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Abstract. We present a study of exclusion processes on networks as models for

complex transport phenomena and in particular for active transport of motor proteins

along the cytoskeleton. We argue that active transport processes on networks

spontaneously develop density heterogeneities at various scales. These heterogeneities

can be regulated through a variety of multi-scale factors, such as the interplay of

exclusion interactions, the non-equilibrium nature of the transport process and the

network topology.

We show how an effective rate approach allows to develop an understanding

of the stationary state of transport processes through complex networks from the

phase diagram of one single segment. For exclusion processes we rationalize that

the stationary state can be classified in three qualitatively different regimes: a

homogeneous phase as well as inhomogeneous network and segment phases.

In particular, we present here a study of the stationary state on networks of three

paradigmatic models from non-equilibrium statistical physics: the totally asymmetric

simple exclusion process, the partially asymmetric simple exclusion process and the

totally asymmetric simple exclusion process with Langmuir kinetics. With these

models we can interpolate between equilibrium (due to bi-directional motion along

a network or infinite diffusion) and out-of-equilibrium active directed motion along a

network. The study of these models sheds further light on the emergence of density

heterogeneities in active phenomena.

1. Introduction

Over the last decades our knowledge on the composition and functioning of the cellular

organelles has increased considerably [1], but understanding how cells self-organize

and make their molecular components self-assemble into cellular compartments and

structures is still a major challenge in cellular biology [2, 3]. How a cell works is

undoubtedly related to its internal organization and the spatial distributions of its
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components on different scales. One may guess that order at mesoscopic scales is a

consequence of the non-equilibrium nature of cellular processes. How self-organization

arises spontaneously in non-equilibrium physics is also a a topic of current interest in

non-equilibrium statistical physics, and is referred to as the study of active matter [4, 5].

Cells require active fluxes of matter to maintain their internal organization. To

function properly cells thus need to establish a specific spatio-temporal organization

of proteins, organelles, etc. Delivery of cargoes in eukaryotic cells is functional for

biological processes and mainly realized using an active transport process based on

motor proteins moving along cytoskeletal filaments [1, 6, 7]. In general, cytoskeletal

filaments in cells form intracellular networks which act as macromolecular highways

along which motor proteins can deliver cargoes to specific locations in cells. In nerve

cells, for instance, proteins and membranes must be transported from the cell body to the

synaptic terminal, a distance which can reach several meters. Besides their important

role in transporting cargo, motor proteins have various other functions, e.g. force

production leading to muscle contraction, depolymerization or rearrangement of the

cytoskeletal filaments in cytoskeleton dynamics. Hence, the spatial organization of the

motor proteins is an important aspect in the understanding of the physical and biological

properties of cells. Motor-protein transport also has an important impact on the health

of organisms: motor-protein mutations have been shown to lead to neurodegenerative

diseases and they also play an important role in left-right body determination, tumour

suppression, etc. [8, 9].

The physical picture of motor protein transport inside the cell is roughly the

following. Motor proteins consume chemical energy at a high rate, which they employ to

perform active motion along the polymer filaments of the cytoskeleton, in a preferential

direction set by the filament polarity. These directed runs along the cytoskeleton

typically alternate with diffusion in the cytoplasm, as the motors stochastically detach

and re-attach via specific binding and unbinding processes. The distance which the

motor protein typically moves between an attachment and a detachment event is a

measure for its processivity (see for instance [10]). When motors reach a junction, where

filaments branch or interconnect, they can change their direction or switch filament [11].

In recent years single motor protein motion has become experimentally observable

due to progress in super-resolution imaging, physical manipulations of single molecules

as well as electron and light microscopy. These have considerably boosted the ability to

study the spatio-temporal organization of proteins within the cell. For instance, it is now

possible to determine quantitatively, both in-vitro and in-cellulo, dynamic properties of

single motor-proteins [12, 13, 14, 15], to quantitatively analyze the collective effects

between interacting motors [16, 17], to observe the overall organization of proteins,

organelles or membranes in the cell [18], as well as to present a 3D mapping of the

topological structure of the cytoskeleton [19, 20, 21] and to control the formation of actin

and microtubule networks of various topologies [22, 23]. It is a challenge to develop the

modelling tools to complement the insights given by these experimental studies.

From a theoretical point of view, motor-protein transport is an intriguing example
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of a stochastic transport phenomenon of molecular entities, far from thermodynamic

equilibrium and subject to mutual interactions. In statistical physics motor-protein

transport is modelled by particles performing an active stochastic motion along a one-

dimensional segment [24, 25, 26, 27]. One class of commonly used models are lattice gas

exclusion processes, for which the particles are constrained in their movement by their

excluded volume [28, 29, 30]. Their instantaneous velocities during the stepping process

plays no role as such, since at the nanometer scale all motion is overdamped by the

viscous environment. Active exclusion processes have been proposed originally in the

context of mRNA translation by ribosomes [31, 32] and, more recently, have allowed to

make quantitative predictions for in-vitro experiments on motor-protein transport along

single filaments [17, 33, 34]. Thanks to extensive studies, we have now a rather in-depth

understanding of non-equilibrium transport in a one-dimensional setting [35]. These

lattice gas models have stimulated a lot of fundamental research in non-equilibrium

physics [36], but also in more applied topics such as modelling macromolecules which

move through capillary vessels [37], electrons hopping through a chain of quantum-dots

[38], vehicular flow in traffic [39, 40], translation of mRNA [41]. Current studies have

mainly focused on one-dimensional models, but they did not address how motor proteins

spatially self-organize along the cytoskeleton.

Motor protein transport along the cytoskeleton can be envisaged as a generalisation

of these processes to complex networks. Studies of transport processes on complex

networks abound in the literature, starting from the seminal work of Kirchhoff on

currents through electrical circuits [42]. Diffusion through networks is well-studied [43],

and active transport processes through networks have been considered as models for

motor protein transport [44, 45, 46, 47, 48, 49]. To date, most such models are mainly

based on non-interacting particles. However, much interesting physics is expected

when motors interact through exclusion interactions, and work on this aspect is recent.

Greulich and Santen have studied particles moving actively on a spatially disordered

network, also accounting for finite diffusion in the surrounding reservoir [50]. Ezaki and

Nishinari have developed an exactly solvable model of an exclusion process on a network

respecting a balance condition [51]. In our recent work [52, 53] we have shown that the

stationary state of exclusion processes on complex networks can be understood in terms

of their behaviour on a single-segment.

The role of heterogeneities has emerged from our previous studies as an important

feature: since exclusion models in one dimension display a boundary-induced first-order

phase transition in the particle density [54, 55], transport through complex networks

leads to various regimes of density heterogeneities at different spatial scales [52, 53],

which also depend on the network topology. We rationalize these phenomena starting

from the transport characteristics of a single segment between two particle reservoirs.

In particular, we build on the idea of effective rate diagrams which allow to visualize

the stationary state of the network from the single-segment phase diagram [53]. Using

this effective rate approach which we further develop in this article, we have identified

three stationary regimes in exclusion models on networks, characterized by the spatial
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heterogeneities in the particle densities: a heterogeneous network regime, a heterogeneous

segment regime and a homogeneous regime. We link these scales of heterogeneities to an

interplay between the topology of the network, the microscopic (molecular) parameters

for the transport process and the fraction of the network filled with particles. Our

approach can be applied to any model for which the single-segment phase diagram and

current density profiles through a single segment have been determined. Our approach

is straightforwardly applicable to a large number of transport models for which the

single-segment diagram is known [30, 35].

We apply our method to three different paradigmatic models: the totally

asymmetric simple exclusion process (TASEP) [31, 32, 56], the partially asymmetric

simple exclusion process (PASEP) [57] and the totally asymmetric simple exclusion

process with Langmuir kinetics (TASEP-LK) [58, 59]. The TASEP is a model of active

particles which hop stochastically and uni-directionally through a network and mutually

interact with exclusion interactions. Interestingly, in recent work we have shown that

transport through closed disordered networks by active particles following TASEP rules

spontaneously leads to strong density heterogeneities between the different segments

of the network [52]. To establish a clear understanding on how these heterogeneities

appear in non-equilibrium transport processes we consider an extension of TASEP in

two ways: we consider bi-directional motion of active particles on networks (PASEP) and

the coupling of active motion through a network with the passive diffusion of particles

in a reservoir (TASEP-LK). These extensions allow us to interpolate between a passive

transport process (observed for fully bi-directional or diffusive motion) and an active

transport process (for uni-directional motion along the network). In such a way we gain

insight into the emergence of density heterogeneities on networks (which are absent

in passive processes but appear in active processes). In the perspective of biological

modelling, these models add important molecular parameters to the TASEP description

of motor protein transport along the cytoskeleton.

In the following section we describe our general mathematical framework of active

particles moving along complex networks, presented here in the perspective of motor

protein transport along the cytoskeleton. We define the random networks and excluded

volume processes which model, respectively, the cytoskeletal architecture and motor

protein motion along the biofilaments. In the third section we introduce the two main

concepts which allow us to intuitively understand and characterize the stationary state

of excluded volume processes on networks: effective rate diagrams for the network

and a classification of stationary states based on three regimes of particle density

heterogeneities. We introduce these concepts first on TASEP, revisiting and extending

the results presented in [52]. We then show in section four how this effective rate

approach can be applied to understand bi-directional transport on networks and, in

section five, to understand active transport on networks coupled to a homogeneous

particle reservoir. The latter analysis considerably extends the results presented in

[53]. The study of these three models shows how the stationary states of exclusion

processes can be classified in a unified way using the three stationary regimes of density
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heterogeneities sketched above. We discuss the potential implications of our findings in

the context of cytoskeletal motor protein transport using experimental values from the

literature.

In the conclusions we summarize how this classification allows to present in a

compact way how spatial density heterogeneities appear in active transport on networks

through an interplay between network topology, disorder, bi-directionality and finite

particle processivity.

2. Modelling motor-protein transport

In this section we present our general modelling framework to study transport along

complex networks, with a view towards motor-protein transport on the cytoskeleton.

Cells are hugely complex systems consisting of a variety of building blocks based on

macromolecular assemblies such as proteins, filaments, membranes, organelles, etc.

[1, 60, 61]. We use minimal models to capture some of the essential qualitative features

of motor protein transport. These minimal models consist of particles (motor proteins)

moving directionally along a graph (the cytoskeleton) as represented in figure 1.

α β

//
ωD ωAp

(a) (b)

(c)

(d)

Figure 1. (a) Microtubular network of a COS cell (courtesy of P. Montcourrier,

CRLC Val d’Aurelle); (b) scheme of the microtubular network; (c) zoom on filaments

with motor transport, binding and unbinding; (d) TASEP-LK microscopic rules for

transport along a single filament.

2.1. Cytoskeleton as a directed network

The cytoskeletal meshwork of filaments is represented as a directed graph of segments

of length L which are interconnected at junction sites or vertices. A directed graph

is a couple G = (V,E) of the set of vertices v ∈ V and directed edges or segments

s ∈ E ⊂ V × V . It is represented through nodes interlinked by arrows (see figures 1

and 2). In figure 2 the segments are represented as dashed lines and the junction sites
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as squares. This representation of the cytoskeleton as a directed network of segments

takes into consideration the polarization of the cytoskeletal filaments, their discrete

microscopic nature as well as the one-dimensional nature of the protofilaments.

Figure 2. (a) Transport of particles along a network as a minimal model for

cytoskeletal motor-protein driven transport; (b) The stationary state of the whole

network can be studied by considering that every segment is an open segment which

connects two reservoirs from the entrance of the segment towards the exit. (c) The

two reservoirs are characterized by certain effective rates which depend on the state of

the network, in particular the particle density at the junction nodes.

In principle we could consider a specific topology of the cytoskeletal network, as

it may be known from experiments with cryo-electron tomography [20, 21] or from

in-vitro reconstituted polymer networks using micropatterning methods [22, 23]. A

static characterization of the cytoskeleton is however difficult, since the cytoskeleton

is in fact a highly dynamic network due to e.g. (de)polymerization of filaments or

(un)binding of cross-linker proteins. Moreover, due to the intrinsic complexity of the

cytoskeleton, working on any particular structure would make it more difficult to unveil

the main mechanisms leading to overall motor protein organization. In this perspective,

theoretical studies are useful to explore the influence of any possible realization of a

network topology on motor protein transport.

Here we consider random networks in which a single graph instance is drawn with a

certain probability from an ensemble of graphs [62]. The randomness in the construction

of the graph reflects to a certain extent our lack of knowledge in the precise cytoskeletal

structure, as well as the complexity of the cytoskeleton. In this work we consider
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(a) (b) (c)

Figure 3. Three directed graphs which could serve as a model for the topology

of a cytoskeleton. Left: ordered square lattice of degree c = 2. Middle: 2-regular

random graph. Although the local connectivities of the vertices are the same, disorder

is present in how vertices are connected at long distances. Right: irregular random

graph of mean connectivity c = 2. In this case, the local neighbourhoods of vertices

vary from site to site. We remark that the circles denote the junction sites while the

crossings between segments do not represent real intersections. Red vertices have more

incoming segments than outgoing ones, blue ones have more outgoing segments than

incoming ones, and for black vertices the number of ingoing and outgoing segments is

equal.

two types of graph ensembles: one without local disorder (the c-regular ensemble,

a.k.a. Bethe lattice [63, 64]), and one with local disorder (the irregular Erdös-Rényi

ensemble) [65, 66]. Local disorder is defined through disorder in vertex degrees. We

define the indegree cin
v of a vertex v as the number of segments arriving at a vertex while

the outdegree cout
v denotes the number of segments leaving a vertex v. Regular graphs

are then defined by the constraint cout
v = cin

v = c, such that all vertices have equivalent

local neighbourhoods. As illustrated in figure 3, we can consider ordered regular graphs

such as the square lattice or random regular graphs such as Bethe lattices. In irregular

graphs the local vertex degrees of different vertices can differ, as in the Erdös-Rényi

ensemble mentioned above. In this ensemble single graph instances are constructed by

randomly drawing edges between the vertices: each directed segment of the graph is

present with a probability c/|V | and absent with a probability 1 − c/|V |. Networks

drawn from the Erdös-Rényi ensemble have a Poissonian degree distribution. We select

the strongly connected component of the graph [52, 67], whenever necessary, to make

sure that every junction can be reached from every other junction.

As an illustration, we juxtapose in figure 3 the square lattice, as well as single graph

instances drawn from the ensembles of regular and irregular graphs. These ensembles

have been studied extensively in graph theory [62], and have been used to study complex

networks appearing in various sciences, e.g. the Internet, social networks, regulatory

networks in biology [68, 69].
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Figure 4. (a) Motor protein transport on a single filament: motors can stochastically

step, without overtaking. They can bind and unbind in a kinetic exchange between

the filament and the cytoplasm. In certain cases the motors, or cargoes driven

by competing motors, may also undergo bi-directional motion. (b) TASEP process

mimicking stochastic motion in one direction only, with site-exclusion and perfect

processivity of motors. (c) PASEP process representing bi-directionality of motors

or cargoes. (d) TASEP-LK reproducing unidirectional motion, but also binding and

unbinding processes of motors.

2.2. Motor proteins as active particles

Motor protein motion through one cytoskeletal filament is modelled as a stochastic and

biased motion through a single directed segment of the network, see figure 4. In this

work we base the particle motion on one specific class of microscopic models known as

exclusion processes. For these particles hop stochastically along the sites of the segments,

with an excluded volume condition which forbids that several particles occupy the same

site.

There are several reasons why exclusion processes are good models to study motor

protein transport on a mesoscopic level. First, they reduce many complex details

of the stepping process to a rather simple set of rules. In particular they allow to

study collective effects in active transport due to the interactions between the particles

(which is more difficult to compute in more elaborate models of motor protein transport

[24, 25]). Second, it has been shown that exclusion processes can describe both

qualitatively and quantitatively the spatio-temporal organization of motor proteins

along single biofilaments [33, 34, 17]. Third, they have been studied extensively over the

last decades, in the one-dimensional configuration of an open segment, interconnecting

two particle reservoirs with injection/extraction rates (α, δ) and (γ, β), respectively (see

figures 4 and 2). At this moment, analytical expressions for the average current and

density are known for numerous exclusion processes [30, 35], which will prove important

when addressing generalizations to networks.

In figure 4 we illustrate three examples of exclusion models which retain some of the

essential characteristics of motor protein transport. The simplest variant is the totally
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asymmetric simple exclusion process (TASEP), in which particles hop uni-directionally

along a single segment at a fixed rate p [31, 32, 56] (see figure 4-(b)). A simple

extension of this model is given by the partially asymmetric simple exclusion process

(PASEP) [57]. Here the forward rate p and the backward rate q differ (see figure 4-

(c)). Such a generalization of TASEP is useful for capturing the bi-directional motion of

motors, which can be due to fluctuations or to competing motors transporting a cargo.

Finally we consider the totally asymmetric simple exclusion process with Langmuir

kinetics (TASEP-LK). This model adds particle exchange with a reservoir, through a

binding/unbinding process obeying Langmuir kinetics, to the TASEP model (see figure

4-(d)). Such exchange kinetics are important when studying active transport of motors

with finite processivity, which can only cover a finite distance along the segment before

they detach stochastically.

In the following we generalize the models presented in figure 4 to a complex network

and study their stationary state. In terms of the dynamics on the network, we have to

complement the above rules for particle hopping in the segments by a set of microscopic

rules for their behavior at the junctions. A particle located at a junction site can jump

to either of the outgoing segments with equal probability, and will then continue its one-

dimensional dynamics along the new segment (see for instance figures 1 and 2). Here

we consider the simplest choice, where jumps to all outgoing segments are equally likely,

but other choices are possible [70, 71], to which our analysis could easily be adapted.

2.3. Balancing currents at the junctions and segment properties from effective rates

We present now a method to deduce the stationary density profiles of particles moving

through a network from the stationary density profiles of an individual segment [52]. As

illustrated in figure 2, we consider that the end points of every segment in the network

connect to reservoirs which inject/extract particles with certain effective rates. The

expressions of these rates are given, following mean-field arguments, by the occupation

probabilities of the junction sites v, i.e. by the average density ρv at the junctions. This

allows us to develop a description of transport through a complex network for which the

densities ρv at the junction sites are sufficient to determine all the currents and densities

in the whole network (even within the segments, since the junction densities determine

the effective rates of each segment).

We determine the (average) densities ρv by balancing currents at the junctions [52].

The continuity equations in ρv read as:

∂ρv
∂t

=
∑
s→v

Js→v −
∑
s←v

Jv→s. (1)

The quantity Js→v is the average current of particles flowing from a segment s into a

junction site v, whereas Js←v is the reverse flow from the junction v into the segment

s. Note that the sums in equation (1) run over the segments of the graph and therefore

considers its specific topology.

We assume now that the particle current in any given segment s = (v, v′) is given
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by the current between two particle reservoirs with appropriately chosen effective rates

(αeff
s , δ

eff
s ) and (βeff

s , γ
eff
s ), see figure 2-(c). Hence the exact continuity equations (1) are

approximated by the following mean-field equations

∂ρv
∂t

=
∑
s→v

J−
[
αeff
s , δ

eff
s ; γeff

s , β
eff
s

]
−
∑
s←v

J+
[
αeff
s , δ

eff
s ; γeff

s , β
eff
s

]
, (2)

where J− and J+, the current entering (leaving) the given segment, have the generic

functional form known from a single segment: the in/out currents vary from one segment

to the other only through the effective rates of the respective segments.

In the stationary state, closure of the set of equations (2) is achieved by establishing

the expressions of the effective rates, for any segment s = (v, v′), by linking them to

the (average) junction densities ρv and ρv′ . The appropriate expression for the effective

rates can be found using a mean-field approximation at the junctions [70]. Note that

even for those cases where the exact expression for the single-segment current is known,

our procedure remains an approximation as segment cross-correlations at the junctions

are not accounted for.

A particularly interesting aspect of our approach is that it constructs the description

of transport at a network scale, from transport within the single segments. This leads

to a strong simplification of the master equations, allowing to solve them on very

large networks. Moreover, due to this decomposition one can apply our scheme to any

model, with the sole condition of knowing a solution J±v for a single open segment with

entrance/exit rates (α, δ) and (γ, β). Since several non-equilibrium models for transport

have been solved exactly in this particular one-dimensional configuration [30, 35], our

approach is straightforwardly applicable to a very large number of models.

Let us finally define a certain number of macroscopic quantities which we will use

throughout the article. The total density ρ and the total current J of the network are

given by

ρ ≡
L
∑

s∈S ρs +
∑

v∈V ρv

|S|L+ |V |
≈
∑

s∈S ρs

|S|
, (3)

J ≡
L
∑

s∈S Js +
∑

v∈V Jv

|S|L+ |V |
≈
∑

s∈S Js

|S|
. (4)

where the approximations are valid if individual segments are sufficiently long (L� 1).

The quantities ρs and Js denote the average current and density through a given segment

s. When strong heterogeneities appear in the network, it is particularly interesting to

consider the distribution W of segment densities ρs:

W (ρs) ≡ |S|−1
∑
s∈S

δ(ρ− ρs). (5)

3. Analyzing TASEP on networks: effective rate diagrams and regimes of

heterogeneity

In this section we introduce two concepts which will prove central for studying exclusion

processes on networks: effective rate diagrams for the network and a classification
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of stationary states in terms of three regimes for heterogeneities. The effective rate

diagrams provide an intuitive yet quantifiable method which allows to rationalize the

stationary state of transport processes on networks in terms of their single segment

phase diagram. One of the merits of this approach is a natural classification of

the stationary state of exclusion processes on networks in terms of three distinct

regimes: a heterogeneous network regime, a heterogeneous segment regime and a

homogeneous regime. These regimes correspond with the different scales on which

density heterogeneities can arise in the stationary state. As we will show in this work,

these regimes give a unified view on the stationary state of exclusion processes on

networks and allow to appreciate the effect of the network topology and of microscopic

rules for particle motion.

Here we use TASEP on a network [52] to introduce these concepts. TASEP,

illustrated in figure 4-(a), is the simplest model. Particles follow TASEP rules in each

segment of the network. At the junction sites they hop, with equal probabilities, to one

of the segments leaving the junction. The model thus consists of a closed network on

which particles, at a given overall density ρ, move uni-directionally, stochastically and

subject to mutual exclusion interactions.

Since the effective rate diagram builds on the single-segment phase diagram we first

recapitulate the behavior of TASEP on a single open segment connecting two reservoirs

(see the setting illustrated in figures 2-(c) and 4-(b)). We use the resulting current

and density profiles to determine the spatial stationary distribution of particles along

complex networks and discuss the classification in terms of the length scales associated

with heterogeneities.

3.1. One-dimensional segment connecting two reservoirs

We recall the exact TASEP expressions for the current and density of particles moving

through an open segment connecting two particle reservoirs, as shown in figure 2-(c),

in the limit of large segments (L→∞). At the entrance particles are injected into the

segment from a reservoir (with entry rate α), whereas at the end of the segment they are

absorbed into a reservoir (with exit rate β). In between particles hop uni-directionally

at rate p with mutual exclusion interactions, see figure 4-(b). The segment density as a

function of the reservoir rates (α, β), is given by [56, 72, 55]:

ρTASEP [α, β] =


α/p α < β, α/p < 1/2 (LD)

1− β/p α > β, β/p < 1/2 (HD)

1/2 α/p, β/p > 1/2 (MC)

, (6)

and the average current J obeys the parabolic profile:

JTASEP [α, β] /p = ρTASEP [α, β]
(
1− ρTASEP [α, β]

)
. (7)

This average current is constant along a one-dimensional segment, since the particle

number is conserved.
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As one can see from equations (6), TASEP leads to three stationary phases: a low-

density phase (LD) for low values of α, a high-density phase (HD) at low values for β

and a maximal current phase (MC) if both α and β are large. In the LD and HD phases

the density and current profiles are boundary-controlled by the input or the exit rate,

respectively. The maximal current phase (MC) on the other hand is a saturated, bulk-

limited phase, invariably at density ρ = 1/2 and with maximal current J = p/4. Note

that in this MC phase the bulk density and current are independent of the boundaries.

The LD and HD phases are separated by a first order transition line at α = β < 1/2,

where a coexistence phase (LD-HD) arises. Whereas the LD and HD phases correspond

to homogeneous density profiles (except for localised boundary effects), the LD-HD

phase is heterogeneous, as a domain wall separates the LD and HD regions which coexist

on the same segment [73].

The first order transition separating LD and HD phases is an important feature

when discussing transport on networks. It implies a discontinuous variation in density

at α = β, from the LD value ρLD = α/p to the HD value ρHD = 1 − β/p. The

corresponding jump has size ∆ρ = ρHD − ρLD = 1 − 2α/p, and we point out that

it is maximal (∆ρ = 1) at the origin. This observation will become important when

analysing networks in the following subsections.

3.2. Effective rate diagrams describing TASEP through a network

To determine the stationary distribution of particle densities for the TASEP on networks

we apply the mean-field analysis laid out in subsection 2.3. The current and density

profiles for an individual segment s in the network, Js and ρs, are given by Js =

JTASEP
[
αeff
s , β

eff
s

]
and ρs = ρTASEP

[
αeff
s , β

eff
s

]
. The incoming and outgoing currents

in each segment must match: J−[α, β] = J+[α, β] = JTASEP[α, β], due to current

conservation along a single segment. Equations (2) for TASEP are now closed by relating

the effective rates αeff
s [ρv] and βeff

s [ρv′ ] for each segment s = (v, v′) in the network to

the junction densities {ρv}v∈V . From the microscopic behaviour of the particles at the

junctions, here the excluded volume and the fact that all out-junctions are selected with

equal probability, mean-field arguments lead to [70]:

αeff
v = p

ρv
cout
v

and βeff
v = p (1− ρv) , (8)

where cout
v is the out-degree of junction v, i.e. its number of outgoing segments.

Substituting the effective rates in equations (2) leads to the following set of closed

equations in the density at the junctions ρv:

∂

∂t
ρv =

∑
v′→v

JTASEP

[
p
ρv′

cout
v′
, p (1− ρv)

]
−
∑
v′′←v

JTASEP

[
p
ρv
cout
v

, p (1− ρv′′)
]
. (9)

Solving this set of equations, analytically or numerically, one finds stationary values

for the densities at the junctions {ρv}v∈V , which determine the stationary state of the

network. These densities imply the effective rates (αeff
s , β

eff
s ) for each segment, and thus
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Figure 5. Effective rate diagram, obtained by mapping the steady state effective

rates (αeff
s /p, βeff

s /p) for all segments s in a network onto the single-segment phase

diagram of TASEP [55, 56, 72]. The effective rates have been determined from the

mean-field equations (9), and we have chosen an overall particle density ρ = 0.4 for

all cases shown (a): c-regular graph, at the given values of c. All effective rates of

all segments are equal, and coincide in one data point, shown here for ρ = 0.4. For

other densities the effective rates (αeff , βeff) fall on the dashed lines. (b)-(d): strongly

connected component of an irregular Erdös-Rényi graph, of given mean connectivity

c. We have a scattered plot of effective rates, as these vary from segment to segment.

The number of junctions in the graphs are: |V | = 155 (c = 2), |V | = 200 (c = 10) and

|V | = 500 (c = 30).

also the average segment densities ρs as well as the average currents Js through each

segment s ∈ S (see equations (6)-(7)).

A very useful way to visualize and understand the transport characteristics of a

network is achieved by mapping the effective rates of the segments in the network onto

the (α/p, β/p)-phase diagram of a one-dimensional open segment, see figure 5. The state

of the whole network can thus be visualized by an effective rate diagram, represented

in figure 5, from which one can read off which phases are occupied by the segments

in the network. We notice a striking difference between the stationary state of regular

networks, for which all segments fall into the same phase, and irregular networks, for

which the effective rates are scattered over the single-segment phase diagram. We discuss

in the next two paragraphs how this sets apart regular from irregular networks.

3.3. Regular networks

For regular networks all junctions are topologically identical, which also makes all

segments identical. Consequently all transport is governed by one pair of effective rates,

and ultimately (from equation (8)) by a single value for the junction occupancy ρv. The
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Figure 6. Average current-density relation through regular graphs for a given degree

of connectivity c. The plateau indicates the presence of a first order transition

and a coexistence phase, which dominates at increasing connectivities. The dashed

lines indicate the transitions between the homogeneous LD region, the heterogeneous

LD −HD segment region and the homogeneous HD region. Simulations (markers)

are for segments of length L = 100 and graphs of size |V | = 80 junctions. The

agreement between mean-field profiles (solid lines) and simulations improves further

when increasing the segment length L.

Figure 7. The distributions W of the segment densities ρs for regular and irregular

networks are compared for two graph instances of average connectivity c = 10. Note

the difference between the bimodal distribution for irregular graphs and the unimodal

distribution for regular graphs. We compare mean-field results (lines) with simulation

(markers). The total density ρ equals ρ = 0.3 (a) and ρ = 0.7 (b). The graphs have

a size of |V | = 1000 junctions. Simulations are run for segments of length L = 100.

The unimodal distribution of regular graphs predicted by mean-field is approached

gradually by simulations when increasing the runtime.

latter depends on the overall density ρ, and the dashed lines in Figure 5-(a) show how

the effective rates evolve as the overall density ρ varies. The labeled points correspond
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to an overall density of ρ = 0.4, and here they fall onto the first order phase transition

line, corresponding to a junction occupancy of ρv = c/(c + 1). Note that, due to the

presence of phase coexistence, this value of the junction occupancy corresponds to a

whole range of overall densities: ρ ∈ [ρ∗, 1 − ρ∗], with ρ∗ = (c + 1)−1. This degeneracy

is also reflected in the current-density relation J(ρ) [70], which is identical to that of

each segment in the network (see Fig. 6). The density heterogeneities associated with

the LD-HD coexistence phase are directly linked to a drop in transport capacity, which

leads to the current plateau.

In terms of the network, the conclusion is that at low densities (ρ ≤ ρ∗) all segments

are in the LD phase and the particles distribute homogeneously throughout the whole

network. Similarly, at high densities (ρ ≥ 1− ρ∗) all segments are in the HD phase. On

the network level we refer to these as the homogeneous (LD or HD) regimes, according

to which phase dominates the behavior of the network. We reserve calligraphic letters

to refer to the regimes of the network while the phases of the individual segments are

denoted by regular letters. In contrast, at intermediate densities all segments are in

the LD-HD coexistence phase, and thus heterogeneities are present within each of the

segments. We refer to this as a heterogeneous LD −HD segment regime, to indicate

that the density heterogeneities arise at the scale of single segments.

These characteristics are further illustrated in figure 7 where we present the

distribution W of segment densities ρs, here superposing results from numerically solving

the mean-field equations and kinetic Monte Carlo simulations. There is good agreement

for the irregular network. For a regular network the above mean-field arguments would

predict a delta-peak at the overall density, here ρ = 0.3(ρ = 0.7), since all segments

behave identically. The simulations corraborate this for intermediate densities, in

that we indeed observe a single peak, which corresponds to segments in the LD-HD

phase. Data for two different simulation run lengths furthermore illustrate that the

finite width of the peak reduces with the run length. Convergence to an actual Dirac

distribution would require exceedingly long simulations, due to the presence of slow

collective fluctuations in the coexistence phase [73].

3.4. Irregular networks

In irregular networks the phenomenology is drastically different. Here, as shown in figure

5-(b), the variation in local connectivity at the junctions makes the (αeff
s , β

eff
s )-effective

rates scatter, such that certain segments are found in a LD phase whereas others are

in a HD phase. Since the single-segment phase diagram of TASEP separates LD and

HD phases by a first-order transition line (α = β < 1/2), the segment densities on an

irregular network are bimodally distributed. Such bimodality is a signature of strong

heterogeneities in the way particles are distributed on a network scale. We say that

irregular networks show a LD/HD heterogeneous network regime.

We quantify the above statements using the distribution of segment densities W (ρs)

in figure 7. We indeed notice the appearance of two peaks in the distribution W : one
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Figure 8. The stationary states of excluded volume processes on networks are

classified in three distinct regimes. These correspond with the scale at which

heterogeneities in the particle densities arise throughout the network. They are

defined in terms of the fraction nHD, nLD and nLD−HD of segments which fall into

the corresponding phases in the single-segment phase diagram, see figure 5. The MC

phase will play a minor role in the following and therefore, for clarity, is not considered.

peak is at low densities and accounts for the segments in the LD phase, whereas the

other peak is at high densities and accounts for segments in the HD phase. As particles

are added to the network the HD peak grows at the expense of the LD peak, reflecting

that the segments successively switch from LD to HD phases. This can be visualized

rather intuitively in the effective rate diagram 5 as the process of certain points crossing

the coexistence line.

The high connectivity limit allows particularly well to pinpoint the role of

heterogeneities in irregular networks. Intuitively, this limit corresponds to the case

where all junctions become bottlenecks, thus reducing the flow of particles to almost

zero. This is indeed apparent from the effective rates, which scale as c as (αeff , βeff) ∼
(O(c−1),O(c−1)), see analytical arguments in the supplemental material of [52]. As a

consequence they cluster in the (α, β)-phase plane in a zone which progressively retracts

to the origin as c increases, see figure 5-(b). Since this zone includes the first order

transition lines we not only preserve the bimodality in the high connectivity limit,

but heterogeneities become even more pronounced, given that the density discontinuity

associated with the LD to HD transition is maximum at the origin.
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3.5. Discussion: three stationary regimes two classify density heterogeneities

Counterintuitive non-equilibrium phenomena, such as the emergence of strong density

heterogeneities in active transport on networks, can be clearly understood using effective

rate diagrams as presented in figure 5. In particular, it appears natural to classify

the stationary behaviour using three different regimes. They are defined based on the

fractions nLD, nHD, nLD−HD of segments which occupy the corresponding phases in the

effective rate diagrams:

• heterogeneous network regime (LD/HD): a finite fraction of segments occupy the

LD phase and a finite fraction occupies the HD phase. We thus have that both

nLD > 0 and nHD > 0. The distribution of segment densities W (ρs) is bimodal,

with a LD peak at low densities and a HD peak at high densities. As a consequence

strong density heterogeneities develop on a network scale, i.e. between individual

segments. At the same time LD and HD segments dominate, and the density

profiles within single segments remain mostly homogeneous.

• heterogeneous segment regime (LD −HD): the segments occupying the LD-HD

phase dominate, and depending on the overall density either the LD or the HD

phases are essentially unpopulated. We therefore have nLD−HD > 0 and either

nHD = 0 or nLD = 0. At the network scale transport thus behaves rather uniformly:

the segment density distribution W (ρs) in the stationary state is dominated by

a single peak corresponding to segments in LD-HD coexistence. The segments

therefore behave similarly throughout the network, but strong heterogeneities are

present within the segments due to LD-HD phase coexistence.

• homogeneous regime (LD) or (HD): all segments occupy either the LD, or

HD phase, such that either nLD = 1 or nHD = 1. Particles are distributed

homogeneously throughout the network and few heterogeneities appear at any scale.

The three regimes are visualized in figure 8. Again calligraphic letters systematically

stand for the regimes of the entire network, rather than the phases of the segments.

The above observations highlight how the network topology affects density

heterogeneities in TASEP transport. Regular networks lead to a LD homogeneous

regime (at low densities), a LD −HD segment regime (at intermediate densities) and

a HD homogeneous regime (at high densities). Irregular networks on the other hand

are dominated by the LD/HD network regime in which homogeneous LD and HD

segments coexist on the network level. This can easily be understood from the effective

rate diagrams (figure 5). In this picture the strong heterogeneities in irregular networks

is seen to be due to a combination of (i) the disorder in the effective rates and (ii)

the first order transition in the single-segment phase diagram. This argument implies

that heterogeneities must be expected to arise rather generally in excluded volume

processes on networks: whenever the junctions in the network are subject to some

sort of local disorder, effective rates will be scattered on the single segment phase

diagram. The presence of a first order transition in the phase diagram then implies
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strong heterogeneities, since a fraction of the effective rates will fall into the LD part

while others fall into the HD zones of the phase diagram. Based on these observations we

can anticipate what will happen when generalizing other models to complex networks.

Indeed, the first order transition around the origin is also present in models of TASEP

with extended particles [74, 75], TASEP with syncrhonuous dynamics [76], TASEP

with multiple lanes [77, 78, 79, 80], TASEP with particles with internal states [33, 81],

TASEP with directional switching [82], etc. which suggests that they too will lead

to strong network heterogeneities on disordered graphs. From this argument it also

becomes clear that those strong heterogeneities do not depend on the particular choice

of Erdös-Rényi networks we have considered here to model topological disorder. Rather,

our results are expected to remain valid for other disordered systems such as scale-free

networks, regular networks with disorder in the hopping rates at the junctions, etc.

4. Bi-directional transport of infinitely processive particles

In this work we intend to explore to which extent the microscopic motion of motors

affects the presence of density heterogeneities in transport processes on networks. A

closer look at the motion of motor proteins and their cargoes reveals that they can

execute bi-directional moves along the bio-filaments. This may be due to backstepping

of individual motors (known to account, for instance, for something like 2− 10% of the

displacements in kinesin [83, 84, 85]), or to collective effects between motors of opposite

polarity (e.g. for the transport of organelles [86, 87]).

We use PASEP to address the question of bi-directionality. In PASEP particles

move in a preferential direction, but can also perform reverse hops, at a reduced rate,

see figure 4-(c). TASEP is the special case where the rate for backward hopping is set

to zero, whereas the opposite ’symmetric’ limit of equal backward and forward hopping

corresponds to the symmetric exclusion process (SEP).

On networks we generalise SEP such that the symmetric limit ensures a

homogeneous equilibrium distribution of particles throughout the network. TASEP on

the other hand has been seen to provoke strong inhomogeneities. In the following we use

PASEP to interpolate between an active and a passive process, in order to investigate to

which extent the bi-directionality of microscopic motion affects the formation of large-

scale density heterogeneities in the stationary state.

We follow the same outline as in the previous section. First we recapitulate the

macroscopic behaviour of PASEP on a single open segment. In subsection 4.2 we

use the resulting single-segment transport characteristics to determine the transport

features through a large network. In the following subsections we explore the effect of

connectivity on the transport features through a study of PASEP through regular and

irregular networks. At last we discuss how heterogeneities disappear on networks when

the PASEP process approaches the equilibrium limit.
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4.1. Partially asymmetric exclusion process on a single segment

We revisit the transport characteristics of PASEP through a single, infinitely long

segment connecting two reservoirs [57]. Particles are injected (extracted) with rates

α(γ) on the left of the segment, and with rates δ(β) on the right, see figure 4-(c). In

between particles hop forward (from left to right) at rate p, and they hop backwards at

rate q. Just as in TASEP the particles interact through exclusion interactions. When

we set q = 0 we recover TASEP, while for q = p this process reduces to the SEP.

The average current in PASEP must be constant throughout the segment, as

particles can neither be destroyed nor created. Its current-density profile is parabolic,

as is usual for exclusion processes:

JPASEP [α, γ; δ, β] = (p− q)ρPASEP [α, γ; δ, β]
(
1− ρPASEP [α, γ; δ, β]

)
, (10)

with a homogeneous density ρPASEP

ρPASEP [α, γ; δ, β] =


(p−q+γ+α)−

√
(p−q+γ+α)2−4(p−q)α
2(p−q) κ[α, γ] > κ[β, δ], κ[α, γ] > 1, (LD)

(p−q−β−δ)+
√

(p−q−β−δ)2+4(p−q)δ
2(p−q) κ[β, δ] > κ[α, γ], κ[β, δ] > 1, (HD)

1/2 κ[β, δ] ≤ 1, κ[α, γ] ≤ 1. (MC)

(11)

Here we have assumed q < p, without any loss of generality, and taken the limit of

infinite segment length (L → ∞). The opposite case of p < q is implicitly treated

through particle-hole symmetry. The quantity κ is a dimensionless function,

κ [α, γ] =
1

2α

(
−α + γ + p− q +

√
(−α + γ + p− q)2 + 4αγ

)
, (12)

which will be central to the following discussion. We use the inverse quantities κ−1,

which allows us to cast the single-segment phase diagram into a familiar shape. The

phase diagram maps directly onto that for TASEP, based on the quantitesκ[α, γ] and

κ[β, δ] introduced above, see figure 9) [57].

The PASEP has, just like TASEP, a first-order transition between an LD and a HD

phase, along the coexistence line κ [α, γ] = κ [β, δ] < 1. Since the position of this first

order transition in the phase diagram was the key to our understanding of heterogeneities

in TASEP on networks (limit q = 0), it is now interesting to see how this picture is

modified as particles are allowed to backstep (q > 0). We find that the first order

transition remains present, even in the limit of symmetric motion (q → p). The density

jump is equal to ∆ρ = ρHD−ρLD = 1/(1+κ−1 [β, δ])−1/(1+κ [α, γ]). Just as for TASEP

this discontinuity increases when approaching the origin of the (κ−1 [α, γ] , κ−1 [β, δ])-

phase plane, and reaches its maximal value ∆ρ = 1 at the origin.

The TASEP limit (q → 0) is straightforward: equation (11) reduces to κ[α, γ] =

α/(1 + α) and we recover the phase diagram of TASEP. In contrast, the symmetric

limit q → p is more subtle: the limiting process is a SEP, but we do not recover

the corresponding density profile from equations (11) when setting q = p: we find a

homogeneous bulk density, determined by one of the two boundaries, whereas the SEP
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Figure 9. The effective rates for all segments of a given graph instance of mean

connectivity c = 4, mapped onto the (κ−1 [β, δ] , κ−1 [α, γ]) phase diagram of a single

open PASEP segment. The ratios of backward to forward hopping rates q/p are

indicated. The total density is ρ = 0.4 in all examples, to facilitate comparison.

(a): Effective rates (markers) for a regular network. The lines represent the relation

between κ−1 [β, δ] and κ−1 [α, γ] when varying the total density ρ. (b)-(d): Effective

rates for an irregular network of size |V | = 193, for several ratios q/p. The diagrams

are truncated at κ−1 = 2, but data points are present over a larger range.

leads to a constant density gradient, ρLD = α
α+γ

and ρHD = δ
β+δ

. The reason is that

the limits L→∞ and q/p→ 1 do not commute. Since in equation (11) we have taken

the limit L → ∞ before considering q/p → 1, the behaviour remains in the strongly

asymmetric case [36]. We will return to this point when discussing networks in the

following sections.

4.2. Effective rate diagrams for PASEP on networks

We base our study of PASEP transport on networks using the mean-field algorithm given

by equations (2), as we did for TASEP in subsection 3.2. The current through a segment,

Js = JPASEP
[
αeff
s , γ

eff
s ; δeff

s , β
eff
s

]
, is now given by equations (10)-(11). From current

conservation we still have J+
s = J−s = JPASEP

(
αeff
s , γ

eff
s ; δeff

s , β
eff
s

)
. To determine the

effective rates required to close the set of equations (2) we adopt the rule that particles

which leave a junction select any of the outgoing segments with equal probability. In

this way we obtain:

αeff
(v,v′) = pjunction

v ρv, (13)

βeff
(v,v′) = p (1− ρv′), (14)

γeff
(v,v′) = q (1− ρv), (15)

δeff
(v,v′) = qjunction

v′ ρv′ . (16)
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The microscopic rates pjunction
v and qjunction

v′ denote the rates for particles at the junction

site, i.e. pjunction
v is the rate for a particle on a junction to step into one of its cout

v outgoing

segments, whereas qjunction
v′ is the rate at which it backstpdf into one of the cin

v′ incoming

segments. We furthermore require the activity of particles at the junctions to be equal

to the activity in the segments, i.e. p+ q = cout
v pjunction

v + cin
v q

junction
v . Moreover, for q = 0

we wish to recover TASEP rates (qjunction
v′ = 0, pjunction

v = p/cout
v ), whereas for q = p we

impose that the dynamics fulfill detailed balance, i.e. pjunction
v = qjunction

v′ . Considering

the above conditions, we are lead to:

αeff
(v,v′) = p

 ρv(
p
p+q

)
cout
v +

(
q
p+q

)
cin
v

 , (17)

δeff
(v,v′) = q

 ρv′(
p
p+q

)
cout
v′ +

(
q
p+q

)
cin
v′

 . (18)

Substituting these effective rates and the current profile equations (10) and (11) in the

expression (2) leads to the required closed set of equations in the junction densities

ρv. Note that due to our microscopic hopping rules at the junctions the the symmetric

limiting process (q=p, corresponding to SEP) fulfills detailed balance, which leads to

a stationary state with a completely homogeneous distribution of particles over the

network.

It again proves insightful to map the effective rates of the segments onto the single-

segment phase diagram of an open PASEP segment, via κ−1
[
αeff
s , γ

eff
s

]
and κ−1

[
βeff
s , δ

eff
s

]
for each segment s ∈ S. In figure 9 we compare the effective rate diagrams for a regular

network (top) and an irregular network (bottom), for various ratios q/p. Note the

similarity between the PASEP effective rate diagrams figures 9 and the TASEP effective

rate diagrams figures 5.

4.3. Regular networks

From the effective rate diagram in figure 9 we see that all segments have the same

transport characteristics. Indeed, equations (2) admit the solution ρv = ρ′, ∀v ∈ V ,

i.e. an identical density on all vertices v. Thus all segments will have the same average

current Js = J and average density ρs = ρ. The current-density profile for the network

is therefore the truncated parabola of a single segment and the density at the junction

is ρv = c/(c+ 1) on the plateau.

This shows that, all in all, PASEP through regular networks leads to a stationary

state similar to that of TASEP. At densities below those leading to coexistence in single

segments (ρ < ρ∗) the network displays a homogeneous LD regime. At intermediate

densities the system is in the heterogeneous LD −HD segment regime, while at high

densities (ρ > 1 − ρ∗) we have the HD homogeneous regime. The segment regime

corresponds to the plateau region in the current-density profile. Just as for TASEP the

density range for the segment regime, of width 1 − 2ρ∗, increases as a function of the
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Figure 10. PASEP through regular graphs. Left (a): The transition lines between the

LD and LD −HD regimes, as well as, the LD −HD and HD regimes are presented

as a function of the total particle density ρ and the fraction of rates q/p for regular

graphs of given degree c. For q/p→ 1 the process becomes passive. The heterogeneous

LD −HD segment regime disappears in this limit. Right (b): Average current-density

profile through regular graphs of degree c = 4. The onset of a LD −HD regime is

identified by a plateau in the current density profile. Mean-field results (solid lines)

are compared with simulation results (markers) on graphs of |V | = 80 junctions and

segments of length L = 400 at different degrees of particle asymmetry q/p. We have

verified that deviations between mean field and simulations decrease with increasing

segment size.

connectivity c. On the other hand, the size of the segment regime gradually decreases

to zero when approaching the symmetric q = p limit corresponding to a passive process.

Density heterogeneities thus disappear in this limit, see figure 10-(a).

We present the analytical mean-field solution for the current-density profile J(ρ)

of the network in figure 10-(b). The total density value ρ∗ separating the LD −HD
segment regime and the homogeneous LD regime is given by

ρ∗ =
p− q + p+q

c+1
−
√(

p− q + p+q
c+1

)2 − 4(p−q)p
c+1

2(p− q)
. (19)

In figure 10-(a) we have plotted this threshold ρ∗ as a function of q and p for various

values of connectivity c. This constitutes the phase diagram for PASEP through regular

networks. Note how the heterogeneities gradually disappear as the symmetric q = p

process is approached.

4.4. Irregular networks

For irregular graphs the effective rate diagrams again show scatter plots, see figure 9.

As a consequence, a finite fraction of segments will occupy the LD, HD and MC phases.

Accordingly, the segment density distribution now displays three peaks corresponding

to these three phases, see figure 11-(a). Note also that the peak associated with the MC
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Figure 11. The distribution W of the segment densities ρs for a PASEP process on

irregular networks at a total density ρ = 0.4. We have plotted the average distribution

over 100 graph instances drawn from the Erdös-Rényi ensemble at mean connectivity

c = 10 and size |V | = 200. Solid lines denote mean-field results while markers denote

simulation results for indicated segment lengths L. Left (a): the almost symmetric

q/p = 0.99 case. We notice that for low values of L the segment distribution is

unimodal, peaked at the average value ρ = 0.4. We are in a regime similar to passive

diffusion. For larger values of L we enter the active regime and trimodality arises in the

segment distribution W (the trimodality corresponds with the three phases: LD, HD

and MC). The distribution seems eventually to converge to the mean-field expression.

Right (b): We show how W depends on L in the totally asymmetric q = 0 case. We

see that the bimodality is already present at very low values of the segment lengths L.

phase gradually disappears in the TASEP limit (q/p → 0). We expect this feature to

change when considering a non-uniform hopping rule at the junctions.

Just as for regular graphs, it is possible to determine the overall network phase

diagram for a PASEP process through an irregular graph (see figure 12). We use the

definitions in figure 8 and in the discussion 3.5 to find the transition lines between

the LD/HD and LD or HD phases on the network. Remarkably, we notice that the

LD/HD network regime remains prominent, even for the symmetric limit q → p.

This symmetric limit is a point worth discussing in the context of irregular networks.

In principle we expect density heterogeneities to disappear in this limit, since we reach

a passive equilibrium process. However, rather surprisingly, one can see from figure 11

that our mean-field results show a pronounced trimodality at values very close to this

limit (here q = 0.99 p), suggesting that the trimodality persists even for q = p. This

too can be understood from the effective rate diagram, since the first order transition

in this diagram remains present in the symmetric limit (see figure 9). At first sight this

result seems to contradict the fact that passive processes must lead to a homogeneous

distribution of particles along the network. The reason for this apparent contradiction

is the subtle interplay between the two limits q → p and L→∞ which do not commute,

as mentioned in subsection 4.1.
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Figure 12. The (q/p, ρ)-phase diagram for PASEP through irregular networks. We

plot the boundaries between different regimes for single graph instances with c = 10,

|V | = 200 and c = 2, |V | = 607 at L = ∞. The LD/ HD regime remains present in

the limit q/p→ 1.

To discuss the role of the limits q → p and L → ∞ more carefully we have

performed simulations for increasing systems sizes, at the value q = 0.99 p. These

results are presented in figure 11. At small segment lengths L the density distribution

is unimodal. In contrast, this distribution is trimodal for sufficiently long segments,

as predicted by mean-field arguments, which assumes infinitely long segments. Hence,

the segment length can strongly influence the density heterogeneities on the network.

For q ≈ p particles distribute homogeneously over the network for small segments L,

in correspondence with a passive process. For sufficiently long segments, on the other

hand, particles distribute heterogeneously in correspondence with an active process.

It would be interesting to explore how this cross-over from a trimodal to a unimodal

distribution scales as a function of the asymmetry in the hopping rates (q − p)/p as

well as the filament length L, and one might suspect that it is related to a change of

universality class of transport processes in the limit q → p [36].

4.5. Discussion

We conclude that the stationary state of bi-directional transport on networks has similar

characteristics to that of uni-directional transport. Indeed, PASEP on networks leads

to stationary regimes which have their direct equivalent in TASEP: regular networks

feature LD, LD −HD and HD regimes, while irregular networks are dominated by the

LD/HD regime. From these results it follows that the degree of asymmetry does not

change the qualitative picture for the emergence of density heterogeneities in cytoskeletal

motor protein transport.
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Figure 13. Visualization of the stationary state of PASEP through irregular networks

as a function of the fraction between the hopping rates p/q. When p/q = 0 we find

a stationary state in the LD/HD regime corresponding to TASEP through irregular

networks, while for p/q = 1 we recover the homogeneous equilibrium distribution. The

crossover from a heterogeneous to a homogeneous distribution of particles happens at

p/q ≈ 1, and at p/q = 1 for L→∞.

Another interesting point is that the network topology affects how the stationary

state reaches the passive equilibrium case of q ≈ p. In regular networks density

heterogeneities disappear gradually: the heterogeneous LD −HD segment regime

reduces gradually in size to eventually disappear at q = p, see figure 10-(a).

In the symmetric limit particles therefore spread completely homogeneously for all

particle densities. In irregular networks the phenomenology is very different: density

heterogeneities do not disappear gradually when reaching the symmetric limit, see figure

12. The heterogeneous LD/HD network regime remains present for all values q < p

when L is large enough, leading to strong density heterogeneities on the network. This

situation is visualized in figure 13.

The simulation results also show that, in irregular networks, finite size effects play

a role close to the symmetric case (p ≈ q). To identify the crossover from an active

to a passive process on irregular networks we have studied the distribution of particle

densities as a function of the segment length L at values q ≈ p. Then particles are

seen to be distributed homogeneously along the network for short segments, whereas

they are distributed heterogeneously over the network for longer segments. This can

be quantified with the distribution of segment densities (figure 11): this distribution is

unimodal for small L and becomes trimodal at large L. Interestingly this implies that

for a close to symmetric process (q ≈ p) on irregular networks there is a crossover from

a passive to an active process in terms of the segment length L.
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Directed (non-equilibrium) transport 
&

 heterogeneous particle distribution

 Diffusive (equilibrium) transport 
&

 homogeneous particle distribution

Figure 14. Illustration of the totally asymmetric exclusion process with Langmuir

kinetics (TASEP-LK). Particles moving actively along a network are exchanged with a

bulk reservoir, in which they diffuse. This leads to a competition between an active non-

equilibrium transport process on one hand, which entails a heterogeneous distribution

of particles along the network, and a passive diffusion transport process, which aims

at a homogeneous equilibrium distribution of particles. Three parameters are relevant

for this interplay: the topology of the network, the total particle density ρ (equivalent

to the parameter K), and the relative exchange rate Ω = ωL/p (the latter taking in

account the total exchange rate between reservoir and network ω, the segment length

L and the particle hopping rate along the network p).

5. Particles with finite processivity

In the previous sections we have considered transport through closed networks. However,

cytoskeletal transport poses an additional challenge, since motors only have a finite

processivity: they can stochastically attach and detach at any point in the network,

thereby alternating stretches of directed motion on the network with diffusive motion

in the cytoplasm, see figure 1.

Here we model this behaviour based on the TASEP-LK, which we generalize to

transport along a network [53]. Particle attachment and detachment is governed by

the rates ωA and ωD, respectively. The particle reservoir is considered to be infinitely

large, and diffusion is assumed to guarantee a uniform distribution in the bulk. In this

process the total particle density along the network is seen to be set directly by the

Langmuir exchange with the reservoir, through the ratio between the attachment and

detachment rates. In contrast, the way in which particles are distributed along the

network requires understanding of the intricate interplay between the effect of infinite

diffusion (in the reservoir) and active transport (along the network). This model is

summarized graphically in Fig. 14.

Indeed, the passive diffusion process in the reservoir tends to spread particles out

homogeneously, and therefore also has a homogenizing effect on the network. Active

transport on the other hand has been seen above to provoke density heterogeneities (see

sections 3 and 4). Since the bulk diffusion in the reservoir is assumed to be infinitely
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fast, the active dynamics may be expected intuitively to impose heterogeneities along

the network if their motion is sufficiently processive. We will now analyze in detail

this interplay between passive diffusion and active transport and how it regulates the

distribution of particles on the network. These complement the results presented briefly

in [53].

We first revisit the macroscopic behaviour of TASEP-LK on a single open segment

[58, 59]. In a second subsection we define TASEP-LK on a network, determine the

corresponding mean-field equations and present the effective rate diagrams. We then

present a way to establish analytical solutions to the mean-field equations if the particle

exchange with the reservoir is sufficiently strong, due to a decoupling of the continuity

equations. In the subsequent sections we elaborate on the stationary state of regular

and irregular networks, including the infinitely connected limit. We end by discussing

the results of this section and put them into the context of biophysical experiments.

5.1. TASEP-LK on a single open segment

TASEP-LK is similar to TASEP in that particles hop uni-directionally along a one-

dimensional segment at rate p and are subject to exclusion interactions. In addition,

particles attach and detach along the segment according to a Langmuir process [88]. In

the single segment model, we are thus dealing with three reservoirs: the two reservoirs

at the entrance and the exit of the segment (rates α and β) are now complemented by

a bulk reservoir, which allows for binding/unbinding of particles on any site along the

segment with rates ωA and ωD, respectively. We have illustrated this process in figure

4-(d).

New behaviour emerges in TASEP-LK if there is a competition between the directed

transport and the Langmuir kinetics (LK), which is the case in the so-called ’scaling’

regime [59], ωA = p ΩA/L, ωD = p ΩD/L (note that ΩA and ΩD are dimensionless). In

this scaling regime the dynamics of the bulk is in competition with the dynamics at the

boundaries, which leads to an interesting (α, β)-phase diagram [58, 59], represented in

the appendix, figure A1. Indeed, the resulting density profiles in the segment interpolate

between those of TASEP and the homogeneous profiles of a Langmuir process: on

one hand the TASEP density profiles are recovered for small attachment/detachment

rates (ΩA,ΩD → 0), and on the other hand the homogeneous Langmuir profile with an

equilibrium density

ρl =
ΩA

ΩD + ΩA

(20)

is observed for large attachment/detachment rates (ΩA,ΩD →∞). On a single segment

these current and density profiles have been determined from mean-field arguments and

are well corroborated by numerical simulations [58, 59]. They are conveniently expressed

as a function of the rescaled position variable along the segment, x = i/L ∈ [0, 1], with

i = 1..L. Since TASEP-LK is an exclusion process we have a parabolic expression in
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the current-density relationship:

JLK [x;α, β,ΩA,ΩD] = pρLK [x;α, β,ΩA,ΩD]
(
1− ρLK [x;α, β,ΩA,ΩD]

)
.(21)

The full expressions for JLK and ρLK are discussed in Appendix A. Note also that,

due to particle binding/unbinding, the current is no longer constant along the segment.

Consequently we must account for the fact that the current entering a segment will

generally differ from the current leaving the same segment.

We will require the phase diagrams of TASEP-LK on a single segment for our

analysis of the stationary state on a network, using effective rate diagrams. We therefore

discuss them briefly here; a more elaborate discussion is presented in Appendix A and in

figure A1. It is useful to introduce the parameters K = ΩA/ΩD and Ω = (ΩA + ΩD)/2.

The quantity Ω characterizes the overall exchange between the bulk reservoir and the

segment, whereas the ratio in K directly determines the Langmuir density imposed by

the exchange with the bulk reservoir (equation (20)). The phase diagrams for TASEP-

LK display several phases: ’pure’ LD, HD, and MC (also referred to as the M phase in

some previous works [59]), as well as the combined phases LD-HD, LD-MC and MC-HD.

Recall also that LD, HD and MC phases are in fact the appropriate generalizations of

the corresponding phases in TASEP, with the difference that their density profiles are

no longer constant throughout the segment. The density variation along the segment is

continuous in all pure phases, but a discontinuous shock arises for the combined phases.

For example, in the LD-HD phase the shock corresponds to a domain wall at some

position xw. When Ω → 0 this LD-HD phase reduces to the α = β < p/2 coexistence

line and we recover the TASEP phase diagram as expected. For Ω → ∞ the LD-HD

phase becomes more prominent and is eventually present for all α/p < (K + 1)−1 with

β/p < 1/2 when K > 1. At high Ω the LD phase then disappears altogether from

the phase diagram. More precisely this happens at the threshold Ωc given by equation

(A.13) in Appendix A. Similarly, the HD phase disappears from the phase diagram for

K < 1 at a value Ωc.

An important notion in the study of TASEP-LK on networks is the distinction

between those phases which couple boundaries and those which uncouple them. This

concept is illustrated in figure 15. In the LD phase (or the HD phase), changing the

entrance rate α (or exit rate β) modifies the bulk density and current throughout the

whole segment, right through to the end of the segment. In this sense the boundaries can

be considered to be coupled, as is illustrated on the left of figure 15. In the LD-HD phase

on the other hand, changing the rate α at the left boundary only modifies the current

and density over a finite portion of the segment, but it does not affect the density at

the right boundary of the segment. In that sense the boundaries are uncoupled, see the

right of figure 15. Note that the discontinuity in the density profile at x = xw uncouples

the LD region at the entrance from the HD region at the exit of the segment. Hence

boundaries are uncoupled in the LD-HD phase due to the presence of a shock. In the

phases involving MC the boundaries are also decoupled.
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Figure 15. Density profiles ρs(x) as a function of the rescaled position x ∈ [0, 1]

in the segment are presented for TASEP-LK. A boundary dependent phase (left) is

compared with a boundary independent phase (right). Left (a): In the LD phase the

density at the exit x = 1 changes when the entrance rate is modified: both boundaries

are coupled. Right (b): In the LD-HD coexistence phase, the density at the exit x = 1

does not change with the entrance rate: hence both boundaries are decoupled.

5.2. Effective rate diagrams describing TASEP-LK on networks

As a first observation we point out that for TASEP-LK, although density heterogeneities

arise throughout the network, the overall density ρ is directly set to the Langmuir density

(ρ = ρ` = K/(K+1)). We will show that it is the exchange parameter Ω which regulates

the distribution of particles on the network.

The TASEP-LK model on a network can be studied using the general mean-field

method presented in subsection 2.3. The currents J− [αs, βs] and J+ [αs, βs] entering

and leaving a segment in equation (2) follow, respectively, from the mean-field current

profiles JLK [x = 0;αs, βs,ΩA,ΩD] and JLK [x = 1;αs, βs,ΩA,ΩD] along a single segment

(see equation (21) and the expressions for the density in the Appendix A). Since particles

can attach/detach along the segment we have now J+ 6= J− in the continuity equation

(2). We establish the effective rates as αeff
(v,v′) = p ρv/c

out
v and βeff = p (1 − ρv),

corresponding to a uniform microscopic hopping rate at the junctions. Note that these

are the same effective rates as presented for TASEP in equations (8): this reflects the

fact that attachment/detachment at the junction sites themselves is negligible in the

scaling regime. The resulting mean-field equations (2) for the average junction densities

of TASEP-LK are then given by

∂

∂t
ρv =

∑
v′→v

JLK

[
x=1;

ρv′

cout
v′
, 1−ρv,ΩA,ΩD

]
−
∑
v′←v

JLK

[
x=0;

ρv
cout
v

, 1−ρv′ ,ΩA,ΩD

]
. (22)

We have solved the mean field equations (22) and mapped the effective rates of each of

the individual segments of the network onto the corresponding (α, β)-phase diagrams of
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Figure 16. Effective rate diagrams for TASEP-LK through regular graphs (left, (a)-

(c)) and irregular graphs (right, (d)-(l)), both filled to a total density of ρ = 3/4, are

presented for the given values of Ω and c. We have used the same graph instances as

in figure 5. On regular graphs the effective rates are equal for all segments, such that

only one marker is plotted.

a single segment. These results, presented in figure 16, characterize the stationary state

of TASEP-LK through networks.

Several interesting features emerge from these diagrams. The stationary state of

TASEP-LK shares certain characteristics with TASEP and PASEP. For regular graphs

all effective rates have the same value and coincide in one point in the effective rate

diagram. Irregular graphs on the other hand lead to a scattered plot of all effective rates,

and they cluster around the origin at high connectivities (as can be understood in terms

of bottleneck formation). However, the LD-HD coexistence increasingly widens with

increasing exchange parameter Ω, which has a direct impact onto the phenomenology

of density heterogeneities. Moreover, we now see that the scatter plots which appear

random at low exchange parameters Ω reveal a certain regularity at high values of Ω.

In this range effective rates become independent of Ω, as well as being independent of

global topological features of the network (i.e. they only depend on the local junction

degrees). This feature can be explained using the notion of coupled and uncoupled

boundaries introduced at the end of the previous subsection.

5.3. Uncoupling of boundaries at high Ω: simplified mean-field equations

At weak exchange (small Ω), close to the TASEP limit (Ω = 0), the continuity equations

(22) in the junction densities are intrinsically coupled. Indeed, a large fraction of the

segments will be in the LD or HD phase and couple their boundaries. Finding a solution

then typically requires a numerical procedure. However, when increasing Ω more and
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more segments switch into a LD-HD phase (see figure 16), reducing the coupling. For

sufficiently high Ω the continuity equations (22) uncouple, providing a route to an exact

solution to the mean-field equations. In particular, we can present an exact solution

of the continuity equations for any graph, based on the single segment phase diagram

for Ω → ∞. It will turn out that this solution remains accurate down to rather small

values of Ω, which we rationalize in terms of the effective rate diagrams.

Before considering the solution in the Ω → ∞ limit, which is valid for any graph

topology, let us first consider the simpler case for which all segments in the network

are in the LD-HD phase. From the effective rate diagrams figure 16 we see that this

is the case for regular graphs and for irregular graphs at high connectivities. When all

segments are in the LD-HD phase, modifying the density at a certain junction will not

change the density of particles at other junctions in the network: the domain walls in

each of the segments block the propagation of density perturbations from the adjacent

junction. The continuity equations (22) then simplify into

∂

∂t
ρv = cin

v J
−
v − cout

v J+
v (23)

= cin
v ρv(1− ρv)− ρv

(
1− ρv

cout
v

)
. (24)

We see that the currents at the junctions J±v only depend on the local junction density

ρv, such that the continuity equations (22) are completely decoupled. We obtain the

solution

ρv =
cin
v − 1

cin
v − (cout

v )−1 . (25)

Equations (25) are valid for networks at high enough connectivities and exchange rates

Ω, and this is due to two combined effects: increasing the connectivity effective rates

cluster around the origin, whereas increasing Ω enlarges the LD-HD region in the phase

diagram (see figure 16).

We consider now the limiting case Ω → ∞, for which we can solve the mean-field

equations (22) analytically using uncoupling of boundaries. Depending on the overall

particle density ρ = K/(K + 1) we find the solutions:

• ρ > 1/2:

ρv =


cout
v

(
cinv −1

coutv cinv −1

)
ρv
coutv
≤ 1− ρ and cin

v 6= 1

coutv

2

(
1−

√
1− (cout

v )−1

)
for ρv

coutv
≤ 1− ρ and cin

v = 1

1
2

(
1 +

√
1− 4 coutv

cinv
ρ(1− ρ)

)
ρv
coutv
≥ 1− ρ and ρv ≥ 1/2

• ρ = 1/2:

ρv =


cout
v

(
cinv −1

coutv cinv −1

)
cin
v 6= 1, cout

v 6= 1

coutv

2

(
1−

√
1− (cout

v )−1

)
for cin

v = 1

1
2

(
1 +

√
1− (cin

v )−1

)
cout
v = 1

(26)
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• ρ < 1/2:

ρv =


cout
v

(
cinv −1

coutv cinv −1

)
ρv ≥ 1− ρ and cout

v 6= 1

1
2

(
1 +

√
1− (cin

v )−1

)
for ρv ≥ 1− ρ and cout

v = 1

coutv

2

(
1−

√
1− 4 cinv

coutv
ρ(1− ρ)

)
ρv < 1− ρ

These solutions in the junction densities ρv are valid for cin
v 6= 0 and cout

v 6= 0. When

cin
v = 0 the density will be trivially equal to ρv = 0, whereas for cout

v = 0 the junction

density takes the value ρv = 1.

The way to derive the above equation goes as follow: we consider the phase diagram

of TASEP-LK in the limit Ω → ∞, see bottom of figure A1. In this limit one notices

that boundaries decouple, i.e. αeff
v→v′ is only a function of ρv/c

out
v (and not of ρv′) and

βeff
v→v′ is only a function of ρ′v (and not of ρv). In the end, after considering the different

phases at Ω → ∞, decoupling allows us to solve exactly the full mean-field equations

(22) leading to equations (26). Note that, when combined with the expressions for

the segment and density profiles JLK and ρLK in Appendix A, equations (26) give us

analytical expressions for the stationary density and segment profiles of all the segments

in the network.

The simplified mean-field equations (26) provide an explanation as to why the

effective rate diagrams for irregular graphs (figure 16), which contain randomly scattered

effective rates at low values of Ω, become more ordered at high values of Ω. Indeed, the

decoupling leads to junction densities which only depend on the local degrees cin
v and

cout
v , as well as the stationary density ρ. The effective rate plots at strong exchange Ω

are thus independent of Ω and of the global random topology of the network.

Equations (26) can also be seen as an approximation to the full mean-field equations

(22) at finite Ω. In figure 17 we compare the current profiles of the full equations

(22), both with the simplified version equation (26) and with simulations. Results are

presented for irregular graphs of given mean connectivity c and with a given stationary

density ρ. Just as expected, simulation results are in very good agreement with those

obtained by numerically solving the full mean-field equations. But remarkably we find

that the simplified mean-field result gives already a very accurate approximation, and

this is true down to rather weak exchange parameters (Ω & 0.5). This can be understood

from the shape of the single segment phase diagram which remains similar to the one

for Ω→∞.

Moreover, the simplified equations (26) are exact in special circumstances. This

is the case at half-filling (ρ = 1/2), for any exchange parameter Ω ≥ 0.5, since then

the decoupling is complete (see Appendix C). It also applies asymptotically at high

connectivities c: as one can see from figures 16, the effective rates indeed cluster around

the origin in the LD-HD phase in this limit, which again leads to full decoupling. In

contrast, the decoupled description by equations (26) becomes less accurate for densities

ρ → 0 or ρ → 1, since then the zone corresponding to the decoupled LD-HD phase

becomes very small in the effective rate diagrams.
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Figure 17. The average current J for TASEP-LK through irregular networks, as

a function of the exchange rate Ω for given particle filling ρ and mean connectivity

c. Full mean-field results of equations (22) (solid lines) are compared with simulation

data (markers) and the solution to the simplified mean field equations (26) (rad dashed

lines). Mean field results are for single graph instances of mean connectivity c = 2 and

|V | = 607 junctions or c = 10 and |V | = 200. Simulations are run on the same graphs

with segments of length L = 400. Further represented are: the upper bound to the

average current given by the Langmuir expression ρ(1− ρ) (dotted line) and its lower

bound, given by graphs with mean connectivity c→∞.

To summarize, in this subsection we have shown that the mean-field description of

TASEP-LK simplifies when increasing the exchange rate with the reservoir Ω. We have

derived analytical expressions for the stationary density and current profiles throughout

the network which are very accurate at sufficiently high exchange parameters Ω and

mean connectivities c, as well as for stationary densities ρ close to half filling.

5.4. Networks of infinite connectivity

We now discuss the stationary state of networks for which the vertex degree of each

junction is very high. For Ω > 0 all segments fall into the LD-HD phase since the

effective rates cluster around the origin. Thus, the network is in the LD −HD regime
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and the simplified solution (26) based on the decoupling of segments is exact (within the

mean field framework). In this limit the stationary current and density profiles can be

computed analytically by setting ρv = 1, see Appendix B. In particular, for half filling

ρ = 1/2 we present a simple expression in Appendix C. Knowing the exact expression

for the current in the infinitely connected limit is interesting for two reasons.

First, as one can see from figure 17, the current reaches in this limit (c → ∞) the

minimal value accessible for the given values of Ω and ρ. This is in fact intuitive, since

all junctions become fully blocked and suppress all flow through the junctions. But

for TASEP-LK these junction bottlenecks do not block the dynamics in the segments

completely, as long as there is a non-zero exchange rate Ω > 0: figure 17 shows that, even

for small values of Ω, the current does not reduce to zero when c→∞. This indicates

that even a weak exchange with a reservoir is sufficient for particles to circumvent

bottlenecks and maintain a significant flow through the network.

A second reason which makes the strong connectivity limit special is that all

networks behave identically, as long as Ω > 0. Hence, in this limit the stationary

state of all networks is the same and we recover a universal, topology independent

stationary state. The reason for this universality is twofold. First, for c → ∞ the

LD-HD phase dominates, such that perturbations remain local and do not propagate

throughout the network due to the continuity equations (22). Second, all junctions

become infinite bottlenecks, such that (α, β) → O(c−1, c−1). As a consequence the

currents and densities in the segments are rather insensitive to local degree fluctuations.

5.5. TASEP on LK through regular networks

Regular networks constitute another solvable case for TASEP-LK. Just as for TASEP

and PASEP, the stationary state of TASEP-LK on regular networks is given by a unique

junction occupancy ρv for all junctions. We find the following solution to the mean field

equations (22):

ρv [Ω, ρ] =


cρ ρ < 1/(c+ 1) (LD)

c/(c+ 1) 1/(c+ 1) < ρ < c/(c+ 1) (LD −HD)

ρ ρ > c/(c+ 1) (HD)

(27)

Remarkably, this solution is identical to the one for TASEP [52]. This can be seen

as follows. Recall that cout
v = cin

v = c at all junctions v for regular graphs, such that

all junctions (and therefore all segments) are equivalent. Current conservation at the

junctions, equation (22), then implies that we must have J+ = J− for all segments.

This points to either a solution for which the segments have a homogeneous density

(and are thus in the LD or HD phase) or to a solution for which the segments have

a heterogeneous density with αeff = βeff (and are in the LD-HD coexistence phase).

The presence of a homogeneous density profile in the segments may appear counter-

intuitive, since the exchange process with the bulk typically leads to non-homogeneous

density profiles (unless Ω → ∞). But this proves to be correct from the solution for a

single segment: equation (A.12), in Appendix A, shows that a homogeneous solution is
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possible, provided βeff = (1− ρ`) = (1− ρ) at HD and αeff = ρ` = ρ at LD. Using that

(αeff , βeff) = (ρv/c, 1 − ρv) leads immediatly to the solution equation (27). In essence,

these arguments show that the homogeneous density profile (27) is the correct solution

for a regular network, even for a finite exchange parameter Ω. In the intermediate case,

when the segments are in the coexistence phase, the junction densities and effective

rates follow immediately from the simplified mean field equation (26), and are given by

ρv = c/(c + 1). We thus see that, just as for TASEP, we are dealing with a LD phase

αeff < βeff , a HD phase when βeff < αeff and a coexistence phase at βeff = αeff .

From the solution (27) for the junction densities we can deduce the phase diagram

in figure 18-(a) for TASEP-LK through regular graphs. Figure 18-(a) shows that the

same behaviour arises as in TASEP, i.e. with increasing density we successively observe

a LD regime, a heterogeneous LD −HD segment regime, and finally a HD regime.

The density zone for the LD −HD segment regime is identified as 1/(c + 1) < ρ <

c/(c + 1), and remarkably is altogether independent of the exchange parameter Ω.

This observation implies that the LD −HD does not disappear when approaching the

equilibrium process (Ω → ∞). Note that this behaviour is very different from PASEP,

where the symmetric limit (p/q → 1) makes the segment regime disappear (compare

figures 18-(a) and 10-(a)).

This equilibrium limit Ω → ∞ can be understood as follows. The inhomogeneous

density profile with a domain wall, located at some position xw, persists for Ω → ∞.

In fact, as Ω increases the position xw will gradually move to one of the segment ends

(xw → 0 for ρ > 1/2 or xw → 1 for ρ < 1/2, half-filling ρ = 1/2 is special, see

Appendix C). This constitutes a way of asymptotically restoring homogeneity within

single segments, although the LD −HD regime is maintained for the network. This

analysis is further corraborated by the current-density relation J(ρ), which indirectly

provides a measure for the degree of heterogeneity within the segments: a parabolic

profile J = ρ(1 − ρ) corresponds to a homogeneous density profile, whereas deviations

from the parabola indicate a hinderance due to heterogeneities. From figure 18-(b) we

see that for Ω→∞ the current-density profile gradually reaches the parabolic Langmuir

profile J = ρ(1−ρ), thus showing that the homogeneous equilibrium profile is eventually

attained.

An analytical expression for the current density profile follows by using the formulas

in Appendix A and the solution given by equations (27). However, only in the case of

half-filling is it simple to establish these expressions (see Appendix C).

In summary, TASEP-LK through regular networks leads to the same regimes of

heterogeneities as TASEP through regular networks. The size of the zone corresponding

to the heterogeneous LD −HD regime is not affected by the coupling with the reservoir.

The equilibrium process is attained as the LD-HD domain walls in all segments shift

towards the junction sites.
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Figure 18. TASEP-LK through regular graphs. Left (a): The lines separating the

LD and LD −HD regimes, as well as the LD −HD and HD regimes are presented as

a function of the total density ρ and the exchange parameter Ω for regular graphs of

given degre c. Right (b): Average current-density profile for regular graphs of degree

c = 4. Mean-field results (solid lines) are compared with simulation data (markers) on

graphs of |V | = 80 junctions and segments of length L = 400, for different values of

the exchange rates Ω. For Ω→∞ the transport process becomes passive. We obtain

a parabolic profile in this limit, indicating a homogeneous density distribution at all

scales.

5.6. TASEP-LK through irregular networks

We now determine the stationary state of TASEP-LK through irregular networks. It

can be understood using effective rate diagrams (figures 16) and the classification in

three different regimes for the particle distribution, as developed in section 3 (see figure

8).

To identify the regime for the stationary state (i.e. LD, HD, LD −HD and

LD/HD) we need to determine the fraction of segments in the network which occupy

the different phases (i.e. LD, HD, LD-HD) in the effective rate diagrams, figure 16.

We denote these fractions by nLD, nHD, nLD−HD; the M, LD-M and M-HD phases play

a minor role and will not be considered. In figure 19 these fractions are shown as a

function of Ω and ρ. Using the definitions of the different network regimes given in

figure 8 we can establish the boundaries of the corresponding zones in the (ρ,Ω) plane.

We have indicated the resulting phase diagrams in figure 20 for irregular networks.

We note several interesting characteristics of the stationary state on irregular

networks. To do so let us focus on the case ρ > 1/2 (similar arguments apply for

ρ < 1/2). At low exchange parameters Ω the network is in the LD/HD regime: a finite

fraction of segments occupy the LD and HD phases. The strong heterogeneities in the

particle densities are reflected in the bimodal distribution of segment densities, as shown

in figure 21. For vanishing exchange (Ω → 0), we recover the results for TASEP with

infinite processivity presented in section 3. However, when we decrease the processivity

(i.e. for an increasing Ω), the LD phase in the effective rate plane shrinks in favour of
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Figure 19. The fraction of segments in the LD phase, the HD phase and the LD-

HD phase as a function of Ω and ρ for TASEP-LK for single instances of irregular

graphs at given mean connectivity c (the fractions for M, M-HD and LD-M are small

and not represented). We have ρ = 0.75, c = 2 (a), Ω = 0.15, c = 2 (b), ρ = 0.75,

c = 10 (c), Ω = 0.05, c = 10 (d), ρ = 0.75, c = 30 (e), Ω = 0.01, c = 30 (f). The

graphs used have |V | = 607 junctions (c = 2), |V | = 500 (c = 10) and |V | = 500

(c = 30). The transitions between the stationary regimes of density heterogeneities are

indicated: LD homogeneous, HD homogeneous, LD −HD heterogeneous and LD/HD
heterogeneous.
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Figure 20. The (Ω, ρ)-diagram for TASEP-LK through irregular graphs. The

transitions (solid lines) between the different regimes of the stationary state on the

network are shown for the same graph instances as in figure 19. The dotted line shows

the upper bound to the transition between the heterogeneous network (LD/HD) and

segment (LD −HD) regimes (as given by equation 28).

the LD-HD phase, see figure 16. Eventually the fraction of segments in LD reduces to

zero, nLD = 0, and the network enters the LD −HD regime. In this segment regime

the density heterogeneities are mainly attributable to the LD-HD domain walls which

separate a LD and a HD part on the same segment. The average density between single

segments however does not vary much throughout the network in this phase. Indeed, the

distribution of segment densities is unimodal in the LD −HD regime, see figure 21. We

also note that at very high densities (ρ ≈ 1), the stationary state is in a homogeneous

regime where nLD = nLD−HD = 0, and thus all segments are in the HD phase (nHD = 1).

In this regime, even the heterogeneities within single segments have disappeared.

The boundaries between the different regimes are easily understood from the

effective rate diagrams figure 16. Let us for instance consider the transition from the

LD/HD to the LD −HD regime. With an increasing exchange parameter Ω the size

of the LD phase decreases in the single-segment (α, β)-phase diagram. At some point

the LD phase is so small that no segments occupy this phase anymore: this marks the

boundary between the network and the segment regime. This happens at the critical
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value Ωc(ρ), at which the LD phase (or HD phase for ρ < 1/2) in the (α, β)-phase

diagram (of a single segment) has completely disappeared. This critical value is given

by (see equation (A.13)):

Ωc =
1

2
+

∣∣∣∣ρ− 1

2

∣∣∣∣ ln [ |ρ− 1/2|
1/2 + |ρ− 1/2|

]
. (28)

This expression (28) is illustrated in figure 20 through the dotted line. Also the

transitions from the LD −HD segment regime to the homogeneous LD regime can

be understood intuitively from the effective rate diagram: when decreasing ρ towards

zero, the LD-HD phase becomes gradually smaller and retracts to the axis β = 0, while

the effective rates move towards β = 1. A similar argument applies to the transition

from LD −HD to HD, for ρ→ 1.

Figure 21. Distribution of segment densities W (ρs) of TASEP-LK on an irregular

graph with mean connectivity c = 10 at given total densities ρ and exchange rates

Ω. Mean-field results on a single graph instance of size |V | ≈ 104 are presented. (a):

for low values of Ω the distribution is bimodal, with the two peaks corresponding to

segments in the LD and the HD phases. The broad intermediate ”band” corresponds

to segments in the LD-HD phase. The stationary state of the network is in the

heterogeneous network regime (LD/HD). (b):at the value Ω = 0.3 segments are in the

LD-HD phase and the distribution is unimodal. The network is in the heterogeneous

segment regime (LD −HD).

5.7. Discussion

We have presented a study on the interplay between active transport through networks

and passive diffusion in a bulk reservoir. While the active transport process leads to

strong density heterogeneities at various scales, the passive process aims to distribute

particles homogeneously. The competition between these two processes is determined

by three parameters: the topology of the network, the total density ρ of particles on

the network and the dimensionless parameter Ω = ωL/p. Most of the rich physical

phenomenology of TASEP-LK on networks can also be understood using effective rate
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Figure 22. Visualization of the stationary state of TASEP-LK on irregular networks

when varying the total exchange Ω and keeping the total density ρ fixed. The way

particles are distributed changes qualitatively when the exchange parameter Ω is varied:

the stationary state first shifts from a LD/HD regime to a LD −HD regime, indicating

that the density heterogeneities between segments disappear and heterogeneities now

arise within single segments in the form of domain walls. Increasing the exchange even

further, all heterogeneities disappear gradually in the network to reach the Langmuir

phase at Ω =∞ [53].

diagrams and a classification in three regimes of density heterogeneities as given in figure

8.

For regular networks without local disorder, the phase diagram of TASEP-LK is

independent of the exchange rate Ω. Indeed, the LD −HD regime is always present

at intermediate densities ρ and is unaffected by Ω, see figure 18-(a). Increasing the

coupling between network and reservoir will shift the domain walls, separating LD from

HD phases in the segments, towards the junctions of the network. In this way the system

will gradually reach the homogeneous equilibrium state for Ω→∞.

Coupling TASEP through irregular graphs with an infinite homogeneous reservoir

leads to a rich phenomenology, as illustrated in figure 22. We have found that the

heterogeneous LD/HD network regime present in TASEP disappears beyond some

critical exchange between network and reservoir, see figure 20. For strong exchange

parameters Ω the system is in the LD −HD segment regime. Increasing the exchange

even further homogenizes the particle densities on all scales.

The coupling Ω between reservoir and network also affects the theoretical

description of transport through the network. While a theoretical description of

transport is necessary on a network level when the exchange is weak (small Ω), this is no

longer the case at higher values of Ω. The continuity equations (22) decouple completely

at higher values of Ω in the LD −HD regime. The stationary state in this regime can

then be described from the local properties at the junctions (see equations (26)). In
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this way, the stationary state of every segment can be determined, independently of the

state of other segments in the network.

6. Exclusion processes on networks as models for motor protein transport

In this section we put our theoretical results for PASEP and TASEP-LK on networks

into the context of motor protein transport along the cytoskeleton. We elaborate on

the relevance of network topology, bi-directionality and exchange with a homogeneous

particle reservoir to the organization of motor proteins along the cytoskeleton. As a

model system we consider examples of motors taken from the kinesin superfamily along

a complex microtubule network.

We consider the cytoskeleton to be a disordered system, a complex meshwork

consisting of a random criss-cross of biopolymers, where disorder is modelled using

Erdös-Rényi graphs with a given mean connectivity c. Although this randomness in the

junction degrees cannot reflect biological disorder in its details, this is in fact not crucial:

we expect our conclusion to remain qualitatively valid whatever the source of disorder.

The choice of an appropriate mean connectivity c is subtle, since in vivo microtubules

contain several (typically 13) protofilaments. If one takes a segment to represent an

entire microtubule, then a mean connectivity of c = 2 appears to be most appropriate.

In contrast, when considering segments to represent individual protofilaments, a higher

mean connectivity, of the order c = 10, is more fitting. The segments of the network

have a fixed length L which corresponds to the typical distance between two junctions

at which microtubules interconnect. In cells this distance can be set e.g. by cross-linker

proteins or branching protein complexes.

We first address the question of bi-directionality. In figure 23 we compare results

from figures 10-(a) and 12 for the stationary state of PASEP through regular and

irregular networks, indicating also the fraction q/p as measured in experiments. As to

backstepping of motors, experiments on diluted solutions of kinesin-I have shown that

in-vitro they account for 2− 10% of their displacements [83, 84, 85]. The corresponding

range p/q ∼ 0.02−0.1, is indicated by the colour band in figure 23. We thus see that, in

contrast to topology, bi-directionality has little effect on the overall spatial organization

of motors on the network. One also sees that the stationary state remains qualitatively

unchanged even for much higher values of q/p. This suggests that also other mechanisms

for bi-directionality should should not change the big picture, as for example direction

switches in cargoes transported by several motor proteins can switch their directionality

[86, 87]. A driven lattice gas model by Muhuri et al. [82] is available for this process,

and the framework we have outlined would allow to study this scenario on a network.

Second, we turn to the question of finite motor processivity. In figure 24 we indicate

reasonable parameter values as estimated from in-vitro experiments on the diagrams for

the stationary state of TASEP-LK on regular and irregular networks, figures 18 and

20. To make this educated guess at the biological relevant regime of the parameters

Ω and ρ, we consider the in-vitro experiments by Varga et al. [16] and by Leduc et
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Figure 23. The stationary state of PASEP through regular graphs (a) and irregular

graphs (b) are compared. The colour band presents a fraction q/p ∼ 2− 10% as have

been measured in experiments on single kinesin-I motors [83, 84, 85]. We see that in

general bi-directionality of motors does not substantially alter the heterogeneities in

motor densities.

Figure 24. Illustration of the possible variation of the stationary state for kinesin-8

motors of budding yeast moving along a network of microtubules. We have plotted the

exchange parameter Ω as a function of the total density ρ based on numbers from [17]

for given values of the length L between two microtubule intersections. These lines are

plotted on the diagrams of TASEP-LK on regular networks (a) (from figure 18) and

irregular networks (b) (from figure 20). The markers denote the values of (Ω, ρ) for

given values of L and the total concentration cm of motors in the solution (triangles

correspond to 1nM , squares to 2nM and diamonds to 5nM).

al. [17], which concern the transport of the kinesin-8 motor of budding yeast (Kip3P)

along microtubules. Kip3P is an interesting motor in our context, since its dynamics on

a single microtubule are well described by TASEP-LK [17]. Kip3 depolymerizes tubulin

dimers at the plus end of the microtubules, and recently an extension of this model has

yielded insight into the role of active transport in depolymerizing filaments [89, 90]. The
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microscopic parameters of Kip3P, due to this particular biological function, might be

different from that of other kinesins, but this does not alter the qualitative picture of

our results.

The parameters Ω and ρ can be estimated from the data in [16], and such estimates

have been considered before in the theoretical work [34]. To do so we exploit the

functional relationship between Ω and ρ, which follows directly from the definitions

as Ω(ρ) = ΩD/(2(1 − ρ)). It therefore only depends on the appropriately scaled

detachment parameter ΩD = ωDL/p, which can be interpreted as the fraction of a

segment in the network an isolated motor typically moves before detaching. For Kip3P

we have ωD/p ≈ 7.5 10−4, and the length of the microtubules is of the order 1− 10µm.

Furthermore, taking the size of tubulin dimers to be about 8.4nm we obtain an estimated

segment length of L ∼ 100− 1000.

In figure 24 we present the relation Ω = Ω(ρ) at fixed ΩD, corresponding to three

different segment lengths (L = 1µm, 2µm and 5µm), superposing it onto the phase

diagram of TASEP-LK, for regular and irregular networks. The corresponding lines

indicate how the state of the network will evolve as the total motor protein concentration

cm in the solution is varied (note that we must distinguish the total motor protein

concentration cm from the density ρ of bound motors on the network: cm is the ratio of the

total number of motors to the volume of the solution, whereas ρ is the ratio of the number

of bound motors to the number of tubulin dimers on the cytoskeleton). Recall also that

the overall density of bound motors is ρ = K/(K+1), with K = ω̃Acm/ωD, assuming an

infinitely large and homogeneous reservoir. Using the estimates ω̃A ≈ 3.310−3nM−1s−1,

cm = 1nM , 2nM or 5nM and ωD = 4.7 10−3s−1, as given in [16], we can position the

state of the system at the markers in figure 24.

We can draw several interesting conclusions from figures 24. First, we see that the

biological parameters are such that all the different regimes of density heterogeneities can

be reached, and can in fact be targeted for instance by varying the total motor protein

density cm or by varying the number L of tubulin dimers between two junctions. In

cells the segment length L can be regulated in various ways, for instance by varying the

concentration of crosslinker proteins, a small value of L corresponding to high crosslinker

concentrations. Second, the network topology is important for this regulation. As

the density of motor proteins on the network varies its mapping onto the (ρ,Ω) plane

swepdf out lines, as discussed above, and which are set by the segment length L and

motor properties (rates p and ωD). Several examples are indicated in figures 24. For

regular networks, the choice of these parameters always leads to the same succession

of transitions between regimes of heterogeneity. This is different for irregular network

topologies, for which increasing L (or ΩD) beyond a threshold value circumvents the

LD/HD regime altogether. Consequently, these estimates show that cells could indeed

exploit heterogeneities associated with the stationary transport regimes in order to

regulate the overall organization of matter along the cytoskeleton.
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7. Conclusion

In this work we have studied driven lattice gases through networks. These systems

form a class of minimal models for intracellular transport of motor proteins along

the cytoskeleton. Motor proteins are considered to be active particles which move

stochastically along a complex network and the cytoskeleton is modeled as a network

of one-dimensional lattices which interconnect at junction sites. Three main results on

which we report in this conclusion follow from our study.

One of the main insights of this work is that the stationary state of transport

processes on networks can be deduced from the phase diagram of a single open

segment connecting two particle reservoirs. Indeed, using mean field arguments we can

characterize the stationary state of each segment in the network using effective entry

and exit rates. Plotting the effective rates of all segments on the single-segment phase

diagram we can represent the stationary state of the whole network. This approach

leads naturally to the classification of the stationary state of excluded volume processes

in three distinct regimes:

• homogeneous regime (LD orHD): all segments are in the same homogeneous phase,

i.e. either the LD or HD phase. As a consequence, the particles are distributed

homogeneously along the network. TASEP, PASEP and TASEP-LK on regular

graphs all occupy this regime at low and high filling of particles on the network.

On irregular graphs this regime can only appear at very low or very high particle

densities.

• heterogeneous segment regime (LD −HD): this regime is dominated by segments

occupying the LD-HD phase. As a consequence, strong density heterogeneities are

present within single segments. TASEP, PASEP and TASEP-LK on regular graphs

occupy this regime at intermediate particle filling. For irregular graphs this regime

appears at low processivity (i.e. high values of the exchange rate Ω).

• heterogeneous network regime (LD/HD): a finite fraction of segments are in the

LD phase but another finite fraction of segments are in the HD phase. Therefore,

a part of the network is sparcely occupied with particles, whereas another part has

a very high occupancy. Strong heterogeneities are present on a network scale. This

regime appears naturally on irregular graphs in TASEP, PASEP and TASEP-LK

with high processivity.

To which of these three regimes the stationary state corresponds thus depends on the

topology of the network, on the microscopic nature of the transport process and on

the “molecular“ parameters of the particles. Having reduced the problem of studying

transport along a complex network to the properties of one-dimensional transport is

a considerable simplification also in practical terms: a large number of exact and

approximative, established over the last two decades on one-dimensional lattice gases

[30, 35], can be directly exploited. When studying transport processes other than

TASEP it might be necessary to define other network regimes than the one presented
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here, which can also be constructed from the one-dimensional phase diagram of the

corresponding transport process.

A second main insight of our work is that strong heterogeneities on a network are a

robust feature of non-equilibrium transport with exclusion interactions. Therefore, we

expect it to be relevant in the study of real transport processes such as motor protein

transport along the cytoskeleton (or vehicular traffic in a city, etc.). The occurrence

of a network regime can be understood clearly from the effective rate diagrams as a

consequence of two effects: the presence of a LD and a HD phase, separated by a first

order transition, on one hand, in one-dimensional transport, and the presence of any

kind of ’quenched’ disorder on the other hand which affects the currents at the junction

sites. For instance, microtubules may present local changes, due to post-translational

modifications, to the absorption of proteins on the microtubule substrate [12] or to the

generation of microtubules by augmin protein complexes [91]. Any such disorder leads

to a scattering of the effective rates with respect to the one-dimensional phase diagram

(see figures 5, 9 and 16). This results in a part of the segments being in a LD state and

another part being in a HD state. These arguments can be extended to a large number

of transport problems for which the one-dimensional phase diagram is known [35], for

which we only mention a few examples relevant to motor protein transport: TASEP with

extended particles [74], TASEP with synchronuous dynamics [76], TASEP with multiple

lanes [77, 78, 79, 80], TASEP with particles with internal states [33, 41], TASEP with

directional switching [82], etc. Furthermore, our argument applies irrespectively of the

origin of the disorder in the effective rates. Here we were interested in the effect of

irregularity of the graph architecture, but the effective rates can also capture disorder

in the way particles move at the junction sites, the spatial clustering of filaments, etc.

Our insights into the appearance of network heterogeneities in the particle distributions

apply therefore far beyond the specific Erdös-Rényi graphs we have considered here.

A third result of our work is physical insight into how heterogeneities appear in

equilibrium transport processes when these are gradually driven out of equilibrium. To

resolve this question we have interpolated between a passive process, in which particles

diffuse bi-directionally on the network, and an active process, in which they move

uni-directionally. We have interpolated between these two limiting cases by gradually

changing the bias in the directionality of the particles. Analyzing the stationary state

using our effective rate diagram approach has revealed that, for sufficiently large systems,

even a weak preference for one direction suffices to create strong density heterogeneities.

We have also considered active transport along a network with coupling to passive

bulk diffusion in a reservoir. Varying the exchange rate we can again interpolate

between an equilibrium diffusive process and an active transport process along a

network [53]. When the exchange is small, the active process leads to a heterogeneous

network regime as in TASEP. Increasing the exchange rate further makes the network

heterogeneities disappear. The stationary state corresponds then to a segment regime

with heterogeneities at the segment level. Eventually, when the exchange rate becomes

very high, the exchange process smoothens out all heteroeneities and particles are



Active transport on networks 46

distribute homogeneously over the network.

On biological grounds, since motor proteins play a key role in creating gradients

within cells, but are also involved in force production and regulation as well as the

control of filament length in cells. Understanding how motor proteins organize along the

cytoskeleton therefore constitutes an essential element in the study of the microscopic

statistical physics of biological cells. We have shown that the different regimes of density

heterogeneities of TASEP-LK through networks could be relevant to cellular processes,

as these regimes arise for parameter values which are consistent with estimates from

in-vitro experiments on motor proteins. In particular, our results indicate that density

heterogeneities on irregular networks could be regulated via various parameters such as

motor processivity, crosslinker density or the bulk concentration of motors.

Appendix A. Current and density profiles for TASEP-LK for a single

segment

In this appendix we revisit the current and density profiles for TASEP-LK on a single

segment, as they have been determined from mean-field arguments in the literature

[58, 59]. In the hydrodynamic limit the mean-field equation for the average density

ρLK(x) reads:

(2ρ− 1)∂xρ
LK = ΩA(1− ρLK)− ΩDρ

LK. (A.1)

We first consider the limiting case K = 1 (K = ΩA/ΩD), which admits linear analytical

solutions for the density profiles. We then consider the general case K 6= 1, which is more

representative to real situations but also more technical: the density profiles are given

by the different branches of the real Lambert W function [59]. We end our discussion

with several analytical results with respect to the phase diagram of TASEP-LK.

Appendix A.1. Special case of half-filling: ΩA = ΩD

Let us first consider the case K = 1, corresponding to half-filling (ρ = 1/2), for which the

continuity equation (A.1) simplifies considerably and leads to piecewise linear density

profiles. In order to match the boundary conditions we must distinguish two cases,

depending on the values of two parameters xα, xβ ∈ [0, 1] corresponding to positions

along the segment:

xα = Ω−1

(
1/2− α

p

)
, (A.2)

xβ = 1 + Ω−1

(
β

p
− 1/2

)
. (A.3)

Depending on the relative positions xα and xβ the density is given by

ρLK [x;α, β,ΩA,ΩD] =


ρα = Ω x+ α

p
x < xα (LD)

ρl = 1/2 xβ < x < xα (MC)

ρβ = Ω (x− 1) + 1− β
p

x > xβ (HD)

, (A.4)
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Figure A1. The (α/p, β/p)-phase diagram for TASEP-LK on a single segment for

the indicated values of Ω and ρell = K/(K + 1). For Ω → 0 we recover the TASEP

phase diagram with the homogeneous LD, HD and MC phases. For increasing values

of Ω the heterogeneous LD-HD phase, which was restricted to a coexistence line for

Ω = 0, grows and plays a more prominent role. The analytical expressions for the

phase transitions for large Ω are also indicated.

when xα < xβ and by

ρLK [x;α, β,ΩA,ΩD] =

{
ρα = Ω x+ α

p
x < xw (LD)

ρβ = Ω (x− 1) + 1− β
p

x > xw (HD)
, (A.5)

when xα > xβ. The variable xw denotes the position of the domain wall in the segment

and is given by:

xw =
1

2Ω

(
β − α
p

+ Ω

)
. (A.6)

From the phase diagram for TASEP-LK (see figure A1) we see that in addition to

LD, HD and MC phases it also contains zones corresponding to the composite LD-HD,

LD-MC, MC-HD and LD-MC-HD phases. As Ω increases, the MC phase progressively

dominates the phase diagram. This is not surprising, since here the MC phase is the

equilibrium state corresponding to the homogeneous density ρ` = ΩA/(ΩD + ΩA) = 1/2

set by the reservoir.

Appendix A.2. General case: ΩA 6= ΩD

We now turn to the general case where K 6= 1. Here we first consider K > 1,

corresponding to a HD Langmuir phase (ρl > 1/2). The case K < 1 follows readily

from the solution for K > 1 by exploiting the particle-hole symmetry. The two systems

are related by the following transformation:

K → 1/K, (α, β)→ (β, α), x→ 1− x and ρ→ 1− ρ. (A.7)
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We define the rescaled density σ[x] through

σ[x] ≡ K + 1

K − 1
(2ρ[x]− 1)− 1, (A.8)

such that the Langmuir density is given by σ = 0. It is independent of K.

We define the two functions

Yα[x] = |σ[0]| exp

[
2Ω

(K + 1)

(K − 1)
x+ σ[0]

]
, (A.9)

Yβ[x] = |σ[1]| exp

[
2Ω

(K + 1)

(K − 1)
(x− 1) + σ[1]

]
. (A.10)

The boundary conditions, ρ[0] = α/p and ρ[1] = 1− β/p determine σ[0] and σ[1]. The

solution for the profiles σ[x] are given in terms of the two branches W−1 and W0 of the

real-valued Lambert W function. We find the left boundary solution

σα[x] = W−1 [−Yα[x]] < −1, (A.11)

corresponding to a density ρα < 1/2 and the right boundary solution

σβ[x] =


W0 [Yβ[x]] > 0 0 ≤ β < p(1− ρ`)

0 β = p(1− ρ`)
W0 [−Yβ[x]] < 0 p(1− ρ`) < β ≤ p/2

W0

[
−Y1/2[x]

]
< 0 β > p/2

. (A.12)

Note that the left boundary solution is only defined for values of x such that Yα[x] < 1/e.

The two solutions are matched at the position xw ∈ [0, 1], for which the current of both

solutions are equal: ρα[xw] = 1 − ρβ[xw]. If xw ∈ [0, 1] we are in the LD-HD phase

(or the LD-MC phase when β > p/2). Otherwise we are in a LD, HD or MC phase,

depending on the solution which dominates the current. The MC phase corresponds to

the boundary independent solution W0

[
−Y1/2[x]

]
and appears for β > p/2. Here (for

K > 1) MC has a density larger than one half. All phases here generalize the equivalent

homogeneous phases in TASEP.

We can now evaluate the solution in the various quadrants of the (α/p, β/p) phase

diagram:

• α/p < 1/2 and β/p < 1/2: in this case one can have either LD, LD-HD or HD

phases, depending on the position of the domain wall xw.

• α/p < 1/2 and β/p > 1/2: one can have the LD, LD-MC or MC phase. Again,

one has to calculate the position xw of the domain wall. The right boundary

solution is given by W0

[
−Y1/2[x]

]
, independently of β. For xw < 0 we obtain the

boundary independent MC phase. We also remark that here the LD-MC phase has

the particularity that the MC part is boundary (i.e. β) independent.

• α/p > 1/2 and β/p < 1/2: the system is in the HD phase.

• α/2 > 1/2 and β/p > 1/2: the system is in the MC phase.

The phase diagrams in figure A1 are constructed as follow: the transition between

LD and LD-HD phases (and LD and LD-MC for β/p > 1/2) follows from the condition
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xw = 1. Analogously, the transition between the LD-HD and HD (or MC) phases follows

from the condition xw = 0. The transition between the HD and MC phases is given by

β/p = 1/2. For β/p > 1/2 all transition lines are vertical independent of β.

At low values of Ω the phase diagram involves four phases, i.e. the LD, HD, MC,

LD-HD and LD-MC phase. When increasing the exchange rate Ω the LD phase becomes

gradually smaller and eventually disappears at a critical value Ωc:

Ωc =
K − 1

2(K + 1)

(
−1 + ln

(
K − 1

2K

)
+

2K

K − 1

)
. (A.13)

Appendix A.3. The phase diagram of TASEP-LK at Ω→∞

The phase diagram of TASEP-LK is represented in figure A1. In general we have no

explicit analytical expressions for the TASEP-LK phase diagram, but we do have the

explicit expression for the phase diagram at Ω→∞. Let us elaborate on three different

cases:

• K > 1: such that the Langmuir density ρ` > 1/2 corresponds to a HD phase.

– LD-HD: α/p < 1− ρ` and β/p < 1/2

– LD-MC: α/p < 1− ρ` and β/p > 1/2

– HD: α/p > 1− ρ` and β/p < 1/2

– M: α/p > 1− ρ` and β/p > 1/2

• K < 1, such that the Langmuir density ρ` < 1/2 corresponds to a LD phase. The

phase diagram follows readily from that for K > 1 using the particle-hole symmetry

transformations given above.

• K = 1 is a special situation, as then the Langmuir density ρ` = 1/2 corresponds to

half filling. The Langmuir phase thus corresponds to the MC phase. For K = 1 a

part of the segment will reach this Langmuir phase (which for K 6= 1 is only the

case in the limit Ω → ∞). This leads to the LD-MC-HD, LD-MC and MC-HD

phases. Due to the linear density profiles at K = 1 one can determine explicitly

analytic expressions for the phase diagram [59], which is presented in figure A1.

For values of Ωc > 1/2 (which follows from equation (A.13)) the phase diagram is

given by the simple expression

– LD-HD or LD-MC-HD: α/p < 1/2, β/p < 1/2

– MC-HD: α/p > 1/2 and β/p < 1/2

– LD-MC: α/p < 1/2 and β/p > 1/2

– MC: α/p > 1/2 and β/p > 1/2

The LD-HD phase is not present for Ω > 1.

Appendix B. Universal expression for networks with infinite connectivity

We present here the analytical and universal expression for the current-density profile

of infinitely connected graphs (c → ∞). The first observation is that the approximate
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mean field equations (26) are seen to become exact in the infinitely connected limit.

As discussed in section 5.4, the infinite connectivity limit amounts to considering all

junctions blocked: ρv = 1 for all junctions.

This is reflected in the effective rates which scale with the average connectivity c

as (αeff , βeff) ∼ (O(c−1),O(c−1)), and therefore the expression for the current follows

from the TASEP-LK single segment current by setting (α/p, β/p) = (0, 0). For mean

densities on the network ρ > 1/2 we obtain (using ρ = K/(1 +K))

J/p =

∫ xw

0

ρ∞α [x] (1− ρ∞α [x]) dx+

∫ 1

xw

ρ∞β [x]
(
1− ρ∞β [x]

)
dx

= ρ−
∫ xw

0

(ρ∞α [x])2 dx−
∫ 1

xw

(
ρ∞β [x]

)2
dx (B.1)

with xw the domain wall position defined through the condition ρ∞α (xw) = 1− ρ∞β (xw),

and

σ∞α [x] = W−1

[
− 2ρ

2ρ− 1
exp

[
2 (Ω x− ρ)

2ρ− 1

]]
, (B.2)

σ∞β [x] = W0

[
2(1− ρ)

2ρ− 1
exp

[
2 (Ω(x− 1) + (1− ρ))

2ρ− 1

]]
. (B.3)

We have σ∞α/β[x] = (2ρ∞α/β[x]−1)/(2ρ−1)−1. For ρ < 1/2 we can deduce the analoguous

expressions from particle-hole symmetry (ρ→ 1− ρ), while for the special case ρ = 1/2

the integrals in equation (B.1) can be integrated explicitly to find the expression in

Appendix C.

Appendix C. Half-filling for TASEP-LK on a network

The case of half-filling (ρ = 1/2, corresponding to K = 1) mathematically simplifies

TASEP-LK on a single segment since the density profiles are piecewise linear functions

(see Appendix A). The corresponding phase diagrams are known analytically, see figure

A1 (d)-(f), and we exploit them for the effective rate diagrams for networks at half filling

(figure C1). Using these results we now derive several simple analytical results on the

scale of the network.

Infinite connectivity (c→∞) at half-filling At infinite connectivity the effective rates

cluster close to the origin, see figure C1. All segments decouple and become equivalent to

isolated open segments with αeff , βeff = (0, 0). We recover the expressions in Appendix

B. For K = 1 we can explicitly integrate equation (B.1) to find

J/p =

{
Ω/4− Ω2/12, Ω < Ω∗ = 1 (LD-HD)

1/4− Ω−1/12, Ω > Ω∗ = 1 (LD-MC-HD)
(C.1)

We see that beyond some critical exchange parameter (Ω > Ω∗ = 1) a part of the

segment attains the Langmuir phase (i.e. here the MC phase, since K = 1 corresponds

to half-filling). Moreover, the current approaches its Langmuir value J/p = 1/4 for

rather small values of Ω already .
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Figure C1. Effective rate diagrams for TASEP-LK through regular graphs (left) and

irregular graphs (right), both at a total density of ρ = 1/2, are presented for the given

values of Ω and c. We have used the same graph instances as in figure 16. On regular

networks the effective rates are equal for all segments, such that only one marker is

plotted.

Regular networks at half-filling The special case of half-filling also allows to derive

analytical expressions for TASEP transport on regular networks. For regular networks

all segments are equivalent and have the same effective rates given by equation (27)

(see also figure C1). As stated in the main text, the current density profile can then be

established from the formulas in Appendix A. However, to find the average current one

still has to integrate the local expression JLK[x] along the segment x ∈ [0, 1]. In general

this is difficult, but the integration can be performed explicitely for half-filling. Then

the current profile becomes quadratic, and we find

J(Ω)

p
=

{
c

(c+1)2
+ Ω

4

(
c−1
c+1

)
− Ω2

12
(Ω < Ω∗ : LD-HD)

1
4
− 1

Ω
1
12

(
c−1
c+1

)3 (
1− 2

c+1

)2
(Ω > Ω∗ : LD-MC-HD)

(C.2)

This shows that the current saturates gradually to its maximal value of 1/4 due to the

appearance of a MC phase in the middle of the segments, which is present beyond a

threshold for the exchange parameter, Ω > Ω∗ = (c − 1)/(c + 1). As Ω is increased

further the homogeneous Langmuir phase is attained asymptotically through growth of

the MC zone within the individual segments. Note that this mechanism, for which the

Langmuir phase appears in the middle of the segment, is particular to the K = 1 case.
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[24] F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys., vol. 69,

pp. 1269–1281, 1997.

[25] P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep., vol. 361, p. 57,

2002.
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