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Abstract

Though 3D imaging gives a deep insight of the inner structure of com-

plex materials, the stereological analysis of 2D snapshots of material sections

is still necessary for large scale industrial applications for obvious reasons

related to time and cost constraints. In this paper, we propose an original

framework which aims at estimating the orientation distribution of gener-

alized cylindrical structures from a single 2D section. Contrary to existing

approaches, the knowledge of the cylinder cross section shape is not necessary.

The only requirement is to know the area distribution of the cross sections.

The approach relies on the minimization of a least squares criterion under

linear equality and inequality constraints that can be solved with standard
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optimization solvers. It is evaluated on synthetic data, including simulated

images, and is applied to experimental microscopy images of fibrous com-

posite structures. The results show the relevance and the capabilities of the

approach though some limitations have been identified regarding the sensi-

tivity to deviations from the assumed model.

Keywords: stereology, cylinder, orientation, fibrous structures, material

science

1. Introduction

In material science and engineering, exploring the three dimensional (3D)

structure of materials is essential to understand and predict their physical

properties and behaviour (e.g. Couégnat et al., 2010). In the case of com-

posite structures, parameters of interest are for instance the volume ratio,

the shapes, the sizes and the spatial distribution of the objects composing

the material. In particular, the mechanical properties of woven fibrous com-

posites closely depend on the actual 3D layout of its fibers. Even if fiber

layout is meant to be consistent with the nominal manufacturing

process, it may show some discrepancies in practice and has to

be controlled by artificial vision. Material structure can be ob-

served and analysed quantitatively. Resulting data can be used

2



either directly or indirectly for simulations of material life (Kim

et al., 1997; Davidson et al., 1997; Coindreau and Vignoles, 2005;

Couégnat et al., 2010). Obviously, 3D imaging techniques can give direct

insights of the material volume. However, depending on the material and

on the application of interest, such imaging techniques may be too expen-

sive and not technically appropriate. For instance, when imaging composite

structures at microscopic scale, the use of tomography requires a compromise

between resolution and sample size. Studies carried out on very high

resolution X-ray Computarized Micro Tomography (CMT) scans

(≈1-2 µm per pixel) allow a fine analysis of fiber size, orientation

and density at the intra-yarn scale (e.g. Coindreau and Vignoles,

2005; Mart́ın-Herrero and Germain, 2007; Chapoullié et al., 2013).

At such scales individual fibers can indeed be segmented and de-

scribed but the weave itself (i.e. the mutual arrangement of yarns)

cannot be investigated since only small samples of a few millime-

ters can be digitized. Instead, when using CMT scans at lower

resolution (≈10 µm per pixel) weave geometry can be analyzed

but individual fibers can not be isolated and described (e.g. Badel

et al., 2009; Hivet et al., 2010; Bale et al., 2012).
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An alternate way to obtain 3D images of a material is confocal microscopy

(Eberhardt and Clarke, 2001; Lee et al., 2001). It consists in reconstruct-

ing 3D views from multiple optical sections of the sample. However, the

use of confocal microscopy requires expensive equipment, implies

specific sample preparation and applies only to semi-transparent

materials. Besides, as explained by Clarke et al. (2012), confocal

laser scan microscopy is of little use for characterising carbon fi-

bres in composites unless the particular samples of interest have

low packing fractions of carbon fibres.

The technique of Coherent Diffraction Imaging has also taken

off in the past decade, which allows 3D imaging of a wide range of

material and biological samples (Miao et al., 1999, 2012). Though

powerful, this technique is intended for nanoscale structures and is

inappropriate in industrial contexts where large material samples

have to be analyzed quantitatively.

Another simple approach that does not need 3D imaging is the dissector

(Sterio, 1984; Davidson et al., 1997; Lee et al., 2002). This is a stereological

technique based on the observation of thin, parallel, contiguous slices of the

material. However, though it generally brings worthwhile results, obtain-
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ing perfectly parallel slices of an acceptable thickness is quite laborious in

practice.

Whatever the technique, investigating material structures in 3D reveals

complex and not really appropriate in industrial contexts where imaging de-

vices are needed to quantify and control samples both at large scale and

high resolution. In such cases, 2D devices such as SEM or optical imaging

are much more affordable and easy to use. Provided that microscopes are

equipped with motorized stages, very large samples can be observed and ana-

lyzed with reasonable time and cost constraints. Although acquired data are

two-dimensional, valuable information about 3D materials from 2D images.

Stereological techniques allow to extract 3D quantitative measurements from

plane sections, especially in the case of 3D objects with a simple geometry

such as spheres, ellipsods or cylinders (Russ and Dehoff, 2000; Oakeshott and

Edwards, 1992). When dealing with anisotropic structures, even 3D orien-

tation can be deduced from 2D. For instance, in the case of fibre composites

(Blanc et al., 2006) or cubic metallic structures (Germain et al., 2005; Blanc

et al., 2010), hypotheses about the shape and spatial distribution of objects

allow to derive formulas relating 3D geometry to the shape and spatial layout

of 2D sections.
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In this paper, we deal with fibrous structures where fibres can be modelled

by generalized cylinders with arbitrary shape and area. We are interested

in the 3D orientations of these cylinders from 2D. More precisely, we focus

on their cutting angle i.e. the angle formed between their 3D axis and the

normal to the cutting plane. The relation between the cutting angle and the

2D section shape is well known when the cylinder base (i.e cross-section) is

circular (Blanc et al., 2006). Indeed, in the latter case, the cylinder oblique

section is an ellipse. The cosine of the cutting angle is the ratio of the minor

and major axes of the ellipse. It is even possible to find the orientation of

the cylinder axis up to an orientation ambiguity, which can be overcome in

some cases (Mlekusch, 1999; Blanc et al., 2006).

Things get worse when the cylinder base is not circular since, in the gen-

eral case, it is difficult to predict the shape of the cylinder section in 2D

when it is cut at an arbitrary orientation. As a consequence, it is almost im-

possible to deduce individual cylinder axis orientation except in some simple

specific cases (e.g. cylinders with triangular or rectangular bases with known

geometry and area). In this paper, we argue that it is possible to deduce the

statistical distribution of cutting angles from the distribution of the areas

observed on an oblique section. This can be done, whatever the shapes of
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the cylinder bases, if the statistical distribution of base areas is known. Even

if this approach does not retrieve individual cutting angles, it provides their

statistical distribution thus allowing to quantify 3D anisotropy from 2D.

In section 2, we describe the theoretical background of the proposed ap-

proach, from the definitions and hypotheses to the implemented algorithms.

In section 3, the approach is validated through a series of experiments per-

formed on theoretical distributions and synthetic data. In section 4, we apply

the procedure to the estimation of fiber orientations in fibrous composites ob-

served in 2D. Finally, we give a few conclusions and prospects.

2. Theoretical background

2.1. A few definitions

The word cylinder has a number of related meanings (e.g. Kern

and Bland, 1948; Ballard and Brown, 1982; Harris and Stocker,

1998; Weisstein, 2013). One of the most general is the following: a

cylinder or cylindrical surface is a ruled surface formed by a straight line

or ruling moving continuously in 3D space without changing its direction.

When the moving line returns to its starting point, the cylindrical surface is

said to be closed. In this case, the curve of intersection between the cylin-
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drical surface and any plane perpendicular to the rulings is a closed curve,

called cross section or base. A cylinder whose cross section is a circle or an

ellipse is called a circular or an elliptic cylinder respectively.

We will call generalized cylinder a closed cylindrical surface with arbi-

trary cross section. We will call oblique section, the curve of intersection

between the cylinder and an arbitrary cutting plane. If the cutting angle,

i.e. the angle between the normal to the plane and the rulings, is different

from π/2 then the oblique section is closed and its area is finite.

Let C be a random generalized cylinder, cut by an arbitrary plane. Let

X and Y be two real valued positive random variables that represent the

areas of the cross and the oblique sections of C respectively. Let Θ ∈ [0, π
2
]

represent the cutting angle, as depicted in figure 1.

These three variables are linked by the following simple geometric rela-

tion:

Y =
X

cos Θ
,∀Θ ∈ [0,

π

2
[ (1)

For greater simplicity, let Z = cos Θ be the random variable describing the

cosine of the cutting angle. Then :

Y =
X

Z
,∀Z ∈]0, 1] (2)

Let FX(x) = P (X < x) be the cumulative distribution function of X
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Figure 1: Cross (left) and oblique (right) sections of a circular and a generalized cylinder.

X denotes the area of the cross section. Y is the area of the oblique section. Θ is the

cutting angle i.e. the angle between the cylinder direction and the normal to the cutting

plane

and pX(x) = d
dx
FX(x) its probability density function. Likewise, let pY ,

pΘ, pZ , FY , FΘ and FZ be the probability density functions and cumulative

distribution functions of Y , Θ and Z.

pΘ(θ) is defined for all θ ∈ [0, π
2
[ while pZ(z) is defined for all z ∈]0, 1].

2.2. Relating probability density functions through a differential equation

In this paragraph, we will relate the density of the oblique section to

the density of the cross section. Let us start from the expression of the

cumulative:

FY (y) = P (Y < y) = P (
X

Z
< y) = P (X < yZ) (3)
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Conditioning on Z, it follows:

FY (y) =

∫ 1

0

P (X < yz|Z = z)pZ(z)dz (4)

As one can reasonably assume that the cosine of the cutting angle and the

cross section area are independent, i.e. X and Z are independent, the previ-

ous expression becomes:

FY (y) =

∫ 1

0

P (X < yz)pZ(z)dz =

∫ 1

0

FX(yz)pZ(z)dz (5)

Deriving FY , we get:

pY (y) =
d

dy
FY (y) =

∫ 1

0

∂

∂y
FX(yz)pZ(z)dz

=

∫ 1

0

zF ′X(yz)pZ(z)dz

=

∫ 1

0

zpX(yz)pZ(z)dz (6)

Equation 6 shows that it is possible to relate the three density functions.

Suppose that the densities of X and Y are known, then looking for the density

of the (cosines of the) cutting angles is equivalent to finding a solution f to

the following differential equation:

pY (y) =

∫ 1

0

zpX(yz)f(z)dz, ∀y ∈ R+ (7)

with the double constraint:

f(z) ≥ 0; ∀z ∈ [0, 1] and

∫ 1

0

f(z)dz = 1. (8)
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2.3. Solving the differential equation

2.3.1. A constrained optimization problem

The resolution of the differential equation 7 could be addressed as a con-

strained optimization problem over a function space. The solution could then

be looked for as a real positive function f : [0, 1] → R+ with unit integral,

i.e. a probability density function.

A possible optimization criterion Φ(f) to be minimized should measure

how much
∫ 1

0
zpX(yz)f(z)dz is in adequacy with pY (y), supposedly known

or estimated, whatever y ∈ R+. For instance, Φ(f) could be a measure of

similarity between probability density functions (e.g. Kullback Leibler di-

vergence, L2-norm, etc.) The optimization constraints are given by equation

8.

However, it appears that such a resolution is difficult to address as it is

hardly possible to choose a function space in which to perform the optimiza-

tion without any a priori about the distributions of cutting angles pΘ and

cosines pZ . Besides, in practice, the distribution of areas pY with oblique

sections is not known analytically. However it can be approximated by a

discrete histogram.
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2.3.2. Discretization of the density functions

Let hY = (hY,1, ..., hY,M)t be the discrete histogram of variable Y , i.e. the

discretization of pY into M intervals:

hY,k =

∫ yk+1

yk

pY (y)dy, ∀k ∈ {1, ...,M} (9)

where yk ≤ yk+1, y1 = 0 and yM+1 =∞. The operator t denotes the matrix

transpose.

pZ can also be discretized intoN classes, yielding vector hZ = (hZ,1, ..., hZ,N)t:

hZ,l =

∫ zl+1

zl

pZ(z)dz, ∀l ∈ {1, ..., N} (10)

with zl ≤ zl+1, z1 = 0 and zN+1 = 1.

It comes:

hY,k =

∫ yk+1

yk

∫ 1

0

zpX(yz)pZ(z)dzdy

=

∫ yk+1

yk

[
N∑
l=1

∫ zl+1

zl

zpX(yz)pZ(z)dz

]
dy. (11)

If the interval [zl, zl+1[ is small enough, pZ(z) can be considered to be constant

over the interval, that is:

pZ(z) ≈ hZ,l
zl+1 − zl

, ∀z ∈ [zl, zl+1[. (12)
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Then,

hY,k ≈
∫ yk+1

yk

[
N∑
l=1

∫ zl+1

zl

zpX(yz)
hZ,l

zl+1 − zl
dz

]
dy

=

∫ yk+1

yk

[
N∑
l=1

hZ,l
zl+1 − zl

∫ zl+1

zl

zpX(yz)dz

]
dy

=
N∑
l=1

hZ,l

(
1

zl+1 − zl

∫ yk+1

yk

∫ zl+1

zl

zpX(yz)dzdy

)
(13)

It appears that, under the assumption 12, the discrete values hY,k are linked

to the discrete values hZ,l through a linear equation:

hY,k ≈
N∑
l=1

hZ,lbk,l (14)

with:

bk,l =
1

zl+1 − zl

∫ yk+1

yk

∫ zl+1

zl

zpX(yz)dzdy. (15)

2.3.3. Least squares formulation

In practice, the discrete distribution of oblique section areas hY is un-

known but is estimated from a statistical sample (from an image). Let

ĥY = (ĥY,1, ..., ĥY,M)t be its estimate.

Besides, if the distribution of orthogonal section areas pX is known, the

coefficients bk,l can be calculated or, at least, numerically approximated.

Our optimization problem can thus be expressed as the search of a dis-
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tribution ĥZ = (ĥZ,1, ..., ĥZ,N)t so that:

ĥY,k ≈
N∑
l=1

ĥZ,lbk,l ∀k ∈ {1, ...,M}. (16)

When choosing the least squares criterion, the searched distribution ĥZ is

the solution of the constrained optimization problem:

ĥZ = (ĥZ,1, ..., ĥZ,N)t = arg min
r1,...,rN

M∑
k=1

(
ĥY,K −

N∑
l=1

rlbk,l

)2

(17)

with
∑N

l=1 rl = 1 and rl ≥ 0,∀l.

2.3.4. Matrix form and algorithms

The above least squares optimization problem can be rewritten under the

matrix form:

ĥZ = arg min
R∈[0,1]N

‖hY −BR‖2 = arg min
R∈[0,1]N

(hY −BR)t(hY −BR) (18)

with B =


b1,1 ... b1,N

... bk,l
...

bM,1 ... bM,N

 and R =


r1

...

rN

,

under the constraints Rt


1

...

1

 = 1 and rl ≥ 0,∀l.
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Such a quadratic optimization problem with linear equality and inequality

constraints can be solved using standard algorithmic solutions such as, for

instance, the functions lsqlin() or quadprog() under Matlab c© environment.

3. Experimental validation

3.1. Experimental design

The proposed approach has been validated at three levels:

• Level 1, the theoretical level, focuses on the validation of the optimiza-

tion procedure itself and tries to answer the following questions: is the

simplification in equation 12 relevant? Do parameters M and N have a

critical influence on the cutting angle distribution estimation? In order

to answer these questions regardless of image digitization effects and

area estimation errors, the experimental validation is based upon nu-

merical computation. Given pΘ the distribution of the cutting angles

and pX the distribution of the cross section areas, we compute numeri-

cally pZ , pY , B and the theoretical discrete distributions hthZ and hthY . B

and hthY are then fed into the optimization solver (see Eq. (18)) which

brings the estimate ĥthZ that can be compared with hthZ .
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• Level 2, the sampling level, evaluates the influence of statistical sam-

pling. Our goal is here to simulate a collection of L generalized cylin-

ders with various cross sections and cutting angles. pX and pΘ are

thus sampled L times providing samples for the cross section areas

{x1, · · · , xL}, for the oblique section areas {y1, · · · , yL}, for the cutting

angles {θ1, · · · , θL} and their cosines {z1, · · · , zL}. These samples are

split into classes yielding vectors hsmpZ and hsmpY . hsmpY is fed into the

optimization solver together with matrix B. The solver produces the

estimate ĥsmpZ that can be compared with hthZ .

• Level 3, the image level, has to deal with image synthesis and aims

at evaluating the effect of digitization. The former samples for cross

section area X and cutting angle Θ are used to produce synthetic 2D

images that simulate the oblique section of a collection of generalized

cylinders. The produced binary images are labelled into various objects

the areas of which are split into classes yielding vector himgZ and himgY .

himgY is fed into the optimization solver. Its solution ĥimgZ is finally com-

pared with hthZ . For simplicity and without loss of generality, we have

simulated circular cylinders since 2D sections can be easily simulated

by drawing ellipses in an image i.e. without generating 3D data.

16



In our experiments, the distribution of the cross section area is chosen to

be normal: X ∼ N (µX , σX). Though arbitrary, this hypothesis proves to be

relevant in practical cases (see section 4). It is always assumed to be known.

As for the cutting angles, two kinds of distributions are considered: a

wrapped normal distribution WN (µθ, σθ) or a mixture of two wrapped nor-

mal distributions Θ ∼ α1WN (µθ,1, σθ,1) + α2WN (µθ,2, σθ,2).

The proposed optimization process provides with the estimated discrete

cosine distribution ĥZ that minimizes the least squares criterion ‖hY −BR‖2.

The latter measures the adequacy between the actual oblique section area

distribution hY and its approximation using ĥY = BĥZ . Along with this

criterion, we also plot a direct measure of the adequacy between ĥZ and hZ

using the error function:

E(hZ , ĥZ) =
N∑
n=1

|hZ,n − ĥZ,n|. (19)

Various values are tested for the histogram bin numbers M (from 30 to

60) and N (from 1 to M). The intervals for the area and for the angle

distributions are of equal width. Simulations were performed under Matlab c©.
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Figure 2: Comparison of input and output distributions at validation level 1. Input

cutting angles Θ follow a wrapped normal distribution WN (0.2, 0.3). Input cross sections

follow a normal distribution N(548, 139). Other parameters are N = 6 and M = 30.

Top left: input cosine distribution hthZ . Bottom left: output cosine distribution ĥthZ . Top

right: input oblique area distribution hthY . Bottom right: output oblique area distribution

approximation ĥthY = BĥthZ .

3.2. Results

3.2.1. Validation level 1: theoretical level

Figure 2 illustrates the validation results obtained by feeding the op-

timization algorithm with a discrete distribution hthY computed numerically

from a reference cross section distribution and a reference cutting angle distri-

bution. Input cross sections follow a normal distribution N(548, 139). Input
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Figure 3: Plot of the error function E(hZ , ĥZ) for various bin number values N and M .

Input cutting angles Θ follow a wrapped normal distribution WN (0.2, 0.3). Input cross

sections follow a normal distribution N(548, 139).

cutting angles Θ follow a wrapped normal distributionWN (0.2, 0.3). N = 6

and M = 30 bins are used for angle cosines and oblique section area distribu-

tions. The optimization algorithm provides an estimated cosine distribution

ĥthZ (bottom left) which is compared with the reference cosine distribution

hthZ (top left). These two distributions appear to be quite similar. Only

small differences can be noticed regarding the two intervals Θ ∈ [0, π
6
[ and

Θ ∈ [π
6
, π

3
[ (i.e. Z ∈] cos π

3
, cos π

6
] and Z ∈] cos π

6
, 1]). ĥthZ is the optimal solu-

tion obtained by fitting ĥthY = BĥthZ (bottom right) to hthY (top right). The fit

between these distributions appears to be almost perfect.

In figure 3, we plot the error E(hthZ , ĥ
th
Z ) as a function of N , the number
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of bins of the angle and cosine histograms, and M the number of bins in the

oblique section area histograms. While M has not a strong influence (except

for large values of N), it is shown that the quality of the estimation depends

strongly on N . The best results are obtained with moderate values for N ,

between 6 and 9. Though these curves relate to a specific angle distribu-

tion WN (0.2, 0.3), similar results have been obtained with other means and

standard deviations µθ and σθ.

Figure 4 shows another set of results obtained with a different angle

distribution. A mixture of wrapped normal distributions is chosen here:

0.28×WN (0.1, 0.1) + 0.72×WN (0.4, 0.3). Again, the fit between hthY and

ĥthY is very good. The solution ĥthZ is also very close to the input distribution

hthZ , except from exchanges between the two intervals mentioned above.

3.2.2. Validation level 2: statistical sampling

The following experiment, illustrated in figure 5, is carried out by sam-

pling the input theoretical distributions. Cutting angles and cross section

areas are sampled independently from a wrapped normal WN (0.2, 0.3) and

a normal distribution N(548, 139) respectively to get a total sample of 2196

angle/area pairs. Oblique section areas, obtained following equation 1, are

classified into M intervals to get the discrete histogram hsmpY . The latter is fed
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into the optimization solver which provides the estimated cosine distribution

ĥsmpZ . The comparison between ĥsmpZ and hsmpZ (computed from the known

angle sample) shows that the estimation is pretty good. The overall shape of

the histogram is retrieved in spite of some exchanges between neighbouring

intervals as mentioned previously.

This experiment was repeated a hundred times for various angle distri-

Figure 4: Comparison of input and output distributions at validation level 1. Input

cutting angles Θ follow a mixture of wrapped normal distributions: 0.28×WN (0.1, 0.1)+

0.72×WN (0.4, 0.3). Input cross sections follow a normal distribution N(548, 139). Other

parameters are N = 6 and M = 30. Top left: input cosine distribution hthZ . Bottom left:

output cosine distribution ĥthZ . Top right: input oblique area distribution hthY . Bottom

right: output oblique area distribution approximation ĥthY = BĥthZ .
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Figure 5: Comparison of input and output distributions at validation level 2. Input cutting

angles Θ follow a wrapped normal distribution WN (0.2, 0.3). Input cross sections follow

a normal distribution N(548, 139). Other parameters are N = 6 and M = 30. Top left:

input cosine distribution hsmpZ . Bottom left: output cosine distribution ĥsmpZ . Top right:

input oblique area distribution hsmpY . Bottom right: output oblique area distribution

approximation ĥsmpY = BĥsmpZ .

butions WN(µθ, σθ). Table 1 shows the results obtained for the least square

criterion ‖hsmpY −BĥsmpZ ‖2 and the error function E(hthZ , ĥ
smp
Z ). The table val-

ues refer to the means obtained over the hundred repetitions. Comparing the

various distributions, it comes that the optimization algorithm seems rather

stable, whatever the angle distribution parameters. The criterion values are

very low which shows an excellent fit of the oblique section histogram hsmpY .

22



µθ 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

σθ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

‖hsmpY −BĥsmpZ ‖2

(×10−3)

0.23 0.26 0.27 0.27 0.28 0.26 0.26 0.24 0.24

E(hthZ , ĥ
smp
Z ) 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Table 1: Algorithm performances for various angle distributions WN(µθ, σθ). First

line: least square criterion values ‖hsmpY − BĥsmpZ ‖2. Second line: adequacy error val-

ues E(hthZ , ĥ
smp
Z ). Each value corresponds to the mean of 100 samples of size 2196.

Error value are stable too with a mean around 0.1, corresponding to small

exchanges between intervals.

3.2.3. Validation level 3: image synthesis

The final validation stage is carried out using synthetic images that sim-

ulate the section of 3D cylindrical structures as explained above. Figure 6

shows an extract of such an image. Figure 7 reports the results obtained

with distributions X ∼ N (548, 139), Θ ∼ WN (0.2, 0.3) and samples of size

2196. Once again, the output angle distribution is very similar in shape to

the input theoretical distribution. The numerical results reported in table 2

confirm both the excellent match between the observed and the estimated

area distributions (i.e. himgy and ĥimgy = Bĥimgz ) and the good fit between the
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Figure 6: Extract from an example synthetic image used at validation level 3. Such an

image simulates the section of a collection of cylinders whose input cross sections are dis-

tributed normally (X ∼ N (548, 139))and whose orientation cutting angle are distributed

following a wrapped normal distribution Θ ∼ WN (0.2, 0.3).

input theoretical distribution and its estimation (i.e. hthz and ĥimgz ).

µθ 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3

σθ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

‖himgY −BĥimgZ ‖2

(×10−3)

0.37 0.43 0.46 0.40 0.44 0.39 0.45 0.42 0.40

E(hthZ , ĥ
img
Z ) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Table 2: Validation level 3: algorithm performances for various angle distributions

WN(µθ, σθ). First line: least square criterion values ‖himgY − BĥimgZ ‖2. Second line:

error values E(hthZ , ĥ
img
Z ). Each value corresponds to the mean of 100 samples of size

2196.
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Figure 7: Validation level 3: image level. Input cutting angles Θ follow a wrapped normal

distribution WN (0.2, 0.3). Input cross sections follow a normal distribution N(548, 139).

Other parameters are N = 6 and M = 30. Top left: input cosine discrete distribution

himgZ . Bottom left: output cosine discrete distribution ĥimgZ . Top right: input oblique

area discrete distribution himgY . Bottom right: output oblique area discrete distribution

approximation ĥimgY = BĥimgZ .

4. Application to microscopy images of woven composite materials

4.1. Context

The approach developed in this paper was applied to images of fibrous

composite structures. These structures are made of threads containing around

a thousand carbon fibres. The material used here is a needled laminate. It

is made of woven layers composed of threads lying in the X and Y directions
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Figure 8: Micrograph of a bundle of carbon fibers with bean shapes cut orthog-

onally and observed by optical microscopy.

Figure 9: Micrograph of a woven composite sample showing carbon fibers with

bean shapes cut at an arbitrary angle and observed by optical microscopy.

alternatively, X and Y being orthogonal. The layers are needled in a third

orthogonal direction Z. Bundles in the Z direction, as they are created by

the needling operation, contain fewer fibres and are less organized. However,

these Z bundles are of great importance as regards the composite robust-
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ness. Detecting and counting Z fibres through microscopy imaging has thus

become a routine operation for process monitoring. Material samples are

imaged so that the image plane corresponds to the weaving plane. Z fibres

are thus approximately orthogonal to the image plane. Z fibre sections ap-

pear as compact objects, with a more or less circular shape depending on

the cutting angle but also on the initial morphology of the fibres. The sim-

plest case is when the fibres are comparable to circular cylinders. Their 2D

sections appear as ellipses, the elongation of which are closely related to the

cutting angle (Blanc et al., 2006). However, when the fibres have an indeter-

minate shape, no simple geometric formula allows to relate the cutting angle

to individual section dimensions. The latter case is illustrated in figures 8

and 9 that show two sections of such fibrous material. In figure 8, the fibres

are almost perfectly orthogonal to the image plane whereas, in figure 9, they

are cut with arbitrary angles. The cross sections have clearly a non circular

shape, maybe closer to a cardioid or to a bean. Oblique sections appear

to have even more complex shapes. Although these shapes clearly depend

on the cutting angle and on individual fibre directions in 3D, no simple ge-

ometric relation has yet been established. Better than trying to estimate

individual fibre cutting angles, we then chose to estimate the global cutting
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angle distribution by applying the method presented in previous sections.

4.2. Results and discussion

As a prerequisite of the method is to know the distribution of

fibre cross section areas, images of orthogonal views of fibre bundles

were needed. As fibres rarely appear as straight parallel bundles

in materials, specific samples were prepared where isolated threads

were stretched and flooded with an epoxy resin by vacuum infusion.

Then, these samples were cut and polished so that fibres appear as

perpendicularly as possible to the sample surface. Images similar

to the one in figure 8 were acquired by optical microscopy at a

resolution of 0.052 µm per pixel. They were finally segmented and

analysed to get an estimate of the cross section area distribution.

Figure 10: Area distributions. Left: cross section area distribution obtained by imaging an

isolated bundle of 2,229 fibres orthogonally, at a resolution of 0.052µm/pixel. Right: cross

section area distribution obtained by imaging 30, 012 fibres at a resolution of 0.26µm/pixel.
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Figure 10 shows, on the left, the experimental distribution and its Gaus-

sian fit. The estimated mean and standard deviation were 57.1µm2 and

11.3µm2 respectively. The normality of the cross section areas appeared to

be a relevant assumption and that is why we made use of this assumption

as we did in the experimental evaluation of the previous section. Further

experiments, not showed here, revealed that the direct use of the experimen-

tal distribution instead of its Gaussian fit in the algorithms, modified only

slightly the final results.

The reader may also notice that the experimental distribution is not ex-

actly symmetric, which entails a slight deviation of the Gaussian fit to the

right and a little overestimation of the distribution mode. This is due to the

presence of some fibres that are not perfectly orthogonal to the image plane.

Besides the preliminary study of cross sections, a sample of a

woven carbon composite was also prepared by resin vacuum infu-

sion and analysed by microscopy. A collection of images similar to

the one in figure 9 was acquired at a resolution of 0.26 µm per pixel.

A total of 30,012 fibres, cut at arbitrary angles, were segmented

and analysed. Figure 10 shows, on the right, the observed oblique section

area distribution. It can be seen that the distribution mode has now clearly
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moved to the right and that the distribution is now heavy tailed due to the

presence of a high number of fibres cut with large angles.

Figure 11: Angle distributions. Left: cutting angle distribution obtained from the cross

section distribution and the oblique section distributions of figure 10. Right: plot of the

Z fibres proportion as a function of the cross section area mean given as an input to the

inversion algorithm.

Figure 11 (left) reports the result of the inversion algorithm proposed in

this article i.e. the distribution of the angular deviates of fibres from the

normal of the image plane. Z fibres are defined by material special-

ists as fibres that are less than a given angle θmax apart from the

normal to the weaving plane. As the weaving plane corresponds

approximately to the image plane, obtaining the Z fibres count is

straightforward: this is done by summing the histogram bins re-

lated to angles smaller than θmax degrees. This result is thus a proof of

concept that the orientation distribution of fibers considered as cylinders of
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arbitrary shapes can be retrieved from a unique 2D slice, given the knowledge

of the cross section area distribution.

However, it was found that the result of the inversion algorithm was

relatively dependent on the primary stage which consists in estimating the

distribution of the fibre cross section areas. Indeed, it was shown that little

over- or under-estimations of the area mean and standard deviations might

hinder the behaviour of the algorithm. Figure 11 (right) plots the estimated

Z fibres proportion as a function of the mean cross section area given as an in-

put to the inversion algorithm. It can be seen that, in spite of the presence of

a plateau around the correct mean estimate (i.e. 57-58 µm2), the algorithm

shows some sensitivity to over or under estimations. Similar results were

obtained concerning the standard deviation. Such sensitivity suggests

that the prior estimation of cross section area distribution must

be carried out carefully even if average fiber sizes are supposed to

be provided by fiber suppliers. When using 2-D microscopy imag-

ing, the estimation of the area distribution must be carried out on

specific fibre bundle samples prepared and observed so that fiber

sections appear as perpendicular to the image plane as possible.

Actually, such orthogonality is difficult to obtain in practice and a
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special care must be taken to ensure that the fibers are perfectly

straight and parallel. Though not adapted for large scale studies,

3-D imaging techniques could be used for the prior estimation of

area distributions instead of 2-D imaging, thus avoiding difficul-

ties relate to sample preparation. High resolution x-ray micro-

tomography (Chapoullié et al., 2013) or x-ray coherent diffraction

imaging (Miao et al., 2012) could be interesting alternatives.

Another potential limitation is the variability of fiber supplies.

Indeed, it was observed that fiber section areas may vary from a

bundle to another. As a corollary, a specific attention must be paid

to how the reference sample used for area distribution estimation is

representative of the actual carbon weave. The required number of

fiber bundles will have to be investigated to guarantee the relevance

of the distribution estimation.

5. Conclusion

In this paper, we have presented and evaluated a novel method for the

estimation of the orientation distribution of cylindrical structures from a

single section image. Contrary to existing approaches, the method is not tied

32



to the shape of cylinder bases and can be applied with structures of arbitrary

shapes. The only prerequisite is the knowledge of the cross section area

distribution. It hinges on the discretization of area and angle distributions

and on the minimization of a least squares criterion that can be carried

out with standard quadratic optimization solvers. A thorough evaluation

has been conducted on synthetic data which showed the capabilities of the

approach in various cases including unimodal and bimodal angle distributions

with various mean and standard deviations. Finally, the proposed algorithm

was applied in an industrial context to the estimation of cutting angles from

images of 3D fibrous structures. Here again, the capabilities of the approach

were evaluated. Though promising, the approach proved to be sensitive to

deviations from the model used in the algorithm. The first results obtained

on experimental images showed that the prior estimation of the cross section

area distribution must be carried out with accuracy. Future work will be

devoted to a deeper study of the approach sensitivity both on synthetic and

experimental data, and of the conditions under which it can be applied in an

industrial context.
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