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Abstract

In this article, we are interested in the Dirichlet problem for parabolic viscous

Hamilton-Jacobi Equations. It is well-known that the gradient of the solution may

blow up in finite time on the boundary of the domain, preventing a classical extension

of the solution past this singularity. This behavior comes from the fact that one

cannot prescribe the Dirichlet boundary condition for all time and, in order to define a

solution globally in time, one has to use “generalized boundary conditions” in the sense

of viscosity solution. In this work, we treat the case when the diffusion operator is the

p-Laplacian where the gradient dependence in the diffusion creates specific difficulties.

In this framework, we obtain the existence and uniqueness of a continuous, global

in time, viscosity solution. For this purpose, we prove a Strong Comparison Result

between semi-continuous viscosity sub and super-solutions. Moreover, the asymptotic

behavior of
u(x, t)

t
is analyzed through the study of the associated ergodic problem.
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1 Introduction and Main Results

In this article we are interested in the following generalized Dirichlet problem for second-
order degenerate parabolic partial differential equations

ut − div
(
[Du|p−2Du

)
+ |Du|q = f(x, t) in Ω× (0,+∞) (1.1)

u(x, 0) = u0(x) on Ω, (1.2)

u(x, t) = g(x, t) on ∂Ω× (0,+∞), (1.3)

where q > p ≥ 2, u0 and g are continuous functions satisfying the compatibility condition

u0(x) = g(x, 0) on ∂Ω (1.4)

Most of works devoted to this degenerate diffusive Hamilton-Jacobi equation concerned the
case where Ω = R

N , providing results on well-posedness, gradient estimates and asymptotic
behavior of either classical or weak solutions in the sense of distributions (see [10, 1, 24, 22]
and the references therein).

Some other works are concerned with the solvability of the Cauchy-Dirichlet problem.
They proved that, under suitable assumptions on u0 and g, there exists a weak solution
on some time interval [0, Tmax(u0)), with the property that its gradient blows up on the
boundary ∂Ω while the solution itself remains bounded. We refer the reader to [2] [19] and
[23] for the degenerate parabolic case and to [25] for the uniformly parabolic case. This
singularity is a difficulty to extend the solution past Tmax(u0). A natural question is then:
Can we extend the weak solution past t = Tmax(u0) and in which sense ?

Let us mention here that a result in this direction where the continuation beyond
gradient blow-up does not satisfy the original boundary conditions was obtained in [16, 17].

Recently, for the linear diffusion case (p = 2), Barles and Da Lio [6] showed that
such gradient blow-up is related to a loss of boundary condition and address the problem
through a viscosity solutions approach. They proved a ”Strong Comparison Result” (that is
a comparison result between discontinuous viscosity sub and supersolutions) which allowed
them to obtain the existence of a unique continuous, global in time viscosity solution of
(1.1)–(1.3), the Dirichlet boundary condition being understood in the generalized sense
of viscosity solution theory. They also provided an explicit expression of the solution of
(1.1)–(1.3) in terms of a value function of some exit time control problem, which allows a
simple explanation of the losses of boundary condition when it arises.

We recall that the formulation of the generalized Dirichlet boundary condition for (1.1)–
(1.3) in the viscosity sense reads

min
(
ut − div

(
|Du|p−2Du

)
+ |Du|q − f(x, t), u− g

)
≤ 0 on ∂Ω × (0,+∞), (1.5)

and

max
(
ut − div

(
|Du|p−2Du

)
+ |Du|q − f(x, t), u− g

)
≥ 0 on ∂Ω× (0,+∞). (1.6)

Our first result mainly extends the investigation of [6] to the degenerate diffusion case
p > 2.
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Theorem 1.1. Assume that q > p ≥ 2 and that Ω is a bounded domain with a C2-
boundary. For any u0 ∈ C(Ω), f ∈ C

(
Ω× [0, T ]

)
and g ∈ C (∂Ω× [0, T ]) satisfying (1.4),

there exists a unique continuous solution u of (1.1)–(1.3) which is defined globally in time.

As it is classical in viscosity solutions theory, the proof of Theorem 1.1 relies on a
Strong Comparison Result (SCR in short), the existence of the global solution u being
an almost immediate consequence of the Perron’s method introduced in the context of
viscosity solutions by Ishii [18] (see also [13]).

The most important difficulties in the proof of Strong Comparison Results come from
the formulation of the boundary condition in the viscosity sense, the discontinuity of the
sub and the supersolution to be compared and the strong nonlinearity of the Hamiltonian
term |Du|q. A key argument in the proof of the SCR in [6] is the "cone condition" which
is useful in the treatment of boundary points. Roughly speaking the ”cone condition”
holds if at any point (x̃, t̃) of the boundary ∂Ω × (0, T ), an usc subsolution u satisfies
u(x̃, t̃) = lim

k→∞
u(xk, tk) where {(xk, tk)}k is a sequence of points of Ω × (0, T ) with the

following properties

(xk, tk) → (x̃, t̃) and d∂Ω(xk, tk) ≥ b
(
|xk − x̃|+ |tk − t̃|

)
,

where b is a positive constant.
Our approach is slightly different: instead of directly proving the ”cone condition” for

any viscosity subsolution of (1.1)–(1.3) as it was done in [6], we use a combination of
a C0,β regularity result for subsolutions of stationary problems, strongly inspired by the
result of Capuzzo Dolcetta, Leoni and Porretta [11], together with a regularization by
a sup-convolution in time. These arguments provide an approximation of the (a priori
only usc) subsolution by a continuous subsolution, which automatically satisfies the “cone
condition”, allowing to borrow the methods of [9] to conclude.

The generalisation of the C0,β regularity result of [11] is the following.

Theorem 1.2. If u is a locally bounded, usc viscosity subsolution of

− div
(
|Du|p−2Du

)
+ |Du|q ≤ C in Ω , (1.7)

where Ω is an open subset of R
N and C is a positive constant, and if q > p ≥ 2, then

u ∈ C0,β
loc (Ω) with β =

q − p

q − p + 1
.

Moreover, if Ω is a bounded domain with a C2-boundary, then u is bounded on Ω and
it can be extended as a C0,β-function on Ω and

|u(x)− u(y)| ≤ M |x− y|β for all x, y ∈ Ω, (1.8)

for some positive constant M depending only on p, q, C and ∂Ω.

The regularity result of [11] was revisited in [4], where an interpretation was given in
terms of state-constraint problems together with several possible applications. Our proof
will rely on the arguments of [4].
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A second motivation where such regularity results are useful, is the asymptotic behavior
as t → +∞ of solutions of the evolution equation. For this purpose, one has first to study
the ergodic (or additive eigenvalue) problem

− div
(
|Du∞|p−2Du∞

)
+ |Du∞|q − f̃(x) = c in Ω, (1.9)

associated to a state-constraint boundary condition on ∂Ω

− div
(
|Du∞|p−2Du∞

)
+ |Du∞|q − f̃(x) ≥ c on ∂Ω. (1.10)

We recall that, in this type of problems, both the solution u∞ and the constant c (the
ergodic constant) are unknown. First we have the following result.

Theorem 1.3. Assume that Ω is a bounded domain with a C2-boundary, f̃ ∈ C(Ω) and
q > p ≥ 2, then there exists a unique constant c such that the state-constraints problem
(1.9)–(1.10) has a continuous viscosity solution u∞.

A typical result that connects the study of the ergodic problem to the large time
behavior of the solution u of (1.1)–(1.3) is the following.

Theorem 1.4. Assume that Ω is a bounded domain with a C2-boundary, u0 ∈ C(Ω),
g ∈ C(∂Ω) satisfying (1.4) and assume that f(x, t) = f̃(x) with f̃ ∈ C(Ω) and q > p ≥ 2.
If (c, u∞) is the solution of (1.9)–(1.10) and if u is the unique viscosity solution of (1.1)–
(1.3), then u+ c+t is bounded, where c+ = max(c, 0). In particular

lim
t→∞

u(x, t)

t
= −c+

uniformly on Ω.

The next step in the study of the asymptotic behavior would be to show that u(x, t) +
ct → u∞(x) as t → ∞ where u∞ solves (1.9)–(1.10). The main difficulty to prove such
more precise asymptotic behavior comes from the fact that (1.9)–(1.10) does not admit
a unique solution ((1.9)–(1.10) is invariant by addition of constants). Such results were
obtained recently in [26] for the uniformly elliptic case p = 2 through the use of the
Strong Comparison Principle (i.e. a result which allows to apply the Strong Maximum
Principle to the difference of solutions) and the Lipschitz regularity of u∞. But, for p > 2,
such Strong Comparison Principle is not available since the equation is quasilinear and
not semilinear. We recall that a Strong Maximum Principle is available for p > 2, see
[3]. Another difficulty comes from the proof of a strong comparison result for the steady
problem in case of an operator that does not fulfill a monotonicity property, even if there
exits a strict subsolution. Let us mention the works of [23, 7] for more results on the
asymptotic behavior of global solutions.

Finally we point out that it was shown in [8] that the expected asymptotic behavior,
namely u(x, t) + ct → u∞(x), is not always true in the p = 2-case when the nonlinearity is
sub quadratic in Du.
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This article is organized as follows: in Section 2, we present the needed results on
viscosity solutions for the stationary and evolution problems we consider; in particular, we
analyze the losses of boundary conditions for subsolutions. In Section 3 we prove the Hölder
regularity result of Theorem 1.2. In Section 4 we study the ergodic problem. Section 5
is devoted to the proof of Theorem 1.1 and the asymptotic behavior of solutions of the
evolution equation.

2 Preliminaries and Analysis of Boundary Conditions

In this section we collect some preliminary properties of viscosity subsolutions (the bound-
ary conditions being always understood in the viscosity sense) and we also formulate SCR
under different forms, some of them being only useful as a step in the proof of the com-
plete regularity result. These results are concerned with either problem (1.1)–(1.3) or the
following two nonlinear elliptic problem

− (p− 1)|Du|p−2
∑

λi(D2u)>0

λi(D
2u) + |Du|q = C in Ω, u = g̃ in ∂Ω. (2.1)

and
− div

(
|Du|p−2Du

)
+ |Du|q + λu− f̃ = 0 in Ω, u = g̃ in ∂Ω. (2.2)

where q > p ≥ 2, C, λ ≥ 0, f̃ ∈ C(Ω) and g̃ ∈ C(∂Ω).

From now on, we assume that Ω is a smooth domain with a C2-boundary. We define
the distance from x ∈ Ω to ∂Ω by d∂Ω(x) := dist (x, ∂Ω). For δ > 0, we denote by

Ωδ := {x ∈ Ω | d∂Ω(x) < δ} , (2.3)

Ωδ := {x ∈ Ω | d∂Ω(x) > δ} . (2.4)

As a consequence of the regularity of ∂Ω, d∂Ω is a C2-function in a neighborhood Ωδ of the
boundary for all 0 < δ ≤ δ0. We denote by d a C2-function agreeing with d∂Ω in Ωδ such
that |Dd(x)| ≤ 1 in Ωδ. We also denote by n(x) the C1-function defined by n(x) = −Dd(x)
in Ωδ; if x ∈ ∂Ω, then n(x) is just the unit outward normal vector to ∂Ω at x.

Our first result says that there is no loss of boundary conditions for the subsolutions,
namely that the subsolutions satisfy the boundary condition in the classical sense.

Proposition 2.1. Assume that q > 0 and p ≥ 2. We have the following

i) If u is a bounded, usc subsolution of (1.1)–(1.3) on a time interval (0, T ), then

u ≤ g on ∂Ω× (0, T ). (2.5)

ii) If u is a bounded, usc subsolution of (2.1) or (2.2) , then

u ≤ g̃ on ∂Ω. (2.6)
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Proof. We only give the proof for the time dependent problem, the proof for the stationnary
problems being similar. We use a result of Da Lio [14, Corollary 6.2]. We denote by SN

the space of real symmetric N ×N matrices. For x ∈ Ω, t ∈ (0, T ), ξ ∈ R
N and M ∈ SN ,

we define the function F by

F (x, t, ξ,M) = −|ξ|p−2Tr(M)− (p− 2)|ξ|p−4 〈Mξ, ξ〉+ |ξ|q − f(x, t),

so that the equation can be written as ut+F (x, t,Du,D2u) = 0. From [14], we know that,
if u(x0, t0) > g(x0, t0) at some point (x0, t0) ∈ ∂Ω × (0, T ), then the following conditions
hold

lim inf
(y,t)→(x0,t0)

α↓0

{[
o(1)

α
+ F

(
y, t,

Dd(y) + o(1)

α
,−Dd(y)⊗Dd(y) + o(1)

α2

)]}
≤ 0

lim inf
(y,t)→(x0,t0)

α↓0

{[
o(1)

α
+ F

(
y, t,

Dd(y) + o(1)

α
,
D2d(y) + o(1)

α

)]}
≤ 0. (2.7)

But the first condition cannot hold since

F

(
y, t,

Dd(y) + o(1)

α
,−Dd(y)⊗Dd(y) + o(1)

α2

)
≥ (p− 1)

αp
(1 + o(1))+

1− o(1)

αq
− f(y, t),

and the right hand side is going to +∞ as α → 0 since p ≥ 2, q > 0 and all terms converge
to +∞.

Let us point out that the above computation shows that there is no competition between
the nonlinear Hamiltonian term and the slow diffusion operator since they both produce
positive contribution which prevent any loss of boundary conditions for the subsolution.

Next, we remark that there cannot be loss of initial condition.

Lemma 2.1. Assume that q > p ≥ 2, f ∈ C
(
Ω× [0, T ]

)
and u0 ∈ C(Ω), g ∈ C (∂Ω× [0, T ])

satisfy (1.4). Let u and v be respectively a bounded usc viscosity subsolution and a bounded
lsc super-solution of (1.1)–(1.3) then

u(x, 0) ≤ u0(x) ≤ v(x, 0) on Ω. (2.8)

Proof Fix x0 ∈ Ω and define for ε > 0 and Cε > 0 the function φε(x, t) by

φε(x, t) = u(x, t)− |x− x0|
ε2

− Cεt.

This function attains a global maximum on Ω×[0, T ) at xε, tε. Using the boundedness of u,
it is easy to see that, for any Cε > 0, (xε, tε) → (x0, 0) as ε → 0. Arguing as in [9], choosing
Cε sufficiently large depending on ε, we are left with (xε, tε) ∈ (∂Ω× (0, T )) ∪

(
Ω× {0}

)

and the two following possibilities

either tε = 0 and u(xε, 0) ≤ u0(xε),

or tε > 0, xε ∈ ∂Ω and u(xε, tε) ≤ g(xε, tε).
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In either case, since u(x0, 0) ≤ φε(xε, tε) ≤ u(xε, tε), we get the desired result for u
letting ε → 0 and using the continuity of u0 and g. The argument for v is similar.

Now we claim that under some assumptions (set out below), a SCR holds for semicon-
tinuous viscosity sub-and supersolutions of (1.1)–(1.3) or (2.1) or (2.2). The proof being
somehow technical we refer the reader to the appendice for a detailed proof of the following
two propostions.

Proposition 2.2 (Parabolic SCR). Assume that q > p ≥ 2, f ∈ C
(
Ω× [0, T ]

)
and

u0 ∈ C(Ω), g ∈ C (∂Ω× [0, T ]) satisfy (1.4). Let u and v be respectively a bounded
usc viscosity subsolution and a bounded lsc super-solution of (1.1)–(1.3), then u ≤ v in
Ω× [0, T ]. Moreover, if we define ũ on Ω× [0, T ] by setting

ũ(x, t) :=





lim sup u(y, s)
(y,s)→(x,t)

(y,s)∈Ω×(0,T )

for all (x, t) ∈ ∂Ω× (0, T ]

u(x, t) otherwise,

(2.9)

then ũ remains an usc subsolution of (1.1)–(1.3) and

ũ ≤ v on Ω× [0, T ]. (2.10)

The stationary version of the SCR is used either in the proof of the C0,β-regularity or
for solving the ergodic problem.

Proposition 2.3 (Elliptic SCR). Assume that q > p ≥ 2, f̃ ∈ C
(
Ω
)

and g̃ ∈ C (∂Ω).

(i) Let u and v be respectively a bounded usc viscosity subsolution and a bounded lsc
super-solution of (2.1). If v is continuous on Ω and is a strict supersolution of (2.1),
then

u ≤ v on Ω. (2.11)

(ii) Let u and v be respectively a bounded usc viscosity subsolution and a bounded lsc super-
solution of (2.2). Assume that either λ > 0 or λ = 0 and v is a strict supersolution.
We define ũ on Ω by setting

ũ(x) :=





lim sup u(y)
y→x
y∈Ω

for all x ∈ ∂Ω

u(x) otherwise,
(2.12)

then ũ remains an usc subsolution of (1.1)–(1.3) and

ũ ≤ v on Ω. (2.13)
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3 Hölder Regularity of Viscosity Subsolutions for the

Degenerate Elliptic Problem

In this section we are going to prove that equation of type (1.7) enters into the general
framework described in [4] which allows us to state that, if u is a locally bounded, usc

viscosity subsolution of (1.7), then u is Hölder continuous with exponent β =
q − p

q − p+ 1
.

The key point is that the strong growth of the first order term balances the degeneracy of
the second order term, providing a control on |Du|.
Proof of Theorem 1.2. If u is a subsolution of (1.7), then it is a subsolution in Br(x) ={
y ∈ R

N ; |y − x| < r
}

of the simpler equation

−(p− 1)|Du|p−2
∑

λi(D2u)>0

λi(D
2u) + |Du|q ≤ C.

Now we are going to check the required hypotheses in [4].

H1. For 0 < r < 1, s ∈ R
N and M ∈ SN , SN denoting the space of N ×N real valued

symmetric matrices, define the function Gr(s,M) by

Gr(s,M) := −(p− 1)|s|p−2
∑

λi(M)>0

λi(M) + |s|q − C.

Then, for any x ∈ Ω with d∂Ω(x) ≥ r, Gr(Du,D2u) ≤ 0 in Br(x).

H2. There exists a super-solution up to the boundary wr ∈ C
(
Br(0)

)
such that

wr(0) = 0, wr(x) ≥ 0 in Br(x) and

Gr

(
Dwr, D

2wr

)
≥ ηr > 0 on Br(0)\ {0} , (3.1)

for some ηr > 0.

Despite the construction of the functions wr is a rather easy adaptation of [4], we
reproduce it for the sake of completeness and for the reader’s convenience. In order to
build wr, we first build w1 and then use the scale invariance of the equation. To do so, we

borrow arguments from [4]. For C1, C2 > 0 to be chosen later on and for β =
q − p

q − p+ 1
,

we consider the function

w1(x) :=
C1

β
|x|β + C2

β

(
dβ(0)− dβ(x)

)
,

where d(x) = 1 − |x| on B1(0)\B1/2(0) and we regularize it in B1/2(0) by changing it into
h(1 − |x|) where h is a smooth, non-decreasing and concave function such that h(s) is
constant for s ≥ 3/4 and h(s) = s for s ≤ 1/2. Obviously we have w1(0) = 0, w1 ≥ 0 in
B1(0) and w1 is smooth in B1(0)\ {0}.
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We first remark that −(p− 1)|Dw1(x)|p−2λi(D
2w1(x)) + |Dw1(x)|q can be written as

|Dw1(x)|p−2
[
−(p− 1)λi(D

2w1(x)) + |Dw1(x)|q−p+2
]
.

Therefore, in order to prove the claim, we are going to show that, for C1, C2 > 0 large
enough, the bracket is positive and bounded away from 0 and that |Dw1(x)|p−2 remains
large.

Computing the derivatives of w1 in B1(0)\ {0}, we have

Dw1(x) = C1|x|β−2x− C2d
β−1(x)Dd(x),

D2w1(x) = C1|x|β−2Id+ (β − 2)C1|x|β−4x⊗ x

− C2d
β−1(x)D2d(x)− (β − 1)C2d

β−2(x)Dd(x)⊗Dd(x).

Using that −Dd(x) = µ(x)x for some µ(x) ≥ 0 and that q > p > 2, we have

|Dw1(x)|q−p+2 =
(
|C1|x|β−2x|+ |C2d

β−1(x)Dd(x)|
)q−p+2

≥ |C1|x|β−2x|q−p+2 + |C2d
β−1(x)Dd(x)|q−p+2

= Cq−p+2
1 |x|(β−1)(q−p+2) + Cq−p+2

2 d(β−1)(q−p+2)(x)|Dd(x)|q−p+2,

and
|Dw1(x)|p−2 ≥ Cp−2

1 |x|(β−1)(p−2) + Cp−2
2 d(β−1)(p−2)(x)|Dd(x)|p−2.

Using that d(x) = h(1− |x|), with h being C2, non-decreasing and concave, 0 < β < 1, we
have

D2w1(x) ≤ C1|x|β−2Id+C2d
β−1(x)

(
h′

|x|Id− h′′ x

|x| ⊗
x

|x|

)
+(1−β)C2d

β−2(x)Dd(x)⊗Dd(x),

and

λi(D
2w1(x)) ≤ C1|x|β−2 + C2d

β−1(x)

(
h′

|x| − h′′

)
+ (1− β)C2d

β−2(x)|Dd(x)|2.

At this point, it is worth noticing that because of the properties of h, the term
(

h′

|x|
− h′′

)

is bounded.
These properties imply that, we can (almost) consider the two terms (in |x| and in

d(x)) separately. Since (β − 1)(q − p+ 2) = (β − 2), the
C1

β
|x|β term yields

−(p− 1)C1|x|β−2 + |C1|x|β−2x|q−p+2 = |x|β−2
(
−(p− 1)C1 + Cq−p+2

1

)
.

By choosing C1 large enough, we can have for any K1 > 0

|x|β−2
(
−(p− 1)C1 + Cq−p+2

1

)
≥ K1|x|β−2 inB1(0)\ {0} .
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On the other hand the
C2

β

(
dβ(0)− dβ(x)

)
term yields

−(p−1)C2d
β−1(x)

(
h′

|x| − h′′

)
+(β−1)(p−1)C2d

β−2(x)|Dd(x)|2+Cq−p+2
2 |dβ−1Dd(x)|q−p+2.

(3.2)

We have to consider two cases: either |x| ≥ 1

2
and then h′ = 1, h′′ = 0 and Dd(x) = − x

|x| ;
hence the above quantity is given by

−(p− 1)C2d
β−1(x)

(
1

|x|

)
− (p− 1)(1− β)C2d

β−2(x) + Cq−p+2
2 d(β−1)(q−p+2).

Recalling that (β − 1)(q − p + 2) = (β − 2), then for C2 large enough we have for any
K2 > 0

−(p− 1)C2d
β−1(x)

(
1

|x|

)
− (p− 1)(1− β)C2d

β−2(x) + Cq−p+2
2 d(β−1)(q−p+2) ≥ K2d

β−2(x).

Now for |x| ≤ 1

2
, the quantity (3.2) coming from the d(x)-term is bounded and can be

controlled by the |x|-term. Hence, for any constant C > 0, choosing first C2 large enough
and then C1 large enough, we have in B1(0)\ {0}

−(p− 1)|Dw1(x)|p−2λi(D
2w1(x)) + |Dw1(x)|q ≥ |Dw1(x)|p−2

(
K1|x|β−2 +K2d

β−2(x)
)

≥
(
K1|x|(β−1)(p−1)−1

)
≥ C.

Next we set
wr(x) := rβw1

(x
r

)
.

It is easy to check that for 0 < r ≤ 1, G(Dwr, D
2wr) ≥ r(β−1)(p−1)−1C − C ≥ 0 on

Br(0)\ {0}.
H3. Comparison result. Let v be any bounded usc viscosity subsolution of Gr(Dv,D2v) ≤

0 in Br(0)\ {0} then

v(y) ≤ v(x) + rβw1

(
y − x

r

)
. (3.3)

We use the fact that v(0) + wr(x) is a strict super-solution up to the boundary and that
it is a continuous function. It follows that the comparison is a direct consequence of
Proposition 2.3.

Since the hypotheses are satisfied, we can apply Proposition 2.1 of [4] to obtain the
C0,β regularity of subsolutions, both locally and globally with further assumptions on Ω.

Remark 3.1. As far as the exponent β is concerned, the value is the best one can expect
in the assumption of the above theorem (see [11]).
It is well-known that the degeneracy of the p-Laplacian is an an obstruction to the solvability
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of the Dirichlet problem in the classical sense. The presence of the strongly non-linear
term with q > p is another source of obstruction, even in the uniformly elliptic case since
examples of boundary layers can occur [6, 20]. By the previous result, we know that every
continuous solution to (1.7) is Hölder continuous up to the boundary. Hence, a necessary
condition in order that the solution can attain continuously the boundary data g is the
existence of some C ≥ 0 such that

|g(x)− g(y)| ≤ C[x− y|β for all x, y ∈ ∂Ω, β =
q − p

q − p+ 1
.

For the uniformly elliptic case p = 2, a more detailed study including several gradient
bounds and applications can be found in [20].

As an application of the previous regularity result, we consider the generalized Dirichlet
problem consisting in solving (2.2).

Theorem 3.1. Let Ω ⊂ R
N be a bounded domain with a C2-boundary. Assume that

q > p ≥ 2, f̃ ∈ C(Ω), g̃ ∈ C(∂Ω) and λ > 0. Let u and v be respectively a bounded usc
subsolution and a bounded lsc super-solution of (2.2) with u satisfying for x ∈ ∂Ω

u(x) = lim sup
y→x
y∈Ω

u(y).

Then, u ≤ v on Ω. Moreover Problem (2.2) has a unique viscosity solution which belongs
to C0,β(Ω).

Proof. For the comparison part, Theorem 1.2 implies that u is Hölder continuous, hence
the comparison u ≤ v is a direct consequence of Proposition 2.3. Once noticed that

−
(
λ−1||f̃ ||L∞ + ||g̃||L∞

)
and +

(
λ−1||f̃ ||L∞ + ||g̃||L∞

)
are respectively sub and super-solution,

we can apply the Perron’s method with the version up to the boundary (see [13]). Since
a solution is also a subsolution, the Hölder regularity is a direct consequence of Theorem
1.2.

4 The Ergodic Problem

4.1 Existence of the pair (c, u∞)

In this part we study the existence of a pair (c, u∞) ∈ R×C(Ω) for which u∞ is a viscosity
solution of the state-constraints problem (1.9)-(1.10), to gather with the uniqueness of the
ergodic constant c. For this purpose, we introduce a λu-term in the equation, as it is
classical, with the aim to let λ tend toward 0. This key step is described by the following
Lemma.
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Lemma 4.1. Let f̃ ∈ C(Ω) and β =
q − p

q − p+ 1
. For 0 < λ < 1 and q > p, there exists a

unique viscosity solution uλ ∈ C0,β(Ω) of the state constraint problem

− div (|Duλ|p−2Duλ) + |Duλ|q + λuλ = f̃(x) in Ω, (4.1)

− div (|Duλ|p−2Duλ) + |Duλ|q + λuλ ≥ f̃(x) on ∂Ω. (4.2)

Moreover there exists a constant C̃ > 0 such that, for all 0 < λ < 1,

|λuλ| ≤ C̃ in Ω. (4.3)

Proof. For R > 0, we consider the following generalized Dirichlet problem
{

−div (|DuR,λ|p−2DuR,λ) + |DuR,λ|q + λuR,λ = f(x) in Ω,
uR,λ = R in ∂Ω.

(4.4)

By Theorem 3.1, this problem admits a unique viscosity solution uR,λ.
Moreover, uR,λ satisfies

− λ−1 ‖f‖L∞ ≤ uR,λ ≤ −M1

β
dβ(x) +

M2

λ
in Ω. (4.5)

Indeed, on the one hand, it is easy to see that −λ−1 ‖f‖L∞ is a subsolution. On the other
hand, borrowing arguments from [26], we claim that for some M1,M2 > 0 chosen large

enough, ū(x) = −M1

β
dβ(x) +

M2

λ
is a supersolution of (4.1)-(4.2). Indeed, using that

q(β − 1) = (p− 2)(β − 1) + (β − 2), we have

−div (|Dū|p−2Dū) + |Dū|q + λū− f̃(x) = Mp−1
1 |Dd|p−2d(p−2)(β−1)

[
(p− 1)(β − 1)dβ−2|Dd|2

+ dβ−1∆d+ (p− 2)dβ−1
〈
D2d D̂d, D̂d

〉]

+M q
1d

q(β−1)|Dd|q − λ
M1

β
dβ +M2 − f̃

= Mp−1
1 |Dd|p−2dq(β−1)

[
(p− 1)(β − 1)|Dd|2 + d∆d

+ (p− 2)d
〈
D2d D̂d, D̂d

〉
+M q−p+1

1 |Dd|q−p+2
]

− λ
M1

β
dβ +M2 − f̃ .

In Ωδ where |Dd| = 1 and 0 ≤ d ≤ δ, we have

−div (|Dū|p−2Dū) + |Dū|q + λū− f̃(x) = Mp−1
1 dq(β−1)

[
(p− 1)(β − 1) + d∆d

+ (p− 2)d
〈
D2 dD d,Dd

〉
+M q−p+1

1

− λ
M2−p

1

β
dβ(2−p)+p

]
+M2 − f̃ .
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Taking M1 > 1 and M2 > 0 such that

M q−p+1
1 ≥ (p− 1)(1− β) + (p− 2 +

√
N)δ

∥∥D2d
∥∥
L∞

+
δβ(2−p)+p

β
(4.6)

and M2 ≥ 2
∥∥∥f̃

∥∥∥
L∞

, (4.7)

then we have −div (|Dū|p−2Dū) + |Dū|q + λū− f̃(x) ≥ 0 in Ωδ.
Now in Ωδ, we have |Dd| ≤ 1 and δ ≤ d(x) ≤ C(Ω). Using that 0 < λ < 1, then we

have

−div (|Dū|p−2Dū) + |Dū|q + λū− f̃(x) ≥ Mp−1
1

[
(p− 1)(β − 1)

∥∥d(β−1)(p−1)−1
∥∥
L∞

−(p− 2 +
√
N)

∥∥d(β−1)(p−1)
∥∥
L∞

∥∥D2d
∥∥
L∞

]

−M1

β

∥∥dβ
∥∥
L∞

+M2 −
∥∥∥f̃

∥∥∥
L∞

.

Hence if we take M1 as in (4.6) and M2 such that

M2 ≥ Mp−1
1

[
(p− 1)(1− β)

∥∥d(β−1)(p−1)−1
∥∥
L∞

+ (p− 2 +
√
N)

∥∥d(β−1)(p−1)
∥∥
L∞

∥∥D2d
∥∥
L∞

]

+
M1

β

∥∥dβ
∥∥
L∞

+ 3
∥∥∥f̃

∥∥∥
L∞

, (4.8)

then the function ū satisfies the supersolution inequality in Ωδ. The estimate follows by
applying the SCR to −λ−1 ‖f‖L∞, uR,λ and ū.

It is worth pointing out that, if M2 is as in (4.8), then

uR,λ < R on Ω for any R >
M2

λ
.

It follows that uR,λ is a viscosity solution of (4.1)-(4.2) for all R >
M2

λ
. Theorem 3.1

implies that uλ = uR,λ for R >
M2

λ
.

We have
−max

(∥∥∥f̃
∥∥∥
L∞

,M2

)
≤ λuλ ≤ max

(∥∥∥f̃
∥∥∥
L∞

,M2

)
.

Now we are in position to prove Theorem 1.3. Using that uλ ≥ −λ−1 ‖f‖L∞ in Ω, we
have

−div(|Duλ|p−2Duλ) + |Duλ|q − f̃ ≤
∥∥∥f̃

∥∥∥
L∞

in Ω.

Theorem 1.2 implies uniform Hölder estimates with respect to λ for the functions uλ.
Consequently if x0 is an arbitrary point in Ω, we get that wλ := uλ(x) − uλ(x0) is also
uniformly bounded in C0,β(Ω) (recall that Ω is connected).
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From (4.3), we also know that {−λuλ(x0)}λ is bounded. It follows that, by Ascoli’s
Theorem, we can extract a uniformly converging subsequence from {wλ}λ and we can
assume that {−λuλ(x0)}λ converges along the same subsequence. Denoting by u∞ and c,
the limits of {wλ}λ and {−λuλ(x0)}λ respectively and taking into account that wλ solves

−div(|Dwλ|p−2Dwλ) + |Dwλ|q − f̃(x) + λwλ = −λuλ(x0) in Ω,

we can pass into the limit λ → 0 and conclude by the stability result for viscosity solutions
that, (c, u∞) solves the ergodic problem.

Now let (c1, u
1
∞) and (c2, u

2
∞) be two solutions of the ergodic problem. If c1 < c2 or

c1 > c2, we could use Proposition 2.3 to obtain either u1
∞ ≤ u2

∞ or u2
∞ ≤ u1

∞. But such
comparison cannot hold since, for all k ∈ R, ui

∞ + k are solutions as well of the ergodic
problem, proving the uniqueness of c.

5 Proof of Theorem 1.1 and Study of the Large Time

Behavior

5.1 Proof of Theorem 1.1

Once one noticed that u1(x, t) = t ‖f‖L∞ + ‖g‖L∞ + ‖u0‖L∞ and u2(x, t) = −t ‖f‖L∞ −
‖g‖L∞ − ‖u0‖L∞ are respectively super-solution and subsolution of (1.1)–(1.3), the exis-
tence and uniqueness of a continuous global solution can be obtained by Perron’s method,
combining classical arguments of [12] (see also [18]), the version up to the boundary of
Da Lio [13] and the Strong Comparison Result of the Proposition 2.2 on any time interval
[0, T ].

5.2 Large Time Behavior

Let u∞ be a bounded solution of (1.9)–(1.10). If c ≤ 0, then u is uniformly bounded. In-
deed, if C > ‖u∞‖L∞+‖u0‖L∞+‖g‖L∞, then u∞−C is a subsolution of (1.1)–(1.3). On the
other hand, if x̄ is a point far enough from Ω, then |x− x̄|2 is a super-solution. To see this,it

suffices to take x̄ such that B(x̄, R) ∩ Ω = ∅ with R > max(1, (‖f‖L∞ + (p− 1))
1

q−p+2 ).
Hence applying the Strong Comparison Result, we have

u∞(x)− C ≤ u(x, t) ≤ |x− x̄|2 + C on Ω× (0,+∞),

and therefore

lim
t→∞

u(x, t)

t
= 0.

If c > 0, then u∞ − ct+C is a supersolution of (1.1)–(1.3) with state constraint condition
on ∂Ω. On the other hand, u∞ − ct − C is a subsolution of (1.1)–(1.3) which is below u0

at t = 0 and below g on ∂Ω. Applying the Strong Comparison Result, we have

−ct + u∞ − C ≤ u(x, t) ≤ u∞ − ct + C on Ω× (0,+∞).

The result follows by dividing by t and then letting t → +∞.
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Appendice: A General Strong Comparison Result

A: Properties of the Regularization by Sup-convolution of Viscosity

Subsolutions

To circumvent the lack of smoothness of the viscosity subsolution u, we consider instead
the more regular time sup-convolution uα. Such regularization was first introduced by
Lasry and Lions [21], and for 0 < α ≤ 1 and u a bounded usc, viscosity subsolution is
defined by

uα(x, t) = sup
s≥0

{
u(x, s)− |t− s|2

α2

}
. (5.1)

We have the following useful properties on uα.

Proposition 5.1. If u is a bounded usc viscosity subsolution u of (1.1)–(1.3), the following
properties are true

i) Set K =
√
2 ‖u‖L∞. Then up to oα(1), uα is an usc viscosity subsolution of (1.1)–

(1.3) on Ω× (Kα, T −Kα). Moreover uα is locally Lipschitz w.r.t to the time variable
and

||uα
t ||L∞ ≤ 2K

α
.

ii) We have uα(x,Kα) ≤ u0(x) + oα(1) in Ω and uα(x, t) ≤ g(x, t) + oα(1) on ∂Ω ×
(Kα, T −Kα).

iii) uα is Hölder continuous w.r.t the space variable x on Ω uniformly w.r.t the time for
t > Kα.

Proof. Since u(x) is bounded, the supremum in (5.1) is attained at some point s∗(t) which
belong to the interval (t−Kα, t+Kα). Let ϕ ∈ C2

(
Ω× [Kα, T −Kα]

)
and assume that

uα − ϕ has a local maximum at (x0, t0) ∈ Ω × (Kα, T − Kα). Denote by s∗(t0) a point

such that uα(x0, t0) = u(x0, s
∗(t0))−

|t0 − s∗(t0)|2
α2

, then the function

τ 7→ u(x, τ)− ϕ(x, τ − s∗(t0) + t0)

reaches a local maximum at (x0, s
∗(t0)). Recalling that u is a viscosity subsolution of (1.1),

we get by definition

ϕt(x0, t0)− div
(
|Dϕ|p−2Dϕ(x0, t0)

)
+ |Dϕ(x0, t0)|q ≤ f(x0, s

∗(t0)) ≤ f(x0, t0) + oα(1),

by using the uniform continuity of f on Ω× [0, T ].
Next, let h > 0 small enough, then

uα(x, t± h)− uα(x, t) ≥ u(x, s∗(t))− |t± h− s∗(t)|2
α2

− u(x, s∗(t)) +
|t− s∗(t)|2

α2

= −
(
h2 ± 2h(t− s∗(t))

α2

)
≥ −

(
h2 + 2Khα

α2

)
.
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A first estimate of uα
t (from below) follows by dividing the previous inequality by h and

sending h → 0. Exchanging the role of t+ h and t provides the estimate from above.
The second assertion comes from the upper semi-continuity of u and the fact that

u(x, 0) ≤ u0(x). Indeed

uα(x,Kα) = u(x, s∗(Kα))− |Kα− s∗(Kα)|2
α2

≤ u(x, s∗(Kα))

with s∗(Kα) → 0 as α → 0. Taking the lim sup we get

lim sup
α→0

uα(x,Kα) ≤ lim sup
α→0

u(x, s∗(Kα)) ≤ u(x, 0) ≤ u0(x).

Similarly, we use the semi-continuity of u and Proposition 2.1 to prove that

uα(x, t) ≤ g(x, t) + oα(1).

The last assertion is a consequence of Theorem 1.2 where C = ‖f‖L∞ + ‖uα
t ‖L∞.

Let us note that, using the lower semi-continuity of v and v(x, 0) ≥ u0(x), we have
v(x,Kα) ≥ u0(x)− oα(1). Hence

uα(x,Kα) ≤ v(x,Kα) + ω(α) for all x ∈ Ω, (5.2)

for some ω(α) satisfying lim
α→0

ω(α) = 0.

B: Proof of Proposition 2.2

In order to prove the SCR, we are going to show that ũα− v ≤ ω(α) in Ω× [Kα, T −Kα].
Inequality (2.10) follows by passing to the limit as α → 0. To do so, the continuity of uα

is a key point since it allows to use the arguments of [9, 4].
For the sake of simplicity of notations, we drop the˜on ũα. The key idea is to compare

uα
µ := µuα and v with 0 < µ < 1 close to 1 in order to take care of the difficulty due to the

|Du|q term.
We argue by contradiction assuming that Mα = max

Ω×[Kα,T−Kα]
(uα − v − ω(α)) > 0.

If µ is sufficiently close to 1 and if ηα > 0 is a constant small enough, then we have
Mα

µ,η = max
Ω×[Kα,T−Kα]

(
uα
µ − v − ω(α)− ηα(t−Kα)

)
> Mα/2.

We denote by (x0, t0) a point of Ω × [Kα, T − Kα] such that Mα
µ,η = uα

µ(x0, t0) −
v(x0, t0) − ω(α)− ηα(t0 −Kα). The existence of (x0, t0) is guaranteed by the upper and
lower semi-continuity of uα and v respectively (we drop the dependence of (x0, t0) on ηα,
α and µ for the sake of simplicity of notations). Since Mα

η,µ > 0, we necessarily have
t0 > Kα in view of (5.2). By the Maximum Principle of the ”Users guide” [12], we have
(x0, t0) ∈ ∂Ω× (Kα, T −Kα).
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Next, using the regularity of the boundary, we can find a C2-function ξ : RN → R
N

which is equal to n = −Dd in a neighborhood of ∂Ω. Now we consider the auxiliary
function Φε : Ω× Ω× [Kα, T −Kα]× [Kα, T −Kα] → R defined by

Φε(z, w, t, s) = uα
µ(z, t)− v(w, s)− ω(α)− ηα(t−Kα)−

∣∣∣∣
z − w

ε
− χ

(
z + w

2

)∣∣∣∣
4

+
|t− s|2

ε2

Let (z̄, w, t̄, s̄) be a global maximum point of Φε on Ω×Ω×[Kα, T−Kα]×[Kα, T−Kα].
For notational simplicity we drop again the dependance of (z̄, w, t̄, s̄) on ε, µ and η. Using
the inequality Φε(z̄, w, t̄, s̄) ≥ Φε(x0, x0, t0, t0) and the boundedness of uα

µ, v and χ, we have

∣∣∣∣
z̄ − w

ε

∣∣∣∣ ≤ C,

∣∣∣∣
t̄− s̄

ε

∣∣∣∣ ≤ C,

for some constant C > 0 depending on ‖u‖L∞ , ‖v‖L∞ and α. By the compactness of
Ω× [Kα, T −Kα], we can assume that (z̄, t̄), (w, s̄) converge to (x̃, t̃) ∈ Ω× [Kα, T −Kα].
Moreover, using the continuity of uα, we have

Φε(z̄, w, t̄, s̄) ≥ Φε(x0 − εξ(x0), x0, t0, t0) = Mα
µ,η − oε(1), as ε → 0,

and hence
lim inf

ε→0
Φε(z̄, w, t̄, s̄) ≥ Mα

µ,η. (5.3)

On the other hand, we have also

lim sup
ε→0

Φε(z̄, w, t̄, s̄) ≤ lim sup
ε→0

(uα
µ(z̄, t̄)− v(w, s̄)− ηα(t̄−Kα)− ω(α))

−lim inf
ε→0

∣∣∣∣
z̄ − w

ε
− χ

(
z̄ + w

2

)∣∣∣∣
4

−lim inf
ε→0

|t̄− s̄|2
ε2

≤ Mα
µ,η. (5.4)

Therefore, combining (5.3) and (5.4) with classic arguments, we have

∣∣∣∣
z̄ − w

ε
− χ

(
z̄ + w

2

)∣∣∣∣
4

= oε(1),
|t̄− s̄|2

ε2
= oε(1), (5.5)

uα
µ(z̄t̄)− v(w, s̄)− ηα(t̄−Kα)− ω(α) → uα

µ(x̃, t̃)− v(x̃, t̃)− ηα(t̃−Kα)− ω(α)

= Mα
µ,η as ε → 0. (5.6)

It follows that uα
µ(z̄, t̄) → uα

µ(x̃, t̃) and v(w, s̄) → v(x̃, t̃).
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Now, recalling the properties of uα and v at t = Kα, we have t̄, s̄ > Kα for ε small
enough. Next we claim that, for ε small enough the viscosity inequalities hold for uα and
v. This is obviously the case for v if w ∈ Ω. If on the contrary w ∈ ∂Ω, then we necessarily
have v(w, s̄) < g(w, s̄). Indeed if w ∈ ∂Ω then x̃ ∈ ∂Ω. Since there is no loss of boundary
conditions for subsolution s as clearly specified in Proposition 2.1, we have

µuα(x̃, t̃) ≤ µ(g(x̃, t̃) + ω(α)).

Using that Mα
µ,η > 0, we cannot have v(x̃, t̃) ≥ g(x̃, t̃) since we would then have

Mα

2
≤ Mα

µ,η = µuα(x̃, t̃)− v(x̃, t̃)− ηα(t̃−Kα)− ω(α) ≤ (µ− 1)(g(x̃, t̃) + ω(α)),

a contradiction by sending µ → 1.

It follows that, if x̃ ∈ ∂Ω, then we have necessarily that

v(x̃, t̃) < g(x̃, t̃) and µuα(x̃, t̃) ≤ µ(g(x̃, t̃) + ω(α)). (5.7)

Hence, using that v(w, s̄) → v(x̃, t̃) < g(x̃, t̃), we deduce that if w ∈ ∂Ω, then v(w, s̄) <
g(w, s̄) for ε small enough and the viscosity inequality holds also in this case.

On the other hand, from (5.5) we get that

z̄ = w + εχ

(
z̄ + w

2

)
+ oε(1), (5.8)

which implies by the smoothness of the domain and the properties of χ that z̄ lies in Ω for
ε small enough and hence the viscosity inequality for uα

µ holds too.

Next, we notice that uα
µ satisfies

1

µ
(uα

µ)t −
1

µp−1
div (|Duα

µ|p−2Duα
µ) +

1

µq
|Duα

µ|q ≤ f + oα(1) in Ω× (Kα, T −Kα),

and we can also re-write it as

µp−2(uα
µ)t − |Duα

µ|p−2
{
∆uα

µ + (p− 2)(D2uα
µD̂uα

µ, D̂uα
µ)− µp−1−q|Duα

µ|q−p+2
}

≤ µp−1(f + oα(1)),

where ξ̂ =
ξ

|ξ| for ξ 6= 0 and ξ̂ = 0 if ξ ≡ 0.

The Jensen-Ishii’s Lemma [12] ensures the existence of X, Y ∈ SN , a, b ∈ R, q1,
q2 ∈ R

N such that

(a, q1, X) ∈ P2,1,+
uα
µ(z̄, t̄), (b, q2, Y ) ∈ P2,1,−

v(w, s̄), (5.9)
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a− b ≥ ηα > 0, |q1 − q2| ≤ Cε(|q1| ∧ |q2|), (5.10)

−o(1)

ε2
I2N ≤

(
X 0
0 −Y

)
≤ o(1)

ε2

(
IN −IN
−IN IN

)
+ o(1)I2N . (5.11)

where |q1| ∧ |q2| denotes the minimum of |q1| and |q2|. Indeed, for (5.10), we remark that

q1 =

(
IN − ε

2
Dχ

(
z̄ + w

2

))
q and q2 =

(
IN +

ε

2
Dχ

(
z̄ + w

2

))
q ,

with

q =
4

ε

∣∣∣∣
z − w

ε
− χ

(
z + w

2

)∣∣∣∣
2(

z − w

ε
− χ

(
z + w

2

))
,

and (5.10) is an easy consequence of the boundedness of Dχ.
Moreover the viscosity inequalities for uα

µ and v read

µp−2a− |q1|p−2
{
tr
(
[Id+ (p− 2) (q̂1 ⊗ q̂1)]X

)
− µp−1−q|q1|q−p+2

}
(5.12)

≤ µp−1(f(z̄, t̄) + oα(1)),

b− |q2|p−2
{
tr
(
[Id+ (p− 2)(q̂2 ⊗ q̂2)]Y

)
− |q2|q−p+2

}
≥ f(w̄, s̄). (5.13)

In the sequel we fix ηα > 2oα(1) (recall that the oα(1) comes from the sup-convolution
procedure and is fixed, therefore we can choose in such a way ηα). Since we may have a
singularity at q1 = 0 or q2 = 0, we have to consider separately three cases. First we assume
that there exists a constant γ > 0 such that

|q1|, |q2| ≥ γ.

In this case the matrix A(ξ) = Id + (p − 2)(ξ̂ ⊗ ξ̂) is positive definite, so that its matrix
square root σ exists and satisfies

|σ(ξ1)− σ(ξ2)| ≤ c
|ξ1 − ξ2|
|ξ1| ∧ |ξ2|

.

Combining (5.10) with the fact that (5.11) implies that X ≤ Y + oε(1), we have

tr (A(q1)X)− tr (A(q2)Y ) ≤ oε(1)

ε2
|σ(q1)− σ(q2)|2 + oε(1) ≤ oε(1), (5.14)

|q2|q−p+2 − µp−1−q|q1|q−p+2 = |q2|q−p+2 − |q1|q−p+2 + (1− µp−1−q)|q1|q−p+2

≤ (q − p+ 2)|q1|q−p+1|q2 − q1|+ (1− µp−1−q)|q1|q−p+2

≤ o(ε)|q1|q−p+2 + (1− µp−1−q)|q1|q−p+2. (5.15)

Multiplying (5.12) by
|q2|p−2

|q1|p−2
which is of order 1+O(ε) and subtracting from it (5.13), we

have
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(1 +O(ε))µp−2a− b ≤ |q2|p−2
{
oε(1) + o(ε)|q1|q−p+2 + (1− µp−1−q)|q1|q−p+2

}

+ µp−1(1 +O(ε))(f(z̄, t̄) + oα(1))− f(w, s̄). (5.16)

At this point, we recall that the Lipschitz continuity of uα implies that |a| ≤ 2µK

α
. On

the other hand we remark that, since 1− µp−1−q < 0, for fixed µ the term o(ε)|q1|q−p+2 is
controlled by the (1− µp−1−q)|q1|q−p+2 term.

Now we are going to let ε → 0 : if we assume that q1, q2 (which depend on ε) are
bounded, we may assume that they converge (we still denote their limits as q1, q2 respec-
tively). For µ close enough to 1, we get as ε → 0

0 < ηα/2 ≤ µp−2a− b ≤ (µp−1 − 1)f(x̃, t̃) + µp−1oα(1) + |q2|p−2(1− µp−1−q)|q1|q−p+2

Recalling that ηα > 2oα(1), we get a contradiction when µ → 1 since the last term of the
right-hand side is negative. Of course, we get the same contradiction if (at least for some
subsequence) q1 or q2 → ∞.

If q1, q2 6= 0 but q1 → 0, q2 → 0 then, noticing that
|q2|p−2

|q1|p−2
is still of order 1 +O(ε), we

can pass to the limit ε → 0 in the same way and obtain

0 < ηα/2 ≤ µp−2a− b ≤ (µp−1 − 1)f(x̃, t̃) + µp−1oα(1),

and we also get a contradiction.

If q1 = 0 or q2 = 0, then necessarily q1 = q2 = 0 and, by subtracting (5.13) from (5.12),
we have

ηα/2 ≤ µp−2a− b ≤ µp−1(f((z̄, t̄)) + oα(1))− f(w, s̄).

We get a contradiction when ε → 0.
In all cases fixing ηα > 2oα(1) we get a contradiction for ε small enough and µ close to

1 and the conclusion follows.

C: Proof of Proposition 2.3

The proof of (i) and (ii) are very similar. Indeed we know by Theorem 1.2 that subsolutions
of (2.2) are Hölder continuous, so we are always in a case where the subsolution or the
supersolution are continous. We will only give details of the proof for the p − Laplacian
operator in the case where λ > 0 and v ∈ C(Ω). The other cases are an easy adaptation
(the equation (2.1) is even easier to study). Since v is assumed to be continuous, we follow
the proof of [9] with the same trick as before in order to take care of the strong growth of
the gradient term. We argue by contradiction assuming that M = max

Ω
(u− v) > 0 If µ is

sufficiently close to 1, then we have Mµ = max
Ω

(uµ − v) > M/2 > 0. Since u is usc and
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v is continuous this maximum is achieved at x0. We may assume that x0 ∈ ∂Ω. We drop
the dependence of x0 on µ.

Next, using the regularity of the boundary, we can find a C2-function ξ : RN → R
N

which is equal to n in a neighborhood of ∂Ω. Now we consider the test function Φε :
Ω× Ω → R defined by

Φε(z, w) = µu(z)− u(w) +

∣∣∣∣
z − w

ε
+ ξ

(
z + w

2

)∣∣∣∣
4

.

Let (x, y) be a global maximum point of Φε on Ω × Ω. For notational simplicity we
drop the dependence of x and y on ε. and µ. Using the boundedness of u and v, it is clear
that x − y = O(ε) and it follows that, along a subsequence, x, y → x̄ ∈ Ω. Since u is lsc
and v is continuous, we get that lim sup

ε→0
Φε(x, y) ≤ Mµ.

On the other hand we have, using the continuity of v, we have

Φε(x, y) ≥ Φε(x0, x0 − εξ(x0)) ≥ Mµ +O(ε).

It follows that lim inf
ε→0

Φε ≤ Mµ. Hence we get that

Φε(x, y) → Mµ as ε → 0. (5.17)

Standard arguments allow us to deduce from (5.17) that

∣∣∣∣
x− y

ε
+ ξ

(
x+ y

2

)∣∣∣∣
4

= oε(1), (5.18)

µu(x)− v(y) → µu(x̄)− v(x̄) = Mµ as ε → 0. (5.19)

Next we claim that, for ε small enough the viscosity inequalities hold for u and v.
This is obviously the case if y ∈ Ω. Using Proposition 2.1 and arguing similarly as in the
previous proof, we get that, if y ∈ ∂Ω than v(y) ≤ g̃(y) and the viscosity inequality holds
also in this case. On the other hand, using (5.19), we get that

x = y − εξ(y) + oε(1) (5.20)

which implies by the smoothness of the domain and the properties of ξ that x lies in Ω for
ε small enough and hence the viscosity inequality holds for µu.

Using the same arguments as the previous proof, we get that the elements (q1, X) ∈
J 2,+

uµ and (q2, Y ) ∈ J 2,−
v given by the Jensen-Ishii’s Lemma satisfy

λ(1 +O(ε))µp−2uµ(x)− v(y) ≤ |q2|p−2
{
oε(1) + o(ε)|q1|q−p+2 + (1− µp−1−q)|q1|q−p+2

}

+ µp−1(1 +O(ε))f̃(x)− f̃(y). (5.21)

Letting ε → 0 and then µ → 1, we get a contradiction. It follows that ũ ≤ v on Ω.
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