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ABSTRACT

In this paper we present a new technique for sample-based

sound synthesis. The approach comprises the analysis of

sounds of an instruments sound database, a parameter es-

timation for an instrument model and a sound synthesis

using this model together with the analyzed sounds. The

analysis of the sounds is carried out by the segregation of

each sound into a sinusoidal and noise component and ex-

tracting certain control parameters from both. The com-

ponents will be modeled using an extended source-filter

model, whereas the harmonic component will be repre-

sented by a non-white source and a resonator filter and

the noise component by a single filter. Model parame-

ters are represented by means of weights of tensor product

B-splines (basic-splines) covering the instruments sound

characteristics over its full pitch range, global intensities

and the sounds temporal evolution. This structured sound

representation will allow enhanced source filter based sound

manipulations. The paper concludes with a subjective eval-

uation presented for comparison with state of the art sound

transformations.

1. INTRODUCTION

The purpose of the present article is to establish a compact

model of the source and filter characteristics of a complete

musical instrument, including all the modifications of the

spectral color that are related to changes of the intensity

and/or pitch. The target application for this research is ex-

pressive sound synthesis in music samplers that provides

control parameters for dynamic intensity and pitch changes

that produce realistic sound changes that relate to the pa-

rameter transitions.

Source filter models are often used for physical modeling

of musical instruments [1] and sound transformations [2].

These source filter models, however, are not learned from

sound signals, and generally, due to their specific form,

they cannot be used to control and improve results of sound

transformations. The huge amount of instrument sample

databases that are available today (RWC [3], Vienna Sym-

phonic Library, IRCAM/Univers sons Solo Instruments)
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opens a new approach to sound representation that consists

of training instrument sound signal models with physically

meaningful parameters using the available sound databases

as training data. Related approaches to instrument model-

ing have been used recently notably in the context of poly-

phonic instrument recognition and sound separation [4],

[5], [6], [7]. Especially interesting in the present context is

the approach described in [4] because there, similar to the

joint estimation of glottic pulse and vocal tract for speech

signals, a joint estimation of source and filter allows es-

timating excitation signals that are physically reasonable

and not necessary white. These source filter models of

musical instruments can be used to guide the representa-

tion and transformation of musical sounds of solo instru-

ments. The separation of sinusoidal and noise signal com-

ponents [8], [9] extends the source filter approach, because

filters for sinusoidal and noise signal components can be

separately established. In our work we followed a similar

extension of the source filter model as proposed by [4] tar-

geting however the synthesis of musical instrument sounds

from control parameters that cover pitch and intensity con-

tours as well as global note intensity. Initial results related

to the instrument model representation using an extended

source filter model including non white source and a fixed

resonator filter have been presented in [10]. In the follow-

ing section we describe a significantly refined version of

the approach including a pitch and global as well as lo-

cal intensity dependent source/filter model and we will de-

scribe first results obtained from signal synthesis from the

models showing that the model allows to faithfully repro-

duce the sound modifications related to intensity and pitch

changes. The article is organized as follow.

Section 2 will describe the general system to do sound

transformations based on the source-filter approach using

trained instrument models. In sections 3 we will present

the analysis of a database of instrument sounds and in sec-

tion 4 a detailed description will be given how to establish

an instrument model using tensor product B-splines. The

estimation of model parameters will be discussed in sec-

tion 5 and the synthesis of the sounds will be shown in

section 6. An evaluation of our approach will be presented

in section 7 followed by a conclusion.

2. SYSTEM OVERVIEW

An overview of the system we created is given in Figure

1. Our approach first needs a database of recorded in-
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Figure 1. System overview.

struments sounds covering the whole pitch range of the

instrument and also providing several intensity levels for

each pitch. Every recording must have a fixed pitch and a

certain intensity. As our approach assumes that harmonic

and noise signal components need to be treated separately,

all input sounds from the database will be segregated into

their deterministic and stochastic components. Addition-

ally, several control parameters will be extracted from the

input sounds, representing the criteria for which varying

sound characteristics may be captured by the models. The

model adaption scheme therefore takes a database of ana-

lyzed input sounds as well as their respective control pa-

rameters. The adapted models will then be used to extract

white source signals from the input signals by removing

the captured instrument characteristics estimated by the

model from each single sound. Accordingly, these source

signals will only contain information which is not covered

by the instrument model. Therefore the source residual

signals will be almost white noise, hence the harmonic

source signals will be almost white discrete signals con-

taining pure sinusoids. The filter functions for all transfor-

mations can then be obtained from both models by using

control parameters according to a desired sound and ap-

plying the estimated filters on interpolated versions of the

source signals to get the target sound.

3. SOUND ANALYSIS

Assuming a sound can be fully represented as the sum of

time-varying sinusoids and a residual signal as shown in

(1) we utilize an analysis method based on [8] to obtain

these signal components from an input signal.

y(n) =

K
∑

k

a(k, n)cos(φ(k, n)) + ǫ(n) (1)

In equation (1), k reflects the index of the sinusoid and n
denotes the frame index. Finally, all sinusoidal amplitudes

are transformed to decibel domain denoted A(k, n). Their

slowly varying frequency values will be written f(k, n).
The residual noise signal, obtained by subtracting the syn-

thesized sinusoids from the input signal is further processed

by means of estimation of the time-varying spectral enve-

lope. Since we assume the residual signal to be stochastic

we process the filtered cepstrum [11] with an order set to

L ≤ fs
2f0

and denote the cepstral coefficients C(l, n) with

1 ≥ l ≤ L and n represents again the frame index. The fil-

tered cepstrum can be considered to be a smoothed version

of the amplitude spectrum, but as its following the mean

of the amplitude spectrum it estimates the signals energy

and while filtering all components above L the envelope

becomes smooth enough to not follow the spectral gaps

introduced by subtracting the sinusoids from the original

input signal.

4. ANALYSIS OF INDEPENDENT PARAMETERS

We identified four control parameters being independent

of each other and separately adjustable with a considerable

impact on an instruments sound. These parameters there-

fore have to be taken into account explicitly to establish

an instrument model covering a significant amount of the

sound characteristics of a quasi-harmonic instrument.

4.1 Pitch m

The pitch of each single instrument recording given as MIDI

value in our case can be read from meta tagged file names,

but could also be obtained from the input signal by means

of pitch estimation.

4.2 Global Intensity Ig

We denote the overall loudness of each signal as its global

intensity. The database we use includes meta tags for each

sound file indicating one of the three global intensity levels

pp, mf and ff.

4.3 Local Intensity Il

The evolution of the energy over time n is processed sep-

arately for the sinusoidal and noise components. These

functions will be denoted as local intensity Il(n) expressed

in decibel and normalized to a maximum of 0dB to de-

scribe each sound component in relation to its maximum

energy.

4.4 Temporal Segmentation s ∈ {1, 2}, na, nr

The segmentation of an instrument sound into its attack,

sustain and release states is performed by analyzing the lo-

cal intensity function using an adaptive threshold θ shown

in Figure 2a. The threshold will be set to some reason-

able value below the average energy value of the signals
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Figure 2. Temporal segmentation scheme.

sustain region to determine the signals attack (nA) and re-

lease point (nR). Within the instrument model but also for

sound transformation we do not need an exact estimate of

the attack or release time frame since we are only model-

ing two segments as illustrated in Figure 2b. The segment

s = 1 using frame indices na is covering the signals on-

set to some point within the signals sustain region while

segment s = 2 obtaining frame indices nr covers a region

starting in the middle of the sustain and ending with the

signals offset. The indices are obtained using eq. (2) and

(3) considering N to be overall amount of frames within

the signal.

1 ≤ na ≤
1

3
(nA + 2 nR) (2)

N ≥ nr ≥
1

3
(2 nA + nR) (3)

5. INSTRUMENT MODEL

Following the assumption that instrument sound changes

due to pitch or intensity modifications affect their harmonic

and noise component differently, we establish two models

to separately represent their sound characteristics. The har-

monic model will be expressed by partial amplitudes rep-

resented in decibels, whereas the noise model will be es-

tablished in cepstral domain modeling cepstral coefficients

directly, but both models will incorporate the temporal seg-

mentation following section 4.4.

5.1 Harmonic Model

For a model of the harmonic content of an instrument sound

we establish an extended source filter approach as in eq. 4,

assuming the source S to be a function of the partial in-

dex k and temporal segment s depending on the control

parameters (. . .) and a resonance filter R depending on the

partials frequencies only.

Âk,s(. . . , f(k)) = Sk,s(. . .) +R(f(k)) (4)

In [10] we introduced a harmonic model employing a

source and a resonator filter expressing features correlated

with f0 by a source and f0 independent features by a reso-

nance filter. Using this distinction the source filter can also

be described as a non white excitation filter representing

a vibrating string or air pipe, whereas the resonator will

exhibit all signal components not directly related to the

excitation. This primarily refers to the corpus of a mu-

sical instrument. According to this approach, the source

will generate an envelope as a function of the partial index

k for a certain temporal segment and without considering

the fundamental, while the resonance filter colors this en-

velope taking the frequencies of the partials into account

explicitly.

In the formerly published approach the time-varying char-

acteristics of an instrument sound has been assumed to be

directly related to the temporal evolution of the local in-

tensity. We further considered the sounds temporal vari-

ations to be reflected by the source as they are assumed

to be correlated with the fundamental. In our current ap-

proach we extend this model by facilitating the source fil-

ter to also incorporate variations according to the signals

global intensity. This is straightforward since the source

filter already expresses the signals excitation and variations

of the global intensity of instrumental sounds are mainly

achieved by varying its excitation. Moreover, we endow

the source filter to slightly vary with the sounds fundamen-

tal frequency to reproduce sound variations due to pitch

variations, not originating in the instruments resonator, but

a certain change in the excitation of the signal. Consider-

ing our first distinction of expressing features correlated to

or independent of f0 separately, this can be contradictory

and therefore it will be mandatory to enforce the model to

capture only slow changes over pitch within the source fil-

ter while retaining the resonator to reflect rapid changes in

frequency. This will be discussed in detail in section 6.1.

Given this requisitions for the source filter to model the

f0 correlated features they can be expressed by their par-

tial indices as these features are in a logical relation to its

fundamental neglecting their actual frequency. Taking into

account our postulate of separate models for the attack to

sustain and sustain to release phase of a signal, each partial

therefore needs to get an individually modeled trajectory

as a function of global intensity Ig , local intensity Il and

pitch m for both temporal segments. To smoothly model

such multi-dimensional trajectories we propose to use one-

dimensional B-splines extended to multiple dimensions by

using a tensor product. The spline subspace is defined for

each single dimension as usual while the tensor product

function for our three-dimensional case can be expressed

as in eq. (5).

Sk,s(Ig, Il,m) =

P,Q,T
∑

p,q,t

Bp(Ig)Bq(Il)Bt(m) · γk,s
p,q,t

Sk,s(Ig, Il,m) =

U
∑

u

BS
u (Ig, Il,m) · γk,s

u

(5)

Such tensor products serve as a straightforward and sim-

ple generalization of one-dimensional basis functions to

the n-dimensional case. As shown in eq. (5) a hyperplane

to model the characteristic for a single partial k in either

temporal segment s is constructed by P B-spline functions

along the axis for global intensity Ig , Q B-spline functions

along Il and another T basis functions covering the pitch

dimension. To simplify this expression we will make use

of BS
u with respective weights γk,s

u to indicate the usage

of a tensor product spline whereas S indicates source. An



Figure 3. Two-dimensional tensor product B-spline model

for Ig and Il modeling a surface using a 2nd order B-spline

model with 2 segments along Ig and a 3rd order along Il
with 5 segments.

example for the two-dimensional case using tensor product

B-splines for Ig and Il is illustrated in Figure 3.

Contrary to the source, the resonator filter will be con-

stant throughout the temporal evolution of an instrument

sound and only be dependent on the partials frequency,

but since the partials will only reveal a sampled version of

the real instruments resonance characteristic we propose to

use a one-dimensional B-spline to model a continuous fil-

ter function as shown in eq. (6) with spline functions BR

indicating resonance filter splines. However the maximum

bandwidth of the resonance filter cannot exceed the range

between the lowest and highest partial frequency existing

in the instruments sound database.

R(f(k)) =
V
∑

v

BR
v (f(k)) · λv (6)

Assuming a musical instrument having pronounced and

distinct resonances in the lower or middle registers and

less prominent but dense in the upper, we utilize the well-

known Mel-scale to define the bandwidth of the B-spline

segments along the frequency axis.

5.2 Noise Model

The noise component of an instrument sound will contain

all the non-harmonic content encompassing various wind

sounds for brass and woodwind instruments or bow noise

for string instruments for example. In contrast to the har-

monic model we use a classical source filter approach to

model the noise component of an instrument sound, as-

suming the noise to be produced by a source and colored

using a single filter. This filter will however be modeled

similar to the source filter for the harmonic model tak-

ing into account varying characteristics dependent on the

global and local intensity as well as the pitch. Therefore

it will utilize the same multi-dimensional B-spline model

but with different weights δ, though in contrast we are not

modeling an explicit noise envelope, but the cesptral coef-

ficients directly.

Ĉl,s(Ig, Il,m) =

U
∑

u

BS
u (Ig, Il,m) · δl,su (7)

As illustrated by eq. (7) each cesptral coefficient l is mod-

eled separately for the attack to sustain and sustain to re-

lease segment of a signal according to the intensity param-

eters and the signals pitch.

6. PARAMETER ESTIMATION

For the instrument models to capture the timbral character-

istics of a certain musical instrument, their B-spline weight-

ing parameters γ, λ and δ need to be estimated using a

database of sounds of this instrument. This trainings data

consequently will be a set of A(k, n) for the harmonic as

well as a set of C(l, n) for the noise model, but as our

model reflects the characteristics of a sound according to

the control parameters Ig , Il, m and s, they will also be

needed by the adaption scheme for each input sound. The

estimation of the parameters for the harmonic and noise

model can be solved independently, since both signal com-

ponents have their own timbral characteristics.

Estimating the parameters means conducting a regression

analysis and as both models are linear, a global optimum

will exist. In case of the noise model the global optimum

is unique, but for the harmonic model the sum of the two

filters introduces a manifold of optimal solutions, because

every solution for the two filters can also be expressed

with a constant added to either one of them and subtracted

from the other. A method to resolve this ambiguity will be

shown in 6.1.

Finding the solution for a linear optimization problem

usually is based on creating a set of linear equations as

A = Mx and somehow solving M
−1 to compute x. In

case of the harmonic model this it hardly possible to solve,

as all model parameters γ and λ have to be estimated jointly

due to their interconnection within the resonator filter and

therefore the size of the transformation matrix will become

extraordinarily large. For small databases with 100 sounds

of intermediate length and around 100 partials to model,

the matrix will already be around 10GB large using only

a few B-spline components for each independent parame-

ter, but for larger databases and more complex models M
can easily exceed several TB. In case of the noise model,

the transformation matrix M can easily be constructed for

each single cepstral coefficient of either temporal segment

independently with much less memory demand and inverted

to obtain δl,s, but this has been shown to be not numeri-

cally robust. Therefore we use the conjugate gradient (CG)

method [12] to estimate the model parameters in an iter-

ative manner for both models. Utilizing any gradient de-

cent method implies constructing an objective function and

minimizing it regarding the models parameters. To estab-

lish such, eq. (8) denotes, how to use the instrument model,

to estimate a partials amplitude given the input parameters

regarding a certain instrument sound. Equation (8) can also

easily be rewritten for the noise model.

Â(k, ns) = Âk,s(Ig, Il(ns),m, f(k, ns)) (8)



Using eq. (8) the objective functions (9) and (10) can

be established in a least squares sense for a single instru-

ment sound, taking into account the temporal segmentation

s and the evolution of all partials k or cepstral coefficients

l respectively along time frames ns.

Oh =
1

2

2
∑

s=1

K,Ns
∑

k,ns

(

A(k, ns)− Â(k, ns)
)2

(9)

On =
1

2

2
∑

s=1

L,Ns
∑

l,ns

(

C(l, ns)− Ĉ(l, ns)
)2

(10)

Calculation of the gradients of (9) and (10) according

to the model parameters γk,s
u , λv and δl,su is simple and

straightforward.

6.1 Regularization

The inherent ambiguity of the two filters of the harmonic

model being processed at once can be solved by introduc-

ing a regularization term fixing either filter function around

an arbitrary value. Due to the multi-dimensionality of the

source filter, its preferable to bound the resonance filter.

Eq. (11) fixes the resonance filter around 0dB while esti-

mating the model parameters by penalizing filter configu-

rations not centered around the desired value.

R1 = ǫ1

F
∑

f

(R(f))
2

(11)

Here, f defines a frequency grid at which the resonance

filter is being evaluated and ǫ1 denotes a regularization fac-

tor and again, its derivative is simple and straightforward.

A second ambiguity had been introduced by modeling

the source filter in dependance of the pitch, resulting in

an ambiguity with the resonance filter. To resolve we uti-

lize eq. (12) to penalizes strong differences between neigh-

boring B-spline coefficients along the pitch dimension and

therefore favor only slight amplitude changes over pitch

for each partial.

R2 = ǫ2

K,2
∑

k,s

P,Q
∑

p,q

T−1
∑

t=1

(

γk,s
p,q,t+1 − γk,s

p,q,t

)2

(12)

This regularization is as long as being used for a linear

function a correct approximation of its derivative, since it

only takes its coefficients into account, but as only slight

variations for the pitch model are favored anyway, this re-

striction is acceptable.

6.2 Model Selection

In this section we describe a potential setting for the instru-

ment models to capture an instruments timbral characteris-

tic given a specific set of control parameters.

In our case, the instrument database had been labeled

with three different values for the global intensity of each

single instrument sound, namely pp, mf and ff. Three dis-

crete points along the Ig-axis therefore will restrict us from

pp mf ff
0

0.5

1

I
global

(a) B-spline model for Ig

min max
0

0.5

1

Pitch / MIDI

(b) B-spline model for m

−80 −60 −40 −20 0
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I
local

 / dB

(c) B-spline model for Il

Figure 4. All three B-spline models for the source filter.

Spline functions are shown dashed, position of knots is de-

picted with dotted lines and summed splines are displayed

as solid line.

using more than three B-spline functions for the system to

be well-defined. Moreover, due to this restriction, the sys-

tem can not be more complex than linear and therefore we

propose to use a B-spline model as illustrated in Figure 4a.

In section 6.1 we showed, due the ambiguity between our

source pitch model and the resonance filter, the need for

a linear model along m, hence Figure 4b demonstrates a

B-spline model representing just a linear function over the

varying pitch.

Establishing the B-spline models for the local intensity as

well as the resonator filter requires a deeper understanding

of our instrument model. It is important to realize that the

source filter will create a hyperplane for each single par-

tial over all global as well as local intensities, even though

they might never appear for certain values. This will surely

happen at higher order partials, who will never appear in pp

sounds or at lower values of the local intensity. This makes

the source filter inevitably underdetermined for higher or-

der partials and they therefore would converge to 0 at re-

gions where the model never have seen data, denoting very

high amplitude values. In order to avoid this, they need to

get faded to very low amplitude values already within the

model, thus we introduce a general offset for the instru-

ment model together with a B-spline model for the local

intensity without its lowest spline, forcing all partial am-

plitude values to fade to the offset value, when the local

intensity reaches its minimum depicted in Figure 4c.

For the harmonic model, the offset can easily be added

to the two filters (eq. (13)) and as the resonance filter is

bounded around 0dB, its reasonable to set the offset for

all partials to some value reflecting the maximum dynamic

across all partials.

Âk,s = Sk,s +R+Θh (13)

Since the noise model on the contrary models cepstral

coefficients and not amplitudes, only the first coefficients

will have a significant impact on the envelopes amplitude,

whereas higher order coefficients only denote the envelopes
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Figure 5. Approximative transformation matrix M show-

ing 4 sound examples.

variation over frequency. Using the same B-spline model

for the local intensity of the noise model, we only need to

add an offset to the first cepstral coefficient indicating a

minimum noise level and use a 0 offset for all other coeffi-

cients (eq. (14)). This will finally enforce the noise model

to converge to a constant envelope over frequency at the

minimum of the local intensity.

Ĉl,s = Sl,s +Θl
n (14)

The B-spline model for the resonator filter will define its

resolution over frequency. The more complex the model,

the more accurately resonances can be modeled, but as

the partials frequency values only reveal a sampled version

of the instruments resonance characteristics, its resolution

will be limited. To find a maximum resolution we use an

approximation of the transformation matrix M to measure

if it is determined. To approximate, we first reduce the

source filter to a constant model, neglecting varying val-

ues for Ig , Il, m and s, for all partials, because we already

know that the source filter will be underdetermined. Sec-

ond, all partials frequency values will assumed to be con-

stant over time, therefore all time frames within the matrix

will collapse to a single value. This makes the transforma-

tion matrix rather small and we can compute the rank of

the matrix. In fig. 5 a transformation matrix M is shown.

Each point in the linear lines in the upper part of the ma-

trix represent the source value for a single partial. Several

lines indicate several sound files. The lower part illustrates

the frequency position of each partial, by means of the

spline functions v hit by the frequency value f(k) of the

current partial k. Computing the rank of this matrix will

at maximum give a value m − 1 (m being the amount of

rows) reflecting the mentioned ambiguity between the two

filters but also indicating a well defined resonator, as the

sampled resonance function can be uniquely expressed by

the spline functions. Consequently, the highest amount of

spline functions for the resonator filter with a matrix rank

of m − 1, guarantees a unique solution for the resonance

filter.

In Figure 6 a model for a resonator filter is shown using a

knot sequence of only 25 elements, but increasing distance

in between them according to the Mel-Scale.

7. SOUND SYNTHESIS

The approach for sound synthesis using the extended source-

filter model is based on 2 consecutive steps. The first step

utilizes the model to process the source signals while in the

second step the model will be used to accomplish the final

sound transformation.

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

Frequency / kHz

Figure 6. Spline model for the resonance filter. Spline

functions are shown dashed, position of knots is depicted

with dotted lines and summed splines are displayed as solid

line. Segment sizes increase with frequency as Mel-scale

filterbank bandwidth increases.

To create the source signal we in fact remove the timbral

characteristics captured by the instrument model creating

almost white source signals. In case of the harmonic com-

ponent this refers to discrete harmonics while for the noise

component this sound will be actually almost white noise.

These source signals therefore will only contain informa-

tion deviating from the estimated instruments sound char-

acteristics and hence carry information which later makes

the synthesis sound natural.

For the creation of the source signals, the input sinusoidal

as well as the residual signals need to be filtered with the

inverse of the estimated signals by the instrument models.

For the harmonic signals this can be done in the sinusoidal

domain by subtracting the estimates as shown in eq. 15.

Āk,s(Ig, Il,m, f(k)) = Ak,s − Âk,s(Ig, Il,m, f(k))
(15)

The noise signals however need to get filtered in time or

spectral domain. We therefore generate the inverse spec-

tral envelopes from the estimated cepstral coefficients and

apply spectral domain filtering using the IRCAM software

superVP.

To interpolate between two source signals a mixing fac-

tor a needs to be defined first, denoting the amount of ei-

ther source signal accounting to the mix. The factor is first

used to time align the sounds to interpolate by processing

the target length of the resulting signal as in eq. 16, Tt de-

noting the target length of the interpolated sound and T1,

T2 denoting the lengths of the sounds to interpolate respec-

tively.

Tt = (T1 ∗ (1− a) + T2 ∗ a) (16)

We again make use of superVP to apply the time-stretching

for the noise signal, but as they do contain only few spec-

tral information and as the stretch factors hardly become

large this is uncritical, hence time-stretching can be applied

without envelope preservation. The sinusoidal signals in-

stead can be time-aligned in sinusoidal domain by means

of stretching the frame positions n → n′ of Ā without al-

tering the actual partial amplitudes or frequencies.

Mixing the time-aligned source signals again has to be

done in either sinusoidal- or time-domain. For the noise

signals this can be done in time-domain adding time-domain

data, but as they are stochastic processes, their energy needs

to be retained. The harmonic signals instead are mixed

in sinusoidal domain using again eq. 16 but substituting
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Figure 7. Source filter functions of two partials for the

attack to sustain segment of the trumpet. The z-axis depict

the amplitude values for the specified partial.

T by partial amplitudes Ā(k, ns) and normalized partial

frequency f(k, ns)/f0. Partials not present in one of the

source signals but in the other will treated as having 0 am-

plitude in this signal and a frequency value according to

f0 · k . This will result in the partial appearing right when

the mix factor starts favoring the signal containing this par-

tial. The mixed source signals now need to get the the es-

timated envelopes applied on using altered control param-

eters I ′g , I ′l , m
′ and f(k)′ as in eq. 17.

Ãk,s(I ′g, I
′
l ,m

′, f(k)′) = Āk,s(Ig, Il,m, f(k))

+ Âk,s(I ′g, I
′
l ,m

′, f(k)′)
(17)

To finally get the desired sound, the harmonic signal needs

to be synthesized using additive synthesis and linearly in-

terpolated in the overlapping region of attack to sustain and

sustain to release segments and added to the mixed and col-

ored noise signal.

8. EVALUATION

To evaluate our approach we trained instrument models for

a trumpet and a clarinet using the specifications for the

model given in section 6.2, as these instruments do not

need further investigations during analysis or synthesis.

Some estimated source filter functions are shown in Fig-

ure 7. Figures 7a and 7b illustrate the estimated function

of the fundamental and Figures 7c and 7d for the 40th par-

tial of the trumpet for the instruments whole pitch range

denoted by Pitch, its range of possible global intensities pp

to ff as well as for a signals temporal evolution expressed

by the evolution of the local intensity Ig .
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Figure 8. Estimated Resonance Filter.

Both models have been used to create pitch transpositions

as well as changes of the global intensity to apply them to

the most common use cases within a music sampler. For

the transposition we have chosen distances of 12 and 24

semitones to interpolate between them, whereas for the in-

tensity interpolation one interpolation layer between each

intensity value had been chosen.

The test has been set up by presenting sequences of in-

strument sounds to the participants. The sequences for

the pitch transpositions consisted of 3 consecutive pitches

starting with an original lower pitch and going up to the

highest pitch according to the transposition to be achieved.

Each sequence has been presented twice, once containing

an original sound sample from the database in the middle

and once containing an interpolated version using the in-

strument model substituting the sound in the middle. This

has been done for the trumpet as well as for the clarinet

once for each transposition distance, resulting in two se-

quences for each pitch transposition and each instrument.

The participants have been asked for the audibility of ar-

tifacts and if the sequence sounds convincing in general.

Finally, they had to choose from a selection of 5 gradually

decreasing values for each sequence ranging from 1 (per-

fectly natural) to 5 (inacceptable). The results are denoted

Org in case of the original sounds and Mod for the results

using our model.

The sequences to evaluate the intensity changes consisted

of 5 consecutive sounds. Starting with an original pp sound

and going up to an original ff sound. For the sequence con-

taining only original sounds an mf sound has been put at

the 3rd position whereas for the 2nd and 4th position the

respective upper one had been put and simply lowered in

amplitude to represent a state of the approach. For evalu-

ating the model 2 different sequences have been presented.

In the first interpolated sounds between pp and ff have been

presented using mix factors of .25, .5 and .75, whereas for

the second sequence an original mf has been put in the

middle and the sounds between pp and mf as well as mf

and ff have been substituted their respective interpolations.

Again, the participants were asked to judge artifacts and if

it sounds convincing to them on the same scale. The two
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Figure 9. Mean opinion scores for the subjective evalua-

tion.

different sequences using our model are denoted Mod 1 in

the former and Mod 2 in the latter. For the test 9 expert

listeners participated and they all were using headphones.

Unfortunately, as can be seen from the unexpected low

values for all 3 evaluations, the participants gave bad Mean

Opinion Score (MOS) even to the original sounds. This

is most likely caused by a not suitable test setup which

might have mislead the participants in judging aspects in

the recordings not part of the investigation. Nevertheless,

as can be seen in Figure 9a and 9b our model achieved a

MOS comparable to the original sounds. For the intensity

interpolation the model using the larger distance interpola-

tion only showed state of art rates whereas for smaller dis-

tances, the MOP significantly outperforms the state of the

art approach. This indicates the model captured the sig-

nificant instrument sound characteristics and successfully

transformed the interpolated sounds.

9. CONCLUSIONS

In this paper we have shown a substantially new approach

of an instrument model applicable for sound transforma-

tion and synthesis. We have presented methods to establish

an instrument model based on the source-filter approach

using tensor product B-splines and a technique to estimate

its parameters using a database of instrument sounds. We

have further given a deep insight into some specific char-

acteristics of this approach and how regularization can be

used to capture the meaningful sound properties of a musi-

cal instrument. We have further shown how to apply sound

synthesis for interpolation between sounds of the database

and we have presented an evaluation of our model demon-

strating the accuracy of the model in terms of pitch trans-

position and the significant improvement for interpolating

intensity layers compared to a state of the art approach.
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