For small deflections, equation (7) is linearized to

θ′′′′ + p θ′′ + η4θ = 0 , (8)

which is equivalent to:
y′′′′ + p y′′ + η4y = 0 . (9)

We seek for solutions in the form y ∝ exp(iks). The characteristic equation is:

k4 − p k2 + η4 = 0 (10)
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Figure 2: Buckling wavelengths and modes for the floating elastica. Red and blue curves are solutions of equation
(15) and correspond to symmetric and anti-symmetric buckling modes, respectively. The mode selected at buckling
belong to the continuous thick line (partly red, partly blue). The hyperboles k− = η2/k+ are also shown for several
value of η. Shaded regions correspond to forbidden value of k− and k+. Mode shapes are given on the right, together
with the label i corresponding to the number of zeros of the function θ(s) for 0 < s < 1.

and has four solutions: k = ±k+ and k = ±k−, with

k+ =

√

p/2 +
√

(p/2)2 − η4 ; k− =

√

p/2 −
√

(p/2)2 − η4 . (11)

We note that k+k− = η2 and k2
+ + k2

− = p. The buckling mode of the beam takes the form

y(s) = A sin k+s + B cos k+s + C sin k−s + D cos k−s (12)

where the coefficients A, B, C and D are specified via the boundary conditions. At the left end, clamped boundary
conditions y(0) = y′(0) = 0 simply give D = −B and C = −A k+/k−, while at the right end boundary conditions
y(1) = y′(1) = 0 lead to an homogeneous system for A and B:

(

α11 α12

α21 α22

)(

A
B

)

=

(

0
0

)

(13)

with:
α11 = k− sin k+ − k+ sin k− ; α12 = k− cos k+ − k− cos k−

α21 = k+ cos k+ − k+ cos k+ ; α22 = −k+ sin k+ + k− sin k− .
(14)

As usual in buckling analysis, the condition for system (13) to have a non-zero solution is that the determinant
α11 α22 − α12 α21 takes the zero value. This gives a relation between the critical values of k+ and k−:

2k+k−(cos k+ cos k− − 1) + (k2
+ + k2

−) sin k+ sin k− = 0 . (15)

Solutions of this equation is a discrete family of curves in the (k+, k−) plane, see Fig. 2. As we consider positive values
of k+ and k− equation (15) implies that sin k+ sin k− ≥ 0, which forbid the shaded regions in Fig. 2. Taking (11) into
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account, (15) is eventually an equation for the buckling threshold p as a function of η. The case η = 0 corresponds
to the planar elastica, where k− = 0. The mode selected at buckling is then k+ = 2π and p = 4π2. For η > 0,
approximate expressions for this mode can be found:

k− = π [f(η) − 1] + (1/2) arccos

[

1 − 1 − cos(2πf(η))

f2(η)

]

(16)

k+ = 2π + π [f(η) − 1] − (1/2) arccos

[

1 − 1 − cos(2πf(η))

f2(η)

]

(17)

with f(η) =
√

1 + (η/π)2. This corresponds to the left-most curve in Fig. 2. As η ≫ 1, the buckling threshold is
approximated by p = 4π2 + 2η2, and as η → ∞, we have p → 2η2. Introducing the rescaled load p̄ = p/η2 we recover
the result p̄ = 2 for an infinite long beam [23, 25].

3.2 Buckling modes

Once the coefficients A, B, C and D are specified, the buckling mode writes:

y(s) = (k− sin k+ − k+ sin k−)(cos k+s − cos k−s) − (cos k+ − cos k−)(k− sin k+s − k+ sin k−s) , (18)

and we see it is a quasiperiodic function with two wavelengths 2π/k+ and 2π/k−. In order to analyze which mode is
selected at buckling, we show in Fig. 2 the zeros of Eq. (15) in the (k+, k−) plane. Red curves represent symmetric
buckling modes and blue curves represent antisymmetric buckling modes. By symmetric (respectively antisymmetric)
we mean that the function y(σ = s−1/2) is even (resp. odd) with regard to σ. We also show the curves corresponding
to constant values of η: these curves are the hyperboles k− = η2/k+. For any given value of η, a discrete family of
buckling modes exists, corresponding to the points at which the hyperbole intersects red and blue curves. Among
all these modes, the mode selected at buckling is situated on the left-most curve in the figure, designated with a
continuous thick line. All the other curves correspond to unstable modes and are plotted with dashed lines. Note
that the modes corresponding to η = 0 (Euler buckling) are situated along the degenerated hyperbole k− = 0 (the
horizontal axis). Only in this special case the buckling mode is a single-periodic function, with wavelength 2π/k+ = 1.

We now focus our attention on the first pair of curves (plotted with thick lines in Fig. 2). It appears that these
two curves continuously cross each other, at points where k± are multiple of π. The mode selected at buckling always
belongs to one of these two curves and may be symmetric or antisymmetric, depending on the value of η. For instance,
it is symmetric for η < 5.44 and becomes antisymmetric as η > 5.44.

Finally, if we label the modes with the number i of zeros of the function θ(s) for 0 < s < 1, we have that at each
switching point the mode which becomes unstable converts itself from a n-mode to a (n + 2)-mode. For instance, at
η = 7 the mode selected at buckling is an i = 2 antisymmetric mode, while the second (unstable) mode is a i = 3
symmetric mode. At η = 10, the mode selected at buckling is a i = 3 symmetric mode and the second mode is an
i = 4 antisymmetric mode. Note that modes belonging to the other pairs of curves in Fig. 2 always have higher i
labels than those on the first pair, and are always unstable.

3.3 Switching points

We call switching points the intersections of the first pair of curves in Fig. 2. These points are such that k− = nπ and
k+ = (n + 2)π, with n > 0 being an integer. From (10) and (11) we have η = π(n2 + 2n)1/2 and p = 2π2(n2 + 2n + 2).
For example the first switching point, n = 1, has η =

√
3π ≃ 5.44 and p = 10π2. Values for the first six switching

points are given in Fig. 2. Since at any switching point k+ and k− are multiples of π, all the α coefficients appearing
in Eq. (13) are zero. Therefore the boundary conditions at s = 1 are automatically satisfied and there is no condition
on the coefficients A and B, which can be chosen arbitrarily. Consequently at each switching point the selected
mode at buckling is not unique and there is rather a continuous family of modes. Symmetric, antisymmetric, and
non-symmetric solutions belong to this family, and it is not possible to determine a priori which one is selected.
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Figure 3: Post-buckling paths for (a)(d) η = 2, (b)(e) η = 7, and (c)(f) η = 10. The compression p and vertical
deflection ym = y (s = 1/2) are plotted as function of the imposed displacement δ. Scaled variables p̄ = p/η2 and
δ̄ = δη are used for comparison with the infinite length case. Continuous (respectively dashed) curves correspond
to stable (resp. unstable) solutions. Red (respectively blue) curves correspond to symmetric (resp. anti-symmetric)
solutions. Green curves correspond to connection paths, where solutions have no symmetry. Shaded parts of the paths
correspond to solutions where self-crossing occurs.
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Figure 4: Post-buckling paths for η = 5.43 (left), η = π
√

3 (middle), and η = 5.45 (right). A connection branch
appears at small values of δ as the buckling modes switch.

4 Nonlinear post-buckling analysis

4.1 Equilibrium solutions

We now analyze the post-buckling regime by numerically solving the non-linear system of equilibrium equations (5)-
(6). Results are obtained using a continuation algorithm, starting from points at the buckling threshold and following
the equilibrium into the post-buckling domain. We plot in Fig. 3 the continuation branches for three values η = 2, 7
and 10. For η = 2 (see Fig. 3 a and d), the antisymmetric mode bifurcates at p = 81.1 (p̄ = 20.3), but the symmetric
mode buckles for a lower compression p = 40.7 (p̄ = 10.2) and is therefore selected. As the displacement δ increases,
these two modes have separated evolutions until δ ≃ 1. Here, a new branch appears and connects the symmetric to
the antisymmetric mode. Along this branch, the solutions are non-symmetric (see inset in Fig. 3 d), and stable. Note
that this connection already exists for η = 0 in the planar elastica case [31]. For η = 7 (see Fig. 3 b and e) symmetrical
and anti-symmetrical modes both bifurcates sub-critically. Moreover, the anti-symmetrical mode is now the selected
mode at buckling (p = 128.9, p̄ = 2.6). Two connections exist between the symmetric and antisymmetric branches,
for δ ∼ 0.4 and the other for δ ∼ 0.9. Although the second one (δ ∼ 0.9) may just be seen as an evolution of the
connection already present for η = 2, the first one (δ ∼ 0.4) is new. Here also the solutions along the connections are
non-symmetric (see inset in Fig. 3 e), and stable. For η = 10, buckling modes are reversed again, the symmetrical
being selected. A third connection now exists between the principal branches (see Fig. 3 c and f) made of stable,
non-symmetrical solutions. Note that in all this analysis we have pushed the continuation beyond the self-contact of
the beam, thus exploring non-physical configurations. In Fig. 3 regions corresponding to self-crossing configurations
appear shaded.

In Fig. 4 we illustrate the birth of a connection as η crosses π
√

3, precisely when the first switching of buckling
mode occurs. In Fig. 4 left (for η . π

√
3) there is no secondary bifurcation along the two equilibrium paths, whereas

in Fig. 4 right (for η & π
√

3) a connection branch clearly appears for small values of δ. This connection branch is
born at η = π

√
3 (Fig. 4, middle) as the two buckling modes switch. In general, we observe that for each inversion of

the buckling modes, a new connection branch appears in the post-buckling domain. Apart from the first one, already
present in the planar elastica case, these connections are then directly related to switching points. More precisely, the
number of connection branches is given by the largest integer n such that π(n2 − 1)1/2 ≤ η. Connections between
branches are an example of secondary bifurcation. This phenomenon has already been reported in the case of buckling
on elastic foundations, and it has been demonstrated that the origin of these secondary bifurcations is the switching
point at the buckling itself [32, 33, 34]. As η becomes larger more connections appear and each of them spans over a
small δ interval. Eventually, as η → ∞, an infinite number of connections exists, each for a precise δ value. In this
limit, the symmetric and anti-symmetric paths are continuously connected, as reported in [26, 27].

4.2 Stability of the solutions

Due to the presence of secondary bifurcations in the post-buckling domain, a careful analysis of the stability of the
solutions is needed in order to determine which path(s) is (are) followed as the displacement δ is increased. The
stability analysis consists in computing the small amplitude vibrations of the system around its equilibrium solution.
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connection paths are always stable.

We first recall non-dimensional dynamic Kirchhoff equations:

x′(s, t) = cos θ(s, t) (19a)

y′(s, t) = sin θ(s, t) (19b)

θ′(s, t) = m(s, t) (19c)

m′(s, t) = nx(s, t) sin θ(s, t) − ny(s, t) cos θ(s, t) + β θ̈(s, t) (19d)

n′

x(s, t) = −η4y(s, t) sin θ(s, t) + ẍ(s, t) (19e)

n′

y(s, t) = η4y(s, t) cos θ(s, t) + ÿ(s, t) (19f)

where ()′ = d/ds is the derivative with respect to the arc-length s and (̇) = d/dt is the derivative with respect to time
t. The physical time T has been rescaled as t = T/

√

ρseL4/B, where ρs is the density of the beam. The parameter
β = e2/(12L2) is the slenderness ratio of the beam, and since β ≪ 1 we neglect the term β θ̈(s, t) in the following. We
look at the evolution of a small perturbations around the equilibrium using the decomposition

a(s, t) = ae(s) + ǫâ(s) exp(iωt) (20)

for all the variables in (19), i.e. a = x, y, . . ., ny. The quantity ae(s) stands for the equilibrium solution and â(s) is
the linear vibration mode around the (nonlinear) equilibrium. Injecting (20) in (19), making use of (5), and keeping
only the first order in ǫ yields the system of equations for the vibration modes

x̂′ = −θ̂ sin θe (21a)

ŷ′ = θ̂ cos θe (21b)

θ̂′ = m̂ (21c)

m̂′ = nx,e cos θ̂ + n̂x sin θe + ny,e sin θ̂ − n̂y cos θe (21d)

n̂′

x = −η4(ŷ sin θe + ye cos θeθ̂) − ω2x̂ (21e)

n̂′

y = −η4(ŷ cos θe − ye sin θeθ̂) − ω2ŷ (21f)

These equations have to be solved with the boundary conditions:

θ̂(0) = ŷ(0) = x̂(0) = θ̂(1) = ŷ(1) = x̂(1) = 0 . (22)
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System (21) can be seen as a generalized eigenvalue problem with eigenvalues ω2. For each equilibrium solution,
along each bifurcation path, we compute the lowest eigenvalues ω2. The equilibrium solution is said to be stable
if ω2 > 0 and unstable if ω2 < 0. In Fig. 3 plain (respectively dotted) curves correspond to paths of stable (resp.
unstable) solutions. In Fig. 5 we show ω⋆ = sign(ω2)

√

|ω2| as a function of δ̄ for the case η = 10. Stability results
announced in Section 4.1 (see Fig. 3 c-f) are here clearly demonstrated: at buckling the symmetric solution (red
curve) is stable (positive ω⋆) and the anti-symmetric one (blue curve) is unstable (negative ω⋆). As δ̄ is increased
and reaches δ̄ ≃ 1.7, the symmetric solution becomes unstable. The stable solution is now the non-symmetric one
(green curve). At δ̄ ≃ 2.5 another bifurcation arrises and the stable solution is now the anti-symmetric one. The next
bifurcation at δ̄ ≃ 5.1 sees the non-symmetric solution becoming stable again. This solution eventually hands over
the baton to symmetric solution at δ̄ ≃ 6.1, and so on. This scenario of alternating stability between symmetric and
anti-symmetric solutions with non-symmetric solutions in between is a general feature and exists for all η. Note that
connection branches of non symmetric solutions are always stable.

We finally remark that we do not consider the inertia of the liquid. The computed frequencies are then not accurate
and we do not detect instabilities arising from the liquid phase. Nevertheless in the regime studied here we believe
the stability of the system is correctly predicted.

4.3 Mode branching and localization

In the infinite length (or infinitely heavy liquid) case, it has been shown that as the axial displacement δ is increased
the deformation of the beam becomes localized into a narrow region [4, 23, 25]. In the present finite-length case,
localization also happen and we discuss here the route from buckling to localized solutions. The connection branches,
which link the symmetric and antisymmetric branches, are always stable. This phenomenon has been called mode
branching and is typically observed with stiffening elastic foundations [34]. Here mode branching lies at the heart of
the localization process as it is through the connecting branches that the deformation localizes into a fold. This is
true in particular for large values of η, where many secondary bifurcations (and hence connection branches) arises. To
illustrate this, we display in Fig. 6 the bifurcation paths for η = 22 together with several beam shapes for increasing
values of the displacement δ. Qualitatively, we observe that the smooth sinusoidal pattern (configuration A) first
localizes into a well defined symmetric fold (configuration E), then into an anti-symmetric fold (configuration G),
and eventually to self-crossing solutions (configuration I). The non-symmetric shapes (configurations B, D, F and H)
involved in the localization process are also represented.

As we did for the buckling modes, we label the post-buckling configurations with an integer i equal to the number
of points for which θ(s) = 0 for 0 < s < 1. The label of the equilibrium solutions, also displayed in Fig. 6, decreases
as the displacement δ increases. More precisely the label decreases by one unit each time the solution leaves a non-
symmetric branch. The reason for this lies in the fact that the ending configuration of every connection branch has the
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Figure 7: Phase diagram for the floating elastica. Depending on the displacement δ̄ and the strength η of the liquid
foundation the stable configuration of the system might be symmetrical (red regions), anti-symmetrical (blue regions),
or non-symmetrical (green regions). The label i, corresponding to the number of points along the beam where the
angle θ(s) is zero, is also given. Dashed curves correspond to the moment where the beam first self-contacts, with
configurations with higher δ̄ exhibiting self-crossing.

special characteristic that the internal moment vanishes at the extremities of the beam m(0) = m(1) = 0. Recalling
that m(s) = θ′(s), we see that for this ending configuration the function θ(s) has a double root at s = 0 and s = 1.
For the following configuration (on the next symmetrical or anti-symmetrical branch) the function θ(s) will lose one
root, that is the label i will decrease by one unit. In a parallel manner the starting configuration of every connection
branch has the special characteristic that the vertical component of the internal force vanishes at the extremities of
the beam: ny(0) = ny(1) = 0. We refer to these starting and ending configurations as N and M points respectively,
and we infer from the equilibrium equations (5) that for M points all the odd derivatives of θ(s) vanish at both ends,
while for N points all the even derivatives of θ(s) vanish at both ends.

Finally we summarize the post-buckling response of the beam in a phase diagram plotted in the plane (δ̄, η), see
Fig. 7. In each region of the plane, the stable configuration is given, together with its label i. The regions are separated
by M and N curves, and on the vertical δ̄ = 0 axis the M and N curves emerge two by two from the switching points
described in Section 3. The limit where self-contact first occurs is also drawn.

5 Approximate solution for large η

5.1 Successive complementary expansion method

In the case of an infinitely long beam (or a infinitely heavy liquid), η → ∞, the solution can be written in closed form
[25, 26, 27]:

θ0(s) = 4 arctan

[

c

k

sin
(

kη
[

s − 1

2
+ φ

])

cosh
(

cη
[

s − 1

2

])

]

(23a)

y0(s) = −4ck

η

k cos
(

kη
[

s − 1

2
+ φ

])

cosh
(

cη
[

s − 1

2

])

+ c sin
(

kη
[

s − 1

2
+ φ

])

sinh
(

cη
[

s − 1

2

])

k2 cosh2
(

cη
[

s − 1

2

])

+ c2 sin2
(

kη
[

s − 1

2
+ φ

]) (23b)

where c = (1/2)
√

2 − p̄, k = (1/2)
√

2 + p̄, and p̄ = p/η2. The parameter φ allows us to treat symmetric (φ = 0)
and anti-symmetric (φ = π/(2kη)) solutions with the same formula [26]. We call homoclinic this solution since θ0(s)
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Figure 8: The deflection y(s) for a symmetrical solution for the left half of the beam: comparison between (i) the
numerical resolution (red dashed curve), (ii) the homoclinic solution given by (23) (green curve), and (iii) the SCE
approximation (24) (black curve), for δ̄ = 4 and η = 10 (left), η = 15 (right). The SCE approximation uniformly
converges to the numerical solution as η grows.

and its derivatives vanish as s → ±∞. We note that even for moderate η the homoclinic solution is not far from the
numerical solution, except in two small regions near the boundaries s = 0 and s = 1, see Fig. 8. The mismatch stems
from the fact that the homoclinic solution does not satisfy the boundary conditions. As η increases we observe that
the numerical solution becomes closer to the homoclinic solution, and that the size of the mismatch region decreases
as 1/η. All the ingredients for a boundary layer approach are then present. Classical matched asymptotic expansions
(MAE) would require to find approximated solutions for so-called outer and inner regions and to matche them in a
intermediate region. Then an approximation valid in the entire domain would have to be found, this last step being
non obvious (a lucky guess sometimes makes the trick). A powerful alternative is the so-called method of successive
complementary expansions (SCE) [35], which we employ here. The two main advantages of the SCE method is that no
matching is required and that a uniformly valid approximation is automatically obtained. For comparison purposes
we solve the problem using the MAE method in A. Here we propose a solution of the form:

θ(s) =θ0(s) + ǫ θ1(s̃) + . . . (24a)

y(s) =y0(s) + ǫ2y1(s̃) + . . . (24b)

where s = ǫ s̃ and ǫ = 1/η, and we inject it into the equilibrium equation (7). Writing (̇) = d()/ds̃ and noting that
θ̇1 = ǫ θ′1, we obtain

θ′′′′0 +

....
θ1

ǫ3
+

3

2

(

θ′′0 +
θ̈1

ǫ

)

(

θ′0 + θ̇1

)2

−H
(

θ′′0 +
θ̈1

ǫ

)

+ η4 sin (θ0 + ǫθ1) = 0 (25)

with H = −p + 1

2
[θ′0(0) + θ̇1(0)]2. As p ∼ η2 (see Section 3, or [25]) and anticipating the scaling θ′0(0) + θ̇1(0) ∼ e−η

(see Eq. (31)), we write H = −p. Recalling that θ0(s) satisfies θ′′′′0 + 3

2
θ′′0θ′0

2
+ p θ′′0 + η4 sin θ0 = 0, we find that the

leading, ǫ−3, order of (25) is ....
θ1 + p̄ θ̈1 + θ1 cos θ0 = 0 (26)

where p̄ = ǫ2p. Note that the solution θ0(s) depends on ǫ. We nevertheless want an equation for θ1 that is independent
of ǫ and we consequently set cos θ0 = 1 in (26)2. We then look for a solution θ1(s̃) = ẏ1(s̃) with

y1(s̃) = α sinh(cs̃) sin(ks̃) + β sinh(cs̃) cos(ks̃) + γ cosh(cs̃) sin(ks̃) + ξ cosh(cs̃) cos(ks̃) (27)

Two of the unknown coefficients (α, β, γ, ξ) are found using the boundary conditions at the left end, y(0) = θ(0) = 0:

ξ = −η2 y0(0) (28)

cβ + kγ = −η θ0(0) (29)

2this is a simplification that is not always performed in the SCE method.
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Figure 9: Curves M and N separating the regions of the phase diagram of Fig. 7. Continuous curves, redrawn from
Fig. 7, are obtained numerically while dashed curves are plotted using the asymptotic results (33) and (34).

The other two coefficients are found using the symmetry conditions at s = 1/2. For symmetric (respectively anti-
symmetric) configurations we have θ(1/2) = θ′′(1/2) = 0 (resp. y(1/2) = θ′(1/2) = 0). As the homoclinic solution (23)
automatically satisfies these symmetry conditions we simply require θ1 = θ′′1 = 0 (symmetric solution), or y1 = θ′1 = 0,
at s̃ = η/2. We use the approximations cosh(cη/2) ≃ sinh(cη/2) ≃ (1/2) ecη/2 as η ≫ 1 and eventually arrive at:

α = 8 cη

[

1 + c2

k2
sin (kη [φ − 1/2]) − c

k
cos (kη [φ − 1/2])

]

e−cη/2 (30a)

β = 8 cη
[ c

k
sin (kη [φ − 1/2]) − cos (kη [φ − 1/2])

]

e−cη/2 (30b)

γ = −α (30c)

ξ = −β (30d)

As soon as η & 15, the asymptotic expansion (24) with (23), (27), and (30) uniformly matches the numerical solution,
as shown in Fig. 8.

5.2 Loci of points M and N

We look for an approximation for the loci of points M and N introduced in Section 4.3. These points are defined as
θ′(0) = 0 and θ′′(0) = 0 respectively. We use the asymptotic expansion to calculate

θ′(0) ≃ 32 c2η

k
e−cη/2 sin (kη [φ − 1/2]) (31)

θ′′(0) ≃ 32 c2η2

k
e−cη/2 [c sin (kη [φ − 1/2]) − k cos (kη [φ − 1/2])] (32)

and therefore find that

M : η ≃ 2iπ + χπ

k
, i = 1, 2, 3, . . . (33)

N : η ≃ 2(i + 1)π − χπ − 2 arctan (k/c)

k
, i = 1, 2, 3, . . . (34)
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with χ = 0 (respectively χ = 1) for symmetric (resp. anti-symmetric) configurations. As k = [1−(δ̄/8)2]
1

2 and c = δ̄/8
[25], (33) and (34) define curves in the plane (δ̄, η). In Fig. 9 we plot these curves (dashed lines) and compare them
to those obtained numerically (continuous line) and already displayed in Fig. 7. We see that a very good agreement is
obtained for as soon as η > 10. The asymptotic expansion allows us to extend the numerical predictions far above the
limits of the numerical algorithms. As a matter of fact, it is difficult to perform numerical continuation for η > 30,
while the asymptotic expansion is more and more accurate as η grows.

Note that the case of non-symmetric solutions remains to be treated. In this case a supplementary shifting
parameter is needed for the homoclinic solution θ0 [27] and an expansion near s = 1 has to be added to θ1.

6 Conclusion

In this paper we have studied the equilibrium shapes of a finite-length elastic beam buckling on a liquid foundation
and we have computed the bifurcation paths of equilibrium solutions in the post-buckling regime. In this problem the
buckling mode can be either symmetric or anti-symmetric, depending on the length of the beam. We have found that
the switching from symmetric to anti-symmetric (and vice versa) buckling modes triggers the appearance of secondary
bifurcations in the post-buckling domain, where special branches connect symmetric and anti-symmetric equilibrium
paths. The number of connection branches increases with the length of beam. All the solutions along the connection
branches are stable and non-symmetric. Therefore as the confinement rate of the beam is increased we observe an
alternation of symmetric and anti-symmetric shapes, connected by non-symmetric transitions. This phenomenon is
called mode branching and is typical of beam buckling on stiffening foundations. Moreover, as the function θ(s) loses
one zero at every passage through a connection branches, the sinusoidal pattern observed at buckling localizes into a
well-defined fold, leaving the beam flat elsewhere. Secondary bifurcations are an essential ingredient in this route to
localization. Note that localization is a typical feature of beam buckling on softening foundations. It thus appears
that the liquid foundation combines post-buckling responses of both stiffening and softening foundations. The number
of non-symmetric, stable regions clearly increases with η (Fig. 7). Eventually, this leads to the continuous symmetry
of the solution for the homoclinic (η → ∞) case. While no clear indication exists on the stability of the non-symmetric
profiles of the homoclinic solution, we have here demonstrated that non-symmetric solutions are stable in the finite η
case.
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A Match Asymptotic Expansion for the case η ≫ 1

We here show the resolution of the problem of Section 5 using the method of matched asymptotic expansions (MAE).
For simplicity we only treat the case of a symmetrical solution and study the solution in s ∈ (0, 1/2). We identify two
regions: (i) an inner region s ∈ (0, ǫs1) where θ(s) is small, and (ii) an outer region s ∈ (ǫs2, 1/2) where θ(s) = O(1),
with s1 and s2 being O(1). The small variable ǫ is defined as ǫ = 1/η. In each region θ(s) has to fulfill approximatively
the differential equation (7) but with different boundary conditions, that is the function θ(s) will be approximated by
different expansions which will have to match in the intermediate region s ∼ ǫs1 ∼ ǫs2. As in Section 5 we use the
approximation H ≃ −p.

The outer region

Here we set θ(s) ≃ θ0(s), given by (23a) with φ = 0. Symmetry conditions at s = 1/2, θ(1/2) = θ′′(1/2) = 0, are
automatically fulfilled. Anticipating the matching, we develop θ0(s) for s → 0, using the variable s̃ = ηs. As θ0(s)
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Figure 10: The deflection y(s) for the same symmetrical solutions as in Fig. 8: comparison between (i) the numerical
resolution (red dashed curve), (ii) the outer solution (23) (green curve), and (iii) the inner soution (37) (black curve),
for δ̄ = 4 and η = 10 (left), η = 15 (right). The outer solution approximates the numerical solution in the region
s ∼ 0.5 but fails to do so in the region s ∼ 0. Respectively the inner solution approximates the numerical solution in
the region s ∼ 0 but fails to do so in the region s ∼ 0.5.

becomes small, we have θ0(s) ≃ 4 (c/k) sech(cs̃ − cη/2) sin(ks̃ − kη/2). Using sech(−X) ≃ 2 e−X for X ≫ 1 and
developing the sinus, we arrive at

θouter ≃
ecs̃

2

(

A sin ks̃ + B cos ks̃
)

(35)

with A = 16 (c/k) cos(kη/2) e−cη/2 and B = −16 (c/k) sin(kη/2) e−cη/2.

The inner region

Here θ(s) is small and found to be O(ǫ). We set θ(s) ≃ ǫθ1(s) and we linearize Eq. (7) to θ′′′′1 + p θ′′1 + η4θ1 = 0. Using
the magnification s̃ = s/ǫ, as defined previously, we arrive at an equation where ǫ no longer appears:

....
θ1 + p̄ θ̈1 + θ1 = 0 (36)

where, as before, p̄ = ǫ2 p and (̇) = d()/ds̃. We then look for the solution θ1(s̃) = ẏ1(s̃) with

y1(s̃) = α1 sinh(cs̃) sin(ks̃) + β1 sinh(cs̃) cos(ks̃) + γ1 cosh(cs̃) sin(ks̃) + ξ1 cosh(cs̃) cos(ks̃) (37)

and y(s) ≃ ǫ2 y1(s). Note that the coefficients (α1, β1, γ1, ξ1) will be different from the coefficients (α, β, γ, ξ) found in
Section 5. The boundary conditions θ1(0) = 0 and y1(0) = 0 impose γ1 = −cβ1/k and ξ1 = 0, yielding:

θ1(s̃) = cα1 cosh(cs̃) sin(ks̃) + kα1 sinh(cs̃) cos(ks̃) − (β1/k) sinh(cs̃) sin(ks̃) (38)

The two remaining coefficients α1 and β1 are to be found with the matching procedure.

Matching the inner and outer solutions

We develop (38) for large s̃ using cosh(X) ≃ sinh(X) ≃ (1/2) eX when X ≫ 1 and find:

θinner ≃
ecs̃

2

([

cα1 −
β1

k

]

sin ks̃ + kα1 cos ks̃

)

(39)

Identifying (35) and (39) we find

α1 = −16 η (c/k2) e−cη/2 sin(kη/2) (40)

β1 = −16 η (c/k) e−cη/2 [k cos(kη/2) + c sin(kη/2)] (41)
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We first remark that, as in any boundary layer approach, each solution is only valid in its own region, see Fig. 10,
and that a uniformly valid approximation has yet to be found. Nevertheless, as solution (38) is valid near s = 0, we
have approximations to θ′(0) and θ′′(0) that can be compared to those found in Section 5.2. Using θ(s) ≃ ǫθ1(s/ǫ)
and (38), we calculate θ′(0) ≃ 2ckα1 and θ′′(0) ≃ 2cηβ1, which indeed corresponds to (31) et (32).
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