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Various ways to compute the continuous-discrete Extended Kalman Filter Paul Frogerais, Jean-Jacques Bellanger and Lotfi Senhadji

Abstract-The Extended Kalman Filter (EKF) is a very popular tool dealing with state estimation. Its continuousdiscrete version (CD-EKF) estimates the state trajectory of continuous-time nonlinear models, whose internal state is described by a stochastic differential equation and which is observed through a noisy nonlinear form of the sampled state. The prediction step of the CD-EKF leads to solve a differential equation that cannot be generally solved in a closed form. This technical note presents an overview of the numerical methods, including recent works, usually implemented to approximate this filter. Comparisons of theses methods on two different nonlinear models are finally presented. The first one is the Van der Pol oscillator which is widely used as a benchmark. The second one is a neuronal population model. This more original model is used to simulate EEG activity of the cortex. Experiments showed better stability properties of implementations for which the positivity of the prediction matrix is guaranteed.

Index Terms-Extended Kalman filters, Continuousdiscrete filters, Runge-Kutta method, nonlinear models

I. INTRODUCTION

The present study focuses on the way to implement the continuous-discrete Extended Kalman Filter [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] (EKF). This non-linear extension of the Kalman filter turns out pertinent and more appropriate in many circumstances. In fact, EKF is popular in many domains [2] [3] and in some situations it can outperform more sophisticated filters [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF]. Moreover, it is often used in benchmarking when a new filtering approach is proposed [START_REF] Norgaard | New developments in state estimation for nonlinear systems[END_REF] [6] [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estiamtion[END_REF]. To implement this Continuous-Discrete filter (CD-EKF) [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] an intricate design is necessary to avoid instability and ensure good accuracy. Indeed CD-EKF cannot be directly implemented because a system of two ordinary differential equations, called the moment differential equation, must be integrated between two consecutive sampling time instants. Thus, still today researchers propose methods to integrate them efficiently in order to improve its performances [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF] [9] [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF].

In this paper, after a reminder of the Extended Kalman filter in section II, an overview of recent developments in CD-EKF is reported and an original CD-EKF approach is presented and compared with preexisting ones in section III. Two approaches are pointed out. The first one uses deterministic schemes to numerically integrate the moment differential equation in the prediction step of the EKF [8] [4]. The second approach uses stochastic scheme approximation to simulate the continuousdiscrete model with a discrete-discrete one and to apply the discrete-discrete EKF [START_REF] Singer | Continuous-discrete unscented Kalman filtering[END_REF] [START_REF] Wilkie | Numerical methods for stochastic differential equations[END_REF]. Finally in the last section, all these methods are compared experimentally on a Van der Pol oscillator and a neuronal population model [START_REF] Jansen | Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[END_REF] to investigate their accuracy and stability.

II. EXTENDED KALMAN FILTERING (EKF)

A. Discrete-Discrete Extended Kalman Filter Nonlinear models considered here are described by:

X k = f (X k-1 , W k ) (1) Y k = h(X k ) + V k (2) 
where 

W k ∼ N (0, Q w ), V k ∼ N (0, Q v ), k ∈ Z
X k Xk = f ( Xk-1|k-1 , 0)+ F k (X k-1 -Xk-1|k-1 ) + G k W k (3) 
where,

F k = ∂f ∂X k-1 ( Xk-1|k-1 , 0)
and

G k = ∂f ∂W k ( Xk-1|k-1 , 0)
The prediction step of the DD-EKF is then given by:

Xk|k-1 = E[ Xk ] = f ( Xk-1|k-1 , 0) P k|k-1 = E[ Xk XT k ] = F k P k-1|k-1 F T k + G k Q W G T k (4)
The correction step obeys to:

K k = P k|k-1 H T k (H k P k|k-1 H T k + Q v ) -1 Xk|k = Xk|k-1 + K k (Y k -h( Xk|k-1 )) P k|k = P k|k-1 -K k H k P k|k-1 (5) 
where H k corresponds to the linearization of the observation function h(.) around the prediction Xk|k-1 :

H k = ∂h ∂X k ( Xk|k-1 )

B. Continuous-Discrete Extended Kalman Filter

The Markov models evolution considered here will be described by the following nonlinear stochastic differential equation (SDE):

dX = f (X, t)dt + G(t)dβ (6) 
where

X(t) ∈ R Nx , f is a nonlinear function, G(t) is a N x × N w matrix and {β(t), t > 0} is a Brownian process with diffusion matrix Q(t).
The observation follows equation ( 2) with X k = X(t k ) and the sampling period ∆ y = t k -t k-1 is a constant. The prediction step of the continuous-discrete EKF (CD-EKF) consists in integrating from t k-1 to t k a system of two coupled ordinary differential equations [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] called differential moment equation in [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF]:

dm dt = f (m, t) (7) 
dP dt = R(P, t) (8) 
= F (m, t)P + P F (m, t) T + G(t)Q(t)G(t) T with m(t k-1 ) = Xk-1|k-1 and P (t k-1 ) = P k-1|k-1 where F (m, t) = ∂f ∂X (m, t).
Then we obtain the prediction mean Xk|k-1 = m(t k ) and covariance P k|k-1 = P (t k ). The correction step is the same as in the discretediscrete EKF, equation [START_REF] Norgaard | New developments in state estimation for nonlinear systems[END_REF].

III. NUMERICAL APPROXIMATION METHODS

Two methodologies to approximate the CD-EKF in general cases are presented. The first one uses deterministic scheme to integrate the differential moment equation [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estiamtion[END_REF] [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF] and the second one introduces a discretediscrete EKF filter on a discrete version of the stochastic differential equation [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF]. 

I RUNGE-KUTTA OPERATOR RK δ i ON A FUNCTION f : R Nx × R → R Nx Euler (RK δ 1 f )(X, t) = δf (X, t) (i = 1) Heun (RK δ 2 f )(X, t) = δ 2 (K1 + K2) (i = 2) K1 = f (X, t) K2 = f (X + δK1, t + δ) RK4 (RK δ 4 f )(X, t) = δ 6 (K1 + 2K2 + 2K3 + K4) (i = 4) K1 = f (X, t) K2 = f (X + δ 2 K1, t + δ 2 ) K3 = f (X + δ 2 K2, t + δ 2 ) K4 = f (X + δK3, t)

A. Numerical integration of the differential moment equation

A natural way is to use numerical integration scheme [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF] [4] to solve numerically ( 7) and ( 8)

on [t k-1 , t k ]. By introducing intermediate time steps t k,1 < ... < t k,n < ... < t k,α , where t k,1 = t k-1 , t k,α = t k and δ = t k,n -t k,n-1 is a constant, the mean m(t k + nδ)
and the covariance P (t k +nδ) can be recursively approximated by a i-th order explicit Runge-Kutta method:

m k,n = m k,n-1 + (RK δ i f )(m k,n-1 , t k,n-1 ) (9) P k,n = P k,n-1 + (RK δ i R)(P k,n-1 , t k,n-1 )
where RK δ i f (X, t) is a i-th order Runge-Kutta operator defined in the table I.

Unfortunately, for large δ the stability of these schemes is not ensured. Furthermore approximated solution of the covariance can lead to a non-positive semidefinite matrix and this last property is essential to guarantee the convergence of the EKF. That is why in [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF] Mazzoni proposes a Taylor Heun approximation scheme for the mean equation ( 7) and a modified Gauss-Legendre scheme for the covariance equation [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF]. Both schemes are A-stable and consistent with order O(δ 2 ) [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF]. Furthermore the Gauss Legendre scheme was specially developed to ensure the semi-positivity of the prediction error covariance matrix.

To guarantee this semi-positivity, another convenient approach is used in [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF]. The matrix P k|k-1 can also be obtained by integrating from t k-1 to t k the differential equation which governs the fundamental matrix φ corresponding to system (7) after linearization:

dφ(t) dt = F (m, t)φ(t) (10) 
where F = ∂f ∂X , m(t) fulfills equation ( 7) and φ(t k-1 ) = I where I is the identity matrix. The prediction error covariance matrix is then:

P k|k-1 = φ(t k )P k-1|k-1 φ(t k ) T + tk tk-1 φ(t)G(t)QG(t) T φ(t) T dt (11)
Then, classical numerical schemes can be used for the integration of ( 7) and [START_REF] Wilkie | Numerical methods for stochastic differential equations[END_REF] and the integral in the covariance equation ( 11) can be approximated by quadrature. This leads to a semi-positive definite approximation of the prediction covariance matrix. This formulation is used in [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF] where authors introduce a fourth order Runge-Kutta scheme to solve [START_REF] Wilkie | Numerical methods for stochastic differential equations[END_REF] and [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estiamtion[END_REF].

B. Discrete approximation of the SDE

Another original approach, proposed in this section, consists in using Stochastic Runge-Kutta schemes [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)[END_REF] [10] to approximate the process {X(t), t k-1 ≤ t ≤ t k } described by the SDE (6) at discrete instants of time t k,1 < ... < t k,n < ... < t k,α where

t k,0 = t k-1 , t k,α = t k and δ = t k,n -t k,n-1 : X k,n = X k,n-1 + (RK δ i f δ wk,n )(X k,n-1 , t k,n-1 ) (12) X k,n = f δ rki (X k,n-1 , w k,n ) (13) 
with w k,n ∼ N (0, Qδ) and

f δ w (X, t) = f (X, t) + G(t) δ w
Then we can rewrite

X k = X k,α X(t k ) from X k-1 = X k,0 X(t k-1
) and W k = [w k,1 , ..., w k,α ], as:

X k = g δ rki (X k-1 , W k ) (14) 
where g δ rki is a composite function:

g δ rki (X k-1 , W k ) = f δ rki (f δ rki (... f δ rki (f δ rki (X k-1 , w k,1 ), w k,2 )...), w k,α )
Then we obtain a discrete approximation ( 14) of the SDE ( 6) by a i-th order stochastic Runge-Kutta scheme which has the same form as a nonlinear discrete-discrete model, equations ( 1) and ( 2). The DD-EKF needs then to calculate the Jacobian functions GX δ rki = ∂g δ rki ∂X and GW δ rki = ∂g δ rki ∂W . If we know the Jacobian functions of the i-th order stochastic Runge-Kutta scheme F X δ rki = ∂f δ rki ∂X and F w δ rki = ∂f δ rki ∂w (see appendix), they follow the form:

GX δ rki (X k-1 , W k ) = α n=1 F X δ rki (X k,n-1 , w k,n ) GW δ rki (X k-1 , W k ) = [Gw δ rki,1 (X k,0 , w k,1 )| Gw δ rki,2 (X k,1 , w k,2 )|...|Gw δ rki,α (X k,α-1 , w k,α )]
where for j = 1, ..., α -1

Gw δ rki,j (X k,j-1 , w k,j ) = ∂g δ rki ∂w k,j (X k,j-1 , w k,j ) = α-j-1 n=0 F X δ rki (X k,α-n-1 , w k,α-n )F w δ rki (X k,j-1 , w k,j )
and for j = α:

Gw δ rki,α (X k,α-1 , w k,α ) = F w δ rki (X k,α-1 , w k,α )
An interesting property of this second way to compute the CD-EKF is that it ensures the semi-definite positivity of P k|k-1 , see [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF]. In [START_REF] Singer | Continuous-discrete unscented Kalman filtering[END_REF], the author proposes a similar approach but with an ordinary stochastic Euler approximation of the SDE which correspond to let i = 1. The extension to higher order stochastic Runge-Kutta schemes (i = 2, i = 4) proposed here improves stability and precision of the filter. However, explicit Runge-Kutta schemes are not stochastically A-stable [START_REF] Hernandez | A-stability of Runge-Kutta methods for systems with additive noise[END_REF] and a priori can lead to unstable solution for large δ, whereas in [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF] deterministic A-stability is ensured.

C. Performed implementations

From these two main methodologies, five approximated CD-EKF named here MC-THGL [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF], MC-RK4, MF-RK4 [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF], D-EULER [START_REF] Singer | Continuous-discrete unscented Kalman filtering[END_REF] and D-SRK4 (proposed here) have been implemented in the experimental section. These implementations written in C++ programming language use BFilt [START_REF] Frogerais | A C++ library on Bayesian filtering : BFilt[END_REF] which is an open-source library on Bayesian filtering (Kalman, EKF, UKF, particle filter, ...). Main features of these methods are summarized in the table II. MC-RK4 and MC-THGL methods numerically integrate the differential equation of the Mean [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estiamtion[END_REF] and the Covariance prediction error [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF]. A RK4 scheme is used for the first one. Note that this intuitive CD-EKF implementation, proposed in [START_REF] Simon | Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches[END_REF] does not guarantee the positivity of the covariance P k|k-1 when the step size is too large. For the second one [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF], a Taylor Heun approximation is used for the mean and a modified Gauss-Legendre scheme for the covariance. This scheme guarantees A-stability and semi-positivity of P k|k-1 . The MF-RK4 [START_REF] Joseph | A comparison of unscented and extended Kalman filtering for estimating quaternion motion[END_REF] integrates the Mean [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estiamtion[END_REF] and the Fundamental matrix (10) by a RK4 method and thus also ensures the semi-positivity of P k|k-1 . The D-Euler and D-SRK4 methods use discretization method of the SDE by respectively a stochastic Euler scheme and a fourth order Stochastic Runge-Kutta (SRK4) scheme. The D-Euler method is equivalent to the method implemented in [START_REF] Singer | Continuous-discrete unscented Kalman filtering[END_REF]. IV. APPLICATIONS CD-EKF of a Van der Pol oscillator and a neuronal population model used to model EEG activity is presented in this section. These models are described in section IV-A. In section IV-B, the different ways to compute the CD-EKF (table II) are implemented and compared for each model.

A. Models

1) The Van der Pol oscillator: This oscillator, which produces sustained oscillation, is a classical benchmark for numerical computation [START_REF] Sitz | Estimation of parameters and unobserved components for nonlinear systems from noisy time series[END_REF] [START_REF] Mazzoni | Computational aspects of continuous-discrete extended Kalman-filtering[END_REF]. It obeys the following stochastic differential equation:

d v u = u λ(1 -v 2 )u -v dt + 0 1 dβ(t) (15) 
where λ = 3 and initial conditions X 0 = [0.5, 0.5] T and P 0 = diag[0, 0.1]. The observation Y k is a noisy measure of the voltage v at discrete instants of time:

Y k = v(t k ) + V k (16) 
where V k ∼ N (0, σ v ) is the white measurement noise.

2) The Jansen model: The neuronal population model (Fig. 1) is made up of three sub-populations P e 1 , P e 2 , P i. They represent excitatory pyramidal cells (P e 1 , P e 2 ) and inhibitory sub-population P i. P e 1 excites P e 2 and P i, P i inhibits P e 1 and P e 2 excites P e 1 . Each subpopulation connects to another through a connectivity constant C i (mean number of synaptic contacts) supposed known and time invariant [START_REF] Jansen | Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[END_REF]. The nonlinear function S(.) describes saturation and threshold effects in the soma and converts the (mean) membrane potential into a (mean) firing rate of action potentials. Two synaptic linear dynamics are distinguished for the two respective sub-populations types, each represented by a Laplace transfer function: h(s) = α (α+s) 2 , where α ∈ {a, b} . Time constant values 1/a and 1/b are fixed in accordance with the literature [START_REF] Jansen | Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns[END_REF]. The influence of the cortical neighborhood is described by a continuoustime Gaussian white noise W (t) with a positive mean m w and a diffusion coefficient σ. Synaptic gains A, B 

where X ∈ R 7 is the state vector, G is a constant diffusion vector and f is the nonlinear drift (it contains S(.) and h functions). {β t , t > 0} is a scalar Brownian motion process where β t -β τ ∼ N (0, t -τ ) with t > τ . Gaussian white noise W (t) = Gdβ t /dt corresponds to a formal derivative of the Brownian process β t . The influence of the input mean m w is included in f (X).

The output signal Y k is a noisy linear form of the state X(t) at instants t = t k :

Y k = HX(t k ) + v k (18) 
with an additive white instrumental noise v k ∼ N (0, σ v ).

B. EKF Filtering

The five approximated CD-EKF presented in section III-C, were implemented for each model. Main features of these methods are reported in table II. In the sequel, we explore the stability of each implementation for
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  are mutually independent and where f : R Nx → R Nx and h : R Nx → R Ny are nonlinear functions.

	The discrete-
	discrete EKF (DD-EKF) [1] uses a first order Taylor
	approximation of the nonlinear state function (1) around
	the current estimation Xk-1|k-1 of X k-1 and around
	the mean E[W k ] = 0 of the state noise to obtain the
	following local approximation:

TABLE

  

TABLE II FEATURES

 II OF THE DIFFERENT IMPLEMENTATIONS OF THE CD-EKF TESTED IN THE SECTION IV-B

	Implementation	Numerical integration	Discrete Approximation	Stable properties	References
	methods	of (7) and (8) of (7) and (10)	of the SDE (6)	A-Stable P k|k-1 > 0
	MC-THGL	*		*	*	[8]
	MC-RK4	*				[15]
	MF-RK4	*			*	[4]
	D-EULER		*		*	[9]
	D-SRK4		*		*	proposed here

For each model M ∈ {V DP = Van der Pol, J = Jansen} several sets {(Y i 1:N,∆y , X i 1:N,∆y ), i = 1, ..., N β } of state trajectories and observation signals were simulated numerically (Stochastic Runge Kutta 4) with different Brownian realizations {β i (t), 0 < t < T }, i = 1, ..., N β , each with a very small increment time to obtain weak error relatively to time continuous trajectory, and different values of the sampling period ∆ y = t k -t k-1 . For each M , SRK4 method was used with a simulation step δ s kept sufficiently large. Then for each couple (Y i 1:N,∆y , X i 1:N,∆y ) an estimation Xi 1:N,∆y of the corresponding state trajectory was performed by each implemented method MC-THGL, MC-RK4, MF-RK4, D-EULER and D-SRK4. A distance i M (∆ y ) = l M (S i 1:N,∆y , Ŝi 1:N,∆y ) was then evaluated by calculating the sum on a set of selected state variables of the mean square errors between the true simulated trajectories and the estimated ones. For the Van der Pol oscillator the selected state coordinate correspond to the voltage S 1:N,∆y = v 1:N . For the Jansen model the selected variables are the three mean membrane potentials.

Results are reported in Fig. 2 and3. For each implemented method, M (∆ y ) is plotted for different values of the sampling period ∆ y which here is always equal to the step size of the integration methods δ (α = 1). Note that when ∆ y becomes larger, errors due to the integration method appear and can affect the stability of the filter. On Fig. 2 and3, some curves stop before reaching the right side illustrating that the corresponding implemented CD-EKF becomes suddenly unstable for higher values.

For the Van der Pol model (Fig. 2), all filters failed for ∆ y > 0.18s. For all values, MF-RK4 and the proposed method: D-SRK4 have a larger stability range. However MF-RK4 and D-Euler lead, on their stability ranges, to larger errors. For the Jansen model (Fig. 3), MF-RK4, MC-THGL and D-SRK4 implementations have large stability ranges. For ∆ y < 0.01s, estimation error values are quite similar for all methods except for the MF-RK4 where they are bigger. Globally, MF-RK4, MC-THGL and D-SRK4 implementations give the best performances in stability and estimation error. Results show that MC-RK4 method (the only case where the positivity of P k|k-1 is not guaranteed), is stable over a smaller range of ∆ y values than other implementations.

V. DISCUSSION

Different ways to implement the CD-EKF were presented and evaluated on a classical benchmark model and on a more original model simulating EEG activity. In [START_REF] Singer | Continuous-discrete unscented Kalman filtering[END_REF] authors proposed to discretize the stochastic differential equation with the stochastic Euler scheme. Here, an extension to higher order stochastic Runge-Kutta schemes is proposed to enlarge discretization step intervals in which the stability is ensured. To our knowledge, this extension has never been proposed. Other implementations were also investigated and experimentally compared with this one. Results pointed out that the proposed D-SRK4 approach is only slightly more expensive in terms of computation than methods proposed by [4] [9] [8] and furthermore can be more stable for the two models. Experiments confirmed also that when schemes guarantee the semi-positivity of P k|k-1 implementations give better stability results. The discretization methodology of the stochastic differential equation (reported in section III-B) to compute numerically the continuous-discrete extended Kalman filter can obviously be extended to other filtering methods as the unscented Kalman filtering, particle filtering, divided difference filters (DD1 and DD2).

APPENDIX

Here the Jacobian functions F X δ rki = ∂f δ rki ∂X and F w δ rki = ∂f δ rki ∂w are expressed for a discrete Runge-Kutta scheme [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations (Stochastic Modelling and Applied Probability)[END_REF] from the Jacobian function J X (x, t) = ∂f ∂X (x, t) of the drift term of the SDE (6) and J w (t) = G(t)/δ where G(t) is the diffusion term of (6) with i=1 (Euler):

and i = 4 (SRK4):