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Yield stress in amorphous solids: A mode-coupling theory analysis

Atsushi Tkeda and Ludovic Berthier
Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
(Dated: August 9, 2018)

The yield stress is a defining feature of amorphous materials which is difficult to analyze theo-
retically, because it stems from the strongly non-linear response of an arrested solid to an applied
deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transi-
tion, and thus offers predictions for the yield stress of amorphous solids. We use this approach to
analyse several classes of disordered solids, using simple models of hard sphere glasses, soft glasses,
and metallic glasses for which the mode-coupling predictions can be directly compared to the out-
come of numerical measurements. The theory correctly describes the emergence of a yield stress
of entropic nature in hard sphere glasses, and its rapid growth as density approaches random close
packing at qualitative level. By contrast, the emergence of solid behaviour in soft and metallic
glasses, which originates from direct particle interactions is not well described by the theory. We
show that similar shortcomings arise in the description of the vibrational dynamics of the glass
phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield

stress and non-linear rheology of amorphous materials.

PACS numbers: 62.20.-x, 83.60.La, 83.80.1z

I. INTRODUCTION

The yield stress is a defining characteristics of amor-
phous solids which represents a robust mechanical signa-
ture of the emergence of solid behaviour in many atomic,
molecular and soft condensed materials undergoing a
transition between fluid and solid states [1, 2]. From
a physical viewpoint, the existence of a yield stress im-
plies that the material does not flow spontaneously un-
less a driving force of finite amplitude is applied, which
represents a very intuitive definition of ‘solidity’. While
properly defining and measuring a yield stress remains
a debated experimental issue [3], we will study simple
model systems where the yield stress can be unambigu-
ously identified as the shear stress ¢ measured in steady
state shear flow, in the limit where the deformation rate
4 goes to zero,

oy = lim o (). 8

¥—0

As such, the yield stress measures a strongly nonlinear
transition point between flowing states for o > oy and
arrested states when o < oy. In this work, we wish to
analyze the dependence of oy upon external control pa-
rameters, such as temperature 7', packing fraction, ¢, in
a wide range of disordered materials. Therefore, our work
differs from most rheological studies of glassy materials
which usually describe a set of flow curves, o = o(%), for
a specific material.

Dense amorphous particle packings represent a broad
class of solids possessing a yield stress, which typically
emerges when either temperature is lowered across the
glass transition temperature 7} in atomic and molecular
glasses (such as metallic glasses), or when the packing
fraction is increased in colloidal hard spheres and soft
glassy materials (such as emulsions and soft colloidal sus-
pensions) [5, 6]. Of course, the range of materials display-
ing a measurable yield stress is much broader [1], but we

restrict ourselves to dense particle systems with a disor-
dered, homogeneous structure, leaving aside systems like
colloidal gels or crystalline and polycrystalline structures.

While our emphasis is mostly on atomic and colloidal
systems, we also include in our discussion materials such
as foams and noncolloidal soft suspensions, where solid-
ity emerges upon compression at the jamming transi-
tion, but for which thermal fluctuations play a negligible
role [7]. While the yield stress in jammed solids results
from the emergence of a mechanically stable contact net-
work between particles rather than a glass transition (8],
it was recently demonstrated that the interplay between
glass and jamming transitions can be experimentally rel-
evant for the rheology of soft colloidal systems as well [9].
In particular, we have shown that the yield stress of soft
repulsive particles displays a very rich behaviour as both
T and ¢ are varied [9], and we suggested that this is rel-
evant to describe materials such as concentrated emul-
sions [10] (see also Ref. [11]).

From the modelling point of view, the complex rheol-
ogy of amorphous yield stress materials is often described
using simplified or coarse-grained descriptions that as-
sume from the start the existence of a yield stress, and
study the response of the solid to the imposed flow [12—
16]. Fewer theoretical approaches can describe both the
emergence of a yield stress together with the rheological
consequences [17-19], as they must then also in prin-
ciple provide a faithful description of the glass or jam-
ming transitions, which represent theoretical challenges
on their own [6]. Therefore it should be clear that pre-
dicting the temperature and density evolution of the yield
stress across a broad range of materials is much more de-
manding than studying the qualitative evolution of a set
of flow curves. Thus, we hope our study will motivate
further theoretical developments to reach this goal.

The mode-coupling theory (MCT) of the glass transi-
tion was first developed in the context of the statistical



mechanics of the liquid state to account for the dynam-
ical slowing down observed in simple fluids approaching
the glass transition [20], but it has also deep connections
to the random first order transition theory of the same
problem, that are well understood [6]. While initially
thought as a theory for the glass transition, it is now ree-
ognized that MCT can make relevant predictions for time
correlation functions for the initial 2-3 decades of viscous
slowing down. Interestingly, this time window is very
relevant for experiments performed in colloidal systems
and in computer simulation studies. This explains why
the theory continues to be developed as of today, and in
particular why its extensions to account for the driven
dynamics of glasses have experimental relevance [21-25].
Many specific aspects of the theory have received numer-
ical and experimental attention in recent years [22, 26],
but a systematic exploration of the yield stress behaviour
has, to our knowledge, not been performed.

To explore different types of materials while keeping
the possibility of a direct comparison to theorical predic-
tions, we concentrate on simple model systems which can
be both efficiently studied in computer simulations to ob-
tain direct measurements of the yield stress, and can also
be studied within a mode-coupling approach. Because
the static structure of the fluid is the only input needed
for the theory, measuring the structure from computer
simulations [27, 28] allows us to directly analyse the va-
lidity of the theoretical predictions, and identify precisely
the strength, weakness and range of applicability of the
theory to analyze the yield stress of amorphous solids.

In agreement with previous findings, we observe that
for all systems, the theory correctly predicts the emer-
gence of a finite yield stress as the glass transition is
crossed, although it is difficult to assess quantitatively the
detailed predictions made by the theory near the ‘eritical’
point (because the singularity is replaced by a crossover
in real systems). For hard sphere glasses, the theory ac-
counts qualitatively well for both the entropic nature of
the solidity (i.c., oy oc kgT') and the divergence of the
vield stress as the random close packing density is ap-
proached [29]. By contrast, we find that the theory fares
poorly for systems where solidity emerges due direct in-
terparticle interactions (i.e., oy o €, where e character-
izes the scale of pair interactions) such as soft repulsive
and Lennard-Jones particles at low temperatures, as the-
ory incorrectly predicts that oy ~ kgT'. Our results also
show that these shortcomings can be traced back to the
deseription of the glass dynamics at rest (i.e. without an
imposed shear flow), rather than to an incorrect treat-
ment of the mechanical driving. Therefore, we also of-
fer a detailed analysis of the vibrational dynamics in all
these models, which is currently the focus of considerable
attention, in particular in colloidal materials [30-32].

The paper is organized as follows. In Sec. 1T we in-
troduce our models for hard spheres, soft and metallic
glasses, and the mode-coupling approach we follow to
study the glass dynamics at rest and under flow. In
Sec. I1I we study the vibrational glass dynamics of hard

sphere and soft sphere glasses at rest. In Sce. IV we
study the glassy rheology of hard sphere and soft sphere
models. In Sec. V we repeat the analysis of vibrational
and rheological properties for Lennard-Jones particles.
In Sec. VI we discuss our results and offer perspectives
for future rescarch.

II. MODELS, METHODS AND
MODE-COUPLING THEORY

In this seetion we introduce the models used to deseribe
the physics of hard spheres, soft and metallic glasses.
Then, we describe the simulation methods employed to
extract vibrational dynamics and the yvield stress. Finally
we present the mode-coupling theory to analyse both the
glass dynamics at rest and its extension to treat steady
state shear flows.

A. Model glasses

In this work, we consider two different model systems.
To address the physics of hard spheres and soft glasses
we study a system of repulsive harmonic spheres, defined
by the simple following pairwise potential,

virs(rij) = %(1 —ri;/a)20(a — ry;), (2)

where O(z) is the Heaviside function and a is the particle
diameter.

It is well established that harmonie spheres display two
different regimes when the packing fraction, ¢, and tem-
perature, 7', are varied [33]. Because of the repulsive
interaction, harmonic spheres at low temperatures have
very few overlaps and thus effectively behave, in the limit
of ¢/T — oc as a hard sphere fluid. In this regime,
the physics of harmonic spheres is controlled by entropic
forces. However, this regime can only be achieved if the
density is low enough that configurations with no particle
overlap can easily be found. Upon compression, another
regime is entered where particles have significant overlaps
with their neighbors, and the system then behaves as a
soft repulsive glass. In this regime, the physics is con-
trolled by the energy scale ¢ of the repulsive forces rather
than by entropic forces. At very low temperatures, the
transition between these two distinct glasses occurs at
the jamming transition [34]. In this paper, our primary
goal is not to study the jamming transition in detail, but
rather to use its existence to study both the ‘entropic’
physics of hard spheres and the ‘energetic’ physics of soft
glasses within a single model.

Finally, we use Lennard-Jones particles as a simple
model for an atomic glass-forming liquid, where the pair-
wise potential is

vy (ri) = 4e ((f"/'f‘a‘j)m - [a/"'t'.;r')ﬁ) : (3)



As we mainly deal with the properties of the glass we
use a monodisperse Lennard-Jones model. To study also
the viscous liquid properties, we would need to study a
system with some size polydispersity (such as a binary
mixture) to prevent crystallization. Such mixtures are
indeed taken as simple models for metallic glasses. In
this case again, the energy scale € in the Lennard-Jones
potential plays a crucial role, as we shall demonstrate.

B. Computer simulations

To assess the quality of the mode-coupling theory pre-
dictions we have studied the above models using com-
puter simulations, both by producing new data for the
present work, and by collecting previously published
data. The simulation methods are described in our pre-
vious publications [9, 32, 35], and so we only give a brief
account of these methods.

To study the vibrational dynamics of the various glass
structures, we performed Newtonian dynamics simula-
tions. We studied the vibrational property of a single
amorphous packing configuration at the desired density
and temperature, using a very large system size [32]. To
generate the glass configurations, we first prepare a fully
random configurations, and then perform an instanta-
neous quench to very low temperature. We then let the
system relax until aging effects become negligible, and
purely vibrational dynamics is observed. To study glasses
at different state points, we heat or cool, we compress
or decompress the initially prepared glass configuration,
followed by a new thermalization. After the glass struc-
tures are obtained, we perform production runs. Since
we mainly foeus on the very low temperatures (compared
to the glass transition temperature), the system lies well
inside a metastable state, and particles simply perform
vibrational motions around their equilibrium positions.

For numerical simulations of the yield stress of the har-
monic sphere system, we performed Langevin dynamics
simulations with simple shear flow [9]. The equation of
motion is

N

ory .o (|7 — 7)) = '
€y —vigr) == SR )

=1

Here #; represents the position of particle i, y; its y-
component, and €, the unit vector along the x-axis. The
damping coefficient, £, and the random force, R; (t), obey
the fluctuation-dissipation relation: (R; q(s)R;5(s')) =
2kpTED;dapd(s — s'). We apply Lees-Edwards periodic
boundary conditions. We performed sufficiently long sim-
ulations at the desired temperature, density and shear
rate, and analyzed their steady state stress measured via
the standard Irving-Kirkwood formula. The vield stress
is typically extracted from fitting the steady state flow
curves at a given state point using a phenomenological
Herschel-Bulkley law, o(¥) = oy + a%", where a and n
are additional fitted parameters.

Because the yield stress of the Lennard-Jones model
has been measured in a number of studics for the case
of a well-known binary mixture [36, 37], we gather these
literature data as a proxy for the yield stress of the mono-
component system. Since our discussion of these data is
mainly qualitative, the differences between both systems
have no impact for the present work.

For both harmonic and Lennard-Jones spheres, we use
a and €/kp as the units of the length and temperature.
For the time unit, a(m/e)'/? and a?¢/kgT are used in
the inertial dynamies (for vibration) and overdamped dy-
namics (for rheology), respectively, where m is the parti-
cle mass. We will carefully discuss the appropriate stress
scales when needed.

C. Mode-coupling theory (MCT) of the glass
transition

We present the basic mode-coupling equations allowing
us to describe the dynamics of glassy liquids and glasses
at rest. The mode-coupling theory (MCT) [20] of the
glass transition can be expressed as a closed set of equa-
tions for the intermediate scattering functions F (E t) =
N=Yp(k,0)*p(k.t)). Here, p(k,t) = 3, e is the
instantancous density field and I_?.t(t) is the i-th particle
position at time ¢. The central equation of the MCT is

Q2(k)F(k,t) + F(k,t) + [tds M(k,t — s)F(k,s) = 0,5)

where k) = /kgTk?/mS(k) is the frequency term
associated with acoustic waves, and S(k) = F'(k,t = 0)
is the static structure factor. The memory kernel M (k, t)
is given by

pS(k) [ dq
2k | (2n)

Mk, t) = V(k, @k —F(q,t)F(|k - 3,1),(6)

with the vertex term
V(k.q,p) = {k - Ge(q) + k - pe(p)}* /k*. (7)

Here, e(k) = {1 — 1/S(k)}/p is the direct correlation
function [38].

From the intermediate scattering function, we can also
obtain various incoherent correlation functions in the
framework of the MCT. Consider a tagged particle lo-
cated at ff(t], and the associated density field ps(?::, t) =
¢iF-R(®)  The MCT equations for the self intermediate
scattering function Fi(k,t) = (ps(ﬁ: 0)*ps (lz t)) have the
same structure as Eq. (5), but with the frequency term
now given by Q,(k) = \/kpTk?/m instead of Q(k), and

with the self memory kernel

. — _’ — 2 .
M= [ {%c(q)} Fula.OF (F — 1)
®



instead of M(k,t). The MCT ecquation for the mean-
squared displacement, A%(t) = (|R(t) — K(0)|?). can also
be obtained:

"

kpT

A%(t) -6+ ]ds My(t — s)A%(s) =0, (9)
0
where
ﬂfd(t):(a—:; fdk K'e(k)2F(k,t)Fy(k.t).  (10)

The set of MCT equations describes the time evolu-
tion of the correlation functions F(k,t), Fs(k,t), and
A%(t). The MCT equations have been applied to vari-
ous model systems including the two models studied in
this work, harmonic spheres and Lennard-Jones parti-
cles [27, 28, 39, 40]. In both cases, the theory predicts an
ideal glass transition line in the (T, ¢) phase diagram. At
high temperature and low densities, F'(k,t) and Fy(k,t)
relax to zero and A?(t) becomes diffusive, A%(t) oc ¢, at
long time. However when the temperature is decreased
and the density is increased, the system may enter the
non-ergodic glass phase, where the long time limits of
F(k,t) and F,(k,t) are positive, and the limit of A®(t) is
finite.

To characterize vibrational dynamics in the glass
phase, we focus on the mean-squared displacement A?(¢).
We compare A?(t) obtained from MCT with the direct
numerical measurements. Since the MCT equation of the
mean squared displacement Egs. (9) and (10) depend on
the collective and self intermediate scattering functions,
we first need to solve the full MCT equations Eq. (5)
for these correlation functions. This requires the static
structure factor S(k) as a sole input. We use the ‘exact’
S(k) directly obtained from the simulations at each state
point. TFor the numerical integration of Egs. (6), (8),
and (10), we employed equally spaced grids N with a
grid spacing Ak. We use large enough NpAk and small
enough Ak to be independent from the choice of these
parameters,

Integrating the MCT equations for very low 7' very
close to the jamming transition for harmonic spheres re-
quired an usually large number of wavevectors Ny, as
the static structure develops singularities. We made sure
that all our results are well converged and depend only
weakly on the numerical integration. We discuss this is-
sue in more detail in Sec. IITC1.

D. Mode-coupling theory under shear flow

In the past decade, the mode-coupling theory of the
glass transition has been extended to study systems un-
der shear flow [21-24]. In this work, we follow the ap-
proach developed in Refs. [23, 24]. The theory describes
a system that is subjected to shear flow at ¢ = 0, and
predicts how the system reaches a steady state. As be-
fore, it only requires the static structure factor at rest as

an input, and gives properties of the steady state under
shear flow as output, from which we can deduce the value
of the yield stress.

The theory again takes the form of a closed sei of
equations for the transient intermediate scattering funec-
tion, Fy(k,t) = (p(k,0)*p(k(t).t)). This function is the
extension of F(k,t) to describe the transient dynam-
ics of the system, where the shear flow is applied at
t = 0. The so-called advected wave vector E(f-) is given
by f(f] — k- k€t which takes into account the affine
advection of density fluctuations by the shear flow. The
central equation of the theory is very similar to the usual
MCT equation, Eq. (5), except that the transient corre-
lation function becomes the unknown function. In prac-
tice, however, the equations become very difficult to solve
because the correlation functions are anisotropic, due to
the external flow, and we cannot perform the circular
integral before solving the equations.

To avoid this problem, we employ the approxima-
tion called ‘isotropically sheared model’ [23], where an
isotropic approximation is applied to all correlation funec-
tions and advected wavevectors. In this approximation,
the central equation is

T Y (Ek)Ey(k, t) + Fy(k,t) + fds My(k,t — 8)Fy(k,s) = (11)
0

where (k) = kpTk?/¢S(k) is the damping term and
M;(k,t) is the memory kernel given by:

, pS(k) [ dg
Mk ) =" [ Gy

with the vertex term
Vi(k,q,5,t) = {k-qclq) + k- pe(p)}
{k- Gelq(t)) + k- pe(p(t)) }/ K>,
Here k(t) = k(1+(51)%/3)1/? is the length of the advected

wave vector.

The MCT equations in Eq. (11) become closed when
the density, temperature and shear rate are specified and
the structure factor S(k) for the system at rest are given.
Once the equation is solved, the time evolution of the
transient intermediate scattering function Fi(k,t) is ob-
tained. Using this correlation function, the shear stress
at the desired state point can be calculated through

_ksTp? [ [T BRI D) Lo e,
= o0z fo di ; dk Tm(k(a),mu)

(13)

where (k) is the derivatives of ¢(k). To solve the equa-
tion, we use the same technique as before, and again take
S(k) as obtained from the simulations.

III. DYNAMICS OF HARD SPHERES AND
SOFT GLASSES AT REST

We study the vibrational dynamics of hard sphere and
soft glasses using the harmonic sphere model in two dif-

Vi(k, .k — @, t)Fi(a, t) Ry (JK — a1, t112)



ferent density regimes. Numerical simulations of the vi-
brational dynamics of this model in a wide temperature
and density range were reported before [32], and we sim-
ply summarize the main results. We then present the
MCT predictions from Eqgs. (5, 9).

A. Mean-squared displacement

We first review the simulation results for the mean-
squared displacements (MSD). The top panel of Fig. 1
shows the time evolution of the MSD AZ(¢) at the tem-
perature 7' = 1078 and several densities across the jam-
ming density. For all densities, A?(t) shows ballistic be-
havior 37t? at very short time, while it approaches a
plateau in the long-time limit. As density increases, this
plateau value decreases, which shows that compressing
particles reduces drastically the spatial extent of their
thermal vibrations, which is physically expected.

A closer look at the time dependence of the MSD re-
veals a very interesting behavior in the vicinity of the
jamming transition. To this end, it is useful to introduce
the microscopic time scale, 79, which coincides with the
moment where the MSD starts to deviate from its short-
time ballistic behavior. This timescale 7 is indicated by
open squares in Fig. 1. Physically, it means that parti-
cles do not feel their environment for ¢ < 75. A second
relevant timescale, t*, characterizes the time dependence
of the MSD. It corresponds roughly to the timescale at
which the MSD reaches its plateau value. This corre-
sponds to the time it takes to the particles to fully ex-
plore their ‘cage’. This second timescale is indicated by
the filled squares in Fig. 1. The precise definitions of
these timescales can be found in our previous work [32].

Clearly, while both 7y and t* decrease when the sys-
tem is compressed, their ratio evolves in a striking non-
monotonic manner with density, with a maximum occur-
ring very close to ¢ =~ ;. This observation means that,
when measured in units of the microscopic time scale 7,
vibrations occur over a timescale t* that is very large near
w7, but decrecases as the packing fraction moves away
from ¢ on both sides of the jamming transition. This
is closely related to the emergence of dynamic critical-
ity [32] or soft modes [7] as the jamming transition is
approched, |¢ — ¢y — 0 and T' — 0, with clear signa-
tures in the vibrational dynamics at finite temperatures.

We now compare these results to the MCT predictions
deduced after feeding the MCT equations with the ‘exact’
static structure factor S(k) measured in the computer
simulations at the state points represented in Fig. 1.
First, we find that the solution of the MCT equations
corresponds to glassy states, for which the long time limit
of all correlation functions is finite. The bottom panel of
Fig. 1 shows the MCT results for the MSD A2(t) at the
same state points as in the top panel. These results show
similarities and differences with the simulation results.

The basic time dependence of A2(t) is similar to the
simulation results. The MSD show an initial ballistic
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FIG. 1: Top: Time dependence of the mean-squared displace-
ments (MSD) obtained from simulation of harmonic spheres
at constant temperature, T = 10~%, for volume fractions rang-
ing from above to below the jamming density ¢; ~ 0.647.
Open squares indicate the microscopic time scale 79 where
dynamics deviates from ballistic behavior. Filled squares in-
dicate the time scale t*, which marks convergence of the MSD
to its long-time plateau value. Both time scales decrease with
, but their ratio is maximum near ¢ ;. Bottom: Time depen-
dence of the MSD predicted by the MCT at the same state
points. There is no decoupling between 79 and t* near ¢, and
the plateau value has a non-monotonic density dependence.

regime at very short time, and they all reach a plateau
at long time. A first difference with the simulations is
that the density dependence of this plateau height de-
creases with compression in the hard sphere regime, but
increases with density above the jamming density, which
is at odds with the numerical results. Regarding the de-
tails of the time dependence, the MCT solution predicts
that the time scales 7y and t* evolve together with a ra-
tio t* /7o that is roughly independent of density. There
is therefore no separation between microscopic and long
time scales in these results, and the dynamic criticality of
the jamming transition is not reproduced by the theory.

This failure is perhaps not too surprising as the initial



theory was not devised to treat the jamming problem.
However, we notice that soft modes are directly related
to clear signatures in the pair correlation function g(r) at
short, separation r = a, which we introduced in the dy-
namic equations to produce the results in Fig. 1. These
results indicate, however, that this is not cnough to re-
produce the dynamics observed numerically.

B. Evolution of the Debye-Waller factor

From the time depencence of the MSD, we can extract
the long-time limit,

A?(c0) = lim A%(t), (15)
t—oo
which is called the Debye-Waller (DW) factor. We per-
form a quantitative analysis of its evolution over a wide
range of temperatures and densities.

We show in Fig. 2 the density dependence of the DW
factors at various temperatures, from T = 107% up to
T = 107°. In this density regime, the computer glass
transition occurs near T =~ 5 - 10~ A first qualitative
observation is the confirmation that for all temperatures,
the DW factor decreases upon compression, indicating
that particles have less space to perform vibrations at
large density.

Second, this figure makes very clear the distinction
bhetween the two types of solids obtained on both sides
of the jamming density. For ¢ < ;, which we called
‘hard sphere glass’, the DW factor becomes independent
of the temperature at low T and is uniquely controlled
by . In this regime, particles are separated by a finite
gap & '1t very low temperatures, and they can explore this
free volume regardless of the temperature value. On the
other hand, when ¢ > ¢,, the DW factor is propor-
tional to the temperature at low T'. This corresponds to
the situation where particles arce vibrating in an cnergy
minimum created by their neighbors. This temperature
dependence simply corresponds to the low-temperature
harmonic limit where equipartition of the energy vields
A?(oc) o< kpT. This is the regime we called ‘soft glass’.

The final observation is that upon lowering the tem-
perature, the density dependence of the DW factor be-
comes singular on both sides of the transition, reflecting
the emergence of the jamming singularity in the 7" — 0
limit. Approaching the jamming transition from the hard
sphere side, the DW factor shows a bl’ld[‘p drop, which is
well-deseribed by A%(oc) ~ (7 — )'%. On the other
hand, approaching jamming from the soft glass side, the
DW factor diverges as A2?(c0) ~ (¢ — ) 705,

These two critical divergences are in fact directly re-
lated to the slowing down of the vibration discussed
above [32, 41, 42]. To see this, it is useful to define a
microscopic length scale £y associated to the microscopic
time scale 7y discussed above, through £ = VT1y. No-
tably, this length scale is vambhmg as Jammmo is ap—
proached from the hard sphere side, £y x (s —y), simply
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FIG. 2: Volume [raction dependence of the long-time limit of
the MSD from simulation (top) and from the MCT solution
(bottom). Different curves correspond to different temper-
atures from 7' = 107> to 107% (from top to bottom). In
simulations, the DW [actor decreases with ¢, with a singu-
lar drop near 5. By contrats, the predicted DW factor is
non-monotonic with a sharp cusp near ;. The dashed lines
indicate power laws for the hard sphere regime, © < ;.

reflecting the vanishing of the interparticle gap. On the
soft sphere side, £ is not singular. Note that the ampli-
tude of the vibrations quantified by the DW factor van-
ishes less rapidly than (3 as ¢ — p, reflecting the emer-
gence of ‘soft modes’, i.e. collective vibrational motion
that allow large amplitude vibrations, A?(0c) > (3. By
renormalizing the DW factor by the microscopic length
scale, we obtain the density dependence of the adimen-
sional amplitude of the vibrational motion, with

A2(00)

A 05 16

x |y —

for both hard sphere and soft glass regimes. This analysis
shows that the amplitude of (adimensional) vibrations
diverges

In Fig. 2 we present the MCT predictions for the DW
factor for the same state points as in simulation. In the




hard sphere regime, A?(oc) becomes independent of tem-
perature as T — 0, in agreement with the simulations.
However, the DW factor also becomes independent of T°
in the soft glass regime, in contradiction to the numerical
findings. It means that MCT cannot account for the fact
that dynamics in the soft glass is controlled by the ampli-
tude of interparticle interactions rather than by entropic
effects. This finding has consequences for the rheology of
soft glasses, as discussed below.

Regarding the density dependence, MCT correctly pre-
dicts that the DW factor vanishes as ¢ — 7 on the hard
sphere side. Therefore, MCT is able to capture some of
the singular features of the jamming transition. Math-
ematically, this is because the structure factor used as
an input to the MCT dynamical equations becomes it-
self singular in this limit, which is responsible for the
vanishing of the DW factor. We shall explore this limit
in more detail below, but the numerical solution of the
MCT equations in Fig. 2 shows that the resulting DW
factor vanishes as A%(oc) ~ (p; — ), ie. with a
power law that goes to zero much faster than the nu-
merical observations. Intriguingly. the exponent 4 in
this expression is even larger than the naive estimate
A?(oc) ~ €3 ~ (o5 — ©)?. This implies that MCT pre-
dicts that particles are localized over a lengthscale which
is much smaller than the interparticle gap, which is not
very physical. The second unphysical finding is the over-
all density dependence which is roughly symmetric on
both sides of the jamming density, with the development
of a sharp cusp near ¢; as T' — 0 resulting from an
incorrect treatment of the soft glass dynamics.

C. DMCT predictions near the jamming transition

We now clarify analytically the nature of the MCT
predictions near jamming, namely that A%(oo) vanishes
on both sides of ¢ ; with the same exponent. We first
analyvze the characteristic features of the static structure
factor, and we then discuss the structure of the MCT
equations near jamming.

1. Static structure factor near jamiming

Since the sole input of the MCT equation is the static
structure factor S(k), the predicted singularity of the DW
factor must come from changes in the structure. The pair
structure of hard sphere packing near jamming has sev-
eral relevant features [43-45]. We find that the MCT
equations are most sensitive to the simplest of these fea-
tures, which correspond, in real space, to the appearance
of a diverging peak at » = a in the pair correlation fune-
tion. Physically, this peak corresponds to the fact that
at ¢ =y and T = 0, particles have exactly z = 2d con-
tacts, i.e. neighbors located at the distance r = a. Close
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FIG. 3: Evolution of the Debye-Waller factor approaching the
jamming transition from the hard sphere side, parametrized
the maximum gpaex ~ 1/|¢@s — | of the first peak of the
pair correlation function. The DW factor predicted by the
full MCT equation Eq. (9) (filled symbols) converges for a
large enough cutoff to the result obtained from the Gaussian
approximated MCT equation Eq. (21) (open symbols) using
the simplified pair correlation function shown in the inset. All
solutions agree with A%(o0) & grt., and with the full MCT
solution in Fig. 2.

to jamming, | — | < . this peak has a finite height,
1

le —al’

Gmax ™~ {l?)
and a finite width | — |, such that the peak turns into
a delta function in the limit ¢ — ¢

At first glance, the structure factor S(k) near jamming
appears not very different from normal fluids [44]. It
consists of a first diffraction peak near k = 27 /a, followed
by subsequent peaks at larger wavevectors. However, the
diverging contact peak implics that the peaks at large &
have an amplitude which decreases more slowly than in
simple liquids. We find that near the jamming density
the envelope of the peaks of S(k) — 1 first decreases as
k1, followed by a crossover to a k2 behavior. When
p gets closer to 7, the crossover wavevector k* between
these two power laws occurs at larger k, and it scales as
k* ~ @maz. In summary, we find the following behaviour:

i 1
peak heights of [S(k) — 1] = T

Omax
k27
To make analytic progress, we introduce a simplified
model for the pair correlation g(r) near jamming,

1<k < Gmaxs

.g'J'H.G.J.' << k- (18)

g(r) = .q”.'.ﬂ..’]’.': for l S r é J‘ + g'J:f.:;.J_".‘ (1S‘))

and ¢(r) = 0 otherwise. This model g(r) is illustrated in
the inset of Fig. 3. The Fourier transform of this rectan-
gular function can be easily performed, and provides the



scaling behavior of S(k),

, sin(k)

1< k= Gmazxy

. Ymax Cos(k)

L2 L Gman < k\ (ZU)

which is essentially the same as Eq. (18). In the limif of
the jamming density, S(k) becomes S(k) —1 ~ sin(k)/k,
which is exactly the Fourier transform of the delta func-
tion in three dimensions. This means that the model
Eq. (19) captures the large & behavior of the real S(k)
correctly.

We have solved the MCT equations with the Fourier
transform of Eq. (19) as an input for the structure fac-
tor. In Fig. 3 we show the evolution of the DW factor
parameterized by the value of ¢,q., which diverges as
@ — 1. We present the results of the numerical solu-
tion obtained for different values for the wavevector cut-
off, N Ak, showing that when the numerical solution has
converged, a perfect agreement is obtained for the evolu-
tion of the DW factor from the numerically determined
structure factor, and from the simplified model Eq. (19).
Both MCT solutions, when properly converged, result in
the scaling behavior A?(x) = g% ~ (05 — ¢)*. This
agreement shows that the MCT solution is dominated by
the large k& behavior of the S(k), Eq. (18), and therefore
is well captured by our simplified model in Eq. (19).

2. Analysis of the MCT equation: Gaussian approzimation

To finally analyze the origin of the power law A?(oc)
Gt we introduce a simplified version of the MCT equa-
tion, called Gaussian approximated MCT. Assuming that
F(k.t) and F,(k,t) have a Gaussian wavevector depen-
dence and that F(k,t) = S(k)Fs(k,t), which is the so-
called Vinevard approximation (both conditions accu-
rately hold in the full MCT solution), the MCT cquation
can be analytically simplified [46]. The long-time limit
of this simplified MCT equations becomes

1 _ P A2 —2A% (o) k2
m_?/dkkc(me (00)k™, (21)

This equation takes S(k) as a sole input (the direct cor-
relation ¢(k) follows directly from S(k)) as in the case
of the full MCT equations. We again solve this equa-
tion numerically, and show the results in Fig. 3 as open
squares. The solution perfectly agrees with the solution
of the full MCT equation with the full S(k).

The advantage of the formulation in Eq. (21) is that
the asymptotic behaviour of the DW factor can now be
understood analytically. Using the behaviour of S(k) in
Eq. (20), the integrant in Eq. (21) becomes k2e—2A% (oc)k?
for k& < Gumas, and g.ﬁ,_”_l.rc_m‘z('”)kz when k= gnao-
Here we omitted the square of trigonometric functions
since they only give constant contributions. When
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A?(00) < g,,2.,, the integral is dominated by the contri-
bution from % 3 ¢y4.- This integral can be performed
as a Caussian integral, and this gives A?(oc) =~ g;2% .,
which also agrees with the assumption A?(x) < g2,
and with the observation from the full MCT equation.

In summary, by simplifying the full MCT treatment
with the exact S(k) using both a simplified model for g(r)
and a Gaussian approximation of the MCT cquations,
we can establish analytically the MCT result A%(o0) ~
(ps — ©)*, which is mainly controlled by the large k be-
haviour of S(k), produced by the divergence of the con-
tact peak in g(r).

D. Discussion of the MCT near jamming

We have unveiled two distinct features of the MCT pre-
dictions for the DW of harmonic spheres near the jam-
ming transition.

First, we discussed the behaviour in the hard sphere
regime, where a power law vanishing of the DW factor
with a large exponent is found. We revealed that this
power law is dominated by the behavior of the static
structure factor at large wavevector k* > ¢pae. Since
1/Ek* represents the typical gap between particles, this
finding implies that the MCT equations are actually con-
trolled by lengthscales which are smaller than the typical
gap. This is in clear disagreement with the numerical
finding that the DW factor corresponds to an amplitude
for the vibrations that is actually much larger the inter-
particle gap.

The second problem is more general, and thus more se-
vere. In the soft glass regime, ¢ > @, the predicted DW
factor not only has the incorrect asymptotic behaviour,
but it also has incorrect temperature and density depen-
dences. This results from the fact that the solution of
the MCT is controlled by gumaz, while in the soft glass
regime the system simply vibrates harmonically near the
energy minimum. This physics is not captured by the
MCT equations which instead again describe this har-
monic solid as an ‘entropic’ system. This results in the
prediction of a DW factor that remains finite as 77— 0
at large density, instead of the linear temperature depen-
dence expected in this limit. We note that this problem
is not specific to harmonic spheres and is actually very
general for systems with continuous pair potentials, as
will be shown in Sec. V where Lennard-Jones particles
are considered.

IV. HARD SPHERES AND SOFT GLASSES
UNDER FLOW

In this section, we study the shear rheology of hard
sphere and soft glasses extending the results in See. IIT
to include shear flow. We start with the analysis on the
flow curves and then provide a more detailed discussion
of the yield stress behavior.
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FIG. 4: Top: Flow curves obtained from simulation of har-
monic spheres at 7' = 107° and various volume fractions. A
finite yield stress exists for all ¢, which increases monotoni-
cally with the density. The athermal rheology of soft repul-
sive particles near jamming appears at large Peclet number,
P. > 1. Bottom: The MCT flow curves for the same state
points as the top panel produce a finite yield stress at all ¢
which is maximum near ¢y ~ 0.647, but decreases with ¢
above jamming.

A. Flow curves

We start with a brief review of the simulation results
for the flow curves of harmonic spheres [9]. In the top
panel of Fig. 4, we present several flow curves, o = (%),
at low temperature kpT'/e = 10~% and various densities
crossing the jamming density ;. We use adimensional
units for both the stress scale (using kpT/a® as ther-
mal stress unit), and for the shear rate (using the Peclet
number P, = 4a?¢/(kpT)).

First, we focus on the slow shear rate regime, P, < 1.
All the flow curves show that the stress approaches a
constant value, the yield stress oy = limy_0o(¥). The
yield stress increases rapidly with increasing the density.
At lower density in hard sphere regime ¢ < @, the stress

is oya®/kgT = O(1), indicating the entropic nature of
the stress, and it increases rapidly when the jamming
transition is crossed, suggesting that it is not controlled
by entropic forces alone in this regime.

Next, we focus on the fast shear rate regime, P, > 1. In
this regime, the flow curve shows complex and interest-
ing behavior [9]. At low density, the flow curve exhibits
a crossover between strong shear-thinning when P, < 1
to Newtonian behavior when P, > 1. This shows that
a system that looks solid at low P, in fact appears as a
fluid when P, becomes large, characterized by an ‘ather-
mal’ Newtonian viscosity. This viscosity increases rapidly
with the density, and this Newtonian regime disappears
above the jamming density, where it is replaced by the
emergence of a finite yield stress.

We solved the MCT equation, Eq. (11), at the desired
shear rate and with the static structure factor obtained
from simulation at the desired density and temperature,
following the same procedure as for the mean-squared
displacement in the previous section. The bottom panel
of Fig. 4 shows the flow curves obtained within MCT.
As for the numerical results, the MCT flow curves at
these state points are all approaching a finite yield stress
at low shear rate, implying that MCT correctly predicts
that these glass states offer a finite resistance to shear
flow.

In the hard sphere regime, the yield stress increases
rapidly with density, which qualitatively agrees with the
numerical observations. However, the yield stress is
found to decrease with density in the soft glass regime,
in disagreement with the simulation results. This incor-
rect behavior is very similar to the one reported for the
vibrational dynamics in the previous section, and we will
argue below that it has the same origin.

Finally, we focus on the MCT predictions for P, > 1.
The MCT flow curves in this regime do not exhibit the
interesting behavior observed in the numerical simula-
tions. This is not very surprising as the MCT under
shear flow is specifically designed to treat systems con-
trolled by thermal fluctuations, which become inefficient
when P, > 1. This result nevertheless clearly reveals
that a naive extension of the MCT will not be sufficient
to treat the interesting zero-temperature shear rheology
of soft particle systems, which is currently the focus of a
large interest [9, 10, 47-49].

B. Temperature and density evolution of the yield
stress

We finally arrive at the analysis of the yield stress in
hard sphere and soft glasses.

We show in Fig. 5 the density dependence of the yield
stress oy measured in the numerical simulation of har-
monic spheres at various temperatures. These data con-
firm that the yield stress increases monotonically upon
compression, as was observed in the flow curves. As in
the case of the Debye-Waller factor, the temperature de-
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FIG. 5: Top: Volume fraction dependence of the vield stress
from the simulation from T = 107° to 1077 (bottom to top).
The yield stress increases monotonically with the emergence
of sharp singularities near ¢y as 7' — (0. Bottom: MCT pre-
dictions for the same state points with T = 107% added. The
yield stress is non-monotonic with a sharp eusp near ¢ s. The
dashed lines indicate power laws [or the hard sphere regimes,
@< 2.

pendence of the yield stress is different on both sides of
the jamming. For ¢ < 7, the entropic nature of the
vield stress is obvious since it becomes proportional to
temperature. In the adimensional represention of Fig. 5,
this means that oa®/(kgT) becomes uniquely controlled
by i in the hard sphere regime.

On the other hand, when ¢ > ¢, the nature of the
vield stress changes from being entropic to being con-
trolled by the energy scale governing the particle repul-
sion, i.e. oy ~ €/ a®. In the adimensional representation
of Fig. 5, the data become proportional to €/(kgT). In
this regime, the stress does not originate from thermal
collisions between hard particles, but stems from direct
interactions between particles interacting with a soft po-
tential characterized by the energy scale ¢.

Having clarified the temperature dependence in the
two regimes, we turn to the density dependence which
becomes singular around the jamming density when tem-
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perature becomes small, mirrorring again the behavior of
the DW factor. In the hard sphere regime, the yvield stress
increases rapidly as o approaches, with

kT 1

EATEr) (22)

Ty ~
In the soft glass regime at low 7', the yield stress vanishes
when the jamming transition is approached, with

[
oy Ng(*ﬁ—w)‘ (23)

These two asymptotic behaviors are clearly observed in
Fig. 5.

The bottom panel of Fig. 5 presents the MCT predic-
tions for the yield stress for the same state points. The
theory predicts that the yield stress results from entropic
forces on both sides of the transition, failing to recognize
the change to the soft glass regime dominated by inter-
particle forces. As a result, the theory incorrectly pre-
dicts the emergence of a cusp as T' — 0, with a symmetric
divergence of the yield stress on both sides of ¢, which is
only observed on the hard sphere side in the simulations.
At the quantitative level, the MCT predicts a power law
divergence on the hard sphere side, oy ~ j‘;—E—T{p )73,
but the exponent 3 differs from the numerical result al-
though the (entropic) prefactor has the right scaling.

Ovwerall, the degree of consistency between theory and
simulation for the vield stress is very similar to the one
deduced from the analysis of the DW factor in the previ-
ous section. In the following section, we rationalize this
similarity.

C. MCT predictions near the jamming transition

We now provide an explanation for the MCT predic-
tion of the yield stress divergence oy o (ps — )~" in
the hard sphere regime, and of the qualitatively incor-
rect scaling found in the soft glass regime. To do so, we
analyze the structure of the MC'T equations under shear
flow.

In the MCT framework, the stress is expressed as an
integral over time and wavevector, see Eq. (14). For the
present analysis, it is useful to rewrite the integral as

cr:"}-'fg dt G(b), (24)
where
: 2 poe S (ke (k(t .
c =22 [ LSO k1, (29)

is the MCT expression of the transient stress auto-
correlation function. Using this expression, we can ana-
lyze the shear stress in terms of the relaxation behavior
of G(t).

In Fig. 6, we show G(t) for T = 10~° and several densi-
ties in the hard sphere regime below jamming. The shear
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FIG. 6: Time dependence of the stress autocorrelation func-
tion G(t) obtained from the numerical solution of the MCT
equations under shear flow in the hard sphere regime ap-
proaching jamming, for T = 107% for P, = 10~*. The hor-
izontal and perpendicular dashed lines respectively scale as
Gmas and gmb.. in agreement with Eqgs. (27, 28).

rate is fixed at P. = 1073, where the stress is nearly equal
to the yield stress. As discussed in the previous section,
the yield stress increases rapidly with approaching jam-
ming. The data in Fig. 6 show that the stress increase
results from the combination of two different contribu-
tions. A first factor is the sharp increase of the plateau
height of G(t) with density. The second factor is the de-
crease of the relaxation time of G(#) with increasing the
density. We now analyse these two factors separately.
When ¢ is small as ¢4 < 1, the advected wavevec-
tor k(t) is essentially equal to the wavevector at rest,
k(tmicro <€ t < 4 1) & k, where tie 18 the micro-
scopic time to reach the platean. In this case, the sheared
MCT equations Eq. (11) is nothing but the usual MCT
equation, Eq. (5). Thus, the transient intermediate scat-
tering function Fy(k,t) in this regime can be accurately
approximated by the usual intermediate scattering fune-
tion F(k,t), with no influence from the wavevector ad-
vection. In this regime, the plateau height of G(t) can
be rewritten as
G ~ kpTp?
7 60m2

This expression is exactly the one provided by MCT for
the shear modulus of the glass at rest [50]. Furthermore,
the behavior of ¢/(k) at large k is the same as ¢(k), since
e(k) is asymptotically a product of a fast oscillating func-
tion and a slowly decreasing function of k as in Eq. (20),
and thus the amplitude of ¢(k) and (k) is asymptot-
ically the same. Therefore, Eq. (26) is also essentially
equivalent to the right hand side of Eq. (21), which en-
ters the expression of the DW factor. This means the
platean height behaves as

GP ~ kH-Tg-;Lnax? (27)

/ dk KA (R F(k, 1), (26)
0
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showing that the shear modulus scales with density as the
inverse of the DW factor, with a temperature prefactor
revealing its entropic nature. In Fig. 6, we represented
dashed lines at levels scaling with g, ... which confirm
that G, indeed follows Eq. (27).

The second factor contributing to the scaling of the
shear stress is the relaxation time of G(£). In the sheared
MCT, the memory function becomes explicitly time de-
pendent because of the advection of the wave vectors.
A decoupling between k and the advected k() oceurs
at long time, which results in a dephasing of the oscil-
lations of e(k) and e(k(t)). We have shown in the pre-
vious section that the MCT integral are dominated by
a Gaussian contribution ~ exp(—2A2%(oc)k?), showing
that we need to consider the decoupling of wave vectors
for k ~ 1/A(>c). This occurs after a time ty such that
k(ty) —k = ©(1). This produces an estimate for the
relaxation time of the stress autocorrelation function,

tyd ~ kY2~ gt (28)

We plot this estimate in Fig. 6 with vertical lines scal-
ing with g1 . Clearly, these lines agree very well with
the relaxation time of ((t) obtained from the numerical
resolution of the MCT equations. Since we focus on the
relaxation dynamics of the system subjected to the shear
How starting at time ¢ = 0, ty measures the time it takes
the glass to vield. We can therefore identify ~y = fy+
with the yield strain.

By combining the MCT prediction for the divergence of
the shear modulus near jamming as G, = kT (ps—p) 2,
and for the vanishing of the yield strain as vy = (s —
©)!, we obtain the divergence of the yield stress as oy ~
Gy = kpT(p5 — ) 3. This scaling law agrees very
well with the numerical solution of the MCT equations
shown in Fig. 5. as announced.

D. Discussion of the MCT under flow near
jamming

The above analysis clarifies that the MCT under shear
flow makes predictions for the yield stress which are
direct consequences of the behavior obtained from the
MCT dealing with the glass dynamics at rest. Within
MCT, the yield stress can be expressed as the product
of the shear modulus and the yield strain, oy = Gy,
and the shear modulus in the MCT framework, Eq. (26),
is closely related to the DW factor. Thus, the discus-
sions of the MCT predictions near jamming for the DW
factor and the yield stress are essentially the same. In
the hard sphere regime, MCT correctly describes the en-
tropic nature of the yield stress and its divergence as
is approached, but the critical exponent for the diver-
genee is too strong. In the soft glass regime, the theory
incorrectly predicts a scaling of the yvield stress with kT,
failing to detect the direct influence of the particle inter-
actions.



However, we wish to note that MCT provides a new
prediction for the yield strain «y in the hard sphere
regime, 7y = (p; — ¢). This is an interesting novel
critical behaviour, although the predicted value for the
associated critical exponent is not correct. Indeed, in
the simulations one has oy ~ (p; — )~ ! [9], while
the shear modulus scales with a different exponent,
Gy ~ (pg — p)~15 [51]. This indicates that the yield
strain actually vanishes as vy =~ (p; — 9)"5. Note
that recent experiments in dense emulsions show that
the yield strain decreases when the jamming transition
is approached [11].

A simple argument can rationalize the critical scaling
of the yield strain. The yielding predicted by the MCT
occurs due to the decoupling between the wavevector and
the advected one at the ‘relevant’ length scale. Using
the correct value of the interparticle gap for this length
scale, one directly predicts that yielding occurs when the
typical gap between neighboring particles § ~ | — ¢ |
is blurred by the shear deformation. (A similar argu-
ment was used in Ref. [32] to discuss thermal effects.)
The shear flow causes a transverse displacement of par-
ticles over a length ya, and this causes a change in the
interparticle distance y?a. Yielding then occurs when
v2a = §, which gives vy &~ (o — ¢)°°, as observed nu-
merically. Note that the argument can be repeated above
the jamming transition in the soft glass regime. Also in
this regime, there is a mismatch between the scalings
of yield stress [9, 47] and shear modulus [34], indicating
that the yield strain vanishes as vy 2 (¢ — )5, This
is again consistent with the idea that the particle overlap
0 ~ | — gl is the relevant length scale.

V. LENNARD-JONES GLASS DYNAMICS

In this section, we focus on Lennard-Jones particles,
with two main justifications. First, this allows us to treat
a very different type of material, as Lennard-Jones flu-
ids are often taken as simple models to study metallic
glasses [5]. A second goal is to investigate further the
generality of the findings of the previous sections con-
cerning the difficulty encountered by MCT in describ-
ing amorphous materials when solidity emerges from di-
rect, continuous interparticle forces. We first analyze the
structure of the Lennard-Jones glass, then its vibrational
dynamics, and we finally study the yield stress measured
under shear flow.

A. Glass structure factor

To solve the MCT equations under shear flow, we need
the glass structure factor as an input. We use the struc-
ture factor measured in low-temperature numerical simu-
lations of the monodisperse Lennard-Jones system. How-
ever, since we use a monodisperse system, crystallization
takes place if we use a temperature which becomes too
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close to the glass transition and diffusive motion becomes
possible. To avoid this problem, we need to restrain our-
selves on relatively low temperatures.

To extend our analysis to higher temperatures, we im-
plement a second strategy. We use statistical mechanics
to predict the structure factor of the Lennard-Jones fluid
and glass states combining the hyper-netted chain ap-
proximation for the fluid [38], to the replica approach
of Ref. [52] for the glass. While we do not expect this
approach to be very accurate, it still provides structure
factors that are qualitatively correct down to very low
temperatures, encompassing both fluid and glass states.
Using this approach, we find that MCT predicts a ki-
netic arrest occurring at T, =~ 1.2, while the replica
approach yields a Kauzmann transition at lower temper-
ature, near T ~ 0.9. Above Tk, S(k) is identical to the
prediction of the hypernetted chain approximation, while
below Tk the glass structure differs from the liquid state
approximation [52].

The key point of both approaches is that when T be-
comes smaller than the computer glass transition, S(k)
rapidly converges towards its 77 — 0 limit, and has ac-
tually a very weak temperature dependence in the glass
phase. By contrast with the jamming point, however,
S(k) does not develop any kind of singularity even as
T — 0. This directly implies that DW factor and yield
stress should behave smoothly in the glass phase of the
Lennard-Jones system.

The reason for this becomes clearer if one focuses on
the pair correlation function. In the frozen glass state,
the distance between any two particles fluctuates around
its average value with a variance proportional to kgT.
However, since the structure is fully amorphous, the spa-
tially averaged pair correlation function remains non-
singular as T — 0 because the successive correlation
peaks are broadened by the quenched disorder imposed
by the amorphous structure.

Therefore, when lowering T, there exists a tempera-
ture crossover, T, below which the thermal broadening of
the peaks in the pair structure becomes smaller than the
broadening due to the quenched disorder. When T" < T,
S(k) and g(r) do not depend on T anymore, and the so-
lution to the MCT dynamic equations remain the same
as T is decreased further. We shall see that MCT yields
physically incorrect solutions below T7,.

B. Temperature evolution of the Debye-Waller
factor

We start our analysis of the MCT predictions for the
Lennard-Jones glass with the characterization of the vi-
brational dynamics. We focus on the temperature de-
pendence of the DW factor for a fixed number density,
p=1.2.

The temperature dependence of the DW factor A2 (co)
obtained from direct numerical simulations is plotted in
Fig. 7 together with the results from the MCT solution.
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FIG. 7: Temperature dependence of the DW factor obtained
from direct numerical simulation (filled squares) and from
MCT using either the numerically measured structure factor
(filled circles) or a statistical mechanics approach (Replica
Theory, open circles). While the simulation results indicate a
linear dependence on T', the MCT solution suggests a singular
T-dependence near T, followed by a rapid saturation to an
unphysical T-independent value.

The simulation results (filled square) show that the DW
factor is proportional to temperature when temperature
becomes small, which 18 the same behavior as observed
for the soft glass in Sec. III. This corresponds again to
the limit of the Einstein harmonic solid where the am-
plitude of the vibrations around the average position is
proportional to kgT, as a direct result of equipartition
of the energy. The data in Fig. 7 indicate that this linear
hehaviour is obeyed to a good approximation nearly up
to the glass transition temperature.

The MCT analysis performed using the static struc-
ture factor obtained from simulation is shown with filled
circles, which indicate that the DW factor is nearly in-
dependent of temperature in this regime. This result
follows from the above discussion of the static structure
which is also temperature independent, but clearly con-
tradicts the numerical simulations. This discrepancy is in
fact equivalent to the findings obtained in the soft glass
regime of harmonic spheres.

Finally, using the analytic structure factor, we can fol-
low the DW factor to higher temperatures and describe
the emergence of a finite DW factor, A2, at the pre-
dicted mode-coupling transition, T, = 1.2. The theory
then predicts an abrupt temperature dependence char-
acterizing by a square root singularity [20], A%(oc) ~
Af — v Tinet — 1T, where a is a numerical prefactor. How-
ever, the temperature evolution of the DW factor again
rapidly saturates to a T-independent value.
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FIG. 8: Temperature dependence of the yield stress obtained
from direct numerical simulation (filled squares) and from
MCT using either the numerically measured structure factor
(filled circles) or a statistical mechanics approach (Replica
Theory, open circles). While the simulation results indicate
a nearly temperature independent vield stress, oy ~ ¢/a®,
the MCT solution produces instead an ‘entropic’ vield stress
vanishing linearly with 7" at low T'.

C. Temperature evolution of the yield stress

We now analyvze the temperature dependence of the
yield stress of the Lennard-Jones model.

In Fig. 8, the yield stress obtained from earlier simu-
lations [36, 37] and from the MCT equations are plotted
as a function of the temperature. From the discussion in
Sec. IV for the soft glass, we expect the yield stress of the
Lennard-Jones system to be controlled by the interaction
energy between particles, and we choose therefore to plot
the stress in adimensional units, o — o /(¢/a?), where ¢
represents now the attractive depth of the Lennard-Jones
potential. Using this representation, we find that the
numerical results for the yield stress are in fact weakly
dependent on the temperature, rapidly saturating to the
T — 0 limit, oy (T = 0)/(¢/a®) ~ O(1), as expected.

Performing the MCT analysis using the low temper-
ature structure factor, we find that the predicted vield
stress decreases linearly with the temperature. This
is because in this regime S(k) is nearly constant, and
the MCT equations produce an incorreet ‘entropic’ yield
stress, i.e. oy ~ kgT. Finally, using the analytic struc-
ture factor, we again find a yield stress which vanishes
linearly with 7" at low T', with a singular emergence near
the mode-coupling singularity, mirrorring the behaviour
obtained for the DW factor in Fig. 7.

Again, the discrepancy between simulations and MCT
predictions regarding the physical origin of the yield
stress is the same as the one uncovered in the above study
of the soft glass regime of harmonic spheres. This shows
that this result was not an artefact of the peculiar har-
monic sphere system, nor was it related to singularities



encountered near the jamming transition in this system.
TFor Lennard-Jones particles, there is no jamming singu-
larity in the density regime studied in the present sec-
tion, but similar results are found for this well-known
glass-forming model system.

V1. DISCUSSION

We have shown that mode-coupling theory provides
first-prineciples’ predictions for the emergence of the yield
stress in amorphous solids, together with detailed predic-
tions for the temperature and density dependences of the
vield stress in various glassy materials, from hard sphere
glasses to soft and metallic glasses.

For hard sphere glasses, the theory correctly predicts
the emergence of solid behaviour with entropic origin,
with a yield stress and shear modulus proportional to
kpT. The theory also predicts a divergence of the yield
stress as the random close packing density is approached,
but the predicted critical exponent is too large. We have
shown that this is because MCT also considerably over-
estimates the degree of localization of the particles in the
glass at rest near the jamming transition.

The theory fares more poorly for both soft glasses and
metallic glasses, as it again predicts a vield stress propor-
tional to kT while solidity is in fact the result of direct
interparticle forces, and scales instead as €/ a®, where € is
the typical energy scale governing particle interactions.

This means that while the flow curves predicted by
MCT for a given material across the glass transition may
have functional forms that are in good agreement with
the observations, it is not clear whether the non-linear
flow curves produced in the glass phase are physically
meaningful for particles that cannot be represented as
effective hard spheres.

The fact that the mode-coupling theory provides lim-
ited insight into solid phases is perhaps not surprising,
as the theory was initially developed as an extension of
liquid state theories [20]. However, since the theory de-
scribes the transformation into the arrested glass phase,
the MCT predictions for the glass dynamics at rest and
for the glass dynamics under shear ow have been worked
out in detail, and often discussed in connection with
experimentally relevant questions, such the Boson peak
in amorphous systems [53], and the non-linear flow of
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glasses [26].

Our study suggests that one should perhaps not try to
apply MCT ‘too deep’ into the glass, but it must be noted
that the theory itsell can be applied arbitrarily lar into
the glass phase with no internal ceriterion suggesting that
the procedure becomes inconsistent, as long as reliable
estimates of the static strueture factor are available.

For Lennard-Jones particles and the soft glass regime
of harmonic spheres, we have discussed such a criterion.
We suggested the existence of a temperature scale T, be-
low which MCT predictions certainly become unreliable.
This temperature is such that, below T}, the averaged
static structure becomes dominated by the quenched dis-
order instead of thermal fluctuations [32]. This implies
that MCT predictions for glassy phases should be more
reliable in the regime T, < T < T,. We note, however,
that MCT only makes crisp predictions near the mode-
coupling ‘singularity’ T}, (such as square root depen-
dence of the DW factor and yield stress) but these are
not easy to test since the real system is actually in a fluid
state at T > T

More generally, we believe our work emphasizes the
need for more detailed theoretical analysis of the non-
linear response of amorphous solids to external shear flow
to produce better theoretical understanding of the yield
stress in disordered materials. Recent progress in the
statistical mechanics of the glassy state using replica cal-
culations [45, 52, 54-56] provide detailed predictions for
the thermodynamics, micro-structure, and shear modu-
lus of glassy phases, that are, contrary to the MCT re-
sult exposed in this work, at least consistent with a low-
temperature harmonic description of amorphous solids,
One can hope that an these caleulations can be extended
to treat also the yield stress.

Acknowledgments

We thank G. Biroli and K. Miyazaki for discussions
and Région Languedoc-Roussillon and JSPS Postdoc-
toral Fellowship for Research Abroad (A. 1.) for finan-
cial support. The rescarch leading to these results has
received funding from the European Research Council
under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC Grant agreement No
306845.

[1] H. A. Barnes, J. Non-Newtonian Fluid Mech. 81, 133
(1999).

[2] P. Coussot, Rheometry of Pastes, Suspensions, and Gran-
ular Materials (Wiley, New York, 2005).

[3] P. C. F. Moller, A. Fall and D. Bonn, Europhys. Lett.
87, 38004 (2009).

[1] D. Bonn and M. M. Denn Science 324, 5933 (2009).

[5] K. Binder and W. Kob, Glassy malerials and disordered
solids (World Scientific, Singapore, 2011).

[6] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587
(2011).

[7] A. J. Liu, M. Wyart, W. van Saarloos and S. R. Nagel
in Dynamical helerogeneilies in glasses, colloids and
granular materials, Eds.: L. Berthier, G. Biroli, J.-P.
Bouchaud, L. Cipelletti, and W. van Saarloos, (Oxford
University Press, Oxford, 2011).

[8] M. van Tlecke, J. Phys.: Condens. Matter, 22, 033101
(2010).



[9] A. Ikeda, L. Berthier, and P. Sollich, Phys. Rev. Lett.
109, 018301 (2012).

[10] A. Ikeda, L. Berthier, and P. Sollich, Soft Matter (at
press), arXiv:1302.4271.

[11] F. Scheffold, F. Cardinaux,
arXiv:1305.5182.

[12] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Phys.
Rev. E 71, 010501 (2005).

[13] J. C. Baret, D. Vandembroucq, and S. Roux, Phys. Rev.
Lett. 89, 195506 (2002).

[14] E. A. Jagla, Phys. Rev. E 76, 046119 (2007).

[15] K. Martens, L. Bocquet, and J.-L. Barrat, Phys. Rev.
Lett. 106, 156001 (2011).

[16] L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett.
103, 036001 (2009).

[17] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates,
Phys. Rev. Lett. 78, 2020 (1997)

[18] P. Hébraud and F. Lequeux, Phys. Rev. Lett. 81, 2934
(1998).

[19] L. Berthier, J.-L. Barrat and J. Kurchan, Phys. Rev. E
61, 5464 (2000).

[20] W. Gotze, Complex dynamics of glass-forming liquids: A
mode-coupling theory (Oxford University Press, Oxford,
2008).

[21] K. Miyazaki and D. R. Reichman, Phys. Rev. E 66,
050501 (2002).

[22] K. Miyazaki, H. M. Wyss, D. A. Weitz and D. R. Reich-
man, Europhys. Lett. 75, 915 (2006).

[23] M. Fuchs and M. E. Cates Phys. Rev. Lett. 89, 248304
(2002).

[24] J. M. Brader, T. Voigtmann, M. E. Cates and M. Fuchs,
Phys. Rev. Lett. 98, 058301 (2012).

[25] M. Fuchs and M. E. Cates, J. Rheol. 53, 957 (2009).

[26] M. Ballauff, J. M. Brader, S. U. Egelhaaf, M. Fuchs,
J. Horbach, N. Koumakis, M. Kriiger, M. Laurati, K.
J. Mutch, G. Petekidis, M. Siebenbiirger, T. Voigtmann
and J. Zausch, Phys. Rev. Lett. 110, 215701 (2013).

[27] M. Nauroth and W. Kob, Phys. Rev. E 55, 657 (1997).

[28] L. Berthier and G. Tarjus Phys. Rev. E 82, 031502
(2010).

[29] J. Mewis and N. J. Wagner, Colloidal suspension rheology
(Cambridge University Press, Cambridge, 2012).

[30] A. Ghosh, V. K. Chikkadi, P. Schall, J. Kurchan, and D.
Bonn, Phys. Rev. Lett. 104, 248305 (2010).

[31] K. Chen, W. G. Ellenbroek, Z. Zhang, D. T. N. Chen,
P. J. Yunker, C. Brito, O. Dauchot, S. Henkes, W. van
Saarloos, A. J. Liu, and A. G. Yodh, Phys. Rev. Lett.
105, 025501 (2010).

and T. G. Mason

[32] A. Ikeda, L. Berthier, and G. Biroli J. Chem. Phys. 138,
12A507 (2013).

[33] L. Berthier and T. A. Witten, EPL 86, 10001 (2009);
Phys. Rev. E 80, 021502 (2009).

[34] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel,
Phys. Rev. Lett. 88, 075507 (2002).

[35] L. Berthier, Phys. Rev. E 69, 020201(R) (2004).

[36] L. Berthier and J.-L. Barrat, Phys. Rev. Lett. 89, 095702
(2002).

[37] F. Varnik and O. Henrich, Phys. Rev. B 73, 174209
(2006).

[38] J. P. Hansen and I. R. McDonald, Theory of Simple Lig-
uids, (Elsevier, Amsterdam, 1986).

[39] U. Bengtzelius, Phys. Rev. A 34, 5059 (1986)

[40] L. Berthier, E. Flenner, H. Jacquin, and G. Szamel Phys.
Rev. E 81, 031505 (2010).

[41] C. Brito and M. Wyart, J. Chem. Phys. 131, 024504
(2009).

[42] F. Lechenault, O. Dauchot, G. Biroli,
Bouchaud, Europhys. Lett. 83, 46002 (2008).

[43] A. Donev, S. Torquato and F. H. Stillinger, Phys. Rev.
E 71, 011105 (2005).

[44] L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev. E
73, 041304 (2006).

[45] L. Berthier, H. Jacquin, and F. Zamponi Phys. Rev. E
84, 051103 (2011).

[46] A. Ikeda and K. Miyazaki Phys. Rev. Lett. 104, 255704
(2010).

[47] P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001
(2007).

[48] F. Boyer, E. Guazzelli, and O. Pouliquen, Phys. Rev.
Lett. 107, 188301 (2011).

[49] E. Lerner, G. Diiring, and M. Wyart, Proc. Natl. Acad.
Sci. USA 109, 4798 (2012).

[50] G. Négele and J. Bergenholtz J. Chem. Phys. 108, 9893
(1998).

[51] C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006).

[52] M. Mézard and G. Parisi J. Chem. Phys. 111, 1076
(1999).

(53] W. Gtze and M. R. Mayr, Phys. Rev. E 61, 587 (2000).

[54] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789
(2010).

[65] H. Jacquin, L. Berthier, and F. Zamponi, Phys. Rev.
Lett. 106, 135702 (2011).

[56] H. Yoshino, J. Chem. Phys. 136, 214108 (2012); S. Oka-
mura and H. Yoshino, arXiv:1306.2777.

and J.-P.



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

