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Particle Swarm Control

P. Allain, N. Courty, T. Corpetti

Université de Bretagne Sud, rue Yves Mainguy, 56000 Vannes, France

SUMMARY

Controlling several and possibly independent moving agents in order to reach global goals is a tedious
task that has applications in many engineering fields such as robotics or computer animation. Together, the
different agents form a whole called swarm, which may display interesting collective behaviors. When the
agents are driven by their own dynamics, controlling this swarm is known as the particle swarm control
problem. In that context, several strategies, based on the control of individuals using simple rules, exist. This
paper defends a new and original method based on a centralized approach. More precisely, we propose a
framework to control several particles with constraints either expressed on a per-particle basis, or expressed
as a function of their environment. We refer to these two categories as respectively Lagrangian or Eulerian
constraints. The contributions of the paper are the following: i) we show how to use optimal control recipes to
express an optimization process over a large state space including the dynamic information of the particles;
ii) the relation between the Lagrangian state space and Eulerian values is conveniently expressed with graph
operators that make it possible to conduct all the mathematical operations required by the control process.
We show the effectiveness of our approach on classical and more original particle swarm control problems.

KEY WORDS: Particle Swarm Control ; Optimal control ; Variational assimilation ; Adjoint method ;
Graph operators

1. INTRODUCTION AND MOTIVATIONS

This paper focuses on the control of a set of particles which together form a whole, the latter
being called “swarm”. From individual properties, and depending on the nature and the state of
particles, collective behavior may appear from such entity [1, 2]. Controlling these collective
behaviors together with individual particles is therefore a key issue which is explored in this
article. This problem can be found in the literature for several distinct application fields, such as
robot swarms [3, 4], simulation of schools and herds of animals [5], human crowd simulation [6]
or even mobile networks with switching topology [7]. The control of a particle swarm has
mainly been focused on three different problems: i) the rendezvous problem, also known as the
distributed consensus problem [7, 8], which aims at agreeing on and reaching a common location,
ii) the formation problem whose goal is to keep a given formation between the different swarm
members [9, 10] and finally the iii) aggregation problem, where the objective is for the agents to
group in a cohesive swarm [11, 12]. Other issues arise from economic load dispatching [13] which
looks for the optimal configuration of generators. Most of the previous works on particle swarm
control focus on the design of individual laws, usually based on potential fields (see e.g. [14, 15]),
to define the control policy. The latter induces an emerging and global behavior of the swarm also
known as the swarm intelligence, which has raised several important stability issues [11, 16, 17]. A
good review of those problems and the common associated recipes, along with stability results,
can be found in [15]. In fact, those decentralized approaches performed at the particle level
are motivated by real world conditions (i.e. physical systems which can only communicate with
their local neighbors), but also because the global control problem is tedious, since it requires to
minimize non-convex energy functions, as in [18], defined over potentially very large state space,
with possibly chaotic behaviors. The particle swarm optimization (PSO) methods [19], of which a
good overview can be found in [20], allows the minimization of such functionals using sampling
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methods for gradient descent, but is different in nature of the problem addressed in this paper. We
notably propose a new methodology where the swarm control operates globally to enforce a desired
consistency, and for which the gradient of the functional is computed, unlike the PSO methods. In
order to fit to the different problems’ nature above cited, the control objectives can be expressed
either on a per-particle basis or relatively to the environment. These two categories of aims are
illustrated in Fig. 1 and will be respectively referred to as Lagrangian and Eulerian constraints or
goals. However, finding an explicit correspondence between Lagrangian data and Eulerian quantities
(e.g. position of particles and its analog quantity density) is a non trivial task and calls for a dedicated
methodology.

a b c

Figure 1. Illustrations of the different nature of constraints in the swarm control problem. From an initial configuration
(a), particles in blue can be controlled either to reach individual positions represented as red circles: Lagrangian

constraints (b) or to meet on a given area: Eulerian constraint

Assuming that the particles are driven by an evolution model expressed as a system of partial
differential equations (PDE) (a generic model is given in Section 3 to illustrate our control method),
we propose to use a deterministic optimization technique from the optimal control family [21, 22]:
the variational assimilation framework. Mostly based on the adjoint theory, it has been widely used
the last three decades [23, 24], mainly because of its convenient way to express the gradient of a
cost-function involving a large system state and the associated parameters. This method has most
of the time been used in a pure Eulerian framework [25, 26] but some applications in the context of
Lagrangian setpoints can be found [27].

The contributions of the paper are then twofold:

• we provide an original theoretical framework which makes it possible to derive a
correspondence between the Lagrangian and Eulerian space (Section 4) of quantities related
to the swarm. This mapping is performed generically thanks to operators inspired from the
graph theory [28]. Those operators allow us to conduct mathematical operations such as
the linearization of the constraint operators required by the variational assimilation process
(Section 5),

• we recast the centralized swarm control problem within the optimal control theory, and show
the potential benefits of this approach by solving several classical particle swarm control
problems (Section 6). Among these, we provide formation or aggregation control, and less
classical issues such as control with respect to high order dynamical quantities such as
divergence and vorticity of the swarm velocity.

Finally, a discussion and a conclusion end the paper (Section 7).

2. NOTATIONS AND METHOD OVERVIEW

We first begin by introducing in this section the terminology and the notations used in the remainder
of the paper. The control of a swarm of particles requires three main key points:

• the way particles behave in a deterministic fashion: i.e. how they move together subject to
given parameters. More formally, this corresponds to the model M, which drives the state of
all particles X through the following evolution equation:

∂X

∂t
+M(X) = 0; (1)
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• external constraints applied to the swarm: the setpoints Y. These constraints can be
expressed in a different space than X as it is the case in the swarm control problem considered
in Fig. 1.c, where the particle density is used as a continuous constraint. In that context, ad-
hoc relations capable of linking the Lagrangian system space to such constraints have to be
defined. As explained later in the paper, this is performed through graph operators which
formalism is very flexible and valid for dimensions dim ∈ {1, 2, 3};

• the swarm control, thanks to the mathematical process combining the last two concepts. In
this paper, we apply the control theory to a system deriving from M to obtain specific states
X(t). A sensor is used to compare the system output to the reference signal. This error is
operated by a controller giving appropriate control variables for the system. Its integration
will lead to a corrected output. In our case, the controller corresponds to the assimilation

process, the system to the evolution model M, and the sensor to the observation operator H.
We note Y the reference signal, which can be considered as an observation in an estimation

framework, or as a setpoint in the control approach presented in this paper. Fig. 2 shows
the negative feedback control of the state with a user defined signal. This control loop is

-

Setpoint
Y

+

Sensor
H(X)

Assimilation
Controller

State
XSystem

M(X; ϵ)

control 
variable

ϵ

Figure 2. Functional scheme of the method. Each iterative loop computes the difference between the setpoint Y and
the observed state H(X) in the setpoint space. The difference supplies the assimilation process deriving from the model

M which will give new states X(t) all along time.

not expressed in the frequency domain, and X cannot be determined by one-pass analytical
means unlike many engineering control applications. The reason is the specificity of both the
assimilation controller and the system which contain time integration of equations.

3. SWARM EVOLUTION MODEL

To demonstrate the ability of the method to stick with common physical systems, we chose to
consider a second order model, abiding by Newton’s law of motion. This choice is motivated by the
large variety of swarming phenomena these equations are able to model, like autonomous mobile
robots [29, 30], crowds dynamics [6], or schools of fish [31]. We obtain for each particle pi the
system:

∂yi

∂t
= ui, (2a)

mi

∂ui

∂t
= Fi. (2b)







In this model, an overall force Fi term is applied to every particle pi. We propose to decompose
this force into three main components:

Fi = Fsource,i + Fslow,i + Finteraction,i (3)

The source term provides a uniform and constant displacement, and is composed by a direction
Wi and an intensity αi given for every particle. This term reads:
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Fsource,i = αiWi (4)

In order to limit the total kinetic energy of the system, it is common to add a friction force reading
for every particle pi:

Fslow,i = −kiui. (5)

Providing an interaction term in the model demonstrates the power of the assimilation process in
reverberating corrections among a complex system like interactive swarm. One of the most simple
and yet potentially useful interactions is the repulsive force which has been widely used to model
social respect for both humans and animals. We consider it as decreasing with the distance between
particles and so take it as an inverse exponential function [6], and directed toward the particle pi:

r
y
ij = −ae−b‖yj−yi‖eij . (6)

It is clear that the above model dynamics is described at a particle level, which renders a global
description at a swarm level difficult to achieve. It is also indeed difficult to consider at this stage
high level constraints involving global properties (such as density or velocity). The purpose of the
next section is to present a new formalism based on graph operators aiming at bridging the gap
between those different levels of representations.

4. GRAPH REPRESENTATION

Formalizing Lagrangian dynamics requires to define equations at a particle level. When one
manipulates physical systems associated with continuous laws, such definition can be tedious. Here
we propose to re-write such dynamics directly at the swarm level. The benefit of such approach is to
define inner swarm interactions. Furthermore, the graph formalism along with its accompanying
matrix provides excellent tools for derivation of Lagrangian functions. The definitions of such
operators and Jacobian matrix needed by the variational assimilation, are suggested in this section.
We also propose to explicitly link particle data to discretized continuous quantities by viewing an
Eulerian grid as another graph. Neighboring conditions for particles are also defined thanks to these
operators. Before entering into details, let us now present some generalities.

4.1. Generalities

We consider the swarm as a set of N particles, seen as vertices. We note V the vertex space and E

the edge space.
The swarm V ∈ V

N has interconnections seen as edges E ∈ E
Z , where Z is the number of edges

connecting two vertices of V . In practice obviously we are not interested in connecting every particle
to all others but we are rather interested on some local interaction. Therefore we have Z ≪ N2. We
obtain the definition of the graph G = {V , E} defining in a row particles and their interactions. It
is important to note that each vertex carries different properties or quantities, usually denoted as:
f : V

N → F
N

V 7→ f (V) , with F = R in the case of a scalar quantity. For example, the position of

particles, also called configuration, can be written as:

y(V) =








y(p1)
...

y(pi)
...

y(pN )







=








y1
...

yi
...

yN








. (7)

In order to write graph quantity expressions, we introduce the diagonalisation operator . which
creates a pure diagonal matrix made of the vector values. For instance, fy gives us a new graph
quantity being the product of f and y.
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4.2. Connectivity

The connectivity of vertices V is defined by the adjacency matrixA ∈ Z
N×N , where Z is the integer

domain, which captures the structure of the graph G. This matrix is defined as:

A =

{
Aij = 1 if there exists an edge between pi and pj ,
Aij = 0 if there is no edge.

(8)

In most cases, relations between particles decrease with the distance: the connectivity depends on
the proximity. There exist several ways to set the proximity-based connectivity, such as connecting
vertices within a range, or connecting the k nearest neighbors. Because of the potentially high
number of particles, we chose to use a neighboring condition in a regular grid embedding, which
makes it possible to perform computations more efficiently only for a subset of neighboring
particles. The adjacency matrix often goes with the degree matrix D ∈ Z

N×N , which accounts
for the sum of connections for every vertex. This matrix is diagonal and is defined as:

D =

{
Dii =

∑

jAij ,
Dij = 0.

(9)

Let us now take the example in a two dimension space of a given configuration of vertices with a
first order neighboring condition described in Fig. 3.

p1

p2

p3

p4

p5

Figure 3. Example graph G. The swarm lies on an Eulerian grid C. Connectivity of particles is here defined by meshes
proximity with emphasis on node p1.

The adjacency and degree matrix of graph G are:

A =








0 1 1 0 1
1 0 0 0 1
1 0 0 0 0
0 0 0 0 0
1 1 0 0 0








, D =








3 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 2








. (10)

In order to express explicitly the adjacency based on a Eulerian grid, we introduce the mesh
belonging matrix P(V) ∈ Z

N×M , where M is the number of meshes c of grid C. P states for the
presence of a vertex in a mesh. We define:

P =

{
Pim = 1 if yi is inside mesh cm,
Pim = 0 otherwise.

(11)

Simultaneously we introduce the grid adjacency matrix Mo ∈ Z
M×M representing the connectivity

of meshes at o-th order. We define:

Mo,ml =

{
1 if ‖cm − cl‖∞ ≤ o,
0 otherwise,

(12)
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with cm − cl the leap vector to go from mesh cl to cm. The combination of these two matrices gives
us the precise expression of the adjacency:

A = PMoPT . (13)

As for the example in Fig. 3, one can easily see that PT gives the mesh to which p1 belongs, M1

gives the first order neighbours of this mesh, then P collects vertices belonging to this set of meshes.

4.3. Weighted relations

Even if the conditions of the connectivity are known, the intensity of the connection must be known
as well, since functionals will have to depend on and eventually drive vertices. Thus, the adjacency
matrix can be augmented by weights. These weights w(f(pi), f(pj)) ∈ W, or wf

ij , create the matrix
[
wf

ij

]
∈ W

N×N which when combined to the adjacency matrix leads to:

Awf =
[
wf

ij

]
◦A, (14)

◦ denoting the Hadamard, or entrywise, product. In practice, the quantity used by the weight wij

is often a difference of the positions yi and yj , reading: wy
ij = w(y(pj)− y(pi)). As an example, if

taking the weight function as a Gaussian kernel G parameterized by its standard deviation σ, such
as:

G
y
ij = G(yi, yj) =

1
(
σ
√
2π

)dim
e−

(yj−yi)
2

2σ2 , (15)

one can express in a compact way the concentration of the particle’s quantity, or particle density, of
G by writing:

ρ = AGyq, (16)

with the quantity of particle q(V) here set to ~1, meaning every particle counts for 1 ptl∗.
Consequently the dimension of the concentration becomes: [ρ] = ptl.m− dim. An example of this
density is proposed in Fig. 5 (left).

4.4. Rewriting the evolution model with graph operators

At this stage, it is possible to rewrite the evolution model exposed in Section 3 with graph
operators. Recalling that every particles are submitted to a force Fi composed of three terms
Fi = Fsource,i + Fslow,i + Finteraction,i, we rewrite the three different components in the following
way:

• the source term, which is is composed by a direction W(V) ∈ R
d×N and an intensity

α(V) ∈ R
N now reads in the graph’s space: Fsource = αW;

• the friction term, which is composed by the particles velocities u ∈ R
d×N and the friction

coefficients k ∈ R
N nows reads in the graph’s space: Fslow = −ku;

• the interaction term, which is composed of weighted relations between particles now reads in
the graph’s space: Finteraction = Ary~1;

which finally gives the following expression of the evolution model in the graph’s space:

∂y

∂t
−u = 0, (17a)

∂u

∂t
−m−1(αW − ku+Ary~1

︸ ︷︷ ︸

F

) = 0, (17b)







in which one can recognize an evolution equation as defined at Eq. 1. We now examine the
possibilities offered by the graph operators to perform a link between the Lagrangian quantities

∗We note ptl the unit of the quantity of particles.
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involved in the graph and Eulerian quantities relative to the environment. We recall again that this
can be useful if one wants to control the swarm with respect to constraints given at the swarm level
such as density or velocity.

4.5. Projection to Eulerian space

In addition to the grid neighboring condition, we also need to evaluate Lagrangian data in the
Eulerian space for the integration of continuous constraints in the control process. Knowing any
vertex quantity at the vertex location, we have to presume the values elsewhere, such as on the
grid C. We then need to estimate either the concentration of the quantity, or directly the quantity
which will act as an interpolation. Of course, every vertices will not be used for the estimation, and
we will use MoPT to select vertices on sight. The weights, however, are slightly different from
those used for graph adjacency. They mix the quantity of the vertices and the grid. By defining
[
wf

mj

]

CG
∈ W

M×N the matrix of weights, with wf
mj = w(f(pj)− f(cm)), we can express the

convolution, or concentration here, of q, the density of particles on C as follows:

ρC =
[
G

y
mj

]

CG
◦MoPTq, (18)

provided y(cm) = xcm , the center of mesh cm. In the case of concentration, the weight has to be a
kernel function, such as gaussian G. The weight reads in this case:

G
y
mj = G(xm, yj) =

1
(
σ
√
2π

)dim
e−

(yj−xm)2

2σ2 . (19)

Introducing the Eulerian adjacency matrix Awf ∈ W
M×N such as:

Awf =
[
G

y
mj

]

CG
◦MoPT , (20)

Eq. 18 can be simplified as follows:
ρC = AGyq. (21)

We present in Fig. 4 an example of calculation of the concentration of q in a one dimension space,
and in Fig. 5 (right) the calculation in a two dimension space.

 

 

particle data q

concentration of q

grid

Figure 4. Concentration example. Concentration of q on grid C obtained by AGyq. Here N = 6, M = 16, o = M ,
and the standard deviation of G is set as the size of the meshes of C.

To get the quantity value elsewhere other than on vertices, we use the Eulerian adjacency weights
as interpolation weights. For each pi, we divide the convolution by the sum of weights applied. This
normalization can be done with the introduction of the Eulerian degree matrix D ∈ W

M×M , defined
as:

D =

{
Dmm =

∑

j Amj ,
Dml = 0.

(22)

In the end, letting uC ∈ R
dimM be the Eulerian velocity expressed on grid C, we obtain the

expression:
uC = D−1

wyAwyu. (23)
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p1

p2

p3

p4

p5p1

p2

p3

p4

p5 p1

p2

p3

p4

p5

Figure 5. Example graph G. Left) The density is expressed on graph G by Eq. 16, right) the density is expressed on
grid C by Eq. 21.

This acts as an inverse distance weighted interpolation where the number of samples used equals
MoPT~1, and provided w

y
mj decreases as ‖yj − xcm‖ grows.

The choice of w is critical, and can lead to very different results. It has to be chosen and configured
with respect to the expected smoothing degree, and the desired extrapolation type when away from
the swarm. Ideally, the perfect w should match the following requirements:

• accuracy: the evaluated quantity at an available data is itself. This reads: (yj = xcm ⇒ uj =
ucm) ⇔ w(0) = ∞;

• vacuum relevance and stability: when far from the available data (i.e. the swarm), the
evaluated quantity corresponds to the average of the available data;

• smoothness: as we deal with continuous data, the quantity has to be smooth;
• simple mathematical derivation for computation ease.

The inverse distance weight function wy = 1
‖yj−xcm‖ , despite its accuracy and the fact that

it appears to be a rational choice is likely to generate high variations potentially leading to
discontinuities if N ≪ M . For the sake of robustness, we instead chose to use the gaussian kernel
function G, again despite the fact it causes small accuracy discrepancy. It amounts to determine a
range of interpolation depending on the particles to grid elements distance. In addition, this weight
function turns out to be powerful if the particle density is used for the calculation of its standard
deviation at each position xcm . To illustrate this, we present in Fig. 6 an example of the evaluation
of uC comparing this method to a fixed standard deviation, showing how the density-based method
provides a more robust evaluation for the natural interpretation that can be made of the underlying
continuous quantity. However, with such Gaussian kernel, the derivation w∂y unfortunately gets a
little more complicated.

4.6. Differenciation

For particle control purposes, we will be led to derive equations by some vectorial vertex data noted
f ∈ R

dim×N . Eq. 16 shows how the adjacency can be used to estimate new vertex quantities. To
help differenciate graph equations, we slightly modify this notation by setting the multiplied vector
inside the adjacency matrix, therefore yielding a new weighting type. Considering ψ and d ∈ R

N

as scalar data, we write:

ψ = Awfd = Awf .d
~1, (24)

where the functional matrix is defined such as: Awf .d =
[
wf

ijdj
]
. We will denote the weight

derivation w∂f
ij =

∂wf
ij

∂fj
= −∂wf

ij

∂fi
∈ W

dim.
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particle data u

evaluation of u

density−based evaluation of u

grid

Figure 6. Evaluation example using particles density. Evaluation of u on grid C obtained by D
−1

GyAGyu. Here N = 6,
M = 16, o = M . The standard deviation of G is set as the size of the meshes of C for the simple evaluation, and as the

inverse of two times the particle density (2AGy~1) for the density-based evaluation.

The derivation ∂ψ
∂f

∈ W
d×N×N reads †:

∂ψ

∂f
= ∂fAwfd (25)

= ∂f








∑N

j wf
1jdj

∑N

j wf
2jdj

...
∑N

j wf
Njdj








(26)

=








∂f1
∑N

j wf
1jdj ∂f2

∑N

j wf
1jdj ... ∂fN

∑N

j wf
1jdj

∂f1
∑N

j wf
2jdj ∂f2

∑N

j wf
2jdj ... ∂fN

∑N

j wf
2jdj

... ... ... ...

∂f1
∑N

j wf
Njdj ∂f2

∑N

j wf
Njdj ... ∂fN

∑N

j wf
Njdj








(27)

=








−
∑N

j w∂f
1j dj w∂f

12d2 ... w∂f
1NdN

w∂f
21d1 −

∑N

j w∂f
2j dj ... w∂f

2NdN
... ... ... ...

w∂f
N1d1 w∂f

N2d2 ... −
∑N

j w∂f
Njdj








(28)

= −
[(

∑N

j w∂f
ij dj

)

δik

]

+
[
w∂f

ij dj
]

. (29)

One can identify the degree and adjacency matrix out of this expression, leading to the equation:

∂ψ

∂f
= −Dw∂f .d +Aw∂f .d. (30)

Using the graph Laplacian L =D −A, we finally obtain:

∂ψ

∂f
= −Lw∂f .d. (31)

It becomes also possible to simply write swarm PDEs describing the behavior of particles. In the
case d = ~1, one can notice that Lw∂f is symmetric.

†Considering A independent of f , which is an approximation in case f = y as seen in Eq. 13, where it depends on the
mesh belonging matrix P .
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The derivation of Eulerian quantities ψC is different since the weight function depends in part
on the grid meshes instead of double vertex dependency for classical graph weights. Therefore, the
degree matrix does not appear and the derivation of the convolution of d on C simply reads:

∂ψC

∂f
= Aw∂fd. (32)

5. OPTIMAL CONTROL

The evolution model M of Eq. 1 aims at giving a first assumption of the particle behavior. The
evolution of the system state X(t) can be directly inferred from this model by integrating it over
time. The assimilation process is in charge of modifying this state trajectory by taking into account
setpoints (or observations) at given times. As a result, the control is defined as a tradeoff between
what can be expected from the model and what is actually required by external constraints Y(t).
In fact, the degree of freedom allowing to modify the evolution of the particles predicted by M is
defined by the levels of confidence in the model, the setpoints, and the initial state conditions. In the
assimilation process, these levels are related to the covariance matrices. This is explained thoroughly
in the next section.

5.1. Problem statement

Assuming the swarm being coarsely driven by the evolution model M, one can add an unknown
additive control variable ǫM, relative to the noise on the evolution, leading to:

∂X

∂t
+M(X) = ǫM. (33)

The setpoint data Y(t) have to be compared to the model output X(t), as seen in Fig. 2. This
comparison can be direct or not, for example through higher level constraints such as differential
particles configuration or local density (as seen in Fig. 1). The relation from such data to X is
therefore not direct, and leads to introducing an observation operator H, formalizing:

H(X) = Y + ǫH, (34)

where ǫH stands for an error on the setpoint. Note that a direct observation corresponds to H equals
the identity.

Finally, as for the initial condition, we also assume its value to be uncertain, leading to:

X(t0) = X0 + ǫ0. (35)

Therefore, the problem consists in extracting X that satisfies the system of relations 33, 34 and
35. This is the control issue: how to extract a solution of lower energy on variables ǫM and ǫ0
(i.e. abiding by as much as possible the natural model M and the initial condition X0) such that
the computed state along time fits the actual setpoints Y, up to the authorized error. This leads to
extracting X(t) that corresponds to the lowest discrepancy between the external constraints and the
original trajectory in state space. These conditions can be expressed through the minimization of
the cost function J defined as:

J (ǫM, ǫ0) =
1

2

∫ tf

t0

‖ǫM‖2Q−1dt+
1

2

∫ tf

t0

‖ǫ0‖2B−1dt

+
1

2

∫ tf

t0

‖Y −H(X)‖2R−1dt.

(36)

where Q, B and R are respectively the error covariance matrices associated to noises ǫM, ǫ0 and
ǫH. The expression ‖.‖C−1 stands for the induced norm of the inner product

〈
C−1., .

〉
where C is

an endomorphism.
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These covariances are of high importance in the control process, in the sense that they
parameterize the trade-off between the deterministic model and the setpoints. For example, the
initial configuration of the swarm at t0 can be set as fully trusted, and so not modifiable, by
parameterizing the associated error to zero and therefore associating an error covariance matrix
such that: B−1 = +∞. Similar behaviors hold for matrices Q and R.

From a mathematical point of view, in practice, the optimization of Eq. 36 leads to some
difficulties in reason of the potentially large size of the system state and to the complexity of the
evolution model. A solution to face this problem is to use an adjoint formulation, as presented in the
next section.

5.2. Adjoint formulation

As mentioned, the estimation of δJ (δǫ0, δǫM) is in practice unfeasible for a large system’s state
(here X ∈ R

2 dimN ). As a matter of fact, such an evaluation would require computing perturbations
of the state variables along all the components of the control variables (δǫM, δǫ0) and all along the
temporal grid – i.e. integrating our evolution model for all perturbed components of the control
variables which is computationally completely unrealistic. An elegant solution of this problem
consists in relying on an adjoint formulation [21] by adding an adjoint variable λ to the derived
model ∂M. With the help of a few expansions and properties, and by defining the linearisation
∂XM ∈ R

2 dimN×2 dimN of operator M (also known as Gâteaux derivative) by:

(∂XM)dX = lim
β→0

M(X+ βdX)−M(X)

β
, (37)

and the adjoint linearised operator (∂XM)
∗ ∈ R

2 dimN×2 dimN such as:

〈(∂XM)dX,λ〉 =
〈
dX, (∂XM)

∗
λ
〉

, (38)

it can be demonstrated that solving the assimilation problem in an incremental framework consists
in performing the following algorithm 1 on the basis of the solution X(t) given by the model
integration.

Algorithm 1: Incremental variational data assimilation

Data: Trajectory X(t)
Result: Optimal solution

• Perform integration of M with initial condition X(t0) = X0

while No convergence do

• Set λ(tf ) = 0
• Backward integration of the adjoint linearised model:

∂λ

∂t
+ (∂XM)

∗
λ = (∂XH)

∗
R−1 (Y −H(X)) (39)

• From adjoint trajectory λ(t; ǫH):

– compute: dX(t0) = dǫ0 = 1
tf−t0

Bλ(t0)

– compute: dǫM(t) = Qλ(t)

• Forward integration of the linearised model:

∂dX

∂t
+ (∂XM)dX = dǫM (40)

• Update trajectory X(t) by adding computed dX(t)

end
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The method first consists in obtaining the state trajectory X(t) abiding by the evolution model M
with respect to the given initial condition X0.

At this stage of the process, the assimilation controller of Fig. 2, and detailed in the above
Fig. 7 (left), is in charge of computing the control variables of the system.

Adjoint 
linearised sensor

(δ
X
H)* R

-1

Assimilation Controller

Adjoint
linearised model

(δ
X
M)*(X;ϵ

X
)

B,Q

λ(t)
control 

variables
dϵ0, dϵM

System

Linearised
model

δ
X
M(X;dϵ0,dϵM)

+X

dX(t)
ϵH

X(t)
ϵ
X

Figure 7. Details of the assimilation controller and the system of Fig. 2 in an incremental framework.

Around the state trajectory, the backward integration of the adjoint linearised model of Eq. 39 is
in charge of computing λ which can be seen as an error variable along time. The evolution of λ is
in fact:

• powered by a discrepancy measure between the setpoint Y and the state observation H(X);
• and guided by the adjoint linearised model (∂XM)

∗.

The variations of the control variables ǫ0 and ǫM(t) are then calculated using λ, thus allowing to
compute the variation of the state trajectory dX(t) by the forward integration of Eq. 40 as shown
in Fig. 7 (right). Finally, the state correction is added to last obtained state trajectory X(t), and the
overall process is iteratively repeated until convergence.

It is important to notice that both the linearized model and its adjoint evolve around the updated
state. To start the control we then must dispose of a first assumption of X(t), which is done thanks
to the direct integration of M(X), and to an initial condition X0.

The details of this derived models are now presented, and will be followed by several sensors
presentation along with their linearisation.

5.3. Linearized model

The model being defined by the equation system 17, their expression therefore read:

∂XM =

[
1 0
0 −m−1

] [
0 1

∂yF ∂uF

]

, (41)

(∂XM)
∗
=

[
0 ∂yF

T

1 ∂uF
T

] [
1 0
0 −m−1

]

. (42)

One can observe that the task consists in correctly expressing the linearization and the transposed
linearization of forces F. Thanks to Eq. 17b and Eq. 31, we get:

∂yF = −Lr∂y , (43)

∂uF = −k. (44)

Since ryij is a vector, its derivative is a matrix (∈ R
d×d). Considering the distance between two

particles Dy
ij = ‖yj − yi‖, the repulsion force is of form f(Dy

ij)e
y
ij with f : R → R. The derivation

for any distance-based interaction force, including ryij , then reads:

r
∂y
ij =

1

D
y
ij

f(Dy
ij)

[
e
y
ij

]
(

orthoradial
projection

) − f ′(Dy
ij)

[
e
y
ij

]
(

radial
projection

) , (45)

which is a symmetric matrix. In the end, transposals of the above linearisations simply give the
adjoint linearised terms by reading

(∂yF)
T
= ∂yF, (46)

(∂uF)
T
= ∂uF. (47)
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5.4. Observation operators

One easily understands that the sensor of Fig. 2 transforms the state X to a data lying in the same
domain as Y. Therefore any user defined setpoint must be associated to an observation operator
H(X). If the setpoint is directly connected to the system’s state, this operator is trivial. For example
in our case, a full state setpoint reads:

Y =

[
ysp

usp

]

⇒ H(X) =

[
y

u

]

⇒ (∂XH)
∗
=

[
1 0
0 1

]

. (48)

In case of higher level observations, the expression of H and its linearisation can take various forms.
In the following we present some observation operators that appear to be useful in the context of
particle swarm control.

5.4.1. Lagrangian setpoints In addition to the trivial Lagrangian observation lately presented, we
propose two operators based on inter particles relations.

The first operator consists in imposing specific relationships between particles. When such
relationships correspond to distances, this observation operator describes shapes [11], but we note
that other shape-description possibilities could have been used (see for example [32]). The relation
between a single particle pk and others is defined through a weight function w and a state quantity
f . Assuming the relation between particles defined through a matrixM sp ∈ W

N×N , we can extract
the vector of relations of the k-th particle, the desired spatial relations, by writing:

k

Y =M spδ
i
k ∈ W

N , (49)

with δik ∈ Z
N . This setpoint has to be compared to the state by the sensor and through the adjacency

matrix defined by weighted connections w, and one of the state’s quantities f belonging to X, leading
to:

k

H(X) = Awf δik. (50)

In the rest of the paper we call this a k-specific adjacency operator (KSA) associated to the k-specific

vector of adjacencies:
k
awf ∈ W

N . In order to derive the observation operator, we also introduce the
k-specific Laplacian matrix:

k

lw∂f =
∂
k
awf

∂f
, (51)

which can be seen as a k-decomposition of the Laplacian matrix, i.e.:

∑

k

k

lw∂f = Lw∂f . (52)

This operator reads:

k

lw∂f =







k

lw∂f ,ij = w∂f
ij if i = j

k

lw∂f ,ij = −w∂f
ij if j = k

k

lw∂f ,ij = 0 if i = j = k since ∂fkw
f
kk = 0

k

lw∂f ,ij = 0 otherwise

(53)

For example, if such a setpoint is applied to every particle pk, the control process will amount to
find f that minimizes ‖M sp −Awf ‖. Alternatively, in case w ∈ R is a distance function between
data f of the nodes of the graph, this operator is invariant to the shape’s translation and rotation.

The second operator is quite the same as the last one. It however introduces a degree of freedom
by adding a normalization: the scale of the setpoint is now unspecified. Instead of explicitly impose
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Table I. Overview of the three Lagangian observation operators.

Y setpoint H(X) observation operator (∂XH)
∗ adjoint linearised observation operator

state Xsp X IN

k-specific
M spδ

i
k

k
awf

(
k

lw∂f

)T

adjacency

k-specific
M spD

−1
Msp

δik

(
k

dwf

)−1
k
awf

(
k

lw∂f −
k

H⊗ ∂f
k

dwf

)T (
k

dwf

)−1

normalized adjacency

relations between particles with M sp, we only desire here to respect the proportion of relation. We
name this operator k-specific normalized adjacency operator (KSNA). WithDMsp

∈ W
N×N being

the degree matrix of M , we thus write:

k

Y =M spD
−1
Msp

δik, and
k

H(X) = AwfD−1
wf δ

i
k. (54)

In other words, by noting
k

dwf = δkiDwf δik ∈ W the k-specific degree, we obtain:

k

H(X) =
k
awf

(
k

dwf

)−1

, (55)

and its derivation gives:

∂f
k

H =−
(

k

dwf

)−2 (
k
awf ⊗ ∂f

k

dwf

)

+

(
k

dwf

)−1
k

lw∂f ,

=

(
k

dwf

)−1 (
k

lw∂f −
k

H⊗ ∂f
k

dwf

)

.

(56)

The KSA and KSNA operators, alike the direct state operator, are applied to Lagrangian setpoints.
This is summarized in Tab. I. We will now turn to the management of environment data into the
sensor process, that we refer as Eulerian constraints.

5.4.2. Eulerian setpoints In some specific applications, it is also of great interest to control the
swarm by continuous data. For example, one can impose at a given time the concentration of
particles to respect a continuous constraint defined on a grid C. For the sake of clarity, let us consider
a system driven by the model M whose properties are y, u and q the quantity of particles (the
system’s state being composed of y, u). To control the system either on the basis of the position,
velocity or quantity, we need to define two operators: the density observation operator that links
the system state to a continuous quantity defined on the grid and the projection observation

operator that is in charge of estimating the values of the given component on a grid. These two
operators are detailed below.

Density observation operator. In this case, we seek to express the concentration of particles q on
the grid. The observation operator seen in Eq. 21 is such as: H(X) = ρC = AGyq, and its derivation
by X simply reads:

∂XH =

[
∂yH

∂uH

]

=

[
AG∂yq

0

]

. (57)

Projection observation operator. As mentioned above, its goal is to evaluate on a grid C some
variables. The velocity u accounts for a rational data to estimate on C, and its projection on it is
already given in Eq. 23 such as: H(X) = uC = D−1

wyAwyu. Its derivation by X reads:

∂XH =

[
∂yH

∂uH

]

=

[
D−1

wy

(
Aw∂yu− uCAw∂y

)

D−1
wyAwy

]

(58)
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Table II. Eulerian observation operators.

Y setpoint H(X) observation operator (∂XH)
∗ adjoint linearised observation operator

density ρC,sp AGyq ⇒ Eq. 21

[
qAT

G∂y

0

]

⇒ Eq. 57

velocity uC,sp D−1
wyAwyu ⇒ Eq. 23

[
Sw∂y.u

AT
wy

]

D−1
wy ⇒ Eq. 58

divergence ξC,sp ∇uC ⇒ Eq. 59

[
(∂y∇uC)

T

(∂u∇uC)
T

]

⇒ Eq. 61

curl ζC,sp [∇×]uC ⇒ Eq. 60

[
(∂y [∇×]uC)

T

(∂u [∇×]uC)
T

]

⇒ Eq. 62

where for clarity sakes, we have introduced the Eulerian deviation operator Sw∂f .d = Aw∂fd−
dCAw∂f allowing to expressing derivations in a more compact way.

In addition to these operators inspired from particles concentration and velocity, we propose
higher level setpoints based on the derivatives of the velocity. More precisely, we use:

• the divergence, which expresses the dynamic of dilatation or concentration of particles:

H(X) = ξC = ∇uC = D−1
wy(D−1

wyDw∂yAwy −Aw∂y)u, (59)

• and vorticity (or rotational or curl), related to the dynamic of whirling of the particles:

H(X) = ζC = [∇×]uC = D−1
wy([∇×]Awy +D−1

wy [Dw∂y×]Awy)u. (60)

The result of the derivation of these operators is directly expressed as follows:

• for divergence:

∂XH =

[
∂yH

∂uH

]

=

[
−D−1

wyξCAw∂y +D−2
wyDw∂ySw∂y.u −D−1

wySw∂2y.u

D−1
wy(D−1

wyDw∂yAwy −Aw∂y)

]

; (61)

• for vorticity:

∂XH =

[
∂yH

∂uH

]

=

[
−D−1

wyζCAw∂y +D−2
wyDw∂y×Sw∂y.u −D−1

wySw∂2y×u

D−1
wy(D−1

wy [Dw∂y×]Awy + [∇×]Awy)

]

. (62)

These observation operators, along with their derivation required by the control process,
illustrate the variety of possible phenomena relative to a Lagrangian model. The Eulerian ones are
summarized in Tab. II. Let us now turn to the experiment results.

6. RESULTS

In this section, we test and validate our control approach by imposing Lagrangian and Eulerian
setpoints to a particle swarm submitted to the dynamical model presented in Section 3. Before
describing these experiments, we first discuss some practical aspects in the next paragraph.

6.1. General considerations for experiments

Below are some general settings:

• for the ease of presentation, the experiments are performed in 2D space (i.e. dim = 2);
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• the simulations of M, ∂XM, and (∂XM)
∗ are performed using the 4-th order Runge-Kutta

time integration to guarantee stable trajectories, and the time step is set to 0.1 s;
• we use a grid C of 32× 32 meshes, each one sizing 1m× 1m;
• the mass of particles m is set to ~1 kg for every experiment.

As for the error covariance matrices:

• as the relation of Eq. 17a between particles positions and velocities is considered as perfect,
we set Qy null. As a consequence, only Qu related to the error covariance matrix on the
dynamic modeling in Eq. 17b will be non null;

• covariances are parameterized for a slow convergence to avoid oscillations and so improve
clarity of method’s behavior;

• concerning the initial condition, in order to stick with a constrained initial position, we set it
null in this paper for both By and Bu.

Regarding computation performances, each control loop duration of the examples presented
lasted averagely between 10 and 30 seconds on a 2.3 Ghz laptop. Let us also specify that we
used the store all method consisting of saving the states (positions and velocities) all along the
sequence. In case of very big state space, for instance here a large number of particles, and/or
very large number of time steps, the needed memory can become significant, which may appear as a
drawback of this method, but did not appear as a critical issue in the following experiments. We now
turn to experiments with Lagrangian observations. All the experimentations are performed with the
parameter values of Tab. III.

6.2. Lagrangian observations

In this example, the goal is to impose a relative relationship between particles. To that end, the
KSNA operator detailed in Section 5.4.1 will be used. Although it is formalized for any graph
data and any weight function, we will show, for the sake of clarity and in order to have a better
understanding of the assimilation process, the results by taking: f = y and wf

ij = D
y
ij = ‖yj − yi‖,

the Euclidean distance function. Considering a spatial configuration of particles (a pattern), we
can build its adjacency matrix following Section 5.4 and obtain M sp defining the distance of every
particle to all others. The experiment, therefore, consists in bending the model M to obtain at a given
time tsp a spatial configuration of the particles being as close as possible to the targeted pattern with
respect to the model M.

We consider an adjacency matrix of distances M sp built thanks to a given swarm pattern, and
will apply the KSNA operator for every particle pk. The setpoint pattern will be the word TAC

(standing for Tensorial Adjoint Control) at tsp = 12 s. It is built offline and constituted of N = 46
particles. The initial condition on positions yt0

is taken as the desired pattern but at a smaller scale
as compared to the repulsion magnitude a and the duration lasting up to the setpoint. Therefore,
the integration of the evolution model will significantly disperse particles over time. This leaves
trajectories of particles which can be used to easily highlight the way the solution converges. So
far, we would obtain at tsp a configuration of particles which relative positions do not need to be
exchanged. A small randomization around yt0

is added to break this arrangement and solicit more
hardly the repulsive term of the model during the control.

The result of the experiment appears in Fig. 8. The first step (i.e. simulation of the model) in Fig.
8(a) shows that the swarm has no other behavior than diffusion due to particle repulsion. After a
few control loops , the swarm changes its whole state quickly and a new behavior appears, as shown
on the trajectories of Fig. 8(b). With 200 assimilation iterations (Fig. 8(c)), the word TAC appears
clearly from a qualitative point of view. However the swarm begins to encounter difficulties due to
particles impediment and the rate of evolution over control loops start to considerably slowdown, as
the normalized Root Means Square (RMS) of H(X)−Y shows in Fig. 8(d). Actually, at this stage,
the swarm is struggling to overcome the model which does not easily allow for reconfiguration of
the swarm, since the initial condition has broken the ideal one as said previously. This is why at
convergence, in Fig. 8(c) we can observe particles switching their position by a careful rotation, as
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(a) Model integration (b) Control after 10 assimilation iterations

(c) Control after 200 assimilation iterations
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Figure 8. KSNA experimentation. Red dots represent swarm configuration at t = 12 s, blue dots at t0 = 0s. Dashed
lines are particle trajectories over sequence duration. Covariances are tuned for a slow and steady convergence to preserve

the dynamic of the swarm.
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in the left side of the C letter. The two closest particles (top of letter A) are still trying to switch their
position. They are pushed toward each other by the adjoint linearised observation operator (∂XH)

∗,
but repulsed by the model. This is a typical local minimum case and drawback of the method
These particles are stuck in a bad configuration regarding to the setpoint, and cause the others’
positioning to be polluted, since the problem is over constrained when the setpoint pattern M sp is
fully connected. Using other shape descriptors by advanced multiresolution strategies or stochastic
gradients could for instance lower this problem by minimizing the number of local minima. However
this is out of the scope of this paper. Another possibility to overcome this difficulty under the
proposed framework would be to decrease the confidence in the model, or increase the setpoint
confidence by adjusting the covariance matrices. It is also possible to sparse the latter one in order
to relax the control problem.

Last, we obviously notice that scale orientation and positioning of the pattern obtained at
convergence correspond to the apparently closest solution in reference to the simulation (a focus on
orientation reveals that the obtained pattern is not horizontally oriented) which proves the efficiency
of our approach.

6.3. Eulerian observation

In this section, we present experiments with two kinds of Eulerian setpoints based on density and
on divergence plus vorticity.

6.3.1. Aggregation density control Problem statement. The aggregation problem is well-known
when dealing with robot swarms [9, 33]. The problem can be stated as: “how particles have to

move in order to be found in an area at a specific time tsp ?”. We propose to answer this question
by using the density observation operator. The control issue then states how to bend the model M
in order to find a specific concentration of particles at tsp. We will consider the aggregation case
illustrated in Fig. 9(a), where the swarm has to be located at area A then area B while heading East.
These locations have been chosen with high inconsistencies regarding the model dynamics in order
to highlight the contribution of the control approach. As shown in Fig. 9, we add to these setpoints
a density gradient in order to also control the way particles are aggregated.

swarm

A

B

(a) Aggregation problem (b) for area A,tsp = 12 s (c) for area B,tsp = 20 s

Figure 9. Aggregation problem Instead of being driven only by the evolution model M, we also impose the swarm
to reach areas A and B. The two observations A and B are horizontally symmetric, and maximum value in red reaches

1.3 ptl.m−2. Grid C is only displayed here for further clarity’s sake.

The pitch of the grid (1m) provides the finest relevant standard deviation that we note σ1. This
value is defined as the high resolution and is used for the Gaussian kernel needed by the density
observation operator of Eq. 21. One can understand thanks to Fig. 9 that this value is low as
compared to the distance between the initial swarm trajectory and aggregation areas. Therefore,
the Gaussian derivative driving the density adjoint linearised observation operator (see Tab. II) is of
low intensity in the first control iterations, and is not able to provide enough power to the adjoint
model (see Eq. 39) in the scope of attracting the swarm to aggregation areas. It will in fact be the
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most efficient for particles being at a 1m distance of aggregation information. Consequently, we
suggest embedding the process of sensing with the following technique.

A Multiresolution framework is achieved using a spectrum of standard deviation, instead
of the unique usage of σ1. This allows the particles to capture information at different ranges
where the setpoint remains unfulfilled. The spectrum is taken as σr = {1m, 2m, 4m, 8m, 16m},
guaranteeing the distance from a particle pj to a mesh cm always varies in the range of two
standard deviations: 2σr < ‖yj − xcm‖ < 2σr+1. We also convolute the setpoint Y of Fig. 9 for
these resolutions in order to provide reachable data to the assimilation process, since the input
densities provided for the setpoints are not reachable for a Gaussian kernel convolution, and more
widely by any kernel whose derivation is not null. Fig. 10 shows these convolutions.

(a) σ = 1m (b) σ = 2m (c) σ = 4m (d) σ = 8m (e) σ = 16m

Figure 10. Y for different resolutions. Setpoint for the A area at tsp = 12 s

So far, the multiresolution operators and the adjoints of their linearisation correspond to a filtering,
whose power is diffused essentially between distances 0m and 2σr. In the same purpose, if we
consider the observed density after the integration of model M, shown in Fig. 11, and consider the
difference between maps of Figs. 10(e) and 11(e), we observe that the difference Y −H(X) is of
low intensity, and we easily presume this difference will be much higher for high resolutions once
the swarm has reached the area A and its neighborhood.

(a) σ = 1m (b) σ = 2m (c) σ = 4m (d) σ = 8m (e) σ = 16m

Figure 11. H(X) for different resolutions right after model integration.

In fact the covariance R of the setpoint error ǫH strongly depends on the observation operator
H(X). It is meant to amplify the intensity of the adjoint linearised observation operator (∂XH)

∗.
Indeed, the confidence in the observation is necessarily higher for low resolutions and we suppose
it proportional to the mean density squared‡. Therefore we state:

R = k2RGσ(0)
2IM , (63)

with kR being a user coefficient same for every resolution. We present in Fig. 12 a global behavior
of multiresolution adjoint linearised observation operator (∂XH)

∗ amplified by R−1 by plotting
G′

σ(x)Gσ(0)
−2 for the considered standard deviation.

Results. We present in Fig. 13 the results of the experiment by showing the evolution of
trajectories of the particles (13(a) - 13(c)) through the control. One can see that the initial trajectories

‡We remind the reader that the covariance definition states among others: [R] = [H]2, with [.] being the quantity
dimension operator
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Figure 12. Behavior of multiresolution density adjoint linearised observation operator G
′
σ
(x)Gσ(0)−2 amplified

by R−1. Peak of power is reached at σ and intensity grows as resolution decreases

are straight, the swarm has no other purpose than heading East with particles pushing each other
back. After 10 assimilation iterations, the trajectories are bended. It is difficult for the swarm to be
present at area A and only 8 seconds later at area B. Therefore, the ’bending’ of the model is hard and
requires more control loops in order to fulfill reasonably the input densities. After 300 iterations, the
swarm has clearly reached the desired areas and the density gradient appears. The particles which
were the farthest from the areas managed to get a little closer to A and B but did not reach it since Y

is almost fulfilled.The error is by then too low to bend their trajectories enough. This is the concern
of the lowest resolution adjoint observation operators, and we see in Figs. 13(d) to 13(e) that the
observations are reached faster at these resolutions than at the highest one. In Figs. 13(f) to 13(j) it
can be seen that the densities observed at near convergence are very close to the demanded setpoints
in Figs. 10(a) to 10(e). In addition, it is remarkable that the dynamic has been preserved as much as
possible: particles still repulse each other, even if the swarm is asked to be more concentrated than
usual.

This experiment demonstrates the ability of the approach to generate consistent trajectories with
specific constraints on densities. Let us now turn to constraints on divergence and vorticity.

6.3.2. Divergence and vorticity control In addition to the aggregation problem, we propose
Eulerian setpoint of even higher level based on the divergence and vorticity. As mentioned above,
these quantities are specially interesting to study since they embed key dynamic properties.
Moreover, producing a vector field starting from divergence and vorticity maps is not immediate
since it requires solving Poisson equations (for instance with the help of the Fourier transform)
which is a tricky task. Producing consistent trajectories where specific values of divergence and
vorticity are targeted, without explicitly computing the motion field, is then a very appealing and
original task that we suggest to solve by using the assimilation process.

In this example we seek to create a swarm dipole made of symmetric homogeneous vorticity and
null divergence. Fig. 14(a,b) shows an overview of the control.

For the experiment, we use the adaptive density based evaluation presented in part 4.5. We present
in Fig. 14 the results of the experiment by showing again trajectories of the particles, the evolution
of error ǫH and the observed Eulerian values. Fig. 14(b) shows the setpoint Y for vorticity which
is not homogeneous. Indeed, the kernel function used for estimation being the Gaussian function,
the setpoint has to be pre-smoothed (as for density observation) to stick with an homogeneous
Lagrangian vorticity. The divergence setpoint, being null, is located in the same area as vorticity. The
observed vorticity H(X) (Fig. 14(g)) after 150 assimilation iterations clearly stick to the setpoint
Y (Fig. 14(b)). Divergence is also maintained to a low value as showed in Fig. 14(h). The error
on vorticity exponentially decreases (Fig. 14(c)), except in the early iterations while the swarm is
not located yet in the setpoint area. One can also notice this experiment has a behavior similar to
the aggregation experiment. The swarm looks attracted to the observation area, without any other
specification than vorticity and divergence. Actually, the less costly way for particles to create
vorticity somewhere is to have a low velocity in the demanded area, instead of high velocity far



21

(a) Model Integration (b) Control after 10 assimilation
iterations

(c) Control after 300 assimilation iterations
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(d) RMS for tsp = 12 s
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Figure 13. Aggregation experimentation. Green dots represent configuration at t = 12 s, red dots at t = 20 s, and
blues at t0 = 0 s. Figs. 13(f) to 13(j) show H(X) after 470 assimilation iterations.
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from it. Lastly, it is of prime importance to note that the axis of vorticity (low velocity value in
Fig. 14(i)) is not located in the middle of each sub-swarm, which would cause the average velocity
to be null. Instead, the axis is naturally set on the periphery to maintain the initial average velocity
of the swarm (1m.s−1 East).

The initial and targeted divergence being both very low, the evolution of the error along iterations
is not relevant, and is essentially consequence of vorticity control.

7. CONCLUSION AND DISCUSSION

In this paper we have proposed a complete framework to deal with the control of dynamic particle
swarm using the variational assimilation theory. This theoretical framework is able to manage both
an evolution model and setpoints related to the environment, making it possible to produce complex
swarm behaviors while conserving the particle dynamics.

As the usual data assimilation formalism can become heavy in a Lagrangian space, we have
proposed an enhanced graph formalism to deal with numerous data, operators and spaces in a
unified, compact and generic way. This last part is in itself, to our opinion, a key contribution since
it opens new convenient ways to deal with Lagrangian-Eulerian interactions.

The proposed setpoints in this paper are related to common issues essentially based on spatial
configuration like formation or aggregation of the swarm. We have also introduced higher level
observation operators like velocity divergence and vorticity that are defined in an Eulerian space in
order to demonstrate the ability of the method to deal with highly complex demands.

The variety of experimented observation operators, and the ability of the method to reach the
associated setpoints while still preserving as much as possible the particle dynamic, suggests that
a large spectrum of other swarm behavior can be reached. This paper also proposes insights on the
management of potentially tricky operators like density, by introducing a multiresolution approach.
A reflexion on covariance has also been conducted, transposable to other types of operators that
were not considered in this paper.

If the particle swarm control by assimilation has proved to be powerful, there exists nonetheless
some drawbacks. The first one comes from the assimilation theory which is based on gradient
descent. The control is therefore strongly exposed to local minima and we have no assurance to
extracting an optimal solution. This is specially true in the Lagrangian space as compared to the
Eulerian initial background of assimilation, where particle interaction can impede each other and
create energy walls impossible to overcome. The presented results also suggest that the Lagrangian
control essentially acts as bending dynamics if referring to the evolution of trajectories along the
control loops. Indeed, one can consider them as thin rigid material on which setpoints act as external
forces, and particles interactions as internal forces. In addition, the minimization rate depends on
covariances which can be tricky to parameterize. For instance, it is hard to compare the model
error’s covariance with those of the setpoints errors which do not lie in the same quantity space. As
a consequence, applying the control privileging one of them with a meaningful factor and with a
given minimization speed is almost unfeasible.

In the scope of future work, this approach can be extended to diverse situations and domains. For
example, a derivable environment potential can simply be added to the model to guide the swarm
instead of having a constant source term. In a larger scope, the state can be composed of more
abstract data as compared to position and velocity, and the model can be more advanced than a
simple drive-repulse evolution. It can also be considered as perfect, the control thus providing an
estimation of unknown model parameters using various real world observations in place of user-
defined setpoints.

As for the different applications, our approach can be applied to diverse situations where the
management of graph data is of high importance. One can for instance mention the environmental
sciences (meteorology or oceanography) where it is sometimes useful to represent a scalar quantity
with Lagrangian particles that correspond to a key event (like a vortex). In that case, as the
underlying dynamics is continuous and as some local observations are available with dedicated
probes, the proposed framework is well adapted. Lastly, the presented technique dealing with
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velocity dipole by only specifying vorticity and a null divergence. Green dots represent configuration at t = 14 s, and blue
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in Fig. 14(i).
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Lagrangian/Eulerian issues can be embedded in other assimilation systems than the variational one,
as for instance the particle or ensemble Kalman filters, to overcome the difficulties related to the
local minima mentioned above.
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Table III. Control parameters for the three experiments.

Experiment X M C Y

N α W k a b Qu M o R−1

KSNA 46 ~0 - ~0.5 10 1 0.01 32× 32 7 100N

Aggregation 64 ~0.5 East ~0.5 2 4 0.01 32× 32 4 kR =
√
10

Dipole 64 ~0.5 East ~0.5 1 4 0.01 32× 32 2 10
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