Introduction	Extended Source Filter Model	Subjective Evaluation	Conclusions
	ircam		
	Pompidou		

Extended Source-Filter Model of Harmonic Instruments for Sound Synthesis, Transformation and Interpolation

Henrik Hahn Axel Röbel

henrik.hahn@ircam.fr

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

14 July 2012

1/24

イロン イボン イヨン 「ヨー

Henrik Hahn, Axel Röbel

Introduction		
		ircam Eentre Pompidou

Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions

Henrik Hahn, Axel Röbel

Introduction		
		ircam
		Z Centre
		Pompidou

Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions

3/24 《□》《圊》《喜》《喜》 喜 ����

Henrik Hahn, Axel Röbel

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- Instrument characteristics are discretized
- synthesis sounds static
- no expressive control.

an electronic instrument

- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- synthesis sounds static
- no expressive control.

Henrik Hahn, Axel Röbel

Extended Source-Filter Model of Harmonic Instruments

IRCAM - ONRS - UMR 9912 - STMS, Paris, France

ヘロン 人間 とくほ とくほう

4/24

э

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control.

ヘロン 人間 とくほとく ほう

Henrik Hahn, Axel Röbel

Extended Source-Filter Model of Harmonic Instruments

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

4/24

э

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control.

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

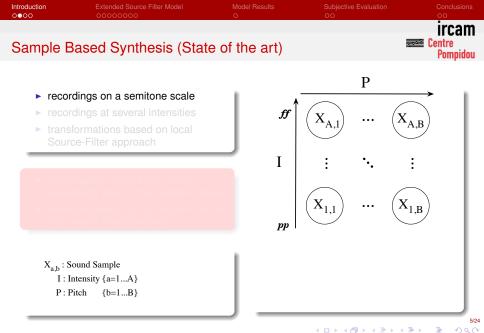
- instrument characteristics are discretized
- synthesis sounds static
- no expressive control

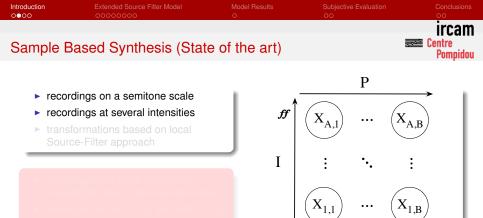
- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control





- recordings on a semitone scale
- recordings at several intensities
- transformations based on loca Source-Filter approach
- soundspace is does not contain knowledge about *intermediate* values
- transformations do not account for rea instrument characteristics

IRCAM - ONRS - UMR 9912 - STMS, Paris, France

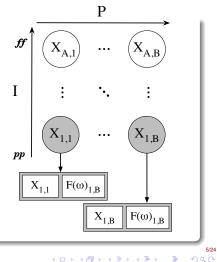
pp

イロト イヨト イヨト イヨト

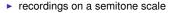
5/24

э

instrument characteristics

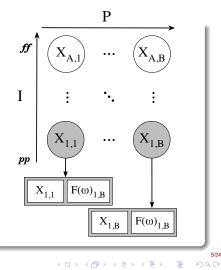

 $X_{a,b}$: Sound Sample I: Intensity {a=1...A} P: Pitch {b=1...B}



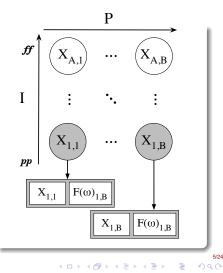

 transformations based on local Source-Filter approach

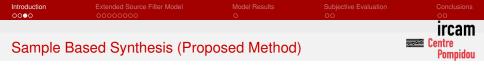
 soundspace is does not contain knowledge about *intermediate* values.
transformations do not account for real instrument characteristics

 $\begin{array}{ll} X_{a,b}: Sound \ Sample & F: Filter\\ I: Intensity \left\{a{=}1...A\right\}\\ P: Pitch & \left\{b{=}1...B\right\} \end{array}$



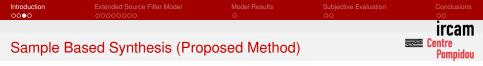
- recordings at several intensities
- transformations based on local Source-Filter approach
- soundspace is does not contain knowledge about *intermediate* values.


 transformations do not account for real instrument characteristics


 $\begin{array}{ll} X_{a,b}: Sound \ Sample & F: Filter\\ I: Intensity \left\{a{=}1...A\right\}\\ P: Pitch & \left\{b{=}1...B\right\} \end{array}$

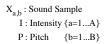
- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach
- soundspace is does not contain knowledge about *intermediate* values.
- transformations do not account for real instrument characteristics
 - $\begin{array}{ll} X_{a,b}: Sound \ Sample & F: Filter\\ I: Intensity \left\{a{=}1...A\right\}\\ P: Pitch & \left\{b{=}1...B\right\} \end{array}$

- usage of State of the Art databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database

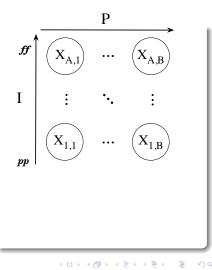

 $X_{a,b}$: Sound Sample I: Intensity {a=1...A} P: Pitch {b=1...B}

Henrik Hahn, Axel Röbel

ヘロン ヘヨン ヘヨン ヘヨン

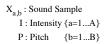

6/24

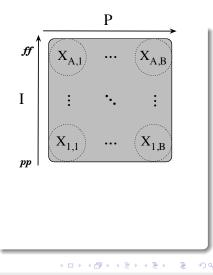
3



usage of State of the Art databases

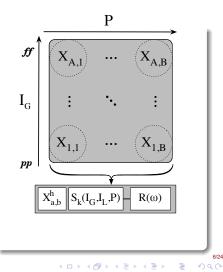
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database




RCAM - CNRS - UMR 9912 - STMS, Paris, France

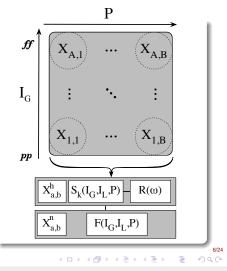
6/24


- usage of State of the Art databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database

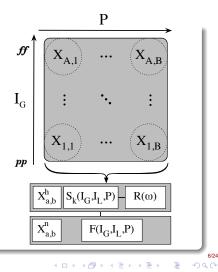


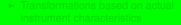
RCAM - CNRS - UMR 9912 - STMS, Paris, France

6/24



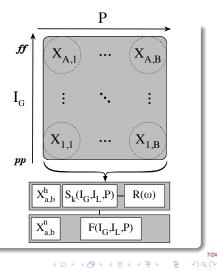
- usage of State of the Art databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database
 - $X_{a,b}$: Sound Sample I_G : Global Intensity I_L : Local Intensity P: Pitch
- S : Partial Function
- k : Partial Index
- R : Resonance Filter
- F : Filter

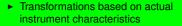

- usage of State of the Art databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database
 - $X_{a,b}$: Sound Sample I_G : Global Intensity I_L : Local Intensity P: Pitch
- S : Partial Function
- k : Partial Index
- R : Resonance Filter
- F : Filter



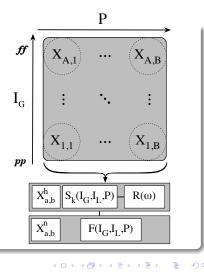
- usage of State of the Art databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for temporal evolution of a sound (ASR) denoted local Intensity
- separately treat harmonic and noise components
- model shall learn its parameters from the database
 - $X_{a,b}$: Sound Sample I_G : Global Intensity I_L : Local Intensity
 - P: Pitch

- S : Partial Function
- k : Partial Index
- R : Resonance Filter
- F : Filter

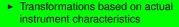



- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

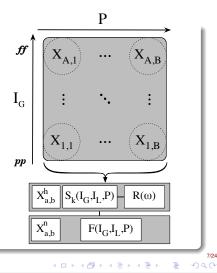
▶ ..

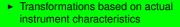

Henrik Hahn, Axel Röbel

- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

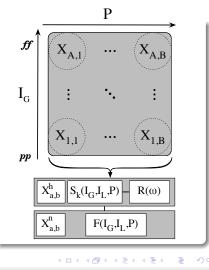

▶ ..

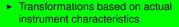
7/24


Henrik Hahn, Axel Röbel


- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

...

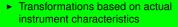

Henrik Hahn, Axel Röbel


- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

▶ ...

7/24

- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments


Р ff X_{A,J} $X_{A,B}$ I_{G} $X_{1,1}$ X_{1,B} pp $X^{h}_{a,b}$ $S_k(I_G, I_L, P)$ $R(\omega)$ $\overline{X_{a,b}^n}$ $F(I_G, I_L, P)$

ヘロト ヘヨト ヘヨト ヘヨト

7/24

э

- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

Р ff X_{A,J} $X_{A,B}$ I_{G} X_{1,1} X_{1,B} pp $\bar{X}^{h}_{a,b}$ $S_{k}(I_{G},I_{L},P)$ $R(\omega)$ $X_{a,b}^{\overline{n}}$ $F(I_G, I_L, P)$

ヘロト ヘヨト ヘヨト ヘヨト

7/24

э

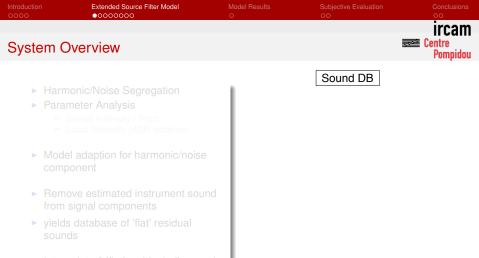
Henrik Hahn, Axel Röbel

►

Extended Source Filter Model		
		ircam E Centre Pompidou

Introduction

Extended Source Filter Model


Model Results

Subjective Evaluation

Conclusions

8/24 ▲□▶▲쿱▶▲콜▶▲콜▶ 볼 옛익은

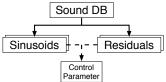
Henrik Hahn, Axel Röbel

9/24

イロン イロン イヨン イヨン 三日

- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

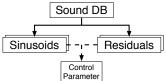
- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals



イロン イロン イヨン イヨン 三日

9/24

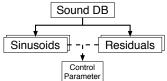
- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals



・ロト ・回ト ・ヨト ・ヨト ・ヨ

9/24

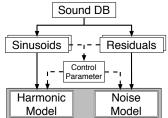
- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals



イロン イロン イヨン イヨン 三日

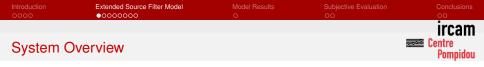
9/24


- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

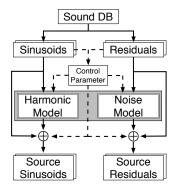

ヘロン 人間 とくほ とくほ とう

9/24

3

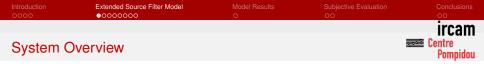


- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

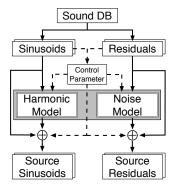


イロン イロン イヨン イヨン 三日

9/24

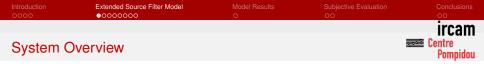


- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

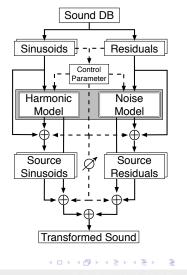


イロン イロン イヨン イヨン 三日

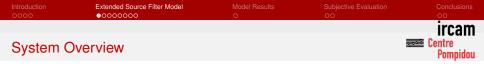
9/24

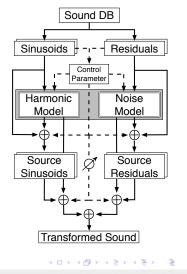


- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals



イロン イロン イヨン イヨン 三日

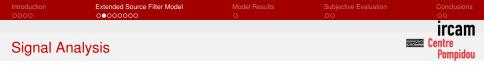

9/24


- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

9/24

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals

9/24

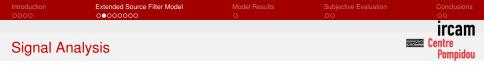

	Extended Source Filter Model		
Signal An	alysis		ircam Eentre Pompidou

Harmonics/Noise Segregation

Henrik Hahn, Axel Röbel

RCAM - CNRS - UMR 9912 - STMS, Paris, Franc

10/24

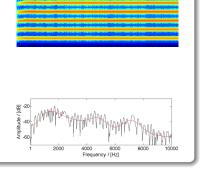

3

<ロト <回 > < 三 > < 三 >

Harmonics/Noise Segregation

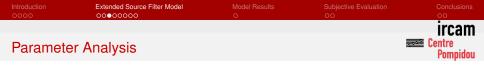
 Partials are modeled as amplitude and frequency function per partial k over time n:


$$A(k,n) \mid f(k,n)$$



Harmonics/Noise Segregation

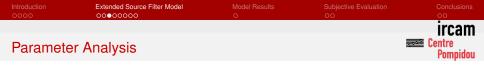
 Partials are modeled as amplitude and frequency function per partial k over time n:


$$A(k,n) \mid f(k,n)$$

イロト イヨト イヨト イヨト

10/24

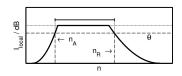
Obtained from meta data provided by the Database


Local Intensity

- Local intensity reflects amplitude envelope over time: l_L(n).
- Threshold method to determine attack/release time frames n_A, n_B

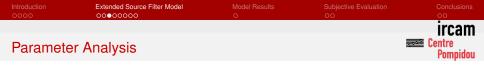
Temporal Segmentation

Segmentation using an overlapping scheme to define n_s = {n_a, n_r}


Obtained from meta data provided by the Database

Local Intensity

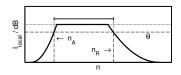
- Local intensity reflects amplitude envelope over time: I_L(n).
- Threshold method to determine attack/release time frames n_A, n_R


Temporal Segmentation

Segmentation using an overlapping scheme to define n_s = {n_a, n_r}

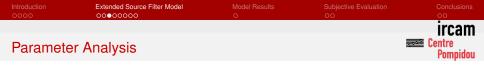
・ロ・ ・ 日・ ・ ヨ・ ・ 日・

11/24


Obtained from meta data provided by the Database

Local Intensity

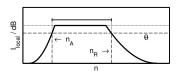
- Local intensity reflects amplitude envelope over time: I_L(n).
- Threshold method to determine attack/release time frames n_A, n_R

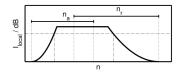

Temporal Segmentation

▶ Segmentation using an overlapping scheme to define n_s = {n_a, n_r}

・ロト ・ 同ト ・ ヨト ・ ヨト

11/24


Obtained from meta data provided by the Database


Local Intensity

- Local intensity reflects amplitude envelope over time: I_L(n).
- Threshold method to determine attack/release time frames n_A, n_R

Temporal Segmentation

Segmentation using an overlapping scheme to define n_s = {n_a, n_r}

ヘロト ヘヨト ヘヨト ヘヨ

11/24

	Extended Source Filter Model		
Harmonic I	Vodel		ircam Eentre Pompidou

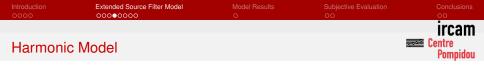
- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus

using log-domain values

Partial function


 $S^{k,s}(I_G, I_L, m)$

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

12/24

Resonance filter

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f

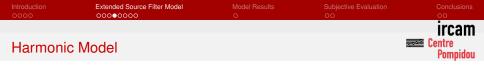
- invariant filter
- refers mainly to the instrument corpus

using log-domain values

Partial function

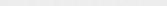
 $S^{k,s}(I_G, I_L, m)$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・


12/24

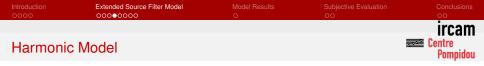
Resonance filter

IRCAM - CNRS - L


Henrik Hahn, Axel Böbel

- function for each k depending on pitch m (MIDI) and **both intensities** I_G and I_I
- separate functions s for attack-sustain and sustain-release

Features by frequency f


Henrik Hahn, Axel Böbel

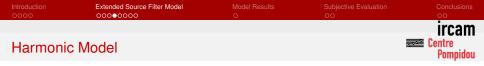
・ロン ・回 と ・ ヨン・

12/24

3

- function for each k depending on pitch m (MIDI) and **both intensities** I_G and I_I
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f


Henrik Hahn, Axel Böbel

Partial function

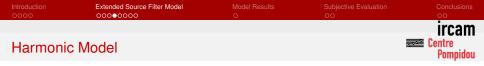
 $S^{k,s}(I_G, I_L, m)$

ヘロン ヘヨン ヘヨン ヘヨン

12/24

- function for each k depending on pitch m (MIDI) and **both intensities** I_G and I_I
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f


Henrik Hahn, Axel Böbel

Partial function

 $S^{k,s}(I_G, I_L, m)$

ヘロン ヘヨン ヘヨン ヘヨン

12/24

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

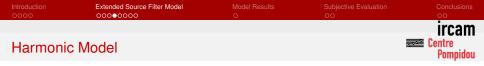
Features by frequency f

- invariant filter
- refers mainly to the instrument corpus

using log-domain values

Partial function

 $S^{k,s}(I_G, I_L, m)$


ヘロン ヘヨン ヘヨン ヘヨン

12/24

э

Resonance filter *R*(*f*)

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

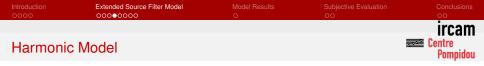
Features by frequency f

- invariant filter
- refers mainly to the instrument corpus

using log-domain values

Partial function

 $S^{k,s}(I_G, I_L, m)$


<ロ> (四) (四) (日) (日) (日)

12/24

3

Resonance filter *R*(*f*)

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus
- using log-domain values

Partial function

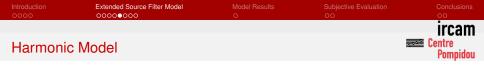

 $S^{k,s}(I_G, I_L, m)$

<ロ> (四) (四) (日) (日) (日)

12/24

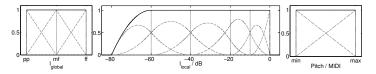
3

Resonance filter *R*(*f*)


$\hat{A}^{k,s}(I_G,I_L,m,f(k,n)) = S^{k,s}(I_G,I_L,m) + R(f(k,n))$

Model of partial function using tensor-product B-splines:

IRCAM - CNRS - UMR 9912


Henrik Hahn, Axel Röbel

$$\hat{A}^{k,s}(I_G, I_L, m, f(k, n)) = S^{k,s}(I_G, I_L, m) + R(f(k, n))$$

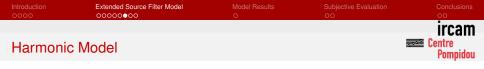
Model of partial function using tensor-product B-splines:

$$S^{k,s}(I_G, I_L, m) = \sum_{\rho,q,t}^{P,Q,T} B_{\rho}(I_G) B_q(I_L) B_t(m) \quad \cdot \quad \gamma_{\rho,q,t}^{k,s}$$

B-Spline functions for $B_p(I_G)$, $B_q(I_L)$, $B_t(m)$

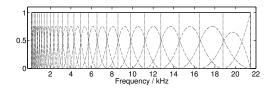
13/24

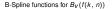
< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ


$\hat{A}^{k,s}(I_G,I_L,m,f(k,n)) = S^{k,s}(I_G,I_L,m) + R(f(k,n))$

model of resonance filter using one-dimensional B-splines

Henrik Hahn, Axel Röbel


IRCAM - CNRS - UMR 9912 - STMS, Paris, France



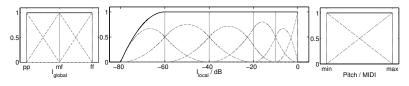
$$\hat{A}^{k,s}(I_G, I_L, m, f(k, n)) = S^{k,s}(I_G, I_L, m) + R(f(k, n))$$

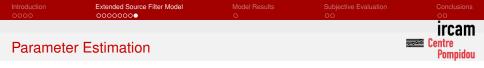
model of resonance filter using one-dimensional B-splines

$$R(f(k,n)) = \sum_{v}^{V} B_{v}(f(k,n)) \cdot \lambda_{v}$$



14/24


イロン イボン イヨン 一日


Cepstral coefficients are described using a single tensor-product B-spline model:

$$\hat{C}^{k,s}(I_G, I_L, m) = \sum_{p,q,t}^{P,Q,T} B_p(I_G) B_q(I_L) B_t(m) \quad \cdot \quad \delta_{p,q,t}^{k,s}$$

B-Spline functions for $B_p(I_G)$, $B_q(I_L)$, $B_t(m)$

15/24 《 □ ▶ 《 @ ▶ 《 볼 ▶ 《 볼 ▶ 일 ~ 옛 역 ල

Iterative method using Conjugate Gradient

$$\mathcal{O}_{h} = \frac{1}{2} \sum_{s=1}^{2} \sum_{k,n_{s}}^{K,N_{s}} |A(k,n_{s}) - \hat{A}^{k,s}(I_{G},I_{L}(n_{s}),m,f(k,n))|^{2}$$

16/24

-

イロン イボン イヨン

$$\mathcal{O}_n = \frac{1}{2} \sum_{s=1}^{2} \sum_{l,n_s}^{L,N_s} |C(l,n_s) - \hat{C}^{k,s}(l_G,l_L(n_s),m)|^2$$

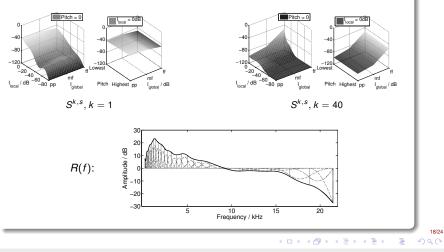
Henrik Hahn, Axel Röbel

	Model Results	
		ircam Ecentre Pompidou

Introduction

Extended Source Filter Model

Model Results


Subjective Evaluation

Conclusions

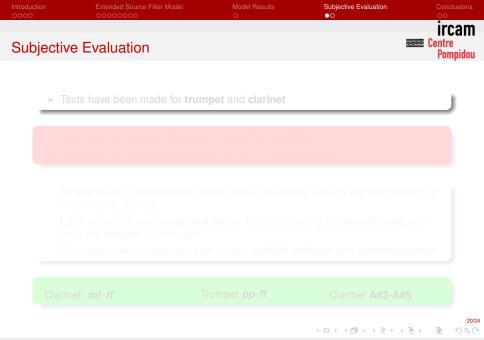
17/24 《 다) 《 라) 《 분) 《 분) 《 분) 외숙은

Henrik Hahn, Axel Röbel

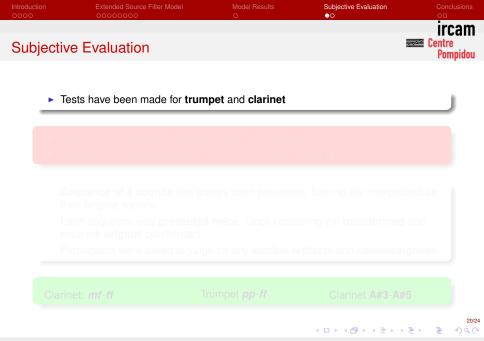
	Subjective Evaluation	
		ircam Ecentre Pompidou

Introduction

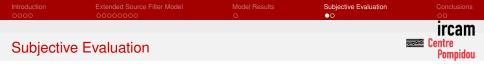
Extended Source Filter Model


Model Results

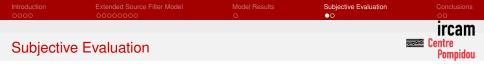
Subjective Evaluation


Conclusions

19/24 ▲□▶▲쿱▶▲콜▶▲콜▶ 볼 옛익은


Henrik Hahn, Axel Röbel

Henrik Hahn, Axel Röbel


Henrik Hahn, Axel Röbel

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Each sequence was presented twice. Once containing the transformed and once the original counterpart

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Each sequence was presented twice. Once containing the transformed and once the original counterpart

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

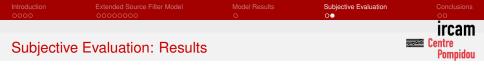
Each sequence was **presented twice**. Once containing the **transformed** and once the **original** counterpart

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

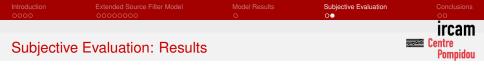
Each sequence was **presented twice**. Once containing the **transformed** and once the **original** counterpart

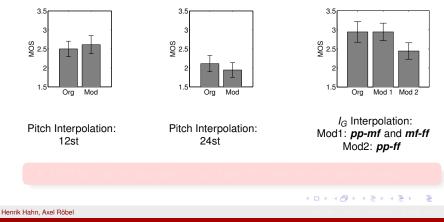
- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Each sequence was **presented twice**. Once containing the **transformed** and once the **original** counterpart

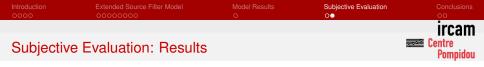


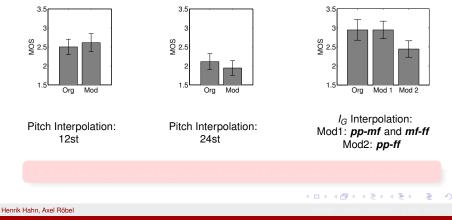

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

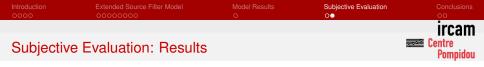

Each sequence was **presented twice**. Once containing the **transformed** and once the **original** counterpart

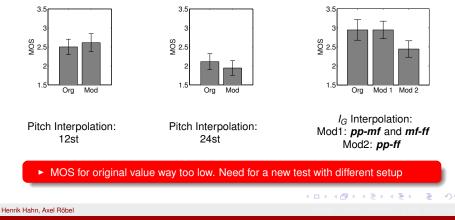


- Measured the Mean Opinion Score for both instruments at once
- Org represents original samples, Mod1 and Mod2 represent synthesized ones.




- Measured the Mean Opinion Score for both instruments at once
- Org represents original samples, Mod1 and Mod2 represent synthesized ones.


21/24


- Measured the Mean Opinion Score for both instruments at once
- Org represents original samples, Mod1 and Mod2 represent synthesized ones.

21/24

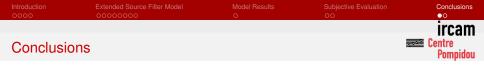
- Measured the Mean Opinion Score for both instruments at once
- Org represents original samples, Mod1 and Mod2 represent synthesized ones.

21/24

		Conclusions
		ircam E Centre Pompidou

Introduction

Extended Source Filter Model


Model Results

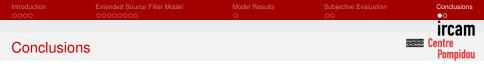
Subjective Evaluation

Conclusions

22/24 ▲□▶▲쿱▶▲콜▶▲콜▶ 볼 옛९ල

Henrik Hahn, Axel Röbel

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results


More instruments need to be adressed (Strings, Piano, Guitar, ...

A subjective evaluation needs to be repeated with a different setup.

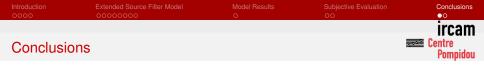
・ロ・・@・・ヨ・・ヨ・ ヨー うへ(

23/24

Henrik Hahn, Axel Röbel

A parametric model for harmonic instruments

- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results


More instruments need to be adressed (Strings, Piano, Guitar, ...

A subjective evaluation needs to be repeated with a different setup.

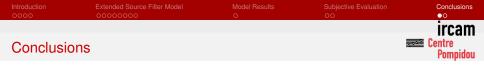
<ロ> <@> < 注> < 注> < 注> < 注</p>

23/24

Henrik Hahn, Axel Röbel

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

More instruments need to be adressed (Strings, Piano, Guitar, ...


A subjective evaluation needs to be repeated with a different setup.

< ロ > < 団 > < 豆 > < 豆 > 、 豆 > シス(

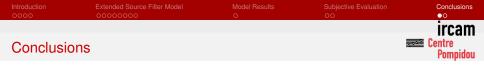
23/24

Henrik Hahn, Axel Röbel

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

More instruments need to be adressed (Strings, Piano, Guitar, ...

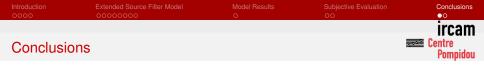

A subjective evaluation needs to be repeated with a different setup.

・ロ・・聞・・ヨ・・ヨ・ ヨー うら(

23/24

Henrik Hahn, Axel Röbel

IRCAM - CNRS - UMR 9912 - STMS, Paris, France


- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- > An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

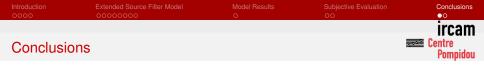
More instruments need to be adressed (Strings, Piano, Guitar, ...

A subjective evaluation needs to be repeated with a different setup.

23/24

Henrik Hahn, Axel Röbel

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- > An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

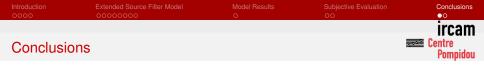

More instruments need to be adressed (Strings, Plano, Guitar, ...)
A subjective evaluation needs to be repeated with a different setup

Henrik Hahn, Axel Röbel

ヘロン 人間 とくほ とくほ とう

23/24

3


- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- > An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results
- More instruments need to be adressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup

Henrik Hahn, Axel Röbel

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

ヘロン ヘヨン ヘヨン ヘヨン

23/24

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines

23/24

ヘロン 人間 とくほ とくほ とう

- An harmonic model separately representing features by partial index and frequency
- > An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results
- More instruments need to be adressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup

Henrik Hahn, Axel Röbel

	Extended Source Filter Model		Conclusions ○●
Fin			ircam Eentre Pompidou

Thanks for listening

Henrik Hahn, Axel Röbel

RCAM - CNRS - UMR 9912 - STMS, Paris, France