
HAL Id: hal-00903884
https://hal.science/hal-00903884

Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint f0 and inharmoncity estimation using second order
optimization

Henrik Hahn, Axel Röbel

To cite this version:
Henrik Hahn, Axel Röbel. Joint f0 and inharmoncity estimation using second order optimization.
SMC Sound and Music Computing Conference 2013, Jul 2013, Stockholm, Sweden. pp.695–700. �hal-
00903884�

https://hal.science/hal-00903884
https://hal.archives-ouvertes.fr


Joint f0 and inharmoncity estimation using second order optimization

Henrik Hahn

IRCAM-CNRS-UPMC UMR 9912-STMS

henrik.hahn@ircam.fr

Axel Röbel
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ABSTRACT

A new method is presented for the joint estimation of the

inharmonicity coefficient and the fundamental frequency

of inharmonic instrument sounds. The proposed method it-

eratively uses a peak selection algorithm and a joint param-

eters estimation method based on nonlinear optimization.

We further introduce an adapted tessitura model to evalu-

ate our proposed method for piano sounds and to compare

it with state-of-the-art techniques.

1. INTRODUCTION

The stiffness of instrumental strings effectuates the fre-

quencies of the modes of vibration to be highly inharmonic.

This effect is decisive for most string based instruments

and marks a significant part of the perceptive sound charac-

teristic of the piano [1]. Inharmonicity means that the par-

tial frequencies are not exact integer multiples of their fun-

damental but located at increased positions. The amount

of increase is reflected by the inharmonicity coefficient β,

while the frequency f of a partial k can be expressed for

all partials K present in a signal by the relation:

fk = kf0
√

1 + k2β, k = 1 . . .K (1)

where f0 denotes the signals fundamental frequency, which

is in fact a theoretical value, as there is no partial with that

specific frequency present in an inharmonic signal. Hence,

the inharmonicity coefficient β as well as the fundamental

frequency f0 can not easily be measured from an instru-

ments signal, but they need to be taken into account for

a lot of different applications, like f0-estimation and har-

monic sinusoidal analysis, as well as for prior knowledge

to control sound synthesis of string based instruments. And

finally, demixing of sound mixtures is an emerging topic,

which also relies on good estimations of the inharmonicity

coefficient and the fundamental frequency.

In the following section we give a brief overview on three

previous estimation methods and point out several draw-

backs of them in section 3 before we give a detailed de-

scription of our approach, which aims to solve these draw-

backs. An extensive evaluation of our approach with an

adapted tessitura model, comparing it with the three other

methods is presented in the 4th section.
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2. PREVIOUS METHODS

Several methods for the automatic estimation of the inhar-

monicity factor β with according refinement of the funda-

mental frequency f0 have been proposed in the past years.

Galembo and Askenfelt proposed a method [2] based on

inharmonic comb filtering (ICF). In this method, the pa-

rameters for the inharmonic comb filter have been found by

an exploration of a vast range of possible parameter values

within three consecutive steps and refining the parameter

grid in each. The algorithm finally interpolates the best pa-

rameter sets to obtain its f0 and β-coefficient. Hodgkinson

et al. proposed a method [3] using median-adjustive trajec-

tories (MAT). This algorithm works in an iterative manner

in which a partial k of the inharmonic series is selected

and used for improving the estimate of β and f0. The im-

proved estimates are then used to search the next partial k.

The most recent approach is based on Non-negative ma-

trix factorization by Rigaud et al. [4, 5] aiming at the joint

estimation of f0 and β-coefficients for several fundamental

frequencies at once with a specific focus on the polyphonic

case. Another approach has been proposed in [6] showing

similar accuracy, but improved computational performance

to the ICF method.

3. PROPOSED METHOD

3.1 Drawbacks in recent methods

All recent methods we studied so far share similar draw-

backs. First of all, they usually work with a fixed maxi-

mum of around 30 partials or fixed amplitude thresholds

to avoid using too noisy signal components for the estima-

tion. But, especially low pitched piano tones may exhibit

very rich spectra containing more than 200 partials. For

an analysis which tries to reliably identify as much partials

as possible in such a signal, the estimation of the β coef-

ficient needs to be executed for far more partials, because

slight deviations in the β estimation will remain unnoticed.

Figure 1 illustrates how such small errors in the estimation

of the β coefficient result in misleading partial detection.

Increasing the amount of partials for the estimation of β is

by no means a trivial task as it requires a suitable strategy

for selecting reasonable spectral peaks and rejecting noisy

signal components. Furthermore, some approaches need

at least 5 partials for a reliable estimation, but high pitched

piano notes or moderately high pitched but with very low

intensity do not contain more than 3 to 4 partials. Espe-

cially low intensity signals require a robust distinction be-

tween noise and sinusoid within a peak selection process

but also require the estimation to be robust against noisy
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Figure 1. Analysis of the effect of the deviation in β.

Boxed values indicate hypothetical deviations of the β

value from its ‘real’ value in percent. Dashed curves

demonstrate the resulting deviation in frequency estima-

tion for respective partial index.

partials. Previous approaches often use heuristics to either

neglect noisy partials during the peak selection or reduce

their influence in the estimation process.

3.2 General method description

The proposed method estimates jointly the inharmonicity

coefficient β and the fundamental frequency f0 in an iter-

ative manner, which can be used on several frames at once

and is illustrated in figure 2. For the algorithm a signal

segment y(t) behind the signals attack point is selected to

ensure, the algorithm analyses no transient components. A

standard f0 estimation [7] is applied and the f0 informa-

tion is then being used to set the analysis parameters for

the STFT adaptively to guarantee suitable analysis win-

dow lengths according to the fundamental. The STFT is

taken for N overlapping frames n yielding Y (f, n) and all

spectral bins are classified into the 3 classes: main lobe,

side lobe or noise component using the peak classification

method proposed by Zivanovic et al. [8]. The algorithms
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β
stop?

k+1

β

f0(n)
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Figure 2. General scheme of proposed iterative method.

main loop identifies a valid peak for the current partial in-

dex within each frame and estimates a new f0 for each

frame n and a new β for all frames within each iteration

until some abort criterion has been reached. With increas-

ing partial index, the estimated parameters converge to our

target values.

3.3 Peak selection step

The selection of a valid peak within the spectrum is done

in 4 steps:

1. Estimate the frequency of the current partial f̂k(n)
by using eq. (1). Use the initial f0(n) and β = 0 for

the first iteration, and the updated values in all later

ones.

2. Select all spectral peaks classified as main lobe with-

in a narrow band fb around the estimated partials

frequency f̂k(n):

f̂k(n)− pf0(n) ≤ fb ≤ f̂k(n) + pf0(n), p = .25

3. If two or more peak candidates have been found with-

in at least one frame, we apply a logarithmic ampli-

tude weighting function using a Hann window, cen-

tered at the estimated position f̂k(n), with window

length fb and select the peak with the strongest log-

arithmic amplitude after weighting.

4. Refine the frequency of the selected peaks by QIFFT

and bias correction as proposed by Abe et al. [9].

3.4 Estimation step

With at least 3 partials within one frame, we can estimate

the parameters β and f0(n) for all frames n. As shown

in eq. (2), we use the squared deviation of our estimated

values from the measured partial frequencies normalized

with the fundamental frequency to achieve equal error sur-

face scalings for all possible fundamental frequencies. The

final objective function with normalizations according to

the number of frames N and amount of partials per frame

K(n) is given in eq. (3).

R =
1

2

(

fk(n)− kf0(n)
√

1 + k2β

f0(n)

)2

(2)

O1 =
1

N

N
∑

n=1

1

K(n)

K(n)
∑

k=1

R (3)

As the objective function (3) reflects the least–mean–

squared (LMS) error of all f0-normalized deviations of our

partial frequency estimations with their measured peak fre-

quency counterparts, optimization reflects a fitting of eq.

(1) to the measured data in the LMS sense. The optimiza-

tion is being done by a gradient descent approach, whereas

we utilize the method of the scaled conjugate gradient [10],

denoted CG throughout this document, for faster conver-

gence compared with other methods. The gradient func-

tions for both parameters are shown in eq. (4) and (5).

∂R

∂β
= −

k3

2
√

1 + k2β
(4)

∂R

∂f0(n)
= −

fk(n)

f0(n)2
(5)



3.5 Stop criterion

We only use two disjunctive abort criteria: If the next par-

tial f̂k(n) in the peak selection process would raise above

the Nyquist frequency within one frame n or if no valid

partial has been found for 3 consecutive iterations in at

least one frame of the main loop. This means, the algo-

rithm tries to use as much partials as possible of the signal,

since it only stops, if the signals maximum bandwidth or

some supposed noise level has been reached.

4. EVALUATION

For the evaluation we will compare the results of our pro-

posed method with the results of the 3 algorithms men-

tioned in chapter 2: ICF, MAT and NMF. Our proposed

method will be denoted CG in the figures. We will use

an artificial data sound of inharmonic sounds, created us-

ing an additive synthesis model and inharmonicity values

taken from the tessitura model for the β coefficient shown

in [5] as well as the 3 piano data sets from the RWC li-

brary [11] and a piano sound set taken from the IRCAM

Solo Instruments library recorded with two microphones.

The artificial data set will be used to compare all β co-

efficient estimation algorithms with a given ground truth.

For the general evaluation of all data sets we will establish

a tessitura model for the evolution of the coefficient for

all sound samples contained in each data set. The tessitura

model for the evolution of β over the MIDI index is derived

from [5] and will be used to measure the variance of each

estimation algorithm to quantify its accuracy. Furthermore,

we will compare the computational efficiency of all algo-

rithms by measuring their realtime factors. For each algo-

rithm a MATLABTM implementation has been used there-

fore the realtime factors are more suitable for a comparison

in between the algorithms rather than to give an indication

for the performance of native implementations. For all al-

gorithms we used equal analysis parameters to ensure all

algorithms analyze exactly the same frames of the signals

and as most other algorithms also need a pre-f0 estima-

tion, we used the same pre-f0 for all of them. The win-

dow length for the STFT was set to 6 times the roughly

estimated fundamental with 4 times spectral oversampling

and a blackman window. As our algorithm works on sev-

eral frames, we took 3 consecutive frames with a hopsize

of 1/8 of the analysis window length, whereas the other

algorithms analyzed the 3 frames independently.

4.1 Tessitura model of the β coefficient

The tessitura model for the β coefficient introduced in [5]

is a function of the MIDI value m representing its evolution

for the whole keyboard of a piano. It can be represented as

the sum of two linear asymptotes in the logarithmic scale,

whereas these two asymptotes are being described as Tre-

ble (bT ) and Bass bridge (bB) and are characterized as lin-

ear functions, parametrized by its slope and constant value,

such that the model βφ(m) can be described as:

βφ(m) = ebB(m) + ebT (m) (6)

= e(φ1m+φ2) + e(φ3m+φ4) (7)

with φ being a vector of four elements containing the slope

and constant parameters of the linear functions bB and bT
respectively. All algorithms apart from ours estimate 3 co-

efficients, denoted β̂, for each input sound file according

to the 3 signal frames which are being used by our algo-

rithm to estimate a single value. A curve fitting is done

in a least-squares sense by minimizing the variance of the

model βφ(m) according to (8) with M∗ representing the

estimates of a single algorithm for one data set. We are

using the logarithm of β as well as β̂ for the objective

function to account for the logarithmic behavior of the β

coefficient.

O2 =
1

2

M∗

∑

m

| log(β̂(m))− log(βφ(m))|2 (8)

Again we are using the scaled Conjugate Gradient method

[10] to obtain the tessitura model βφ(m) with minimum

variance using the gradients (9) and (10) for optimizing

the parameters for the functions bB and bT with i either

being set to 1 or 3 for eq. (9) or set to 2 or 4 for eq.

(10). The four initial values for vector φ are choosen as

[−0.09,−6.87, 0.09,−13.70]T .

∂O2

∂φ1|3
=

M∗

∑

m

| log(β̂(m))− log(βφ(m))|
me(φim+φ(i+1))

βφ(m)

(9)

∂O2

∂φ2|4
=

M∗

∑

m

| log(β̂(m))− log(βφ(m))|
e(φ(i−1)m+φ(i))

βφ(m)

(10)

As the estimation algorithms may give highly noisy results

especially for the upper pitch range we delimit the usage

of β̂ values to a range which is logarithmically close to the

initial value by accepting only values which are smaller

than ten times the initial function value and bigger than

one tenth of it. This is demonstrated in fig. 3, but to fi-

nally compute the variance σ2 = 2N−1O2 we take all

N estimations of β̂ into account. The variance according

Initial Inharmonicity Coeffcient β with limits

β

Midi
30 40 50 60 70 80 90 100

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

Figure 3. The initial model βφ(m) (solid) and limits

(dashed) for adaptation

to all estimations of β̂ of one algorithm on data set can

be used to determine its estimation accuracy, because we

can assume the inharmonicity coefficient of one piano to

roughly follow our tessitura model for β. We can further

state, that the instruments original β coefficient is equal



for all recordings of the same note of this instrument and

constant along time. Therefore, each instrument exhibits

a certain variance due to slight tuning errors of its inhar-

monicity. This variance is unknown and reflects the lower

boundary for every estimation algorithm. As all our al-

gorithms estimate either a single inharmonicity value per

frame of each sound sample (MAT, ICF, NMF) or a single

value per sound sample (CG), the more these values are

varying, the less accurate this algorithm has to be. There-

fore, we can use the overall variance of the inharmonicity

estimations of one algorithm for one data set to determine

its accuracy performance.

4.2 Evaluation on artificial data

The sounds have been generated by additive synthesis us-

ing eq. (1) to generate the partials frequencies with the β

coefficients taken from the initial tessitura model βφ(m)
for each corresponding fundamental frequency, a decay-

ing spectral envelope as well as a simple Attack–Release

temporal envelope. The sounds do not include any kind of

noise.

We estimated the β values with all methods for all synthe-

sized sounds and measured their deviations from the orig-

inal values used for synthesis. Fig. 4 shows the resulting

relative errors as percentage of the original β value denoted

β̄. As can be seen in fig. 4 the MAT, NMF and CG meth-
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0
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/
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Figure 4. Error in estimation of β given as percentage.

ods outperform the ICF method with relative errors below

0.1% until MIDI index 86 (D6). Above that index, only

the NMF and CG method stay below 0.1% or even drop

further down. The estimated tessitura models of all algo-
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Figure 5. Estimated β̂ for the artificial data set.

rithms for the artificial set are shown in fig. 5 and their

resulting overall variance of the estimated β̂ is depicted in

fig. 6. The extremely high variance of the results for the

MAT and ICF is especially caused by the low estimation

accuracy for high pitches (MIDI index values above 85).

The increased variance of the NMF method is due to es-

timation errors around MIDI index 35 at which the inhar-

monicity coefficient reaches its absolute minimum. Hence,

our proposed CG outperforms the MAT and ICF methods

significantly in terms of overall variance as it almost never

shows an accuracy error of more than 0.1%.

MAT ICF NMF CG

1e-05
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Variance values for artificial data set.

Figure 6. Variance of measurements on artificial data.

4.3 Evaluation on recorded data

The RWC piano library contains recordings of 3 different

grand pianos. Each piano has been recorded for all pitches

in 3 different intensity levels (pp, mf and ff ). The piano

set of the IRCAM Solo instruments library also contains

recordings for all pitches but with up to 7 intensity levels

per pitch and as it has been recorded with 2 discrete chan-

nels, we treat these separately. It can be seen in the figures
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Figure 7. Estimated β̂ for RWC piano 1

7 to 11, that the NMF as well as our proposed CG method

show especially in the upper pitch range significantly less

noise in the estimation of β̂ compared to the ICF and MAT

methods. This seems to be caused by the adaptive noise

level used by the NMF method and the peak classification

used by CG for selecting reasonable partials. Also, the use
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Figure 8. Estimated β̂ for RWC piano 2

of a Kulback-Leibler-divergence with euclidean distance



(NMF) and a minimum variance method (CG) for estimat-

ing β shows to be clearly superior to a heuristic grid search

(ICF) or a median method (MAT). The CG method only

shows a slightly higher variance for the RWC 2 data set,

whereas it outperforms NMF on all other data sets up to a

factor of 20 for the RWC 3 data set . The overall estima-
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Figure 9. Estimated β̂ for RWC piano 3
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left channel
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right channel

tion performance is demonstrated in fig. 12. Here, the av-

eraged variance values from all data sets are shown as bars,

whereas their minimum and maximum values are given as

error bars. It can be observed, that the CG method has

the least variance closely followed by the NMF method.

The ICF method is far from being accurate, whereas the

MAT method rates third. In terms of computational per-

formance, as shown in 13, the MAT method is by far the

fastest method, but it clearly lacks in estimation accuracy

in the upper pitch range, whereas our proposed method CG

outperforms NMF which showed similar estimation results

as well as the ICF method.

MAT ICF NMF CG

1e-02

1e-01

1e+00

1e+01

Variance values averaged over all data sets.

Figure 12. Averaged variance of measurements on real

world data according to the tessitura model. The error

bars indicate the minimum and maximum variance values

among all data sets.
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Figure 13. Processing real-time factors for all 4 algorithms

averaged for all data sets with 95% confidence intervalls.

5. CONCLUSION

In this paper we gave an overview about three recent ap-

proaches (ICF, MAT and NMF) for the estimation of the

inharmonicity coefficient and fundamental frequency of in-

harmonic instrument sounds. We pointed out some issues

which are not well addressed in these previous methods

and showed possible solutions for these drawbacks with

our proposed algorithm. In the evaluation we have shown

that for synthetic data with known inharmonicity our pro-

posed algorithm works below an average estimation er-

ror in β of 0.1% which clearly outperforms the ICF and

MAT method and showed similar accuracy as the NMF

method. For real world signals our proposed method again

significantly outperforms the MAT and ICF algorithms and

showed superior performance in computational efficiency

compared with the NMF method which showed a similar

estimation accuracy.

Hence, this article shows that a peak selection algorithm

with adaptive noise and sidelobe rejection paired with a

minimum variance based parameter estimation is a suit-

able strategy for a robust detection of the inharmonicity

coefficient and a signals fundamental frequency.
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