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Abstract

In this paper, maximal achievable rate regions are derived for power constrained
AWGN broadcast channel involving finite constellations and two users. The achiev-
able rate region is studied for various transmission strategies including superposi-
tion coding and compared to standard schemes such as time sharing. The maxi-
mal achievable rates are obtained by optimizing over both the joint distribution of
probability and over the constellation symbol positions. A numerical solution is pro-
posed for solving this non-convex optimization problem. Then, we consider several
variations of the same problem by introducing various constraints on the optimiza-
tion variables. The aim is to evaluate efficiency vs complexity tradeoffs of several
transmission strategies, some of which (the simplest ones) can be found in actual
standards. The improvement for each scheme is evaluated in terms of SNR savings
for target achievable rates or/and percentage of gain in achievable rates for one
user compared to a reference scheme. As an application, two scenarios of coverage
areas and user alphabets are considered. This study allows to evaluate with practical
criteria the performance improvement brought by more advanced schemes.

Keywords
AWGN broadcast channels, achievable rate region, hierarchical modulation,
superposition modulation, superposition coding, constellation shaping, non-
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convex optimization.

1 Introduction
During the past few decades, information networks have witnessed tremendous
and rapid advances, based on the important growth in the adoption of new wire-
less technologies, applications and services, first from cellular networks and more
recently for computer networks (WLANs). Consequently, wireless networks are
exposed to capacity and coverage problems and the focus is now shifting towards
capturing some of the aspects of realistic networks by studying natural network
models such as models with broadcasting.

In 1972, achievable rate region is obtained by Cover in [1] for Gaussian
broadcast channels with two outputs and generalized by Bergmans to broadcast
channels with any number of outputs [2]. Roughly a year later, the optimality
of the sets of achievable rates was established by Bergmans [3] and Gallager [4].
Superposition coding is a possible solution to achieve good rate regions in which
information intended for high-noise receivers and information intended for low-
noise receivers are superimposed and transmitted simultaneously on the same
radio resource. The low-noise receivers can always decode messages intended for
the high-noise receivers. Thus they effectively cancel out the interference due
to the signal intended for the high-noise receivers, and then decode their own
message. The high-noise receivers decodes its message by treating the low-noise
receivers message as noise. Superposition coding appears in several contexts
in information theory and is closely related to multilevel coding and unequal
error protection [5], [6]. Cover showed [1] that superposition coding reaches the
theoretical limit of the capacity region for two user Gaussian broadcast channel
using an infinite Gaussian input alphabet for each user. A treatment of the case
of multiple transmitter/receivers for the band-limited additive white Gaussian
noise channel is given by Bergmans and Cover in [7] where it is proved that su-
perposition coding can achieve higher rate region than orthogonal schemes such
as frequency-division multiple access (FDMA) or time-division multiple access
(TDMA). However, in actual transmissions systems, the channel input is con-
strained to a finite size alphabet with equal probability symbols. A well known
practical implementation of superposition coding is hierarchical modulation,
also called layered modulation, which uses constellations with non-uniformly
spaced signal points creating different levels of error protection. Hierarchical
modulation is used to mitigate the cliff effect in digital television broadcast and
is included in various standards, such as Digital Video Broadcast for Terres-
trial Television (DVB-T) [8], DVB to Handhelds (DVB-H) and DVB Satellite
services to Handhelds (DVB-SH) [9] standard proposal for mobile digital TV
transmission. A study about the performance of hierarchical modulation and a
comparison with time sharing strategy in terms of achievable rates can be found
in [10].

The restriction imposed by practical systems in using finite signaling con-
stellation and equiprobable symbols reduces the achievable rates and leads to a
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gap with the capacity region achieved with Gaussian input alphabets for AWGN
broadcast channel. This gap can be reduced using a technique called constel-
lation shaping. In fact, most results for constellation shaping with finite signal
constellations consider only point to point communication systems [11]. Then
the concept of constellation shaping has been adapted to most modern cod-
ing and modulation techniques as for example turbo-coding and BICM schemes
[12]-[19]. For broadcast channels, the achievable rate region for two-user AWGN
broadcast channels with finite input alphabets is derived in [20] when superpo-
sition of modulated signal is used as transmission strategy. In their work, the
authors assume a uniform distribution over the finite input set. To our knowl-
edge, no study is available about the maximization of the achievable rate region
for two-user AWGN broadcast channels with finite size constellations by op-
timizing over both the joint probability distribution and constellation symbol
positions for a broadcast transmission strategy. This general framework encom-
passes hierarchical modulations as a special case. In this paper, maximal achiev-
able rate regions are derived for power constrained AWGN broadcast channel of
two users with M -Pulse Amplitude Modulation (M -PAM) constellations of M
points using various transmission strategies. A numerical solution is proposed
for solving this non-concave optimization problem. In a typical broadcast sys-
tem, there is a trade off between achievable rates and coverage areas. Therefore,
we are interested in determining the transmission strategy which provides the
best achievable rates or the maximal SNR gain for a given coverage scenario.
The compromise between simplicity of implementation and expected gains is
also evaluated.

The organization of the paper is as follows. Section 2 recalls some informa-
tion theory results on broadcast channels and degraded broadcast channels. In
section 3 various transmission strategies for broadcast systems are described.
Section 4 gives a formulation of the problem in terms of optimization for the
various transmission strategies under consideration. Then computational as-
pects are discussed. An iterative algorithm is proposed for the computation of
maximal achievable rate regions using superposition coding (general case) and
M -PAM constellation or in the particular case of superposition modulation.
The proposed algorithm can handle an optimization with respect to the joint
distribution of probability or with respect to the positions of constellation sym-
bols. Both variables can also be considered jointly. Obviously, the best results
are obtained for the most general case. Our target is to: (i) evaluate the loss
experienced by using simple schemes, (ii) identify situations in which complex
schemes (non-standard) lead to significant improvements. As an application,
we consider, in section 5, several scenarios of coverage areas and user alphabets
and we give conclusions about the transmission strategies which can provide the
best trade off between efficiency and complexity of implementation.
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2 AWGN Broadcast Channels
A two-receiver (users) broadcast channel (BC) consists of an input alphabet X ,
two outputs alphabets Y1 (user 1), Y2 (user 2) and a conditional pdf PY1Y2|X

on Y1 × Y2. Let X, Y1 and Y2 be random variables representing the input and
outputs of the BC. Figure 1 depicts the two users BC with two independent
messages W1 and W2. The encoder generates a codeword xn(w1, w2) of length
n based on these two messages. Each user receives respectively yn1 and yn2 . A BC
is said to be physically degraded if PY1Y2|X(y1, y2|x) = PY1|X(y1|x)·PY2|Y1

(y2|y1)
(i.e. X → Y1 → Y2 form a Markov chain). A BC is said to be stochastically
degraded or degraded if there exists a random variable Ỹ1 which has the same
conditional pdf as Y1 given X such that X → Ỹ1 → Y2 form a Markov chain.
We are interested in degraded BC because its capacity region is known, while
it is not available for the general case.

In our system model, W1 denotes the private message intended for receiver
1 only and W2 is a common message for both receivers. A typical example of
this situation is digital TV broadcasting to two different groups of receivers,
classified according to their channel conditions, where the basic signal (common
signal) should be available to all receivers. The higher quality is realized by
adding the basic signal with an incremental signal (private signal for receivers
of good channel conditions) which carries TV signal with a high data rate, such
as HDTV.

Let R1 and R2 be the rates at which the transmitter is sending W1 and
W2 respectively. Thus user 1 achieves R1 + R2 while user 2 achieves R2. The
capacity region of the degraded broadcast channel X → Y1 → Y2 in figure 1 is
the convex hull of the closure of rate pairs (R1 +R2, R2) satisfying:

R1 ≤ I(X;Y1|U) (1)

R2 ≤ I(U ;Y2) (2)

for some joint distribution PUXY1Y2
= PUX · PY1|X · PY2|X on {U × X × Y1 ×

Y2} [21]. PY1|X and PY2|X are conditional pdfs that depend on the channel
model. PUX is the joint probability distribution of U and X, where the auxiliary
random variable U has cardinality bounded by |U| ≤ min{|X |, |Y1|, |Y2|}. The
capacity region is achieved using superposition coding where U serves as the
center of a cloud of codewords that can be distinguished by both receivers.
Since the capacity region of a BC depends only on the conditional marginals,
the capacity region of the stochastically degraded BC is equal to that of the
corresponding physically degraded channel. Cover [1] showed that in the case
of binary symmetric BC and AWGN BC, superposition coding expands the rate
region beyond that achievable with time sharing.

Now consider the Gaussian broadcast channel with two users. Without loss
of generality, assume that Y1 is less noisy than Y2. It can easily be shown that
scalar Gaussian broadcast channels are equivalent to a degraded channel,

Y1 = X + Z1 (3)

Y2 = X + Z2 = Y1 + Z ′
2 (4)
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where Z1 ∼ N (0, σ2
1), Z2 ∼ N (0, σ2

2), Z ′
2 ∼ N (0, σ2

2 − σ2
1) and Z1, Z

′
2 are

independent. Thus Gaussian BC is stochastically degraded. We assume an
average power constraint on the transmitted power P defined as E[X2] ≤ P . The
received signal to noise ratio for each user is SNRi =

P
σ2
i

, where SNR1 > SNR2

and σ2
i is the variance of the noise Zi. The capacity region of the AWGN-BC is

the set of rate pairs (R1 +R2, R2) such that:

R1 ≤ C(α · SNR1) (5)

R2 ≤ C(
(1− α) · SNR2

α · SNR2 + 1
) (6)

for all α ∈ [0, 1], where C(x) = 1
2 · log2(1+ x). The theoretical limit of two-user

AWGN BC is achieved by using signal superposition [1].

3 Broadcast transmission strategies
In this section, various transmission strategies for broadcast systems are de-
scribed. The strategies are presented in ascending order of implementation
complexity. Specifically, by moving from one strategy to another, we release
some constraints on the system implementation to reach finally the most com-
plex strategy that can be used to broadcast information for users. Obviously,
since the simple schemes can be understood as adding constraints to the most
general case, their are less efficient in terms of attainable rates.

3.1 Time Sharing (TS)

Time sharing has been widely used in broadcast systems as broadcast trans-
mission strategy. In time sharing scheme, a percentage of time is used to send
one message and the rest of the time is used to send another message. Thus it
is practical to implement because the rate pairs can be achieved by strategies
used for point to point channel and sharing the time between messages. As
in previous works on broadcasting, this situation serves as a reference for the
more advanced schemes. In this work, a time sharing scheme with standard
constellation M -PAM (Fig.2) is considered when symbols are used with equal
probability. A standard M -PAM constellation is defined as a constellation with
M real symbols belonging to X = {M − 1− 2 · (i− 1), for i = 1, ...,M}. During
the time slot dedicated to send a message, only one data stream is sent using
the entire set of constellation points. In classical implementations of time shar-
ing, the conventional M -PAM symbols are equally spaced and used with equal
probability.

3.2 Hierarchical Modulation (HM)

In two layers hierarchical modulation, constellation symbols are used to transmit
two data streams simultaneously for two users [22][23]. Constellation symbols
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are usually chosen with the same probability but may be non-equally spaced.
These symbols can be considered as the sum of two lower order modulations, one
for each user. The modulation with higher power is used for the “bad” channel,
the one with smallest power for the “good” channel. Hence, the encoding using
hierarchical modulation can be separable for the two streams which is more
practical.

This is explained here using 4-PAM as an example. Fig.3 shows the con-
stellation diagram of a hierarchical 4-PAM with parameter ℓ = ℓ1/ℓ2 used to
determine the spacing between the groups of constellation points (clouds). ℓ is
the ratio of the spacing between the groups to the spacing between individual
points within a group. Standard values of ℓ are 1, 2 and 4. When ℓ increases,
with a fixed total transmission power P, the two points from both sides of ori-
gin form a cloud. The location of a point within its cloud is regarded as the
information for the “good” user. The other information, i.e. the number of the
cloud in which the point is located is the information for the “bad” user. In this
way, two separate data streams can be made available for transmission. For-
mally, we are still dealing with 4-PAM but, in the hierarchical interpretation,
it is viewed as the combination of 2 BPSK modulations which have different
robustness to noise. In other words, the service coverage areas differ in size for
both users. The better-protected data stream is referred to as the High- Priority
(HP) stream which is mapped in Fig.3 to the most significant bit. The other
one, is referred to as the Low-Priority (LP) stream (Fig.3) and mapped in Fig.3
to the least significant bit. Receivers with good reception conditions can receive
both streams, while those with poorer reception conditions may only receive the
high priority stream considering the LP stream as noise. This corresponds to a
specific labeling of the modulation.

3.3 Superposition Modulation (SM)

In superposition modulation [24], the M constellation points are used such that
the labeling is separable, i.e. M = M1M2, and that the M points are obtained
by adding (in R) two rv’s X1 and X2, of cardinality M1 and M2 respectively
(M1,M2 ∈ N \ {0, 1}). Thus this scheme is with an enlarged set of feasible
labelings than in the previous case [25],[26]. This leads also to U ≡ X2 for
superposition modulation because user 2 can distinguish only U .

This work studies several cases of superposition modulation. First, when
the constellation symbols for each user are used with equal probability. This
case will be denoted as SMX ,PUX ,PX

. This is a practical case since the encoding
of the messages is separable and symbols are used with equal probability as
in real transmission systems. Then, the constraint of using equiprobable sym-
bols is released, the symbols of user constellations can be dependent and used
with non-equal probability (PUX non-uniform). Thus the encoding here is done
jointly for the two messages. This strategy will be denoted SMX ,PUX ,PX

when
the symbols take the values of a standard M -PAM and SMX ,PUX ,PX

otherwise.
In the latter case, the symbol positions can take arbitrary values and will be
considered as variables to be optimized. The definition of superposition mod-
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ulation can be generalized using more general form for PUX than the uniform
case. In superposition modulation, 2nR2 independent codewords un = x(2)n(w2)
of length n are generated according to PU and for each of these codewords, 2nR1

satellite codewords vn = x(1)n(w1) are generated and added to form codewords
xn(w1, w2) = un + vn according to PX|U . Thus, the fine information vn is
superimposed on the coarse information un.

Note that the capacity region of Gaussian broadcast channel is achieved
using this coding scheme and successive cancellation decoding where U (≡ X2)
and V (≡ X1) are independent random variables following normal distributions.
However, we do not assume here that U and V are independent. Consequently,
for superposition modulation, PUX takes a specific expression. As an example,
consider an 8-PAM modulation. In that case, the transmitted signal at time

k is the sum of the two users signals and is given by xk = x
(1)
k + x

(2)
k where

x
(1)
k ∈ X1 and x

(2)
k ∈ X2 with M1 ·M2 = 8. Two configurations are possible

either M2 = 4 (X1 is a BPSK and X2 is a 4-PAM) or M2 = 2 (X1 is a 4-PAM
and X2 is a BPSK). In both cases, PUX is a sparse matrix of size M2×M with
expression

PUX =









p00 p01 0 0 0 0 0 0
0 0 p12 p13 0 0 0 0
0 0 0 0 p24 p25 0 0
0 0 0 0 0 0 p36 p37









if M1 = 2,M2 = 4

(7)

PUX =

[

p00 p01 p02 p03 0 0 0 0
0 0 0 0 p14 p15 p16 p17

]

if M1 = 4,M2 = 2 (8)

where PUX [i, j] = pi−1,j−1 = Pr{U = ui−1, X = xj−1}. In both cases, the
number of elements to be computed is 8.

Note also that PUX and X (of cardinality M) determine the labeling of the
input signal constellation for a fixed labeling for X1 and X2 [25],[26]. Thus the
information can be distinguished using the labeling. Consider for example a
label luk of log2(|X2|) binary labels for uk and lvj of log2(|X1|) binary labels for
vj with k ∈ {0, .., |X2| − 1} and j ∈ {0, .., |X1| − 1}. Obviously, the M symbols
xi, i ∈ {0, .., |X |− 1} carry log2(M) binary labels which are the concatenations
of the labels of uk and vj such as xi = uk + vj .

Part of this work on superposition modulation was presented in [25],[26],[27],
where the achievable rate regions for SMX ,PUX ,PX

and SMX ,PUX ,PX
strategies

are analyzed using a 4-PAM constellation in [25],[26] and for {4,8,16}-PAM
constellations in [27]. In this work, the achievable rates are also derived for
SMX ,PUX ,PX

using {4,8,16}-PAM constellations.

3.4 Superposition Coding (SC)

Superposition coding is one of the basics of coding schemes in network informa-
tion theory. This idea was first introduced by Cover in an information theoretic
study of broadcast channels [1].
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In superposition coding, the joint distribution of probability PUX can take
a more general form than in the case of superposition modulation. In this case
the labeling cannot allow to distinguish between the common information and
the private information for user 1, a fact which increases the decoder complex-
ity. Indeed, since the auxiliary random variable U has cardinality bounded by
|U| ≤ min{|X |, |Y1|, |Y2|}, we use the name general superposition coding or su-
perposition coding simply to describe the case where |U| = min{|X |, |Y1|, |Y2|}.
For superposition coding and with M -PAM modulation, PUX is an M × M
matrix with elements pi,j .

The basics of superposition coding are briefly recalled below; a detailed
description is given in [28]. In this scheme, 2nR2 sequences un(w2) ,w2 ∈
[1, 2nR2 ] each i.i.d.,are generated randomly and independently to represent the
coarse message each according to

∏n

i=1 pU (ui). For each auxiliary sequence
un(w2), randomly and conditionally independently generate 2nR1 sequences
xn(w1, w2),w1 ∈ [1, 2nR1 ], each according to

∏n

i=1 pX|U (xi|ui(w2)) to repre-
sent the fine message w1. Thus in superposition coding, the auxiliary random
variable U serves as a cloud center for the information, distinguishable by both
receivers. In this case, the decoding of information by users is based on large
block joint typicality. This comes in contrast with the simpler cases where the
message for user 2 was carried by the center of modulation clouds which imply
a possible scalar detection.

The achievable rates for superposition coding will be studied for various
strategies corresponding to different constraints on PUX and/or X .

An exhaustive list of all the strategies under consideration is given in table
1 where redundant configurations are omitted.

4 Achievable Rate Regions
For a two user Gaussian BC, the theoretical limit of the capacity region is
achieved using Gaussian input alphabet for each user. However, practical im-
plementation constraints impose the use of finite input alphabets, and the sym-
bols are usually chosen with equal probability. These restrictions contribute to
increase the gap between the capacity region achieved with infinite Gaussian in-
puts and the throughput obtained in practical situations. In this section, we are
interested in computing the achievable rate region of power constrained AWGN
BC when the transmitted signal is modulated using an M -PAM constellation,
under the various situations described above. Since the last case (superposition
coding) encompasses all previous ones as special cases, the corresponding opti-
mization problems can be solved with the same strategy, which is detailed in
this section.

4.1 Problem Formulation

Consider a two users memoryless AWGN broadcast channel (SNR1 > SNR2)
with signal power constraint P . The channel input belongs to a finite set
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Transmission Variables Constraints Designation

SM X Uniform distribution for PUX SMX ,PUX ,PX

SM PUX s.t.
∑

i,j pi,j = 1 Symbol locations: M -PAM SMX ,PUX ,PX

SM X SMX ,PUX ,PX

PUX s.t.
∑

i,j pi,j = 1

SC PUX s.t.
∑

i pi,j =
1
M

Symbol locations: M -PAM SCX ,PUX ,PX

Uniform distribution for PX

SC X Uniform distribution for PX SCX ,PUX ,PX

PUX s.t.
∑

i pi,j =
1
M

SC PUX s.t.
∑

i,j pi,j = 1 Symbol locations: M -PAM SCX ,PUX ,PX

SC X SCX ,PUX ,PX

PUX s.t.
∑

i,j pi,j = 1

Table 1: Strategies under consideration

X = {x0, ..., xM−1} ⊂ R represented by an M -PAM constellation. Assume
a symmetric input signal constellation with respect to the origin. Since U has
cardinality bounded by |U| ≤ min{|X |, |Y1|, |Y2|} and the output alphabet car-
dinality for an AWGN channel is infinite, we have |U| ≤ |X |. Thus |U| ≤M .

To determine the maximal achievable rate region using superposition coding,
consider the case |U| = M . For superposition modulation, we take into account
the specificity on PUX given in section 3.3. We also consider within the same
framework the problem of maximizing the achievable rates under additional
constraints on optimization variables (PUX and X ): standard M -PAM symbols
values, uniform distribution for PUX , uniform distribution for PX . The problem
of maximizing the achievable rates under a specific situation is solved subject to
a combination of constraints according to table 1. We recall that in this work,
message w2 is a common message to both receivers and w1 is a private message
to user 1. Thus the achievable rate region (R2 vs. R1 +R2) can be obtained by
solving the weighted sum rate (θ ·R1+(1−θ) ·R2) maximization for θ ∈ [0, 0.5].
Indeed, for θ = 0, we maximize the common information rate R2 and when
θ = 0.5 we maximize the rate achieved by user 1 (R1 +R2). Using (1) and (2),
the optimization problem under consideration is:

maxPUX ,X θ · I(X;Y1|U) + (1− θ) · I(U ;Y2)
s.t. pij ≥ 0 ∀i, j

∑

i,j pij · x
2
j ≤ P

(9)

and subject to the constraint on the joint pdf PUX or on X given in table 1
for each strategy, where pij = Pr{U = ui, X = xi}, j ∈ {0, ..,M − 1} and
i ∈ {0, .., |U| − 1}. The two mutual information I(X;Y1|U) and I(U ;Y2) can be
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written as follows

I(X;Y1|U) =
∑

i,j

∫ +∞

−∞

pijPY1|X(y1|xj) log
(
∑

j′ pij′)PY1|X(y1|xj)
∑

j′ pij′PY1|X(y1|xj′)
dy1 (10)

I(U ;Y2) =
∑

i

∫ +∞

−∞

(
∑

j

pijPY2|X(y2|xj)) log

∑

j′ pij′PY2|X(y2|xj′)

(
∑

j′ pij′)(
∑

i′,j′ pi′j′PY2|X(y2|xj′))
dy2

(11)
where all logarithms are taken base 2. The AWGN channel for each user is
characterized by the conditional pdf

PYi|X(y|x) =
1

√

2πσ2
i

.e
−

(y−x)2

2σ2
i i ∈ {1, 2} (12)

When θ = 0 or θ = 1 and for |U| = M (which are referred in this paper as
point-to-point (PtP) channel case), the individual achievable rates R2 and R1

are maximized respectively. The problem (9) is equivalent to

maxPX ,X I(X;Yk)
s.t. pi ≥ 0 ∀i

∑

i pi = 1
∑

i pi · x
2
i ≤ P

(13)

where pi = Pr{X = xi}, i ∈ {0, ..,M − 1} is the input probability distribution
and k ∈ {1, 2}. When θ = 0 or 1, problem (13) is solved for k = 2 and 1
respectively with I(X;Yk) given by

I(X;Yk) =

∫ +∞

−∞

∑

j

pjPYk|X(yk|xj) log
PYk|X(yk|xj)

∑

j′ pj′PYk|X(yk|xj′)
dyk (14)

For the time sharing scheme using standard constellation, the achievable rate
pair (R1 +R2, R2) is such that [1]:

{

R1 = αR1

R2 = (1− α)R2
(15)

where R1 and R2 are achievable rates for PtP channel using standard M -PAM
constellation at SNR1 and SNR2 respectively. Varying α from 0 to 1 yields
achievable rate region.

Problem (9) is not convex, therefore direct numerical optimization is ineffi-
cient. Clearly, an exhaustive search is not feasible as the complexity would be
exponential in the total number of variables. An iterative method for solving
(9) is proposed in the next section.
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4.2 Numerical solution

Consider a regularized version of (9) as:

L(PUX , x0, .., xM−1, s) = θ·I(X;Y1|U)+(1−θ)·I(U ;Y2)+s·(P−

|U|−1
∑

i=0

M−1
∑

j=0

pij ·x
2
j )

(16)
where s is a regularization parameter. For a given value of s, the optimization
problem in (16) is solved (for the most general case) with respect to PUX and
to X = (x0, x1, ..., xM−1) alternately until convergence:

P
(ℓ)
UX = arg max

PUX∈C
L(PUX , x

(ℓ−1)
0 , .., x

(ℓ−1)
M−1 , s) (17)

X (ℓ) = argmax
X

L(P
(ℓ)
UX , x0, .., xM−1, s) (18)

where ℓ is the iteration index and C denotes the set of constraints on PUX and
can be defined either as C = {PUX : pij ≥ 0,

∑

i,j pi,j = 1} or as C = {PUX :

pij ≥ 0,
∑

i pi,j = 1
M
} (equiprobable symbols). The optimization problem in

(17) with constraint set C = {PUX : pij ≥ 0,
∑

i,j pi,j = 1} can be handled by
a modified Blahut-Arimoto type algorithm [29]. Indeed, in order to take into
account the regularization, we can show that the “Blahut Arimoto ”-type algo-
rithm proposed in [30] for broadcast channels should be modified by replacing

equation (19) of lemma 3 in [30] by q∗(u, x) = β[Q,Q̃,Q̄](u,x)·e
−s x2

1−θ

∑
u′,x′ β[Q,Q̃,Q̄](u′,x′)·e

−s x′2
1−θ

instead

of q∗(u, x) = β[Q,Q̃,Q̄](u,x)
∑

u′,x′ β[Q,Q̃,Q̄](u′,x′)
where β[Q, Q̃, Q̄](u, x) is defined in equation

(19) of [30]. When there is an additional constraint on constellation symbols to
be equiprobable i.e. C = {PUX : pij ≥ 0,

∑

i,j pi,j = 1 and
∑

i pi,j = 1
M
},

the “Blahut Arimoto ”-type algorithm in [30] should also be modified to take
into account the additional constraint. In this case, equation (19) of lemma 3

in reference [30] should be replaced by q∗(u, x) = 1
|X | ·

β[Q,Q̃,Q̄](u,x)
∑

u β[Q,Q̃,Q̄](u,x)
, which

does not depend on s, where β[Q, Q̃, Q̄](u, x) is defined in equation (19) in this
reference.

Now consider (18). The function L(P
(ℓ)
UX , x0, .., xM−1, s) is not a concave

function for all X ∈ R
M . However, we observed in our experiments that

L(P
(ℓ)
UX , x0, .., xM−1, s) is a concave function if X ∈ D where D = {X ∈ R

M :
|xi − xj | > d ∀i, j ∈ {0, ..,M − 1} and i 6= j} and d depends on the size of the
constellation and on the SNR. Since we are interested in finding non degener-
ated constellation, we restrict the optimization process to D. Then a simplex
method is used to perform the optimization with initial value in D.

The alternative maximization method can at least increase the objective
function in each iteration. In the experiments, we have observed that this
method converges at least to a local maximum (denoted p∗i,j(s), x

∗
j (s), 0 ≤ j ≤

M − 1, 0 ≤ i ≤ |U| − 1).
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Step 0 s← s(0)

Step k Step 0 X ← X (0) where X = (x0, x1, .., xM−1)

Step ℓ
P

(ℓ)
UX = argmaxPUX∈C L(PUX ,X (ℓ−1), s(k−1)) (P1)

X (ℓ) = argmaxX L(P
(ℓ)
UX ,X , s(k−1)) (P2)

Stopping |L(P
(ℓ)
UX ,X (ℓ), s(k))− L(P

(ℓ−1)
UX ,X (ℓ−1), s(k−1))| ≤ ǫL

criterion
s(k) = [s(k−1) − β(P −

∑

i,j p
∗
ij(s

(k−1)) · (x∗
j (s

(k−1)))2)]+

where [.]+ = max(., 0)
Stopping
criterion |s(k) − s(k−1)| ≤ ǫs

Table 2: Numerical solution for solving (9)

We discuss now the choice of s. Since we do not know a priori which value
of s may correspond to the satisfaction of the equality power-constraint, we
propose to use an iterative process as follows:

s(k+1) =

[

s(k) − γ ·

(

P −

|U|−1
∑

i=0

M−1
∑

j=0

p∗ij(s
(k)) · (x∗

j (s
(k)))2

)]+

(19)

where [.]+ is defined as [.]+ = max(., 0). The value of s is increased or decreased

with the sign of P −
∑|U|−1

i=0

∑M−1
j=0 p∗ij(s

(k)) · (x∗
j (s

(k)))2. The process stops
when the power constraint is fulfilled. The proposed algorithm is summarized
in table 2. Obviously, when constellation symbols are constrained to the values
of a standard constellation, (P2) which is defined in table 2 will not be used.
Similarly, when PUX is uniform, (P1) is not used. An alternative interpretation
of this algorithm is to recognize that L(PUX , x0, .., xM−1, s) is the Lagrangian
dual of problem 9. Eq. (17-18) is an iterative method for solving

f(s) = max
PUX ,x0,..,xM−1

L(PUX , x0, .., xM−1, s) (20)

The dual optimization problem mins.t. s≥0 f(s) is solved in (19) with a gradient-
type algorithm. Since f(s) is convex [31], a gradient-search method is guaran-
teed to converge to a global optimum.

5 Result analysis
5.1 Point to point channel

We present in this section, the results of maximizing achievable rates for PtP
case using M -PAM constellations with M=4, 8, 16 and for different values of
SNR. To evaluate the contribution of constellation shaping, we compare, for a
fixed SNR, the maximal achievable rate calculated by the algorithm proposed in
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the previous section to the “standard constellation”rate, whose symbols are used
with equal probability, at the same SNR in terms of SNR saving (called SNR
shaping gain). The SNR shaping gain depicted in Fig. (4) is the gain obtained
with a fully optimized constellation (PX and X ) compared to the standard M -
PAM constellation and when symbols are used with the same probability. To
avoid the complexity of constructing nearly optimal input distribution codes,
another method for doing constellation shaping is to optimize only the posi-
tion of symbols in the constellation. Each signal point is assumed to be chosen
with the same probability however the position of each point in the constella-
tion is optimized. The corresponding shaping gain is given in Fig. (5). We
observe the following. The shaping gain depends on the SNR and on the size
of the constellation. The maximum gain is obtained for mid-range SNR. The
distribution of probability PX (not reported) is very similar to the sampling
of a gaussian distribution. With the half-optimized constellation (X only), a
significant degradation is observed for mid range SNR compared to the fully
optimized constellation. Hence, we can conclude that symbol pdf optimization
is useless at low and high SNR whereas the fully-optimized constellation is ef-
ficient for mid-range SNR, in which case the gain increases with the size of the
constellation.

5.2 Broadcast channel

Current broadcast systems are using two practical transmission schemes for
sending information to users: orthogonal schemes in which the time and/or fre-
quency is split between the users and superposition modulation schemes where
the constellation for each user is fixed. In this section, a comparison is pro-
vided between these standard schemes and various (more complex) transmission
strategies such as superposition coding. The effect of constellation shaping is
evaluated by analyzing the achievable rate region curves obtained for anM -PAM
constellation (M=4, 8, 16) and for several pairs (SNR1, SNR2). The following
schemes are considered:

• Time Sharing using standard M -PAM (TS).

• Superposition Modulation (SM) - 3 possible configurations (see table 1)

• Superposition coding (SC) - 4 possible configurations (see table 1)

In the following, we denote by the “case 1” of superposition modulation when
M1 = 2,M2 = 4 and when M1 = 2,M2 = 8. The “case 2” is when M1 =
4,M2 = 2 and when M1 = 4,M2 = 4. The “case 3” refers to the case when
M1 = 8,M2 = 2.

Achievable rate region curves are provided in Fig. 6-11 for M = 4, 8, 16. For
each value of M , the display of the results is limited to two different pairs of
SNR. In complement with the achievable rate region curves, comparisons are
also conducted in terms of SNR savings for target achievable rates (Maximum
Shaping Gain) and in terms of Maximum Percentage of Gain for user 1. These
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two quantities are defined below.

Definition 1 Consider two transmission strategies (A and B). The pair of
rates (R1 + R2, R2) is achieved for (SNR1,SNR2) with A and for (SNR1 +
∆SNR,SNR2 + ∆SNR) with B. The shaping gain (with A compared to B) is
∆SNR. The maximum shaping gain is defined as:

MGSNRdB
(A|B) = maxR2

∆SNR (21)

Definition 2 Consider two transmission strategies (A and B). For a given pair
of SNR (SNR1,SNR2) and a fixed value of R2, the achievable pair of rates is
(RA

1 +R2, R2) resp. (RB
1 +R2, R2) with A resp. B. The gain on the achievable

rate for user 1 is given by

GR1
(A|B) =

(RA
1 +R2)− (RB

1 +R2)

RB
1 +R2

· 100 (%) (22)

The maximum gain on the achievable rate for user 1 (with A compared to B) is
given by

MGR1
(A|B) = maxR2

GR1
(A,B) (23)

5.2.1 Superposition modulation

In this section, the three possible configurations of Superposition Modulation are
compared. We can see from Fig. 6 to 11 that SMX ,PUX ,PX

(optimization of X
only) outperforms SMX ,PUX ,PX

(optimization of PUX only) in terms of maximal
achievable rates per user when M = 4. For M = 8 and 16, SMX ,PUX ,PX

can
achieve slightly higher rates than SMX ,PUX ,PX

. The implementation of a system
with constellation symbols with non-standard positions and generated with the
same probability is less complex than the implementation of a system which
generates symbols with non-uniform joint distribution of probability. Thus,
SMX ,PUX ,PX

does not seem to be of interest since it is not very efficient in
terms of achievable rates and is more complex to implement.

Figures of achievable rate region show that an improvement can be obtained
with SMX ,PUX ,PX

(full optimization) compared to SMX ,PUX ,PX
(optimization

of X only) and depending on δSNR = SNR1 − SNR2. Numerical values of the
maximum gain in achievable rate (MGR1) and of the maximum SNR savings
(MGSNRdB

) are given in table 3. We observe the following. A slight gain in
terms of achievable rates can be translated into a noticeable gain in terms of
SNR saving. The maximum shaping gain increases with the constellation size.
Thus, constellation shaping for SM strategy seems more useful for high values
of M . The analysis of the optimal matrix PUX (results not reported) leads
to the conclusion that X1 and X2 are not independent in general when using
finite-size constellations. We observe also that the maximum shaping gain for
SMX ,PUX ,PX

versus SMX ,PUX ,PX
increases when δSNR decreases, independently

of M . In particular full optimization (vs optimization of the symbol position)
does not provide significant improvement for large SNR gap in SM strategy.
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M SNR1 SNR2 MGSNRdB
(A|B) MGR1

(A|B)

8 0.39 7.46%
4 10 6 0.17 3.51%

4 0.05 1.77%
2 0.01 0.38%

14 0.71(M1=4,M2=2) 20.17%(M1=4,M2=2)

8 16 12 0.57(M1=4,M2=2) 13.21%(M1=4,M2=2)

10 0.41(M1=4,M2=2) 13.07%(M1=2,M2=4)

8 0.33(M1=2,M2=4) 18.93%(M1=2,M2=4)

16 1.05(M1=8,M2=2) 10.67%(M1=8,M2=2)

16 18 14 0.87(M1=8,M2=2) 11.54%(M1=8,M2=2)

12 0.64(M1=8,M2=2) 12.08%(M1=4,M2=4)

10 0.49(M1=8,M2=2) 19.53%(M1=4,M2=4)

Table 3: Comparison of SMX ,PUX ,PX
(A) and SMX ,PUX ,PX

) (B) with respect
to MGSNRdB

and MGR1

5.2.2 Time-Sharing (TS) or Superposition Modulation (SM)?

This section compares two strategies (TS and SM) classically considered in
broadcast systems. In Fig. 6 and 7 (M = 4), we observe that the achievable
rate region can be split into 2 parts. Indeed, for small and large values of R2,
TS is better than SM. On the contrary, SM is better than TS for middle-range
values of R2. Under a given rate requirement for one user, we can thus determine
the best transmission strategy. We can also observe that the region in which
SM is better than TS becomes small for larger values of SNR2. With M = 8
(Fig. 8 and 9), the area in which SM is better than TS increases (compared
to M = 4) by considering the union of the two possible configurations for SM:
M1 = 2, M2 = 4 (case 1) and M1 = 4, M2 = 2 (case 2). This is particularly
true when δSNR increases. We also observe that TS can achieve higher rates
than SM (case 1) for good SNR2 values. Indeed, the maximum rate of user
2 with SM is the maximum individual rate for a 4-PAM constellation whereas
it is the individual user rate achieved using standard 8-PAM in the TS case.
For low SNR2 values, optimized 4-PAM may achieve higher rate than standard
8-PAM thus SM becomes better in this interval. For a 16-PAM constellation
(Fig. 10 and 11), SM is always better than TS for the studied pairs of (SNR1,
SNR2). Table 4 shows the maximum percentage of improvement in achievable
rate of user 1 by TS when using SMX ,PUX ,PX

(full optimization) strategy in the
interval where SMX ,PUX ,PX

is better than TS. Clearly, the maximum percentage
of improvement increases when δSNR increases and an important gain is obtained
for high values of δSNR as in the case of SNR1 = δSNR = 10dB for a 4-PAM
where the percentage of gain on achievable rate of user 1 varies between 0 and
40.7%. For a 8-PAM constellation, the percentage of gain on achievable rate
of user 1 varies between 0 and 30.21% when SNR1 = 16 dB and δSNR = 8
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dB. For a 16-PAM, percentages of improvements can be up to 35.08% when
SNR1 = 18dB and δSNR = 8dB. We can conclude that SM is a better option
than TS especially for large δSNR values. TS is optimal in the region where
we want to maximize the rate of user 2 for good values of SNR2 because the
single user rate achieved by TS is the rate achieved using standard M -PAM
constellation (the constellation is split between users with SM). Thus, SM seems
more gainful than TS when we want to serve users with very diverse SNRs.

5.2.3 Is Superposition Coding necessary?

For the three constellations under consideration (M = 4, 8, 16), the maximal
achievable rate region obtained by the optimal general case of superposition
coding when we consider the general form of PUX (SC) can achieve, depending
on M and user SNRs, a large region of rate pairs (R1 + R2, R2) that can-
not be achieved neither by TS nor by SM. Even when we fully optimize SM
(SMX ,PUX ,PX

) we are far from maximal achievable rate region. Sometimes the
maximal achievable rate region curve is very close or even coincides with the
SMX ,PUX ,PX

achievable rate region in a pair of rates (R∗
1 + R∗

2, R∗
2). This

is the case when SMX ,PUX ,PX
is the optimal superposition coding in terms

of achievable rates. We can see for example in Fig. 6 that the pair of rates
(R∗

1 +R∗
2 = 1.096, R∗

2 = 0.531 which corresponds to the optimal rate pair when
we optimize the general case of SC for θ = 0.23) is an intersection point with
SMX ,PUX ,PX

achievable rate region.
We are interested now in the numerical evaluation of the gain in rate of user

1 (R1 +R2) when we use SCX ,PUX ,PX
(full optimization) compared to the best

strategy between TS and SM. This gain (MGR1
(SCX ,PUX ,PX

|TS
⋃

SMX ,PUX ,PX
)

calculated in % is the distance between the limit of the maximal achievable
rate region and the limit of the union of achievable rate regions of TS and
SMX ,PUX ,PX

. The results are reported in table 4. We observe that the part
of the maximal achievable rate region which is unachievable by TS and SM,
is bigger when M is small because we observe that for the case of 4-PAM we
have one configuration for SM. However, we have two configurations of SM for
8-PAM constellation and three configurations for 16-PAM constellation. Thus
when M increases, the union of achievable rates for all SM cases tends to the
sets of achievable rates by the general superposition coding. Asymptotically,
we know that when M → ∞, SMX ,PUX ,PX

is the optimal superposition coding
scheme because it allows to achieve the capacity region for two-user AWGN
BC using Gaussian alphabet for each user. Thus the maximum gain in user 1
rate decreases when constellation order M increases. We observe also that the
gain in achievable rates is high for high values of δSNR. On the other hand,
the experiments show that by using the general superposition coding strategy
with the constraint that symbols should be equiprobable (SCX ,PUX ,PX

), the
loss is limited compared to the full optimization (SCX ,PUX ,PX

), 4.84%, 7.66%
and 3.94% for the simulated pairs of (SNR1, SNR2) when M = 4, 8 and 16
respectively. This means that we can use equiprobable symbols with, in gen-
eral, a small loss in achievable rates. However, SCX ,PUX ,PX

is not an interesting
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M SNR1 SNR2 MGR1
(A|B) MGR1

(A|C)

8 6.13% 6.72%
4 6 11.14% 11.65%

10 4 18.50% 16.69%
2 28.43% 18.9%
0 40.70% 23.54%

14 7.80%(M1=2,M2=4) 7.89%
8 16 12 13.60%(M1=2,M2=4) 11.43%

10 21.15%(M1=2,M2=4) 14.96%
8 30.21%(M1=2,M2=4) 14.71%

16 10.36%(M1=2,M2=8) 2.96%
16 18 14 16.42%(M1=4,M2=4) 2.94%

12 24.68%(M1=4,M2=4) 5.29%
10 35.08%(M1=4,M2=4) 4.80%

Table 4: Comparison of SMX ,PUX ,PX
(A)vs TS (B). Comparison of SCX ,PUX ,PX

(A) vs TS
⋃

SMX ,PUX ,PX
(C).

case when SMX ,PUX ,PX
can achieve better rates since SM is less complex to

implement than SC.
Moreover, with standard M -PAM symbols the two possible configurations

(SCX ,PUX ,PX
(optimization of PUX and PX) and SCX ,PUX ,PX

(optimization of
PUX only)) gives very similar results in most considered pairs of SNR. We also
observe that the loss in maximum achievable rate experienced by user 1 with
SCX ,PUX ,PX

is less than 10% under the rate experienced with SCX ,PUX ,PX
.

Thus we can use standard values of symbol positions without loosing much on
achievable rates.

In general one can conclude that fixing constellations of users (i.e. assign-
ing labels to the constellation so that we distinguish between the bits intended
for each user) is not optimal for coding and may result in important loss in
terms of rates for systems using finite-size constellations especially for low-order
constellations. A better solution is to determine the optimal alphabet of the
auxiliary alphabet U which is not necessarily a constellation and then to gener-
ate the codewords xn which are not necessarily the sum of two codewords (see
paragraph 3.4).

6 Application : coverage extension
We first consider a transmission over a broadcast channel with finite size input
alphabet. For simplicity of the illustration and without loss of generality, let us
assume that the existing user alphabet belongs initially to a standard constel-
lation whose symbols are used with equal probability. We assume that existing
user is at distance d0 from the sender achieving a rate R0. Some information is
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also to be transmitted to an upgraded layer of users. The sender can use up to
16 symbols, then several transmission schemes can be used. We are interested in
comparing the transmission schemes to serve the new user under two scenarios:
either the new user is closer to the transmitter than the existing user or the new
user is farther than the existing one. For a target rate R0 that is fixed for the
existing user and achievable using a standard M -PAM and equiprobable sym-
bols, we are interested in determining the variation of the coverage’s diameter
ratio between the two layer of users as a function of the achievable rate by the
upgraded user for various broadcast transmission strategies. We assume that
SNR ∝ 1

d2 .

6.1 The sender can use up to 16 symbols

6.1.1 Scenario 1

In this scenario, the system consists initially of one layer of users. Now assume
that the data information is also to be transmitted to a second layer of users with
higher SNR. In the following, we keep the notation from the preceding section
where the user with greater SNR is denoted by user 1. Thus, in this scenario
the legacy receivers are denoted by user 2 which is at a distance d2 from the
transmitter and achieving a rate R0 when the data is modulated using standard
4-PAM constellation and equiprobable symbols. The upgraded receivers are
denoted by user 1 (SNR1 > SNR2). We intend that the good user receives more
throughput than user 2 via the use of 16-PAM.

In this example SNR2 is fixed to 10 dB. Initially, user 2’s alphabet belongs
to a 4-PAM standard constellation (see section 3.1) and the rate transmitted to
user 2 is R0 = 1.582 bits/ch. use.

Now, a new layer of users called user 1 is introduced in the system with
SNR1 > SNR2. Our target is to provide the maximum bit rate to the new user
without changing R0 or d0 and using a 16-PAM. By enlarging the constellation
and optimizing the symbol positions and probability distribution, we ensure
that the rate of the initial user will not decrease after introducing a new user.

Consider now the results for the following strategies which can achieve a
positive private-message rate for user 1: time sharing using standard 16-PAM,
SMX ,PUX ,PX

M2 = 8/M1 = 2 (optimization of X only), SMX ,PUX ,PX
M2 =

8/M1 = 2 (full optimization) and SCX ,PUX ,PX
(full optimization). Fig.12 illus-

trates the variation of d1/d2, which is the ratio of the diameter of the coverage
area for user 1 over the diameter of the initial coverage area for user 2, as a
function of the achievable rate for user 1 for a target rate R0 = 1.582 for user 2.

Let assume for example that the new user is midway between the trans-
mitter and user 2 (d1/d2 = 0.5). Fig.12 shows that the most simple case of
superposition modulation (SMX ,PUX ,PX

M2 = 8/M1 = 2 ) provides 16.3% more
bit rate than time sharing for the new user. If we move immediately to a more
complex case and optimize PUX (SMX ,PUX ,PX

M2 = 8/M1 = 2), a gain of 21%
is obtained on the bit rate of user 1 comparing to time sharing. This gain on
achievable rate for the new user is equivalent to a gain of 1dB on SNR1 com-
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paring to superposition modulation with uniform PUX . However if we move to
the most general case of superposition coding, it doesn’t provide significant gain
comparing to superposition modulation.

Now we assume that the new user is close to the transmitter such that
d1/d2 = 0.2. We observe that the gain on the bit rate of user 1 using the simple
case of superposition modulation increases to 45.7% comparing to time sharing.
By moving to a more complex case (SMX ,PUX ,PX

M2 = 8/M1 = 2), a gain of
47.8% is obtained on the bit rate of user 1 comparing to time sharing. We
observe also that it is relevant in this case to move to the most general case of
superposition coding since it provides a gain of 61.8% on the bit rate of user 1
comparing to time sharing.

Consequently, using superposition modulation provides always noticeable
gain comparing to time sharing. The general case of superposition coding
SCX ,PUX ,PX

is useful when user 1 is close to the transmitter but not when
it is close to user 2.

6.1.2 Scenario 2

Initially, consider a system of one layer of users, denoted by user 1, at a distance
d1 from the transmitter and achieving a rate R0. Moreover, the alphabet of
user 1 belongs to a standard 8-PAM constellation. In this example, SNR1 is
fixed to 18 dB. Thus user 1 can achieve a rate R0 = 2.73 bits/ch. use in
the initial situation. In this scenario, we want to serve a second layer of users
denoted by user 2 which is farther to the transmitter than the existing user i.e.
SNR2 < SNR1.

Achievable rates for user 2 are obtained at different distance d2 from the
transmitter and using various transmission strategies for a target rate of user 1
equal to R0 and a coverage diameter for user 1 fixed to d1. Fig.13 illustrates the
variation of d2/d1, which is the ratio of the diameter of the coverage area for
user 2 over the diameter of the initial coverage area for user 1, as a function of
the achievable rate for user 2 when a target rate for user 1 is fixed to R0 = 2.73
bits/ch. use.

We observe in Fig.13 that superposition modulation can always achieve bet-
ter rates for user 2 than time sharing using 16-PAM. Let assume first that we
want to increase the diameter of the coverage area for the new user (user 2) such
that d2/d1 = 4. Time sharing provides a bit rate less than 0.06 bits/ch.use. The
most simple case of superposition modulation (SMX ,PUX ,PX

M2 = 2/M1 = 8)
provides a significant improvement on the achievable rate for user 2 which is
equal to 0.4 bits/ch.use in this case. If we increase the complexity by optimizing
the joint probability distribution PUX , we obtain 35% more bit rate for user 2
comparing to superposition modulation with uniform PUX . If we move to the
general case of superposition coding, we gain only 10% on the bit rate of the
new user comparing to superposition modulation (see table 5). However when
the new layer of users is at distance d2 = 2.25 d1, the general case of superpo-
sition coding provides a significant gain of 41% on the achievable rate of user 2
comparing to superposition modulation.
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d2/d1 SNR2 MGR2
M2/M1

1.2589 16 4.9416 8/2
1.4125 15 20.1521 4/4
1.5849 14 12.7522 4/4
1.7783 13 8.2192 4/4
1.9953 12 7.4536 4/4
2.2387 11 41.4993 2/8
2.5119 10 30.8293 2/8
2.8184 9 22.9121 2/8

d2/d1 SNR2 MGR2
M2/M1

3.1623 8 16.7443 2/8
3.5481 7 12.6033 2/8
3.9811 6 10.5427 2/8
4.4668 5 10.3343 2/8
5.0119 4 11.7414 2/8
5.6234 3 16.0961 2/8
6.3096 2 22.8535 2/8
7.0795 1 32.6194 2/8

Table 5: Comparison of SCX ,PUX ,PX
and SMX ,PUX ,PX

M2-PAM/M1-PAM w.r.t
the gain in achievable rate of user 2: MGR2 (%), where SNR1=18 dB

Consequently, the general case of superposition coding can bring significant
gains comparing to superposition modulation depending on the diameter of cov-
erage area for the new layer of users. For superposition modulation, optimizing
the joint distribution of probability PUX provides often significant shaping gains.

6.2 The cardinality of the existing user alphabet is kept fixed :

In this section, we study the scenarios 1 (and 2) supposing that the legacy
receivers will continue working as in the initial situation, still using 4-PAM (8-
PAM). The system consists initially to one layer of users at distance d0 from the
transmitter and achieving a rate R0. Now we want to change the transmitter
such that upgraded receivers closer (farther) in range will be able to decode a
refinement (coarse) layer and using a 16-PAM constellation. Thus only time
sharing with M1 = M2 = 4 (M1 = 8, M2 = 2) and superposition modulation
strategies can be used. We aim to study how small the reduction in legacy cov-
erage can be made depending on the rate of the refinement (coarse) information
achieved by the upgraded users. Thus suppose that the legacy coverage can
be reduced from d0 to d2 (from d0 to d1). We have studied this problem for
SNR0 = 12 dB and for SNR1− SNR2 = 4 dB in scenario 1 (and for SNR0 = 16
dB, SNR2 = 14 dB in scenario 2). Figures 14 (and 15) represent the reduction
in coverage d2/d0 (and d1/d0 respectively) as a function of the rate of the re-
finement R1 (of the coarse R2), while the rate achieved by the legacy receivers
is kept fixed to its initial situation, i.e. R0.

We observe in figures 14 (and 15) that the gain of superposition modula-
tion strategies over time sharing becomes more important when d2/d0 (d1/d0)
is small. These figures show that using superposition modulation when both
symbol positions and PUX are optimized, we gain around 5 % from the initial
coverage comparing to the case of superposition modulation where symbols are
used with equal probability. We can observe also that a reduction of only 10%
and 20% in coverage area for the existing user can serve the upgraded user with
a rate up to 20% and 35% (9% and 15%) from the rate achieved by the legacy
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users, using SMX ,PUX ,PX
. Consequently, by using SMX ,PUX ,PX

, the legacy re-
ceivers still use 4-PAM (8-PAM in scenario 2) and we can serve a new layer of
users with an acceptable rate, a small reduction in coverage area and with less
complexity comparing to SMX ,PUX ,PX

.

7 Conclusion
In this work we considered the problem of maximizing the achievable rate region
for power constrained AWGN broadcast channel of two users using M -PAM
constellations. The achievable rate region are given for various transmission
strategies. Maximal achievable rate region for superposition coding and super-
position modulation are obtained using constellation shaping. An iterative al-
gorithm was proposed to solve this optimization problem. Then the efficiency of
several strategies are compared. For superposition modulation, results showed
that constellation shaping seems more useful for high values of M . Moreover,
the gain in using a complex case of superposition modulation increases when the
SNR gap between users decreases. We observed also that superposition modu-
lation outperforms time sharing in a large part of the achievable rate region. On
the other hand, it is shown that using the general case of superposition coding
can bring important gains comparing to classical schemes. We observed also
that in the case of finite input alphabet, superposition modulation is not the
optimal strategy as in the case of Gaussian input alphabets. Finally, in order
to make clear that this paper provides useful tools for the system designer, we
considered two scenarios of coverage areas and user alphabets where the sys-
tems served initially one layer of users. Then we propose to serve a second
layer of users and we evaluate the achievable rate of the new layer depending on
the broadcast strategy. To improve the system performance compared to time
sharing, we can optimize the joint probability distribution and symbol positions
of the superimposed modulations or consider the general case of superposition
coding. In this work we showed that the optimization of probabilities was often
useful but not always. However, superposition coding brings sometimes signif-
icant gains comparing to superposition modulation depending on the diameter
of coverage area for the new layer of users.

This work can also be extended to two dimensional constellations like M-
QAM and other channel models. The maximization achievable rates using vari-
ous transmission strategies can be performed also using the proposed algorithm
based on alternative maximization with respect to symbol positions and the
joint distribution of probability.
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Figure 1: The two-user broadcast channel

Figure 2: 4-PAM with equally spaced symbols

Figure 3: Hierarchical 4-PAM with parameter ℓ = ℓ1/ℓ2
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