
HAL Id: hal-00903966
https://hal.science/hal-00903966v1

Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Big Data - State of the Art
Sean Chalmers, Cécile Bothorel, Romain Picot Clemente

To cite this version:
Sean Chalmers, Cécile Bothorel, Romain Picot Clemente. Big Data - State of the Art. 2013, pp.28.
�hal-00903966�

https://hal.science/hal-00903966v1
https://hal.archives-ouvertes.fr

Big Data - State of the Art

Sean Chalmers

Science & Engineering Faculty

Queensland University of Technology,

Gardens Point, Brisbane, Queensland, Australia.

Email: sean.chalmers@student.qut.edu.au

Lab-STICC UMR CNRS 6285, LUSSI Department

Télécom Bretagne, Institut Mines-Télécom

Brest, France

Email: sean.chalmers@telecom-bretagne.eu

Cécile Bothorel (co-author)

Lab-STICC UMR CNRS 6285, LUSSI Department

Télécom Bretagne, Institut Mines-Télécom

Brest, France

Email: cecil.bothorel@telecom-bretagne.eu

Romain Picot-Clemente (co-author)

Lab-STICC UMR CNRS 6285, LUSSI Department

Télécom Bretagne, Institut Mines-Télécom

Brest, France

Email: romain.picotclemente@telecom-bretagne.eu

Abstract—This report1 is an investigation into the current state
of the art with respect to ‘Big Data’ frameworks and libraries.
The primary purpose of this report is to investigate some of the
available processing and analytical frameworks and/or libraries,
identify some of their strengths and weaknesses through the
application of a set of criteria. This criteria can then be used
to compare other frameworks, systems, or libraries that are not
present here to enable rapid and objective comparison.

CONTENTS

I Initial List & Description of Possible Candidates 2

I-A Hadoop (HDFS) 2

I-B Neo4j, Titan 3

I-C Bulk Synchronous Parallel Processing
(BSP) 3

I-D General Purpose Graphics Processing
Unit Programming (GPGPU) - Nvidia
CUDA 4

I-E Twitter Storm 4

I-F MLPACK - Scalable C++ Machine
Learning Library 4

I-G GraphLab - Graph Oriented Machine
Learning 5

I-H Single Machine High Performance
Graph Processing - TurboGraph /
GraphChi. 5

II Discussion of Candidates 6

II-A Volume 6

II-B Velocity 6

II-C Variety 7

II-D Variability 7

1This work has been supported by the French FUI Project Pay2You Places,
“labelled” by three Ples de Compétitivité (French clusters).

II-E Context 7

II-F Criteria Construction 7

II-G Criteria for Comparison 7

II-H General Considerations 7

III Evaluation of Candidates 8

III-A Hadoop 8

III-A1 Volume 8

III-A2 Variety 8

III-A3 Variability 9

III-A4 Velocity 9

III-A5 People 9

III-A6 Infrastructure 9

III-B Mahout 10

III-B1 Volume 10

III-B2 Variety 10

III-B3 Variability 10

III-B4 Velocity 10

III-B5 People 10

III-B6 Infrastructure 10

III-C Graph Databases - (Disk Based - Neo4j,
OrientDB), (Distributed - Titan) 11

III-C1 Volume 11

III-C2 Variety 11

III-C3 Variability 12

III-C4 Velocity 12

III-C5 People 12

III-C6 Infrastructure 12

III-D Bulk Synchronous Parallel Processing
(BSP) 12

III-D1 Volume 12

III-D2 Variety 12

III-D3 Variability 13

III-D4 Velocity 13

III-D5 People 13

III-D6 Infrastructure 13

III-E General Purpose GPU Programming
(GPGPU) - Nvidia CUDA, OpenCL . . 13

III-E1 Volume 13

III-E2 Variety 14

III-E3 Variability 14

III-E4 Velocity 14

III-E5 People 14

III-E6 Infrastructure 14

III-F Twitter Storm 15

III-F1 Volume 15

III-F2 Variety 15

III-F3 Variability 15

III-F4 Velocity 15

III-F5 People 15

III-F6 Infrastructure 16

III-G MLPACK - Scalable C++ Machine
Learning Library 16

III-G1 Volume 16

III-G2 Variety 16

III-G3 Variability 16

III-G4 Velocity 17

III-G5 People 17

III-G6 Infrastructure 17

III-H GraphLab / GraphChi 17

III-H1 Volume 17

III-H2 Variety 17

III-H3 Variability 17

III-H4 Velocity 18

III-H5 People 18

III-H6 Infrastructure 18

IV Conclusion(s) 18

V Bibliography 20

I. INITIAL LIST & DESCRIPTION OF POSSIBLE

CANDIDATES

What is contained in this section is a description of various
big data libraries and frameworks, to give a feel for how they
are designed, their focus and abilities and how they may fit
into a large scale processing environment. In the subsequent
section we will begin to analyse how these various solutions
compare to our list of criteria. To date we have examined the
following, they are categorised based on their primary purpose.

Processing/Compute:

• Hadoop[1],

• Nvidia CUDA[2],

• Twitter Storm[3],

• Bulk Synchronous Parallel Processing[4],

• GraphLab[5],

• Disk-Based Graph Processing
(GraphChi/TurboGraph)

Storage:

• neo4j[6],

• Titan[7],

• HDFS[1]

Analytics:

• MLPACK[8],

• Mahout[16],

A. Hadoop (HDFS)

Hadoop is an open source Apache project that aims to
provide “reliable and scalable distributed computing” [9]. The
Hadoop package aims to provide all the tools one could need
for large scale computing: Fault Tolerant Distributed Storage
in the form of the HDFS. A job scheduling and monitoring
framework[10], as well as the popular MapReduce[11] Java
libraries that allow for scalable distributed parallel processing.

Hadoop has also proven to be extremely popular, as
shown by the community and proprietary support available
as well as the number organisations that have declared their
“Powered By” status on the Apache project page[12]. There
are multiple organisations that have made a business out of
providing Hadoop implementations and training (Cloudera[13],
HortonWorks[14]). Additionally because of its widespread use
there is an extremely large amount of free documentation and
assistance available[15].

Hadoop has a strong ecosystem of complementary applica-
tions and frameworks that have grown up around it, that either
simplify, improve, or extend its capabilities. These range from
monitoring tools such as Ambari[106](deployment and manage-
ment of Hadoop clusters), or Zookeeper [107] (synchronisation
and configuration management). To storage frameworks like
HBase[16], a distributed column-oriented data store. Allowing
you to store extremely large tables of data and have support
for real-time read/write access to the entire table. As well as
inheriting the fault tolerant attributes of HDFS.

The other interesting component is called Mahout[17]. Ma-
hout is a scalable machine learning and statistics library that
runs atop the Hadoop framework. According to their website
they currently support the following data mining algorithms
and techniques:

Collaborative Filtering, User and Item based recom-
menders, K-Means, Fuzzy K-Means clustering, Mean Shift
clustering, Dirichlet process clustering, Latent Dirichlet Allo-
cation, Singular value, decomposition, Parallel Frequent Pat-
tern mining, Complementary Naive Bayes classifier, Random
forest decision tree based classifier

There is also a very strong community surrounding Mahout
that can provide support, insight, and assistance with its use[18].
Mahout is also a very reliable library and can work in both
stand alone or distributed application environments.

B. Neo4j, Titan

Graph databases are persistent storage mechanisms that
forego the table, field, and column structure of traditional
relational databases and store all information as nodes or
edges. Their entire structure and operation is built on graph
theory, and as such they are able to do away with expensive
join operations or index lookups.[19]

Data is stored as a property graph, with the nodes repre-
senting objects of data, analogous to objects in object-oriented
programming, and edges represent the various relationships
between them. A straightforward example is represented in
the image below taken from the Wikipedia page:

Graph databases have built on the success of NoSQL
databases in that nodes and edges do not require a predefined
schema for their respective properties, and whilst there are
rules to follow for each given implementation when establish-
ing nodes and edges. It is possible to grow a graph database
organically based on the changing requirements.

One of the benefits of using a graph database is the signif-
icant performance gain for traversing and querying data with
a high density of relationships when compared to traditional
relational databases[20]. In order to traverse the graph, the
database only needs to know the relationship criteria and

a starting location. So any query which involves searching
through multiple nodes via their relationships is extremely fast.

Graph databases also provide a nice benefit when you
consider the advantage of having your data be stored and
accessed using the same abstraction that is used to explain
and structure it, is considered by many to be a significant
advantage[21].

Whilst some graph databases such as Titan, and its under-
lying structure running Faunus provide some level of MapRe-
duce driven graph analysis[22]. I was not able to locate any
analytical libraries or frameworks similar to Mahout that are
designed for working with Graph Databases. Given that Fanus
runs atop Hadoop however, it may be possible to have access
to tools from the Hadoop ecosystem as well.

C. Bulk Synchronous Parallel Processing (BSP)

Pregel[4], Apache Giraph[23], Apache Hama[24],[25]

BSP is what is known as a ‘bridging model’ [26] for the
creation of parallel algorithms[27]. Bridging models provide a
conceptual link between the underlying physical makeup of
the machine(s) and the abstraction that is presented to the
programmer[108]. Since communication and synchronisation
play a significant role in the success of this algorithm the
design accounts for these features being provided by either
the hardware or software layer of its implementation.

BSP is designed for systems of processors that are con-
nected via some form of communication network, with each
individual processor having private, fast, and local memory.
The entire process operates in what is known as “supersteps”.

1) Concurrent Computation - Each processor actions a
set of computations using only the data available in
its local memory.

2) Communication - The processors communicate with
each other and communicate the processed data
around. This is done using methods analogous to
‘PUT’ and ‘GET’ from HTTP, that is to say they
are not stateful transactions.

3) Barrier Synchronisation - When this step is reached
the cycle cannot proceed to the next step or com-
plete until all processes have marked themselves as
complete..

Stages one and two do not necessarily have to be completed
in order, processors are free to compute and communicate as
required. But the barrier will not let the system continue until
all of the communication is complete. This communication
is key to the operation of the BSP model as it avoids the
problem of data locality. It does not matter if a node is not local
to the current processor as the model takes into account the
need to communicate the results of computations to different
machines/processes.

This process means that each processor will act on its own
when performing computations, using local memory only for
maximum efficiency. But they will be able to communicate and
continue processing using any new information they receive.
This makes BSP highly effective at processing large amounts

of highly interrelated information, as the computations can
run, share their respective results, and continue or restart their
computations based on new information.

This algorithm and associated techniques have been applied
to the an internal large scale graph processing system in place
at Google called Pregel[81], this is an internal implementation
only, although Google did release a paper describing the
workings of the application. As well as the Apache Hama
application, and the Phoebus[54] implementation.

D. General Purpose Graphics Processing Unit Programming
(GPGPU) - Nvidia CUDA

In addition to the processing capabilities of MapReduce,
we also have another option for large scale number crunching
with GPGPU programming. That is taking operations that
would normally be performed on a four core CPU and moving
them to, as an example, an Nvidia GeForce GTX 780[28] that
contains 2304 cores! Utilising the CUDA[29] API as a bridge
between the host and the device, you pass data and functions
to the graphics card for it to process, after which you then
read the results from specially designed buffers and continue
as required.

This power comes with a cost however because the API is
written for the C & C++ family of languages. So to acquire
the true levels of performance that this API is capable of,
you must also write your processing application in C & C++.
Additionally not all computational problems transfer easily to
a GPU, string processing is one area where GPUs are only
recently starting to gain ground[30], and although it is possible,
it is not where their strength lies.

Due to their true calling being graphics processing, the
cores that are built onto a graphics card are purpose built
to process floating point precision numbers at extreme speed.
Consequently the processing tasks that GPUs are most adept
at, are ones where numerical computation is core point of the
algorithm.

But that doesn’t tell the whole story, as we must create
an entire application to perform this task and it must read the
data in somehow, and then process it, and then finally output
the results somewhere useful. Being a C/C++ application
the complexity is increased substantially when compared to
leveraging MapReduce and the comparable Java code therein.
However, whilst Java is fast[31]. It is still not as fast as
C/C++ [32], nor is that likely to change given their inherent
architectural differences[33].

Another option similar to CUDA is the OpenCL
framework[34], this ‘open computing language’ is designed to
offer the benefits of programming for multiple GPUs and CPUs
without having to rely on any vendor specific libraries. Both
Nvidia and ATi support the standard, as do Intel and AMD,
thus leveraging a very wide range of hardware whilst only
needing to write a single application is certainly possible.

E. Twitter Storm

Twitter Storm[3] is a distributed real-time processing en-
vironment that is capable of integrating with any queue man-
agement system, programming language, or underlying storage
structure[35]. Storm is designed to work with streams of data,
or direct requests to an “always-on” computation that returns
the most recent result.

The Storm architecture is based around the following
abstractions:

1) Tuple- Ordered list of elements, this is the data item
abstraction within Storm

2) Stream - Unbound list of Tuples.

3) Spout - Represents the source of a Stream within a
Topology.

a) Spouts can provide Streams of Tuples from:

i) Queues

ii) Web Logs

iii) API Calls

iv) Event Data

1) Bolts - Process the Streams of Tuples from Spouts to
create new Streams

a) Bolts action the desired parallel processing
functionality:

i) Apply functions/transforms

ii) Filter

iii) Aggregation

iv) Streaming Joins[36]

v) Access DBs/APIs. . . etc

1) Topologies - a directed graph of Spouts and Bolts

Image Source: Storm: The Real-Time Layer - GlueCon
2012 (Slide 48)

1) Tasks - A process that executes work over Streams
and Bolts.

F. MLPACK - Scalable C++ Machine Learning Library

For simplicity we will defer to the MLPACK paper for its
introduction:

“MLPACK is a state-of-the-art, scalable, multi-
platform C++ machine learning library released in

http://www.slideshare.net/DanLynn1/storm-the-realtime-layer-gluecon-2012
http://www.slideshare.net/DanLynn1/storm-the-realtime-layer-gluecon-2012

late 2011 offering both a simple, consistent API
accessible to novice users and high performance
and flexibility to expert users by leveraging mod-
ern features of C++. MLPACK provides cutting-
edge algorithms whose benchmarks exhibit far better
performance than other leading machine learning
libraries. MLPACK version 1.0.3, licensed under the
LGPL, is available at http://www.mlpack.org.”

- Curtin, Ryan R et al. “MLPACK: A scalable C++ machine
learning library.” Journal of Machine Learning Research 14
(2013): 801-805.

Built to be the machine learning analog to the LA-
PACK C++ library for linear algebra[37]. Internally it uses
the Armadillo[38] Linear Algebra C++ library for it’s matrix
operations due to its efficiency. MLPACK aims to achieve
the following goals for users that are students, experts, or
anywhere in between[39]:

• to implement scalable, fast machine learning algo-
rithms,

• to design an intuitive, consistent, and simple API for
non-expert users,

• to implement a variety of machine learning methods,
and

• to provide cutting-edge machine learning algorithms
unavailable elsewhere.

The MLPACK API includes support for the following
algorithms:

• nearest/furthest neighbor search with cover trees or
kd-trees (k-nearest-neighbors)

• range search with cover trees or kd-trees

• Gaussian mixture models (GMMs)

• hidden Markov models (HMMs)

• LARS / Lasso regression

• k-means clustering

• fast hierarchical clustering (Euclidean MST calcu-
lation) (March et al., 2010)

• kernel PCA (and regular PCA)

• local coordinate coding (Yu et al., 2009)

• sparse coding using dictionary learning

• RADICAL (Robust, Accurate, Direct ICA algorithm)
(Learned-Miller and Fisher, 2003)

• maximum variance unfolding (MVU) via LRSDP
(Burer and Monteiro, 2003)

• the naive Bayes classifier

• density estimation trees (Ram and Gray, 2011)

At the time that the MLPACK report (Journal of Machine
Learning Research - Volume 14, 2013, pages 801-805) was
published it was claimed that no other library included support
for the algorithms marked in bold[32].

G. GraphLab - Graph Oriented Machine Learning

GraphLab is a combination of a central C++ API and
various data mining and machine learning toolkits. All de-
signed to operate on either a single machine or on top of an

existing distributed cluster. GraphLab is designed primarily for
machine learning and computations based on graph structures,
or processes that have computational or data dependencies
that are difficult or impossible to account for on a traditional
MapReduce framework.

From the GraphLab Abstraction overview page:

“Unlike Map-Reduce where computation is applied
to independent records, computation in GraphLab is
applied to dependent records which are stored as
vertices in a large distributed data-graph. Compu-
tation in GraphLab is expressed as vertex-programs
which are executed in parallel on each vertex and
can interact with neighboring vertices. In contrast to
the more general message passing and actor mod-
els, GraphLab constrains the interaction of vertex-
programs to the graph structure enabling a wide
range of system optimizations. GraphLab programs
interact by directly reading the state of neighboring
vertices and by modifying the state of adjacent edges.
In addition, vertex-programs can signal neighboring
vertex-programs causing them to be rerun at some
point in the future.”

- The Abstraction (GraphLab Website)[40]

Primarily as the name implies, GraphLab is a C++ API for
the investigation and processing of graphs. GraphLab contains
the following toolkits:

• Collaborative Filtering

• Clustering

• Computer Vision

• Graphical Models

• Graph Analytics

• Topic Modelling

• Linear Solves

GraphLab is capable of running in a distributed envi-
ronment as well as locally for experimentation and testing.
Depending on how your data is structured, or if you have
a particular problem that involves computations on highly
interrelated data, then GraphLab may be a suitable alternative.

H. Single Machine High Performance Graph Processing -
TurboGraph / GraphChi.

TurboGraph[41] and its counterpart GraphChi[42] are graph
processing applications and APIs, respectively, that aim to
provide billion/web scale graph processing capabilities on a
single machine. These two implementations and others like
them use disk-based processing techniques. Temporarily stor-
ing carefully structured reference information on a storage
device (traditional hard disk or SSD) to aid in computations.

The computation engines implement a ‘vertex-
centric’[43] model, similar to what is proposed in the
Pregel paper from earlier. This technique creates distinctly
separated sets of data that can be computed asynchronously.

TurboGraph takes this concept one step further and lever-
ages the asynchronous IO capabilities of FlashSSD hard drives

http://www.mlpack.org
http://graphlab.org/home/abstraction/

to speed up processing even further[41]. TurboGraph won’t
actually run without an SSD being present as it relies on that
for its processing capabilities to function.

Both TurboGraph and GraphChi claim impressive perfor-
mance capabilities:

• TurboGraph: http://wshan.net/turbograph/results.html

• GraphChi: https://github.com/GraphChi/graphchi-
cpp#performance

These implementations are useful because they both re-
move the need for a dedicated cluster of machines to perform
computations and other related tasks over massive scale graphs.
Although TurboGraph requires the not insignificant investment
in a professional grade SSD, this pales in comparison to the
cost operating a cluster of machines, especially with respect
to the amount of time required.

According to the benchmarks that TurboGraph provide,
it is orders of magnitude faster than GraphChi, however the
price of this performance is not only the requirement for a
SSD, but that TurboGraph is not open source, only runs on
a computer that has Windows as its operating system, and
only provides a very limited number of processing algorithms
(http://wshan.net/turbograph/binaryfiles.html). It is for these
reasons that although TurboGraph is powerful and should
certainly be investigated if your requirements are met by
the algorithms it offers. It will not be included for detailed
comparison.

GraphChi, being a direct relative of GraphLab, is an open
source API that has both C++ and Java support and its analysis
will be included with the GraphLab comparison as it shares
many of the same fundamental considerations.

II. DISCUSSION OF CANDIDATES

To ensure the various options are analysed in an appropriate
manner, we will first define a set of criteria to be used in
their evaluation. The starting point for our criteria will be the
concept of the “Four ‘V’s of Big Data” [[44] [45] [46]]; Volume,
Velocity, Variety, and Variability.

There are some considerations that will not be included in
our criteria:

• Vulnerability / Security - System security represents
an entire discipline in and of itself. The sheer extent
and complexity of this aspect is beyond the scope
of this paper as even the most robust framework or
library may have its efforts thwarted by inappropriate
memory usage within an application or poor firewall
configurations.

• Failure handling - This particular topic is far too
subjective to be included in our criteria.

• Availability - This aspect cannot be included as your
requirements in regard to it are simply that, ”your
requirements”. It is beyond the scope of this docu-
ment to consider the many different interpretations of
availability and how they may apply to each solution.

• Discussion of Programming Language Suitability / So-
lution Debugging - Although there is a consideration
of the programming languages related to each solution.
Efforts have been made to keep this as objective and
brief as possible. This topic is simply too deep and
too specific for any sensible generic discussion to be
included here. Abilities and opinions vary wildly and
will not be the same for two given situations.

It is important to state that these are not trivial con-
cerns, however any discussion around these topics is requires
explanation of specifics and that is not what this report is
about. This elements are often so greatly affected by individual
circumstances that their inclusion in this report is considered
inappropriate.

For the criteria that we will create, first we will cover what
we mean by these terms and then list the questions that will
be posed from each topic to create our set of criteria.

A. Volume

This is the consideration of the scale of the dataset that you
intend on dealing with and how a particular solution would
deal with that scale.

• What scale of data is the solution best suited for?

◦ A constant volume?

◦ Smaller datasets?

• How much data do you have to process?

• Will your dataset grow?

◦ If so, by how much and at what rate?

B. Velocity

When discussing the velocity of data, we’re referring to
an abstraction of how the resulting data is intended to be
consumed, and how fast results can be produced ([39] - Slide
9). Velocity is the consideration of both how fast fresh data is
expected to be fed into the system and how quickly the results
are expected to be generated.

Below are some examples of what constitutes a high
velocity system versus a low velocity. Both aspects of input
and output are included when determining velocity.

• A solution that may be applicable for financial trading
might have a high velocity requirement.

◦ High volume input stream -> Expectancy of
real-time results

• A solution for crop growth analysis could have a low
velocity requirement.

◦ Low volume input stream/Batches of data ->
Real-time results are not a priority.

http://wshan.net/turbograph/results.html
https://github.com/GraphChi/graphchi-cpp#performance
https://github.com/GraphChi/graphchi-cpp#performance
http://wshan.net/turbograph/binaryfiles.html

C. Variety

This term refers to the range of data types or sources
that the solutions supports. The Hadoop platform provides two
Java Interfaces “InputFormat”[47] and “OutputFormat”[48] that
can be extended to support custom data types, this allows for
unlimited variation on how data is handled. Some solutions
may require that you conform to a particular file format or data
structure before they will function, these solutions could be
more difficult to implement because of the additional pre/post-
processing steps that are needed to ensure your data conforms
to the needs of the solution.

D. Variability

This refers to the breadth of analytics, or configurations
of data that are capable within a given solution, and the
complexity of the process for implementing it[39]. In addition
to be being a representation of the adaptability of the solution
to changes in the data or the analytics.

Graph databases can be seen to have a low variability as
they are purpose built to store data that has a high density
of relationships[49] and as such are extremely efficient and
effective when used this way. However their benefits are lost
when attempting to store large volumes of simple tabular
information, such as user logs or system logs.

E. Context

Making correct decisions with respect to Information Sys-
tems (IS) is a complex problem[50], and maintaining an aware-
ness of the problem that needs to be solved is key. The criteria
that make up each particular aspect of a big data solution
(Volume,Variety,Velocity,Variability) must be weighed against
your specific requirements[51].

Selecting a computation solution that is built for real-time
analytics and high velocity throughput is inappropriate for a
problem that operates on batches of data that are updated once
per month. Likewise with choosing an analytical algorithm as
each has it’s own purpose and properties that must be taken
into account[52].

F. Criteria Construction

We will now establish our criteria for comparison of the
big data / machine learning solutions. This criteria will be
constructed as a series of questions and topics that are, as a
best effort, categorised into the above labels.

G. Criteria for Comparison

Volume

• Is there evidence to indicate that this solution can
handle the scale of data you require?

◦ This is relevant for both scaling up, and scaling
down. Some solutions are efficient for ex-
tremely large datasets, but due to the stack they
are built on perform quite poorly on smaller
datasets.

Variety

• Does the solution support or provide a mechanism to
support, the format your data is currently in and the
format you require for output?

◦ Either support for file formats or various forms
of data store connectors

• If support is not built in, how complex is it to
implement this support?

• If you data structure changes, how complex is it to
adjust the solution to take this into account?

◦ Do you need to reprocess all of your data if
you make a change?

Variability

• Given the current scope of your problem requirements,
does this solution provide sufficient coverage?

◦ A consideration is if the solution covers 80%
of your requirements, how much effort is re-
quired to achieve the final 20% and is that
effort justifiable[53].

• If the solution does not provide sufficient coverage -

◦ Is it possible to alter/update/extend the solution
so that it does?

• When considering the possible future scope of your
problem (future research, or expanding business ana-
lytics), does the solution provide sufficient coverage?

Velocity

• What levels of velocity of data are supported by the
solution?

• Does the solution provide support for your require-
ments? This aspect is where performance related in-
formation is the most valuable. Trying to use a batch
based system to give you near real-time data is not
likely to provide the performance you require.

• Input -

◦ Static Dataset

◦ Dataset updated via batches at regular or in-
frequent intervals

◦ Near constant/real-time updates

• Output / Results

◦ By request. Results are provided only after
a request is made, often using information
provided in the request. Database queries, for
example.

◦ By batch. Regular or semi-regular ‘job’ runs
to provide results, usually automated.

◦ Near constant/real-time updates. Results con-
stantly updated to match any new data.

H. General Considerations

The following criteria is not exhaustive and is meant as a
general guide to complement the above considerations. It is
all too easy to become caught up in technical minutiae when
examining different big data solutions and forget some key
aspects. This list is quite anecdotal and the details are left as
an exercise for the reader.

People

• What skills are currently available within the circle of
people that will be involved in your project? (Previous
experience, programming ability, architectural knowl-
edge, etc)

• It would not be prudent to decide on a solution centred
on Phoebus[54], which is written entirely in Erlang, if
your team only has strong Java skills.

• If training or recruitment is required, how will this
affect your timelines/budget?

• Solutions that use esoteric languages or architectures
sometimes make it difficult to locate suitable people,
if the need arises.

Infrastructure

• What is the state of the operating environment where
you are intending the solution to exist?

• Is it compatible?

• Is that the optimum environment for the solution?

• If it is not the optimum environment, what is the
impact of this?

• How is the deployment and management of the infras-
tructure to be managed?

• There are many organisations dedicated to hosting
and maintaining Hadoop installations for example, but
these can be expensive. Or they operate on a timeshare
basis so your processing must wait until an agreed
upon time before it can start.

• Do you have room for experimentation/testing/growth
over time?

III. EVALUATION OF CANDIDATES

A. Hadoop

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

In 2010, Facebook declared they had the largest Hadoop
infrastructure in the world; Storing 21PB across 2000 ma-
chines in a single HDFS cluster[55].
Hadoop however fails to deal well with small files[56]. The
preferred file size is 128MB, due to the architecture of
HDFS and how the MapReduce operations are performed.
Having multiple smaller files on HDFS can greatly impede
the ability of Hadoop to operate efficiently.
So if you are dealing with files or data that can broken
into 128MB blocks then Hadoop would be able to handle
it efficiently and scale as designed.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

Hadoop is written using the Java language, and the con-
structs it uses to read information are Java interfaces that
are designed to be extended to suit individual needs.
There is a built in class and interface hierarchy within the
MapReduce libraries that assist with the support for new or
unique input/output formats[57]. Provided you have access
to the right Java skills then the process is allegedly quite
straightforward[58],[59].
Based on the previous information it would be a case of
adjusting, or creating the required Java classes to ensure
the new requirements were met.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

Hadoop scales up effectively, although it can be demanding
when it comes to hardware as it grows due to the space
required for HDFS and the memory usage of MapReduce.
Works best on text based tabular data inputs in 64/128MB
‘chunks’. Reacts poorly to lots of smaller files, that is
any file significantly smaller than the lower block size of
64Mb[109]. although with effort it can be adapted to combine
or stream this type of data. Data under the 64/128MB
threshold will cause significant performance issues. There
are solutions to this problem, the simplest being to merge
multiple smaller files into successively larger files. The
different solutions are suited to different situations and
there are various performance and complexity penalties (or
benefits!) that are involved[109].
Unsuited to highly interrelated data processing algorithms
(graph traversal etc.) without due care, due to the distributed
nature of the processing model there is no guarantee of
locality of data.
There are plenty of tools that remove the requirement for
writing Java code every time you need a query run. Saving
time and allowing for more experimental investigation of
your dataset.
An incredible amount of support exists in the open source
community.

Java is an extremely popular language[60]. Hadoop is also
open sourced under the Apache licence so you have access
to the source code of MapReduce. There are also plenty of
vendors that are dedicated to providing services centred on
Hadoop.
Extending the platform would be a significant undertaking
and whether or not this would be worth the effort is down
your specific needs.
However the platform already has a high level of support
for extensibility and growth.
If planning for growth, or you have evidence of impending
growth then Hadoop would be a wise choice given its ability
to scale, stability, and popularity.
However if in that future scope is a change in requirements
from tabular data to highly structured or more real-time
requirements, Hadoop may not be the best choice.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

Hadoop is a batch oriented system and whilst it is capable
of very high performance, its model is centred on ‘Jobs’
and scheduled runs[61]. Whether or not this is an advantage
depends entirely on your requirements and circumstances.
Hadoop is considered a low velocity system because of this.
There are systems that are built on top of the Hadoop stack
that are considered high velocity systems but they bear little
resemblance to Hadoop itself[62].

Category / Criteria
5) People:

Required Skills/Experience.
Recruiting talent/finding knowledge.

Evaluation

The MapReduce component of Hadoop is written in Java,
ranked by Tiobe as the number one most popular program-
ming language for 2012. Java knowledge is plentiful and it
is a familiar language to many developers.
However Hadoop itself is a complex framework and de-
bugging MapReduce applications is often a complicated
undertaking, moreso when taking into account that you may
have to debug a problem that only occurs when running in
a distributed environment.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

Hadoop at scale is regarded as a very complex system, it
is very low level due to its design and not many people
have sufficient experience to properly create and manage a
system such as Hadoop[63].
There are organisations that provide access to shared or
private Hadoop clusters - Cloudera, Hortonworks, Amazon.
However this has to be considered as an additional ongoing
cost. Additionally there are costs in time as data must be
pushed into the ‘cloud’. Depending on your data there may
be security issues with utilising an external provider.
Hadoop has dozens of ancillary tools as part of its ecosys-
tem that aid anything from machine learning (Mahout), or
querying the data (Pig,HBase).
A Hadoop cluster when properly managed is able to scale
by simply increasing the amount of hardware it has access
to. Thereby increasing the number of Hadoop Nodes and
the potential processing power.
Hadoop will run more than adequately on virtualised hard-
ware - Both Cloudera and Hortonworks provide single node
virtual machine images for training and experimentation. So
having ‘local’ nodes for testing and development is feasible
and considered good practice.

B. Mahout

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

Mahout scales commensurate with the environment it is
running on and the algorithms it has been asked to run[64].
Whilst Mahout does partner very well with Hadoop, the
algorithms that are included are highly optimised and are
capable of being leveraged from a normal Java project.[65]

Any project that would benefit from leveraging an existing,
tested, and support library of machine learning algorithms
could benefit from the use of Mahout, provided it has an
interface to Java.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

To use Mahout with Hadoop there are predetermined file
formats and structures that must be adhered to. This may
mean that your data has to be modified to suit the input of
Mahout prior to any processing being done.
The support appears to be required all from the user side
as Mahout expects particular formats for its algorithms to
function correctly within the Hadoop environment.
However as Mahout is built using Java just like Hadoop, the
same benefits apply in terms of flexibility and extensibility.
Mahout is less affected by changes in data structure as
its primary interest is only in certain key data points.
Consequently it would only be a change to your data that
affects these elements that would require a change to any
Mahout implementation.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

Mahout supports a wide range of algorithms[66] that are
applicable to a variety of fields and problems.
The source code for Mahout is available online as it is
released as open source under the Apache Licence.
There is also a ticket managing system for tracking any bugs
or issues, and a guide for anyone interested in committing
fixes and updates to the codebase[67].
Mahout is an active open source project with a very large
user base including corporate, academic, and individual
users. A wide array of documentation is available online
and there is always scope for expansion of the code base
due to its open source nature.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

The recommender engine within Mahout demonstrates the
ability to provided extremely high velocity results at mas-
sive scale[68], [69].

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

Mahout requires an understanding of the algorithm(s) you
intend to leverage. Not possessing this information may
result in the wrong information being provided to Mahout,
and thus incorrect results. In addition to requiring an inter-
mediate to advanced level of Java knowledge to ensure a
smooth and efficient implementation[70].

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

Mahout is a collection of libraries for the Java language,
it will work with or without Hadoop. But apart from the
inclusion of the Mahout Java libraries it has not special
infrastructure requirements.
New algorithms are being added to Mahout by the commu-
nity. As an open source project there is plenty of scope to
provide enhancements and fixes back to the community.
Since Mahout does not necessarily require a Hadoop install,
it is feasible to set up Mahout locally for experimentation
and testing.

C. Graph Databases - (Disk Based - Neo4j, OrientDB), (Dis-
tributed - Titan)

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

Both Neo4j[71] and OrientDB[72] have the capacity to operate
at massive scale. Titan is a distributed only graph database
that runs on either Cassandra[73] or HBase[74] and is built
to scale up.
Neo4j and OrientDB can also operate at smaller scale,
running on single nodes or smaller clusters. Titan can
operate in what is called ‘single-node’ mode, but this is
more for testing and experimentation purposes rather than
production use as it is distributed by design.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

Both Neo4j and OrientDB provide the following
integrations[75]:

• Integrated Java API

• Remotely via REST protocols

• OrientDB provides additional remote access via
Binary protocols for C/PHP/NodeJs, and Ruby
(coming soon).

Titan provides integration via REST and Binary protocols
through its tight integration with the following systems:

• TinkerPop[76], BluePrint[77], Gremlin[78], Titan
Server[79], Rexter[80]

Lack of support for the programming language you’re
project is using can be circumvented using the REST com-
munication protocol. However this method will be slower
than the binary integration provided for some languages or
the native Java API. OrientDB is open sourced under the
Apache 2 licence, so you have access to the source code if
you are willing to commit to extend the application but that
could be an incredibly complex task.
Neo4j provides integration via a REST API as well as
direct integration with several programming languages. It is
also open source so the same information from OrientDB
applies.
Titan provides several methods of integration, as well as
different access techniques for different languages. Again it
is open source so either extending it yourself or working
with the community to achieve your goal is possible, but
non-trivial.
Each storage mechanism provides methods and queries for
updating the schema of a database (if you opted to use one).
In addition to providing methods for updating properties and
other information on individual vertices/edges.
The type of change you are wanting to make will be an
indicator of the effect it will have on the existing data.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

These storage mechanisms are only desirable if you are
storing data with a high density of relationships. Or where
graph abstractions are clearly relevant and useful.
These are dedicated solutions to a specific problem space.
Although flexible their usefulness does not extend far out-
side of this space.
Given the specific problems these systems are trying to
solve, it should be very clear as to whether or not their
use is required.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

Each of these systems are extremely high velocity systems.
Out performing traditional relational databases by orders of
magnitude when dealing with high density related data.

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

Primarily a sound knowledge of graph theory is required to
understand how to be best leverage what these systems offer.
Each one offer comprehensive documentation and support,
either through internal support requests or through their
respective communities.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

All three solutions provide detailed information on how to
complete their various installations.
Deploying any of them as a distributed solution is more
complex and will involve a far more detailed installation
and setup procedure.
Each of the solutions offer the ability for running them
locally or as ‘single-nodes’. Allowing for experimentation
with data structures and various forms of query and inte-
gration.
Each one is an active open source project with an active
community so there should always be support for attempting
new things.

D. Bulk Synchronous Parallel Processing (BSP)

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

BSP has been demonstrated to scale effectively up to and
beyond graphs with one billion vertices[81].
BSP is most likely excessive for any small scale processing
given its inherently distributed nature. This is hard to quan-
tify or find evidence for, as the Pregel and BSP designs and
implementations are only targeting the large scale solutions.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

Both Hama and Giraph are Apache projects that integrate
with the Hadoop technology stack. Consequently they are
able to integrate with anything that is supported by the same
technology. This gives them very good coverage for any new
or existing solution requirements.
The Phoebus project, an Erlang implementation, does not
yet appear to be production ready[82].
For Hama and Giraph the complexity for additional support
is similar to that of Hadoop. Both are open source Java
projects, though they do not have the widespread adoption
of Hadoop.
The severity of the change will determine how much of an
impact it causes. These solutions are primarily focused on
the large scale processing of data and not as much on the
structure of the data itself.
Any of the processing code that is affected by a change to
the structure of the data will need to be altered.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

It is hard to define the applicability of the BSP algorithm
based processing models as the capability of the BSP model
is not restricted to graph processing.
Although it is extremely successful in this regard, it’s
capacity for iterative computations on a massive scale for
interrelated data reaches much further.
Hama and Giraph are Apache open source projects so
contributions by the community are encouraged. However
sufficient Java knowledge and an understanding of BSP will
be required to make any substantial extensions to these
projects.
From a processing point of view, these solutions scale to
massive proportions in terms of processing and computa-
tional ability. Expansion of functionality of these solutions
is driven by the community and other interests.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

BSP and the Pregel design that is based off of it are designed
for both low and high velocity systems. For a more detailed
description of the initial performance capabilities of Pregel
consult the paper, but here are some example benchmarks:

“Yoo et al [46] report on a BlueGene/L im-
plementation of breadth-first search (s-t shortest
path) on 32,768 PowerPC processors with a high
performance torus network, achieving 1.5 seconds
for a Poisson distributed random graph with 3.2
billion vertices and 32 billion edges. Bader and
Madduri [2] report on a Cray MTA-2 implemen-
tation of a similar problem on a 10 node, highly
multithreaded system, achieving .43 seconds for a
scale-free R-MAT random graph with 134 million
vertices and 805 million edges.” - [83]

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

Knowledge of graph algorithms, and BSP is essential to tak-
ing the most advantage of these solutions. Java knowledge
is required to implement any changes.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

Both Hama and Giraph run as part of a Hadoop install, and
thus require Hadoop to be present in order to function. So
any infrastructure will be Hadoop first, then these solutions
applied after.
Each solution has the ability to run in a ‘single node’
environment for testing purposes. Contributions back into
the community would always be appreciated.

E. General Purpose GPU Programming (GPGPU) - Nvidia
CUDA, OpenCL

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

A GPU is a hardware component that provides a highly
specialised array of cores with dedicated high speed video
memory. By utilising the design of the hardware and CUDA,
one of the leading APIs, GPGPU processing can scale
nearly indefinitely.
Additionally there is growing evidence that suggest many
of the modern machine learning and processing algorithms
perform substantially faster on GPUs[84],[85],[86]. But these
are often algorithms that center on numerical computations
or possess the property of being “embarrassingly parallel”.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

GPGPUs are specialised and suitable for extremely high
performance computations, but the method of interaction
is only via a programming API. So integration with other
solutions or your data must often be done via custom
development of a computational pipeline.
GPGPUs operate at a very low level and utilising their full
potential is not an easy task[87].
The APIs for GPU programming are very low level and
require manual memory management on behalf of the devel-
oper. Detailed knowledge of the computation requirements
of the task at hand, and the capabilities of the GPU are
required.
Both CUDA and OpenCL are native to C/C++, with
some bindings available for other languages; Java through
“jcuda”. Python through “pycuda”.
Often GPU programming is done to suit a specific set
of requirements. New data structures or requirements may
result in new applications being required.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

GPGPU processing has a wide range of uses and the number
of algorithms that benefit from being adopted to running on
the GPU is increasing 81. Although care must be taken
when considering the use of GPGPU processing due to its
complexity and potentially difficult implementation process.
GPGPUs provides a means of computation through pro-
gramming APIs, the only real limits are the time and ability
available to implement solutions to any problems that may
exist.
GPGPUs have a demonstrated ability to scale and through
their API can be made to solve nearly any computational
problem. Provided the complexity is properly maintained.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

GPGPU processing is extremely high velocity processing.
Given it’s low level nature the bottleneck is often other
hardware components.
An insufficiently powerful CPU or slow PCIe bus speed can
be detrimental to performance by limiting the flow of data
to and from the device.
Poorly allocated or misused memory/cores can also intro-
duce errors or lead to poorly performing solutions. This is
due to the nature of how memory and threads are allocated
on the GPU. A specific number of threads must be allocated
to a block, blocks require a specific allocation of memory.
These blocks then operate within a “warp” on the GPU,
warps need to be allocated in such a way that there is
maximum occupancy of the resources of the GPU.

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

“CUDA is hard.” - Bryan O’Sullivan[88]. sufficiently detailed
knowledge of your problem domain is required, as well as
strong C/C++ and GPU programming ability. In order to
achieve maximum performance and to ensure that you don’t
intentionally create inefficient programs there is a very large
amount of knowledge that must be absorbed with respect
to Nvidia CUDA or OpenCL.
These skills can be learned of course, but the complexity
of developing solutions using this method should not be
underestimated.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

There are hundreds of variations of GPUs available, not all
have the same computational capabilities. Nvidia’s ‘Tesla’
range of cards that are designed for GPGPU processing
support bidirectional overlap. This allows you to stream
data onto the card for processing and stream the results
from completed computations asynchronously. Most other
cards do not support this feature.
Given the low level nature of the APIs and the inherent
flexibility of the supported languages that provide the most
performance (C/C++).

GPGPU programming is also a popular area of research[89].

F. Twitter Storm

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

This solution was designed as a real-time processing solu-
tion that would complement existing batch based solutions.
It has been tuned to achieve extremely high velocities at
massive scale. The website for Twitter Storms claims that
it is capable of reaching one million, 100 byte messages per
second per node[90].
Twitter Storm is designed as a large scale processing
application and it’s architecture may make it too complex
to set up for smaller scale projects.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

Storm claims it is capable of integration and communi-
cation with any programming language. Using either a
“Thrift definition” to types and structures between lan-
guages, or alternately communication via a JSON interface
on stdin/stdout[91].
It appears that all integration would on some level be
required to be custom built.
The support for a wide range of programming languages
and different platforms is an indication that although you
must construct the integration with Twitter Storm, there are
many options available to suit a wide variety of skills.
Largely meaning the complexity of integration is dependant
on the system it is being integrated with and the skills of
those performing the task.
Twitter Storm operates on ‘Tuples’ of data, that is a named
list of values. It supports any data structure or type as its
job is to pass the values through the Streams to your Bolts
where the processing occurs.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

This solution is designed for unbounded data, that is data
with no conceivable or known upper limit, and the require-
ment for near real-time result access. So it is suited for
projects where there is a constant stream of near or refreshed
data that requires computation. Or when this data flow is
to be subject to large numbers of queries or requests from
external systems[93].
Such as a recommendation engine that uses several streams
of data from different input sources to provide the latest
possible result.
Any integration with Twitter Storm is almost guaranteed to
be custom so any coverage is expected to be developed.
Extension and expansion of the capabilities of a Twitter
Storm implementation would be equivalent to any large
scale application.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

Twitter Storm is designed as an extremely high velocity
system. Responding to requests for results in near real-time.
Depending on the computations that are being performed
Twitter Storm is capable of responding fast enough to
handle requests from a web service or similar API.

Category / Criteria
5) People:

Required Skills/Experience.
Recruiting talent/finding knowledge.

Evaluation

Twitter Storm is a Java application that requires several
other libraries and systems to operate properly.
These range from the communication and message passing
libraries (ZeroMQ[112]) to the queuing and monitoring li-
braries that are used for coordination of the different bolts
and streams, such as Kestrel[114] or RabbitMQ[113].
As well as Apache Zookeeper for the distributed coordina-
tion of tasks.
Additionally if your system is not built using Java you must
be aware of or sufficiently skilled to learn how to integrate
your language to the Twitter Storm API.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

Twitter Storm is hardware agnostic and doesn’t require
any specific hardware configuration to operate beyond a
distributed cluster of machines.
Twitter Storm provides functionality to run as a single-node,
or as any size cluster you configure. Additionally it is an
open source project so community involvement is encour-
aged with fixing problems, improving documentation, or
creating new functionality.

G. MLPACK - Scalable C++ Machine Learning Library

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

MLPACK is a scalable and efficient machine learning
library. It provides abstractions over data structures and
algorithms that simplify the creation of larger data mining
applications.
Additionally the MLPACK libraries are capable of operating
on datasets of any size as it simply a library of efficient data
structures and pre-built algorithms[94].
Internally, not all of the classes with MLPACK are consid-
ered thread-safe, so their inclusion in large scale systems
must be done so with care. A more likely use case for
MLPACK is to create the standalone applications that are to
be distributed, allowing for the creation of tightly packed,
efficient applications designed to operate on subsets of the
greater dataset.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

As it is a programming library for C++ it is up to you to
provide the integration with your other systems.
MLPACK is not a standalone machine learning solution, it is
a library that provides functionality for others to implement
in their application..
Any integration will require C++ programming knowledge
in order to create or implement the required support.
This depends largely on how MLPACK is integrated into
your solution and what data is required by MLPACK.
Implementing additional algorithms could be complex de-
pending on your integration and the algorithm you’re trying
to implement, but it is highly subjective.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

MLPACK contains a comprehensive list of machine learn-
ing algorithms[95], as well as support for efficient matrix
manipulations[96]. With the caveat that for the sake of
efficiency all matrices are stored in column major format,
this is contrary to normal operations and may complicate
some integrations[92].
MLPACK is open source, and all of the underlying source
code is available online. So modifications and extensions to
the library are limited only by time and means.
As MLPACK is open source software there is plenty of
support for those that want to become involved in extending
and improving the library. Either with fixing bugs or adding
algorithms.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

The paper on MLPACK provides benchmarks based on
computing the Tree-based, k-nearest-neighbours search and
classifier algorithm on trees from 1,000 x 10 nodes, to
1,000,000 x 10. The compute times for MLPACK were
0.078sec and 1423.949sec respectively. The closest con-
tender was “sklean” which completed these two benchmarks
in 0.341sec and 1550.72sec. The other libraries failed to
complete the benchmarks at the higher amount of nodes, or
took over 9000 seconds to complete.
With this sort of efficiency it is reasonable to assume that
the velocity of the library is largely dependant on the nature
of its implementation and which algorithms are in use.
MLPACK is suited for both high and low velocity environ-
ments.

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

A reasonable level of C++ knowledge is required to ensure
the efficiency of the library is properly utilised. A strong
knowledge of the algorithms that it implements is not as
vital a requirement, but should not be ignored.

Category / Criteria
6) Infrastructure:

The infrastructure requirements for MLPACK are entirely
dependent on the implementation and how it is used. Suffice
to say that when targeting large or massive scale datasets
you will need hardware that is fitting for such requirements
as MLPACK is not likely the only component of such a
system.

H. GraphLab / GraphChi

Category / Criteria
1) Volume:

Is there evidence to indicate that this solution can handle
the scale of data you require?
This is taking into account the ability to handle scaling up
to massive scale, as well as handling smaller scale issues.

Evaluation

It is difficult to locate suitable benchmarks that demonstrate
the ability for GraphLab to scale. However GraphLab claims
to be able to scale from a laptop to a Hadoop cluster (and
they claim complete compatibility with the Hadoop running
environment)[98].
GraphChi runs only on a single machine and is capable of
handling both small and massive scale graphs.

Category / Criteria
2) Variety:

Does the solution support or provide a mechanism to
support, the format your data is currently in and the format
you require for output?
If support is not built in, how complex is it to implement
this support?
If you data structure changes, how complex is it to adjust
the solution to take this into account?

Evaluation

GraphLab mainly supports a specific list of file formats[99].
It can also support any arbitrary user data provided it
complies with the GraphLab “Serializable” structures 96.
Additionally GraphLab supports the HDFS file system
and thus is compatible with existing Hadoop installations.
Potentially allowing for integration with larger distributed
applications[100].
GraphChi requires that data be provided in C structs that
utilise properties that are of a constant size[101]. GraphChi
requires you to construct the interface between your data
and the processing component.
The specific file formats themselves are contained within in-
built libraries, however the source code is available should
any modifications need to be made.
Given GraphLab’s support for using any arbitrary user data
structures it does not appear likely that this would prove to
be an issue.
This depends on the scope of your implementation.

Category / Criteria
3) Variability:

Given the current scope of your problem requirements, does
this solution provide sufficient coverage?
If the solution does not provide sufficient coverage - Is it
possible to alter/update/extend the solution so that it does?
When considering the possible future scope of your problem
(future research, or expanding business analytics), does the
solution provide sufficient coverage?

Evaluation

GraphLab is capable of solving extremely complex graph
processing problems at high speed. It is capable of running
in single node, or distributed modes.
However it’s design is batch oriented and thus may not
be suitable for certain requirements. GraphLab must be
implemented as part of an application so any scheduling
or other long running aspects must be custom built.
As GraphLab is an API, it is capable of becoming part of
any larger application that can leverage C++, thus greatly
increasing the extensibility and problems that can be solved.
As requirements change, the application that contains the
GraphLab implementation will grow and change like any
other application. Only experimentation and testing with
respect to the problem at hand will demonstrate if GraphLab
is capable of supporting your requirements.

Category / Criteria
4) Velocity:

What levels of velocity of data is supported by the solution?

Evaluation

It is difficult to find conclusive benchmarks for GraphLab,
however this is not entirely unexpected as the performance
of GraphLab can be so greatly affected by how it is
implemented.
There were some initial benchmarking discussions occur-
ring on this page: IntelLabs report on GraphLab vs. Ma-
hout[102]. However there was a lot of contention around
the specifics of the test and whether the frameworks were
compared on even terms. The discussion is no longer active.

Category / Criteria
5) People:

Required Skills/Experience and Recruiting talent/finding
knowledge.

Evaluation

Implementing a solution in GraphLab requires skills in
both C++ and graph theory that are commensurate with the
complexity of the problem being solved.
Implementing a solution in GraphChi requires knowledge
of graph theory, and either C++ or Java in a similar manner
as GraphChi.

Category / Criteria
6) Infrastructure:

How is the deployment and management of the infrastruc-
ture to be managed with regard to the chosen solution?
Do you have room for experimentation/testing/growth over
time?

Evaluation

The deployment and management of infrastructure that is
used to host the application containing the GraphLab API
must meet the requirements for the installation and running
of GraphLab applications.
There are multiple tutorials on the GraphLab site that
demonstrate the procedure for establishing suitable envi-
ronments on either a Amazon EC2 Cluster, a alternate
distributed environment, or on a single node multiple core
machine[103].
GraphChi is designed to operate on a single machine
only, this machine can be desktop grade. The benchmarks
provided on the website were from a Mac Mini[104].
GraphLab (GraphChi only runs on a single node) can run on
a multiple core machine as a ‘single node’. Thus allowing
for testing and experimentation with the API[98].
GraphLab and GraphChi are open source, so contributions
from the community are encouraged[105].
An application containing a GraphLab/GraphChi compo-
nent can be expected to grow and change with needs and
requirements as per any application.

IV. CONCLUSION(S)

The various solutions, frameworks, libraries, and applica-
tions described above are but a fraction of what is available
under the heading of big data. However they represent what
can be considered to be ‘state of the art’ solutions in their
respective areas. The qualifier of “in their respective areas” is
important because when analysing each of the candidates it
quickly becomes apparent that each has been created with a
specific problem subset in mind.

Hadoop, CUDA, and Twitter Storm are capable of process-
ing tabular data at massive scale. The Bulk Synchronous Par-
allel Processing implementations and GraphLab/Chi are useful
when your data possesses a high density of relationships.

The Hadoop file system HDFS allows for the efficient,
distributed, and fault-tolerant storage of massive scale tabular
data, As well as being the basis for a large number of other
processing solutions, Mahout,Giraph, and GraphLab to name
a few.

There are also the graph database solutions that are
extremely efficient at storing highly structured data. Graph
databases also provide many methods for graph specific queries
that would bring a traditional database to its knees.

The machine learning and processing libraries Mahout and
MLPACK provide hand-tuned and highly efficient bundles of
algorithm implementations that are designed to be integrated
with a larger system for various data mining needs. Mahout is
written in Java and integrates tightly with Hadoop, but is also
capable of integrating with any Java application. MLPACK is
written in C++ and allows for extremely fine grained control
of its implementation. Neither is reportedly less effective than
the other as the algorithms are battle tested and debugged by
the community that surrounds both libraries.

Hadoop and GraphLab are primarily batch processing
environments, data is received or updated and the respective
tasks are triggered. These make them suited towards medium to
lower velocity environments. Twitter Storm can be configured
to operate as an extremely high velocity processing engine
that responds with the results of an ‘always on’ computation
whenever the data is updated or a request is received.

Nearly all of the solutions presented here are open sourced
under various licences so they can be investigated, extended,
and improved to suit various requirements.

So which solution is right for your needs? The answer is
simply: “That depends. . . ”.

It depends on how your data is structured. It depends on
the specific problem you’re trying to solve. It depends on the
hardware you have available. It depends on the experience,
knowledge, and skills that are available. It depends on the
amount of time you have. It depends on the algorithm(s) that
you need to utilise. It depends if you need to respond to
immediate requests for results or scheduled batches. It depends
if you have static or shifting data. It depends if you’re utilising
existing storage or need a new system.

There is no simple answer, the field of ‘big data’ is vast,
complex, intricate, and highly varied and will remain so as
problems and the data behind them are investigated, solved,

http://bickson.blogspot.fr/2013/03/intel-labs-report-on-graphlab-vs-mahout.html
http://bickson.blogspot.fr/2013/03/intel-labs-report-on-graphlab-vs-mahout.html

discovered, created, cleaned, parsed, distributed, deleted, and
condensed.

The unique aspects of what you are trying to achieve will
determine the composition of your solution.

Perhaps Hadoop and Mahout can be applied to the massive
amount of saved user comments, parsing the individual threads
of discussion for common patterns. Whilst a GraphChi im-
plementation investigates the relationships between the users
posting the comments, the articles they are commenting on,
and the times they commented.

It is reasonable to say that the breadth of solutions avail-
able will maintain pace with the depth of problems for the
foreseeable future. Consequently it is vital that you examine
your own goals and ruthlessly parse the available options with
an eye for what you are trying to achieve, but also what you
might wish to achieve in the future.

V. BIBLIOGRAPHY

[1] “Welcome to Apache Hadoop!.” 2007. 29 Jul. 2013 <http://hadoop.apache.org/>

[2] “Parallel Programming and Computing Platform | CUDA | NVIDIA . . . ” 2011. 29 Jul. 2013
<http://www.nvidia.fr/object/cuda home new.html>

[3] “Storm, distributed and fault-tolerant realtime computation.” 2012. 31 Jul. 2013 <http://storm-project.net/>

[4] Gerbessiotis, Alexandros V, and Leslie G Valiant. “Direct bulk-synchronous parallel algorithms.” Journal of parallel and
distributed computing 22.2 (1994): 251-267.

[5] Low, Yucheng et al. “Graphlab: A new framework for parallel machine learning.” arXiv preprint arXiv:1006.4990 (2010).

[6] “Neo4j - The World’s Leading Graph Database.” 2007. 29 Jul. 2013 <http://www.neo4j.org/>

[7] “thinkaurelius/titan GitHub.” 2012. 29 Jul. 2013 <https://github.com/thinkaurelius/titan>

[8] Curtin, Ryan R et al. “MLPACK: A scalable C++ machine learning library.” Journal of Machine Learning Research 14
(2013): 801-805.

[9] “Welcome to Apache Hadoop!.” 2007. 29 Jul. 2013 <http://hadoop.apache.org/>

[10] “YARN - Apache Hadoop.” 2012. 29 Jul. 2013 <http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html>

[11] “MapReduce Tutorial - Apache Hadoop - The Apache Software . . . ” 2012. 29 Jul. 2013
<http://hadoop.apache.org/docs/stable/mapred tutorial.html>

[12] “PoweredBy - Hadoop Wiki - General Wiki.” 2008. 29 Jul. 2013 <http://wiki.apache.org/hadoop/PoweredBy>

[13] “Developer Community - Cloudera.” 2012. 29 Jul. 2013 <http://www.cloudera.com/content/cloudera/en/developer-
community.html>

[14] “Hortonworks. We Do Hadoop.” 2011. 29 Jul. 2013 <http://hortonworks.com/>

[15] “Newest ‘hadoop’ Questions - Stack Overflow.” 2008. 29 Jul. 2013 <http://stackoverflow.com/questions/tagged/hadoop>

[16] “HBase - Apache HBase Home.” 2010. 29 Jul. 2013 <http://hbase.apache.org/>

[17] “Apache Mahout: Scalable machine learning and data mining.” 2010. 29 Jul. 2013 <http://mahout.apache.org/>

[18] “Books Tutorials and Talks - Apache Mahout - Apache Software . . . ” 2010. 29 Jul. 2013
<https://cwiki.apache.org/confluence/display/MAHOUT/Books+Tutorials+and+Talks>

[19] “Graph database - Wikipedia, the free encyclopedia.” 2009. 29 Jul. 2013 <http://en.wikipedia.org/wiki/Graph database>

[20] “Performance of Graph vs. Relational Databases | Architects Zone.” 2013. 29 Jul. 2013
<http://architects.dzone.com/articles/performance-graph-vs>

[21] “The Software Abstractions Blog: Big Data and Graph Databases.” 2013. 30 Jul. 2013
<http://blog.softwareabstractions.com/the software abstractions/2013/06/big-data-and-graph-databases.html>

[22] “Getting Started thinkaurelius/faunus Wiki GitHub.” 2012. 29 Jul. 2013
<https://github.com/thinkaurelius/faunus/wiki/Getting-Started>

[23] “Giraph - Welcome To Apache Giraph!.” 2012. 29 Jul. 2013 <http://giraph.apache.org/>

[24] Seo, Sangwon et al. “Hama: An efficient matrix computation with the mapreduce framework.” Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference on 30 Nov. 2010: 721-726.

[25] “Hama - The Apache Software Foundation!.” 2012. 31 Jul. 2013 <http://hama.apache.org/>

[26] Valiant, LG. “A bridging model for parallel computation - ACM Digital Library.” 1990.
<http://dl.acm.org/citation.cfm?id=79181>

[27] “Parallel Scientific Computation - Oxford University Press.” 2009. 5 Aug. 2013
<http://ukcatalogue.oup.com/product/9780198529392.do>

[28] “GeForce GTX 780 | Specifications | GeForce.” 2013. 29 Jul. 2013 <http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-780/specifications>

[29] “What is CUDA | NVIDIA Developer Zone.” 2011. 29 Jul. 2013 <https://developer.nvidia.com/what-cuda>

http://hadoop.apache.org/
http://www.nvidia.fr/object/cuda_home_new.html
http://storm-project.net/
http://www.neo4j.org/
https://github.com/thinkaurelius/titan
http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/stable/mapred_tutorial.html
http://wiki.apache.org/hadoop/PoweredBy
http://www.cloudera.com/content/cloudera/en/developer-community.html
http://www.cloudera.com/content/cloudera/en/developer-community.html
http://hortonworks.com/
http://stackoverflow.com/questions/tagged/hadoop
http://hbase.apache.org/
http://mahout.apache.org/
https://cwiki.apache.org/confluence/display/MAHOUT/Books+Tutorials+and+Talks
http://en.wikipedia.org/wiki/Graph_database
http://architects.dzone.com/articles/performance-graph-vs
http://blog.softwareabstractions.com/the_software_abstractions/2013/06/big-data-and-graph-databases.html
https://github.com/thinkaurelius/faunus/wiki/Getting-Started
http://giraph.apache.org/
http://hama.apache.org/
http://dl.acm.org/citation.cfm?id=79181
http://ukcatalogue.oup.com/product/9780198529392.do
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
https://developer.nvidia.com/what-cuda

[30] Kouzinopoulos, C. S., & Margaritis, K. G. (2009, September). String Matching on a multicore GPU using CUDA. In
Informatics, 2009. PCI’09. 13th Panhellenic Conference on (pp. 14-18). IEEE.

[31] “JAVA vs C++ Benchmark - Metabolomics Fiehn Lab - UC Davis.” 2006. 29 Jul. 2013
<http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/JAVA Benchmark/>

[32] “Java vs. C++: The Performance Showdown, Page 2 - Developer.com.” 2010. 29 Jul. 2013
<http://www.developer.com/java/article.php/10922 3856906 2/Java-vs-C-The-Performance-Showdown.htm>

[33] Kahan, William et al. “How Java’s floating-point hurts everyone everywhere.” Talk given at the ACM 1998 Workshop
on Java for High-Performance Network Computing (http://www. cs. uscb. edu/conferences/wkahan/JAVAhurt. pdf) 1 Mar. 1998.

[34] “OpenCL - The open standard for parallel programming of . . . ” 2008. 9 Aug. 2013 <http://www.khronos.org/opencl/>

[35] “nathanmarz/storm GitHub.” 2011. 31 Jul. 2013 <https://github.com/nathanmarz/storm>

[36] “Common patterns nathanmarz/storm Wiki GitHub.” 2011. 31 Jul. 2013
<https://github.com/nathanmarz/storm/wiki/Common-patterns>

[37] “LAPACK — Linear Algebra PACKage - Netlib.” 31 Jul. 2013 <http://www.netlib.org/lapack/>

[38] Sanderson, Conrad. “Armadillo: An open source C++ linear algebra library for fast prototyping and computationally
intensive experiments.” Sep. 2010.

[39] Curtin, Ryan R et al. “MLPACK: A scalable C++ machine learning library.” Journal of Machine Learning Research 14
(2013): 801-805.

[40] “GraphLab - The Abstraction.” 2012. 26 Aug. 2013 <http://graphlab.org/home/abstraction/>

[41] Han, Wook-Shin et al. “TurboGraph: a fast parallel graph engine handling billion-scale graphs in a single PC.” Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining 11 Aug. 2013: 77-85.

[42] Kyrola, Aapo, Guy Blelloch, and Carlos Guestrin. “GraphChi: Large-scale graph computation on just a PC.” Proceedings
of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI) 8 Oct. 2012: 31-46.

[43] “Vertex Centric Indices thinkaurelius/titan Wiki GitHub.” 2013. 3 Sep. 2013
<https://github.com/thinkaurelius/titan/wiki/Vertex-Centric-Indices>

[44] Zikopoulos, Paul, and Chris Eaton. Understanding big data: Analytics for enterprise class hadoop and streaming data.
McGraw-Hill Osborne Media, 2011.

[45] Philip Russom. “The Three Vs of Big Data Analytics: VELOCITY – TDWI -The Data . . . ” 2011. 1 Aug. 2013
<http://tdwi.org/blogs/philip-russom/2011/06/three-vs-of-big-data-analytics-3-data-velocity.aspx>

[46] “The Art of Big Data - SlideShare.” 2011. 1 Aug. 2013 <http://www.slideshare.net/ksankar/the-art-of-big-data>

[47] “InputFormat (Apache Hadoop Main 2.0.5-alpha API).” 2012. 1 Aug. 2013
<http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html>

[48] “OutputFormat (Apache Hadoop Main 2.0.5-alpha API).” 2012. 1 Aug. 2013
<http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/OutputFormat.html>

[49] “Has anyone used Graph-based Databases (http://neo4j.org/)? [closed].” 2009. 1 Aug. 2013
<http://stackoverflow.com/questions/1000162/has-anyone-used-graph-based-databases-http-neo4j-org>

[50] Irani, Zahir. “Information systems evaluation: navigating through the problem domain.” Information & Management 40.1
(2002): 11-24.

[51] “Oracle: Big Data for the Enterprise (PDF).” 2011. 2 Aug. 2013 <http://www.oracle.com/us/products/database/big-data-
for-enterprise-519135.pdf>

[52] Schaeffer, Satu Elisa. “Graph clustering.” Computer Science Review 1.1 (2007): 27-64.

[53] Ho, Yu-Chi. “Heuristics, rules of thumb, and the 80/20 proposition.” Automatic Control, IEEE Transactions on 39.5
(1994): 1025-1027.

[54] “sjmackenzie/phoebus core GitHub.” 2010. 5 Aug. 2013 <https://github.com/sjmackenzie/phoebus core>

[55] “HDFS: Facebook has the world’s largest Hadoop cluster!.” 2010. 6 Aug. 2013
<http://hadoopblog.blogspot.fr/2010/05/facebook-has-worlds-largest-hadoop.html>

[56] “The Small Files Problem | Apache Hadoop for the . . . - Cloudera Blog.” 2012. 6 Aug. 2013
<http://blog.cloudera.com/blog/2009/02/the-small-files-problem/>

http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/JAVA_Benchmark/
http://www.developer.com/java/article.php/10922_3856906_2/Java-vs-C-The-Performance-Showdown.htm
http://www.khronos.org/opencl/
https://github.com/nathanmarz/storm
https://github.com/nathanmarz/storm/wiki/Common-patterns
http://www.netlib.org/lapack/
http://graphlab.org/home/abstraction/
https://github.com/thinkaurelius/titan/wiki/Vertex-Centric-Indices
http://tdwi.org/blogs/philip-russom/2011/06/three-vs-of-big-data-analytics-3-data-velocity.aspx
http://www.slideshare.net/ksankar/the-art-of-big-data
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/InputFormat.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/OutputFormat.html
http://stackoverflow.com/questions/1000162/has-anyone-used-graph-based-databases-http-neo4j-org
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf
https://github.com/sjmackenzie/phoebus_core
http://hadoopblog.blogspot.fr/2010/05/facebook-has-worlds-largest-hadoop.html
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

[57] “Input Formats | Hadoop: The Definitive Guide | MapReduce . . . - Inkling.” 2012. 6 Aug. 2013
<https://www.inkling.com/read/hadoop-definitive-guide-tom-white-3rd/chapter-7/input-formats>

[58] “Hadoop: RecordReader and FileInputFormat | Hadoopi.” 2013. 6 Aug. 2013
<http://hadoopi.wordpress.com/2013/05/27/understand-recordreader-inputsplit/>

[59] “InputFormat | Hadoopi.” 2013. 6 Aug. 2013 <http://hadoopi.wordpress.com/category/inputformat/>

[60] “Programming Community Index - TIOBE.com.” 2008. 6 Aug. 2013 <http://www.tiobe.com/content/paperinfo/tpci/index.html>

[61] “Apache Hadoop 2.0.5-alpha - Apache Hadoop.” 2012. 6 Aug. 2013 <http://hadoop.apache.org/docs/current/>

[62] “Pivotal HD | GoPivotal.” 2013. 6 Aug. 2013 <http://gopivotal.com/pivotal-products/pivotal-data-fabric/pivotal-hd>

[63] “Hadoop: “It’s damn hard to use” — Tech News and Analysis - GigaOM.” 2013. 6 Aug. 2013
<http://gigaom.com/2013/03/21/hadoop-its-damn-hard-to-use/>

[64] “java - Using Apache Mahout with Ruby on Rails - Stack Overflow.” 2010. 7 Aug. 2013
<http://stackoverflow.com/questions/3223390/using-apache-mahout-with-ruby-on-rails>

[65] “Overview - Apache Mahout - Apache Software Foundation.” 2010. 7 Aug. 2013
<https://cwiki.apache.org/confluence/display/MAHOUT/Overview>

[66] “Algorithms - Apache Mahout - Apache Software Foundation.” 2010. 7 Aug. 2013
<https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms>

[67] “How To Become A Committer - Apache Mahout - Apache Software . . . ” 2010. 7 Aug. 2013
<https://cwiki.apache.org/confluence/display/MAHOUT/How+To+Become+A+Committer>

[68] “Deploying a massively scalable recommender system with Apache . . . ” 2011. 7 Aug. 2013 <http://ssc.io/deploying-a-
massively-scalable-recommender-system-with-apache-mahout/>

[69] “Recommender Documentation - Apache Mahout - Apache Software . . . ” 2010. 7 Aug. 2013
<https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentation>

[70] “Why becoming a data scientist is NOT actually easier than . . . - Medium.” 2013. 7 Aug. 2013 <https://medium.com/cs-
math/5b65b548069b>

[71] “A case for Neo4j database - Manning Publications.” 2012. 7 Aug. 2013
<http://www.manning.com/partner/Neo4J meap ch01.pdf>

[72] “orientechnologies/orientdb GitHub.” 2013. 7 Aug. 2013 <https://github.com/orientechnologies/orientdb/>

[73] “The Apache Cassandra Project.” 2010. 7 Aug. 2013 <http://cassandra.apache.org/>

[74] “HBase - Apache HBase Home.” 2010. 7 Aug. 2013 <http://hbase.apache.org/>

[75] “GraphDB Comparison orientechnologies/orientdb Wiki GitHub.” 2013. 7 Aug. 2013
<https://github.com/orientechnologies/orientdb/wiki/GraphDB-Comparison>

[76] “TinkerPop Graph Stack thinkaurelius/titan Wiki GitHub.” 2012. 7 Aug. 2013
<https://github.com/thinkaurelius/titan/wiki/TinkerPop-Graph-Stack>

[77] “Blueprints Interface thinkaurelius/titan Wiki GitHub.” 2012. 7 Aug. 2013
<https://github.com/thinkaurelius/titan/wiki/Blueprints-Interface>

[78] “Gremlin Query Language thinkaurelius/titan Wiki GitHub.” 2012. 7 Aug. 2013
<https://github.com/thinkaurelius/titan/wiki/Gremlin-Query-Language>

[79] “Titan Server thinkaurelius/titan Wiki GitHub.” 2012. 7 Aug. 2013 <https://github.com/thinkaurelius/titan/wiki/Titan-
Server>

[80] “Rexster Graph Server thinkaurelius/titan Wiki GitHub.” 2012. 7 Aug. 2013
<https://github.com/thinkaurelius/titan/wiki/Rexster-Graph-Server>

[81] Malewicz, Grzegorz et al. “Pregel: a system for large-scale graph processing.” Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data 6 Jun. 2010: 135-146.

[82] “OCTO talks ! Introduction to large-scale graph processing.” 2012. 8 Aug. 2013 <http://blog.octo.com/en/introduction-
to-large-scale-graph-processing/>

[83] Malewicz, Grzegorz et al. “Pregel: a system for large-scale graph processing.” Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data 6 Jun. 2010: 135-146.

https://www.inkling.com/read/hadoop-definitive-guide-tom-white-3rd/chapter-7/input-formats
http://hadoopi.wordpress.com/2013/05/27/understand-recordreader-inputsplit/
http://hadoopi.wordpress.com/category/inputformat/
http://www.tiobe.com/content/paperinfo/tpci/index.html
http://hadoop.apache.org/docs/current/
http://gopivotal.com/pivotal-products/pivotal-data-fabric/pivotal-hd
http://gigaom.com/2013/03/21/hadoop-its-damn-hard-to-use/
http://stackoverflow.com/questions/3223390/using-apache-mahout-with-ruby-on-rails
https://cwiki.apache.org/confluence/display/MAHOUT/Overview
https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms
https://cwiki.apache.org/confluence/display/MAHOUT/How+To+Become+A+Committer
http://ssc.io/deploying-a-massively-scalable-recommender-system-with-apache-mahout/
http://ssc.io/deploying-a-massively-scalable-recommender-system-with-apache-mahout/
https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentation
https://medium.com/cs-math/5b65b548069b
https://medium.com/cs-math/5b65b548069b
http://www.manning.com/partner/Neo4J_meap_ch01.pdf
https://github.com/orientechnologies/orientdb/
http://cassandra.apache.org/
http://hbase.apache.org/
https://github.com/orientechnologies/orientdb/wiki/GraphDB-Comparison
https://github.com/thinkaurelius/titan/wiki/TinkerPop-Graph-Stack
https://github.com/thinkaurelius/titan/wiki/Blueprints-Interface
https://github.com/thinkaurelius/titan/wiki/Gremlin-Query-Language
https://github.com/thinkaurelius/titan/wiki/Titan-Server
https://github.com/thinkaurelius/titan/wiki/Titan-Server
https://github.com/thinkaurelius/titan/wiki/Rexster-Graph-Server
http://blog.octo.com/en/introduction-to-large-scale-graph-processing/
http://blog.octo.com/en/introduction-to-large-scale-graph-processing/

[84] Erra, Ugo et al. “An efficient GPU implementation for large scale individual-based simulation of collective behavior.”
High Performance Computational Systems Biology, 2009. HIBI’09. International Workshop on 14 Oct. 2009: 51-58.

[85] Nicole Hemsoth. “The GPU”Sweet Spot” for Big Data - Datanami.” 2012. 9 Aug. 2013
<http://www.datanami.com/datanami/2012-09-11/the gpu sweet spot for big data.html>

[86] “GPU and Large Scale Data Mining Azinta Systems Blog.” 2011. 9 Aug. 2013
<http://www.azintablog.com/2010/10/16/gpu-large-scale-data-mining/>

[87] Jon Stokes. “What’s so hard about doing non-graphics . . . - Ars Technica.” 2012. 9 Aug. 2013
<http://arstechnica.com/uncategorized/2007/02/8931/>

[88] Jon Stokes. “What’s so hard about doing non-graphics . . . - Ars Technica.” 2012. 9 Aug. 2013
<http://arstechnica.com/uncategorized/2007/02/8931/>

[89] “Category: Research :: GPGPU.org.” 2009. 12 Aug. 2013 <http://gpgpu.org/category/research>

[90] “Scalable - About Storm.” 2012. 12 Aug. 2013 <http://storm-project.net/about/scalable.html>

[91] “any programming language - About Storm.” 2012. 12 Aug. 2013 <http://storm-project.net/about/multi-language.html>

[92] “Simple API - About Storm.” 2012. 12 Aug. 2013 <http://storm-project.net/about/simple-api.html>

[93] “Storm, distributed and fault-tolerant realtime computation.” 2012. 12 Aug. 2013 <http://storm-project.net/>

[94] “Simple Sample mlpack Programs.” 2012. 12 Aug. 2013 <http://www.mlpack.org/doxygen.php?doc=sample.html>

[95] “API documentation - MLPACK.” 2012. 12 Aug. 2013 <http://www.mlpack.org/doxygen.php>

[96] “Matrices in mlpack.” 2012. 12 Aug. 2013 <http://www.mlpack.org/doxygen.php?doc=matrices.html>

[97] Curtin, Ryan R et al. “MLPACK: A scalable C++ machine learning library.” Journal of Machine Learning Research 14
(2013): 801-805.

[98] “About | GraphLab.” 2013. 26 Aug. 2013 <http://graphlab.com/about/>

[99] “GraphLab: Distributed Graph-Parallel API: Graph File Formats.” 2012. 26 Aug. 2013
<http://docs.graphlab.org/graph formats.html>

[100] “GraphLab - The Software.” 2012. 2 Sep. 2013 <http://graphlab.org/home/the-software/>

[101] “Creating GraphChi Applications GraphChi/graphchi-cpp Wiki GitHub.” 2013. 2 Sep. 2013
<https://github.com/GraphChi/graphchi-cpp/wiki/Creating-GraphChi-Applications>

[102] “Intel Labs report on GraphLab vs. Mahout - Large Scale Machine . . . ” 2013. 2 Sep. 2013
<http://bickson.blogspot.fr/2013/03/intel-labs-report-on-graphlab-vs-mahout.html>

[103] “GraphLab - Tutorials.” 2012. 2 Sep. 2013 <http://graphlab.org/tutorials-2/>

[104] “Apple - Mac mini.” 2012. 2 Sep. 2013 <http://www.apple.com/mac-mini/>

[105] “graphlab-code/graphlab GitHub.” 2013. 2 Sep. 2013 <https://github.com/graphlab-code/graphlab>

[106] “Apache ZooKeeper - Apache Foundation.” 2010 <https://zookeeper.apache.org/>

[107] “Apache Ambari - Apache Foundation.” 2010 <https://incubator.apache.org/ambari/>

[108] “Bridging Model - Wikipedia.” Communications of the ACM - Volume 33, Issue 8, Aug. 1990. Pages 103-111.
<http://dl.acm.org/citation.cfm?id=79181>

[109] “Small Files Problem - Cloudera Blog.” 2009. 2 Feb <http://blog.cloudera.com/blog/2009/02/the-small-files-problem/>

[110] “Jcuda - CUDA Bindings for Java” 2012. 8 Feb <http://www.jcuda.org/>

[110] “PyCuda - CUDA Bindings for Python” 2012. 8 Feb <http://thema.tician.de/software/pycuda>

[111] “CUDA Performance Question - StackOverflow” 2012. 3 Apr <http://stackoverflow.com/a/9986748>

[111] “Nvidia CUDA Warps and Occupancy” 2012. 3 Apr <http://on-demand.gputechconf.com/gtc-
express/2011/presentations/cuda webinars WarpsAndOccupancy.pdf>

[112] “ZeroMQ - Distributed Computing Made Simple” 2013 <http://zeromq.org/>

[113] “RabbitMQ - Messaging that just Works” 2013 <http://www.rabbitmq.com/>

[114] “RabbitMQ - Messaging that just Works” 2013 <http://robey.github.io/kestrel/>

http://www.datanami.com/datanami/2012-09-11/the_gpu_sweet_spot_for_big_data.html
http://www.azintablog.com/2010/10/16/gpu-large-scale-data-mining/
http://arstechnica.com/uncategorized/2007/02/8931/
http://arstechnica.com/uncategorized/2007/02/8931/
http://gpgpu.org/category/research
http://storm-project.net/about/scalable.html
http://storm-project.net/about/multi-language.html
http://storm-project.net/about/simple-api.html
http://storm-project.net/
http://www.mlpack.org/doxygen.php?doc=sample.html
http://www.mlpack.org/doxygen.php
http://www.mlpack.org/doxygen.php?doc=matrices.html
http://graphlab.com/about/
http://docs.graphlab.org/graph_formats.html
http://graphlab.org/home/the-software/
https://github.com/GraphChi/graphchi-cpp/wiki/Creating-GraphChi-Applications
http://bickson.blogspot.fr/2013/03/intel-labs-report-on-graphlab-vs-mahout.html
http://graphlab.org/tutorials-2/
http://www.apple.com/mac-mini/
https://github.com/graphlab-code/graphlab
https://zookeeper.apache.org/
https://incubator.apache.org/ambari/
http://dl.acm.org/citation.cfm?id=79181
https://incubator.apache.org/ambari/
http://www.jcuda.org/
http://mathema.tician.de/software/pycuda
http://stackoverflow.com/a/9986748
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
http://zeromq.org/
http://www.rabbitmq.com/
http://robey.github.io/kestrel/

	Initial List & Description of Possible Candidates
	Hadoop (HDFS)
	Neo4j, Titan
	Bulk Synchronous Parallel Processing (BSP)
	General Purpose Graphics Processing Unit Programming (GPGPU) - Nvidia CUDA
	Twitter Storm
	MLPACK - Scalable C++ Machine Learning Library
	GraphLab - Graph Oriented Machine Learning
	Single Machine High Performance Graph Processing - TurboGraph / GraphChi.

	Discussion of Candidates
	Volume
	Velocity
	Variety
	Variability
	Context
	Criteria Construction
	Criteria for Comparison
	General Considerations

	Evaluation of Candidates
	Hadoop
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	Mahout
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	Graph Databases - (Disk Based - Neo4j, OrientDB), (Distributed - Titan)
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	Bulk Synchronous Parallel Processing (BSP)
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	General Purpose GPU Programming (GPGPU) - Nvidia CUDA, OpenCL
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	Twitter Storm
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	MLPACK - Scalable C++ Machine Learning Library
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	GraphLab / GraphChi
	Volume
	Variety
	Variability
	Velocity
	People
	Infrastructure

	Conclusion(s)
	Bibliography

