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A MODICA-MORTOLA APPROXIMATION FOR THE STEINER PROBLEM

In this note we present a way to approximate the Steiner problem by a family of elliptic energies of Modica-Mortola type, with an additional term relying on a weighted geodesic distance which takes care of the connectedness constraint.

Résumé. Dans cette note nous présentons une méthode d'approximation du problème de Steiner par une famille de fonctionnelles de type Modica-Mortola, avec un terme additionnel basé sur une distance géodésique à poids, pour prendre en compte la contrainte de connexité.

Titre : Une approximation à la Modica-Mortola pour le problème de Steiner.

Version franc ¸aise abrégée

. L'un des aspects qui a rendu ce problème si célèbre réside dans sa complexité de calcul, malgré une formulation simple en apparence, faisant partie de la liste des 21 problèmes NP-complets de Karp [7] (le temps polynomial étant évalué par rapport au nombre de points).

, où l'on pourrait espérer adapter la convergence au cas de la dimension supérieure ; les difficultés ne semblent pas ici seulement d'ordre techniques.

La nouveauté dans notre approche est l'ajout d'un terme permettant de gérer la contrainte de connexité sur l'ensemble à minimiser. Ce nouveau terme fait intervenir la fonction distance pondérée d ϕ , définie en (2). Cette fonction peut être calculée numériquement sur une grille par une méthode, dite fast-marching [14], qui a été

récemment améliorée dans [START_REF] Benmansour | Derivatives with respect to metrics and applications: subgradient marching algorithm[END_REF] permettant le calcul à la fois de d ϕ et de son gradient par rapport à ϕ. La fonctionnelle approximante que nous proposons est la suivante

S ε (ϕ) := 1 4ε Ω (1 -ϕ) 2 dx + ε Ω ∇ϕ 2 + 1 c ε N i=1 d ϕ (x i , x 1 ),
où la constance c ε satisfait lim ε→0 c ε = 0. Notre résultat principal stipule qu'étant donné une suite de minimiseurs (ou quasi-minimiseurs) ϕ ε de S ε et la suite de fonctions d ϕε (•, x 1 ) associée, ces fonctions convergent à une sous-suite près vers une fonction d, dont l'ensemble de niveau {d = 0} est un minimiseur du Problème de Steiner associés aux points {x i } (Théorème 2.1).

Les deux premiers termes de la fonctionnelle S ε rappellent la fonctionnelle de Modica-Mortola. Le point essentiellement nouveau demeure dans l'ajout du troisième terme, basé sur le fait suivant : si N i=1 d ϕ (x i , x 1 ) = 0, alors l'ensemble {d ϕ = 0} doit être connexe par arcs et contenir les {x i }.

Dans l'article [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], écrit conjointement avec M. Bonnivard, nous utilisons cette technique pour approcher également certaines variantes du problème de Steiner, comme par exemple la fonctionnelle de distance moyenne. On peut y trouver des preuves détaillées, ainsi que des simulations numériques.

Les méthodes numériques envisagées, inspirées par le travail d' É. Oudet dans [START_REF] Oudet | Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture[END_REF][START_REF] Oudet | A modica-mortola approximation for branched transport and applications[END_REF], se basent sur une méthode de gradient appliquée à chaque fonctionnelle S ε (qui est convexe pour ε grand), en diminuant par étapes la valeur de ε et prenant comme initialisation à chaque étape le point de minimum approché trouvé à l'étape précédente. Cela ne garantie pas de converger vers un minimum global, mais permet en général de choisir un "bon" minimum local.

La preuve du résultat décrit plus haut est de type Γ-convergence. Plus précisément, différemment de ce qui a été fait dans [START_REF] Oudet | Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture[END_REF][START_REF] Oudet | A modica-mortola approximation for branched transport and applications[END_REF] ainsi que dans les autres cas étudiés dans [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], il n'est pas possible de manière évidente d'exprimer notre résultat sous la forme d'un énoncé de Γ-convergence d'une suite de fonctionnelles vers une autre. Cependant, la démonstration en suit le même schéma. La Γ-limsup découle de techniques classiques que l'on peut trouver dans [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]. En revanche la Γ-liminf est plus délicate. L'un des points difficiles à montrer est la rectifiabilité d'une limite Hausdorff d'ensembles de niveaux de fonctions d ϕε associées à des ϕ ε d'énergies uniformément bornées. L'argument original de Modica-Mortola [START_REF] Modica | Il limite nella Γ-convergenza di una famiglia di funzionali ellittici[END_REF] est bien sûr essentiel, mais de nouvelles techniques nécessitent d'être introduites.

Introduction

Given a finite number of points D := {x i } i=1,...,N ⊂ Ω ⊂ R 2 , the so-called Steiner problem consists in solving min H 1 (K) : K ⊂ R 2 compact, connected, and containing D .

Here, H 1 (K) stands for the one-dimensional Hausdorff measure of K. It is known that minimizers for (1) do exist, need not to be unique, and are trees composed by a finite number of segments joining with only triple junctions at 120˚, whereas computing a minimizer is very hard (some versions of the Steiner Problem belong to the original list of NP-complete problems by Karp, [START_REF] Karp | Reducibility among combinatorial problems[END_REF]). We refer for instance to [START_REF] Gilbert | Steiner minimal trees[END_REF] for a history of the problem and to [START_REF] Paolini | Existence and regularity results for the steiner problem[END_REF] for recent mathematical results on it.

In this note we propose a way to approximate the problem, and we present a convergence result as some parameter ε goes to zero. Our strategy is to approximate the length by an elliptic energy of Modica-Mortola [START_REF] Modica | Il limite nella Γ-convergenza di una famiglia di funzionali ellittici[END_REF] type. This strategy was pursued before by many authors for similar problems involving the perimeter or the length of a closed set (see e.g. [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF][START_REF] Oudet | Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture[END_REF][START_REF] Santambrogio | A Modica-Mortola approximation for branched transport[END_REF][START_REF] Oudet | A modica-mortola approximation for branched transport and applications[END_REF][START_REF] Ambrosio | A variational model for plastic slip and its regularization via gamma-convergence[END_REF][START_REF] Maso | Fracture models as Γ-limits of damage models[END_REF]), but the novelty here is that we are able to add a term taking care of the connexity constraint. This term relies on the weighted geodesic distance d ϕ , defined as follows. Given Ω ⊂ R 2 , for any non-negative function ϕ ∈ C 0 (Ω), we define the corresponding weighted geodesic distance through

(2)

d ϕ (x, y) := inf γ ϕ(x)dH 1 (x); γ curve in Ω connecting x and y .
Given a function ϕ and a point x 1 , the distance d ϕ (•, x 1 ) can be treated numerically by the so-called fast-marching method [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF] since it is a solution of ∇u = ϕ with u(x 1 ) = 0 in the viscosity sense. A recent improvement of this algorithm (see [START_REF] Benmansour | Derivatives with respect to metrics and applications: subgradient marching algorithm[END_REF]) is now able to compute at the same time d ϕ and its gradient with respect to ϕ, which is useful every time one needs to optimize w.r.t. ϕ a functional involving d ϕ . Our proposal to approximate the problem (1) is then to minimize

S ε (ϕ) := 1 4ε Ω (1 -ϕ) 2 dx + ε Ω ∇ϕ 2 + 1 c ε N i=1 d ϕ (x i , x 1 ), among all functions ϕ ∈ A := H 1 (Ω) ∩ C 0 (Ω) ∩ {0 ≤ ϕ ≤ 1 and ϕ = 1 on ∂Ω}.
Here the constant c ε is required to satisfy lim ε→0 c ε = 0. The first two terms are a simple variant of the standard Modica-Mortola functional, already used in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]: as ε → 0, they force ϕ to tend to 1 a.e. and, if ϕ ε stays small (close to 0) on a thin region (with measure tending to 0), they force to pay the transition between the value 1 and the value 0 by means of the length of the transition set. Notice that, in arbitrary dimension, these very terms would converge rather to an (n -1)-dimensional measure, which is the reason to stick to R 2 if we want to approximate a length term.

In order to see the connection between the two first terms and the measure H 1 , a crucial point is a construction coming from [2, Theorem 3.1] which states that for any well-behaved subset K ⊂ R 2 (in particular for any compact connected K with H 1 (K) < +∞) there exists a sequence of functions ψ ε such that 0 ≤ ψ ε ≤ 1,

ψ ε = 1 on ∂Ω, ψ ε = 0 on a neighbourhood of K, ||∇ψ ε || ≤ Cε -1 , and (3) lim sup ε S ε (ψ ε ) ≤ H 1 (K)
(to be precise, our function ψ ε is the the same as [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF] multplied times (1-ε) -1 ).

As far as the last term is concerned, it disappears at the limit but tends to enforce connectedness. The key point is that whenever N i=1 d ϕ (x i , x 1 ) = 0, the set {d ϕ = 0} must be path-connected, must contain all the points {x i }, and the path connecting them inside this set are such that ϕ = 0 a.e. on these curves, w.r.t. H 1 . Our result is of Γ-convergence type, even though the adequate framework to state it rigorously as a family of Γ-converging functionals is not clear.

In the paper [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], the authors together with M. Bonnivard used this idea to approximate some variant of the Steiner Problem, as the Average distance and p-Compliance problem. In the present paper we only give a detailed description of the idea and of the results, and we refer to [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF] for full details of the proofs and some numerical experiments. The main idea for numerics is based on the work by É. Oudet in [START_REF] Oudet | Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture[END_REF][START_REF] Oudet | A modica-mortola approximation for branched transport and applications[END_REF]: for every ε one can run a gradient descent for S ε (which is convex for large ε), and a candidate minimizer for the limit problem is obtained by reducing at each step the value ε and initializing the gradient with the critical point obtained at the previous step. There is no guarantee that this converges to a global minimum, but at least a "well-chosen" local minimum is selected.

Existence of minimizers for S ε . The existence of minimizers for the functional S ε is a delicate matter. This depends on the fact that H 1 does not inject into C 0 and on the behavior of the map ϕ → d ϕ . First, notice that we only restricted our attention to ϕ ∈ C 0 (Ω) for the sake of simplicity. Indeed, it is possible to define d ϕ as a continuous function as soon as ϕ ∈ L p for an exponent p larger than the dimension (here, p > 2, see [START_REF] Carlier | Optimal transportation with traffic congestion and wardrop equilibria[END_REF]). The difficult question is which kind of convergence on ϕ provides pointwise convergence for d ϕ . An easy result is the following: if ϕ n → ϕ uniformly and a uniform lower bound ϕ n ≥ c > 0 holds, then d ϕn (x, x 1 ) → d ϕ (x, x 1 ). Counterexamples are known if the lower bound is omitted. On the contrary, replacing the uniform convergence with a weak H 1 convergence (which would be natural in the minimization of S ε ) is a delicate matter (by the way, the continuity seems to be true and it is not known whether the lower bound is necessary or not; this is the object of an ongoing work with T. Bousch).

For the sake of our paper, one could enforce existence of minimizers for fixed ε > 0 by adding an extra term of the form ε p+1 ||∇ϕ|| p with p > 2 (which enforces continuity and uniform convergence), and imposing a constraint φ ≥ c 2 ε (the choice of c 2 ε is made in order to preserve the vanishing property of the last term of the functional). Anyway, as we will see, a sequence of quasi-minimizers is sufficient instead of an exact minimizing sequence and from the point of view of the approximation result and of the numerical applications this is not crucial.

The main result

Let us first define a sequence of quasi-minizers for S ε as a sequence (ϕ ε ) ε ⊂ A such that lim ε→0 (S ε (ϕ ε ) -inf ϕ∈A S ε (ϕ)) = 0. Theorem 2.1. Let Ω be a bounded open convex set containing the {x i }. Let ϕ ε be a sequence of quasi-minimizers for S ε . Consider a sequence of functions d ϕε ( • , x 1 ), which converge uniformly to a certain function d. Then the set K := {d = 0} is compact, connected and is a solution to the Steiner Problem (1).

Remark. Notice that assuming that the functions d ϕε ( • , x 1 ) converges uniformly to some d is not restrictive since they are equi-Lipschitz (with constant 1).

Proof of Theorem 2.1. It is easy to see that the set K = {d = 0}, is a compact and connected set as a Hausdorff limit of sub level sets of d ϕε ( • , x 1 ), which are all compact connected sets.

Let now K ′ be any competitor in the Steiner Problem, that we can assume contained in Ω. Let ψ ε be the family of functions from [2, Theorem 3.1] satisfying [START_REF] Benmansour | Derivatives with respect to metrics and applications: subgradient marching algorithm[END_REF]. Notice that the last term 1 cε N i=1 d ψε (x i , x 1 ) vanishes for every ε > 0, since ψ ε = 0 on a neighborhood of K ′ , i.e. on a connected open set containing all the points x i .

On the other hand it is clear from the quasi-minimizing property of ϕ ε that

(4) lim inf ε S ε (ϕ ε ) ≤ lim sup ε S ε (ψ ε ).
First of all, this provides a uniform bound S ε (ϕ ε ) ≤ C, which implies that we have lim ε→0 N i=1 d ϕε (x i , x 1 ) = 0. This gives d(x i ) = 0 and thus x i ∈ K for every i. Hence, the proof will be finished provided that we show the following claim

H 1 (K) ≤ lim inf ε S ε (ϕ ε ). (5)
The full details of this fact can be found in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]Lemma 3.1]. We shall describe here only the ideas of the proof, which is achieved within two main steps. The first one consists in finding a bound H 1 (K) ≤ C when lim inf S ε (ϕ ε ) < +∞ (which is the case here).

The main tool is the definition of the following geometric quantity: for each set Γ ⊂ R 2 , each unit vector ν ∈ S 1 and each λ > 0 we set Γ λ,ν := {x ∈ R 2 : there exists t ∈ [-λ, λ] with x -tν ∈ Γ} and we define

I λ (Γ) := 1 2πλ S 1 L 2 ((Γ) λ,ν )dν.
The following geometrical estimate [4, Lemma 2.6] is one of our key ingredients and is of independent interest: whenever Γ ε are compact connected sets converging to Γ as ε → 0 in the Hausdorff distance, then [START_REF] Gilbert | Steiner minimal trees[END_REF] ∃λ, ε 0 > 0

; I λ (Γ ε ) ≥ CH 1 (Γ 0 ), ∀ε ≤ ε 0 ,
where the constant C is universal. Now, fix δ 0 , τ 0 > 0, and let {z 1 , z 2 , . . . , z N } ⊆ K be a τ 0 -network in K, i.e. K ⊆ 1≤i≤N B(z i , τ 0 ). Due to the convergence d ϕε (z i , x 1 ) → d(z i ) = 0, for small ε we can build a set Γ ε = 1≤i≤N Γ ε i where each Γ ε i is a C 1 curve connecting z i to x 1 and satisfying Γ ε i ϕ ε (s)dH 1 (s) < δ 0 .

We use the usual estimate 1 4ε (1 -ϕ ε ) 2 + ε ∇ϕ ε 2 ≥ ∇(P (ϕ ε )) where P (t) = t -t 2 /2 is a primitive of (1 -t), and compute the total variation of P (ϕ ε ) in the direction ν on a set (Γ ε ) λ,ν . Using that P (ϕ ε ) is almost 0 on Γ ε (by definition of Γ ε and using P (t) ≤ t) and that, on the contrary, P (ϕ ε ) → P (1) = 1/2 a.e., we get an estimate on I λ (Γ ε ). Thanks to [START_REF] Gilbert | Steiner minimal trees[END_REF] this turns into an estimate on the H 1 measure of the Hausdorff limit of Γ ε . By taking then the limit δ 0 → 0, and finally τ 0 → 0 one gets an estimate on H 1 (K) and concludes the first step.

The second step is a refinement of the first one: once we have established the rectifiability of K, we can use the existence of tangent line H 1 -a.e. on K. Using a similar argument as the one above but adapted locally around each point of K (i.e. choosing the direction ν orthogonal to the tangent to K instead of taking an average over all directions) we are able to prove the better estimate [START_REF] Carlier | Optimal transportation with traffic congestion and wardrop equilibria[END_REF] and this finishes the proof.
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