
HAL Id: hal-00903734
https://hal.science/hal-00903734

Submitted on 12 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Design of Dynamically Reconfigurable Embedded
Systems

Xin An, Abdoulaye Gamatié, Eric Rutten

To cite this version:
Xin An, Abdoulaye Gamatié, Eric Rutten. Safe Design of Dynamically Reconfigurable Embedded
Systems. 2nd Workshop on Model Based Engineering for Embedded Systems Design (M-BED2011),
Mar 2011, France. pp.00 – 00. �hal-00903734�

https://hal.science/hal-00903734
https://hal.archives-ouvertes.fr

Safe Design of Dynamically Reconfigurable

Embedded Systems

Xin An*, Abdoulaye Gamatié**, Éric Rutten*

* INRIA Rhône-Alpes, Grenoble, France ** LIFL/CNRS - INRIA Lille Nord Europe, Lille, France

Abstract—Dynamically reconfigurable embedded systems are
more and more attractive with the high need to adapt embedded
systems regarding frequent environment changes, better execu-
tion performances and lower energy consumption. This paper
presents an approach for the safe design of these systems. The
UML standard MARTE profile is adopted for the design. The
resulting models are transformed into formal models (e.g. syn-
chronous programs), by means of which, two levels of analysis are
carried out: the system configuration analysis concerning their
functional and nonfunctional properties by applying an abstract
clock analysis, and the synthesis of a correct controller for system
reconfiguration by using discrete controller synthesis to enforce
the desired behaviors, and decide and trigger reconfigurations. At
last a case study is provided to illustrate our approach. This study
is achieved in a co-design framework, referred to as GASPARD2.

I. INTRODUCTION

Over the recent decades, there has been an increasing

requirement for embedded systems to be able to dynamically

adapt to their environment variations. Typically, a surveillance

embedded system for street observation must adapt its image

analysis algorithms according to the luminosity of the weather.

The need for adaptivity may also come from the execution

platform to provide a better performance or to reduce energy

consumption in a system. For instance, for data-intensive

algorithms such as the discrete cosine transform, a hardware

accelerator gives a more powerful execution in terms of perfor-

mance than a processor. Further motivations for adaptivity are

the need for coping with different protocols and data-coding

standards, e.g., in multimedia embedded applications.

Meanwhile, with more and more new features integrated

into embedded systems, their design complexity has escalated.

For example, in smart phones, multiple applications are made

available for users. This leads to a real challenge about

cost-effective and safe design methodologies of dynamically

reconfigurable embedded systems. Firstly, design correctness

issues must be addressed to ensure system reliability in every

possible configuration. Secondly, reconfiguration correctness

must also be established to safely control the variation between

system configurations.

A. Contribution of the paper

We present a methodology for the safe design of dynami-

cally reconfigurable embedded systems. Safety in the design is

approached by using formal methods to verify the design, and

This work is partly supported by the French ANR project FAMOUS –
Reference: ANR-09-SEGI-003.

to generate (part of) the controller triggering reconfigurations.

It goes according to the following steps:

• Step 1: system design using the MARTE profile. The

considered systems are modeled with the UML standard

profile MARTE [8] that provides a rich set of concepts

for the design of embedded and real-time systems. Both

software application and hardware execution platforms

are represented with adequate concepts. Then, different

software/hardware allocations can be described. For all

these aspects of a system, various configurations can be

specified and modelled.

• Step 2: system analysis for correct and efficient ex-

ecution. The system models resulting from the previous

step are now analyzed from two main points of view:

analysis of each system configuration and synthesis of

a reconfiguration controller that enforces the designer-

specified system properties. These analyses are achieved

based on a transformation of MARTE models towards

formal models. Here, we consider the formal tools and

techniques provided by the synchronous technology [2].

System configurations are addressed by applying an ab-

stract clock analysis proposed in [1]. A configuration con-

sists of a complete implementation of a system on a given

execution platform. The system reconfiguration is dealt

with by using a technique allowing one to automatically

synthesize a system controller for a given property to

be enforced, as in [7]. The main advantage is that the

controller is automatically generated and correct w.r.t. the

property, using the BZR synchronous language [10].

• Step 3: composition of initial, uncontrolled design with

synthesized controller. The results obtained from system

analysis are now integrated to initial system models in

order to define a correct design with respect to system

requirements. This is done by composition of the original

uncontrolled system and the synthesized controller.

The above methodology is currently under construction and

is expected to be set up within a co-design framework,

GASPARD2 [5], defined for high-performance embedded sys-

tems. A complementary approach to this work concerning the

implementation level integration of the generated controller in

specific FPGA platforms is proposed in [9].

B. Outline

This paper is organized as follows: Section II presents

the design concepts regarding modeling techniques we have

adopted for our methodology. Section III describes the analysis

techniques concerning system configuration and reconfigura-

tion aspects respectively. A case study is presented in Section

IV to illustrate our proposal. Finally, we conclude our paper

in Section V.

II. DESIGN CONCEPTS

A. Modeling of reconfigurable systems with MARTE

We use the UML standard profile for Modeling and Anal-

ysis of Real-Time Embedded systems (MARTE) [8] to model

embedded systems. MARTE offers a rich set of concepts to de-

scribe different features of reconfigurable embedded systems.

The General Component Modeling (GCM) package is used to

define general aspects such as algorithms in the application

software part of a system. The Hardware Resource Modeling

(HRM) package is used to describe hardware architecture,

e.g. processors and memories. The Allocation package serves

to define software/hardware mapping. Furthermore, for data-

intensive applications such as image or video processing, data-

parallel algorithms and multiprocessor execution platforms

are described with the Repetitive Structure Modeling (RSM)

package. All these packages are useful in the description of

each system configuration. Concerning reconfiguration mod-

eling, we also need additional features: Configurations, which

is used to describe different implementation scenarios, or

modes, of a system, and UML Finite State Machines, which

is used to describe configuration switches. All these concepts

are available within the Papyrus tool used for modeling in

GASPARD2 environment.

B. Modeling each configuration with a synchronous language

The synchronous approach [2] has been proposed in 80s to

provide a rigorous mathematical semantics for the safe design

of embedded real-time systems. The synchrony hypothesis

means that there is a notion of logical instant, like a cycle

or a step, within which computation and communication are

made. Since then, synchronous languages, e.g. ESTEREL,

LUSTRE and SIGNAL have been developed for and widely

applied in the area of embedded systems. In our approach, we

mainly consider SIGNAL [4], which adopts a multi-clocked

philosophy for modeling: the system behaviors are described

using relations between the values of observed events, and

the occurrences, also referred to as abstract clocks, of these

events.

A modeling approach from MARTE models to synchronous

equational models has already been proposed in [6] in GAS-

PARD2. The resulting models take into account platform and

environment constraints on embedded data-intensive appli-

cations specified in MARTE. They are therefore translated

towards different synchronous dataflow languages such as

LUSTRE and SIGNAL.

C. Modeling reconfigurations with the BZR language

BZR [10] is a mixed imperative and declarative program-

ming language, which expresses system behavior in terms of

automata (imperative part) and specifies given properties to be

enforced by using contracts (declarative part). The compilation

of BZR automatically synthesizes a controller enforcing safety

properties. This controller is then re-injected automatically into

the initial BZR program so that an executable program can

be generated (in C or Java) for execution. The automata and

contracts in BZR can be generated from the state machine and

mode switch components specified in MARTE.

III. DESIGN ANALYSIS TECHNIQUES

A. System configurations

The validation of system configurations is addressed by

using the synchronous models. Properties of interest include

functional properties that are addressed with the SIGNAL

compiler: syntax and type analysis, data-dependency analy-

sis, abstract clock analysis, and automatic code generation,

exploitable in standard simulation environments such as Gtk-

Wave. Among these facilities, abstract clocks are very useful

for characterizing components interaction within a config-

uration. Such an interaction quite depends on environment

constraints and software/hardware allocation choices. Then,

the compiler analyzes abstract clock constraints to check im-

plementability criteria. This is commonly known as clock syn-

chronizability analysis. Further important analysis techniques

are available in SIGNAL, such as the temporal performance

evaluation [11] achieved by co-simulating a program P and its

associated temporal interpretation T (P), i.e. another program

obtained automatically from P . The program T (P) computes

an approximate execution time of P according to a given

system configuration.

B. Enforcing system reconfiguration correctness

Instead of addressing the correctness of reconfiguration by

exploring control automata with model-checking, we rather

adopt a more constructive method by enforcing reconfiguration

correctness with discrete controller synthesis (DCS).

DCS is a constructive and automated method ensuring

required properties on a system. It exploits transition system

models, and is originally defined in supervisory control of

discrete event systems. Inputs are partitioned into uncontrol-

lable and controllable ones. The uncontrollable inputs typically

come from the system’s environment, while the values of the

controllable inputs are given by the synthesized controller. It

also requires a specification of a control objective which needs

to be enforced by control. DCS produces a controller which

gives the constraints on controllable events, w.r.t. the current

state and the uncontrollable inputs, such that the resulting

controlled system satisfies the given objective. The synthesized

controller is maximally permissive, and the most possible

behaviors are kept. DCS has been defined and implemented

as a tool integrated with the synchronous technology: the

SIGALI tool [12] and BZR.

IV. CASE STUDY: CM PLAYER

A. Informal description

We consider a simple continuous multimedia (CM) player

system (modeled in Figure 1) extracted from [14]. The CM

server (or the synchronization component) takes as input the

streams of video and audio (CM) data packets from corre-

sponding CM sources, synchronizes and assembles data from

several packets into synchronized playable units, calculates the

system time at which frames should be played, and dispatches

them to output devices (e.g. the screener to play video and

the speaker to play audio). The video stream is composed

of a sequence of JPEG frames whereas the audio stream is

captured in the form of Sparc audio.

<<configuration>> {mode=LipSync}
Mode_SystemConfiguration1

:Application

lip:SynchronizationVideo

Audio

Screener

Speaker

jpeg

sparc

jpeg jpeg
jpeg

sparc sparc
sparc

Figure 1. The system configuration: LipSync

Since different temporal relations between media objects

can be defined according to application specifications, in this

paper, we suppose that the synchronization component has two

modes or algorithms dealing with two different temporal rela-

tion specifications (taken and adjusted from [3]) respectively

as shown in Figures 2 and 3. Both of these specifications are

specified by using the reference point synchronization model

[3]. Each block of the media is a logical data unit (e.g. frames

for digital video) defined by the designer. Specially, a LDU is

seen as a logical processing unit for media sources.

Figure 2. The lip synchronization specification

Slide 1 Slide 2 Slide 3 Slide 4

Audio

Figure 3. The slide show synchronization specification

As we can see form Figure 2 (resp. 3), the lip synchroniza-

tion algorithm (resp. slide show synchronization algorithm)

each time takes an audio unit and two video units (resp. one

slide and four audio units) for processing and assembling a

single playable unit.

B. Step 1: Design of the CM Player

1) Modeling of system functionality: With two different

execution modes for the synchronization component, we have

two functional configurations as modeled using MARTE in

Figure 1 and 4 namely LipSync and SlideShowSync. The

stereotype ≪configuration≫ is used to represent a specific

configuration with the name labeled below, which is associated

with the value of the mode noted on the top right to indicate

when the configuration is active.

<<configuration>> {mode=SlideShowSync}
Mode_SystemConfiguration2

:Application

slide:SynchronizationVideo

Audio

Screener

Speaker

jpeg

sparc

jpeg jpeg
jpeg

sparc sparc
sparc

Figure 4. The system configuration: SlideShowSync

2) Modeling of system hardware platform: For the hard-

ware implementation of this simple CM player system, we

consider a hardware architecture composed of a processor, a

hardware accelerator and memory devices as modeled in [13]

(see Figure 5). The CM sources are realized through sensors

(e.g. a camera for video data and a microphone for audio data)

which have dedicated media conversion units to produce the

required data format for further processing. And we assume

that each sensor has two different processing frequencies (15

and 45 MHz). A processor and a hardware accelerator, with

frequency values 30 and 45 MHz respectively, are provided for

the media synchronization processing. And the screener and

speaker are realized as actuators, provided with two processing

frequencies (15 and 45 MHz) as well.

:ExecutionPlatform

<<HwComputingResource>>
 Mp:ProcessingUnit

<<HwComputingResource>>
 :QuadriPro Architecture

<<HwCommunicationResource>>
 crossbar: Crossbar

 <<HwRAM>>
datamem:nSRAM

<<HwPLD>>
 acc: HwAcc

<<HwSensor>>
 VSen: Sensor

 <<HwActuator>>
 ScAct: Actuator

<<HwSensor>>
 ASen: Sensor

 <<HwActuator>>
 SpAct: Actuator

 <<HwRom>>
 im: InstructionMemory

Figure 5. The hardware platform model

The Hardware Resource Modeling package of MARTE is

used here to describe the architecture. Figure 5 gives the details

of our modeling.

3) Modeling of mapping: The mapping of the CM system

onto the hardware execution platform consists in allocating

each functional component onto the hardware resources. Due

to the space limitation, we only give two possible allocation

scenarios w.r.t the lip synchronization algorithm, and the

deployment procedure is also omitted.

Figure 6 depicts the configuration (C1) that the synchroniza-

tion component is executed on the processor while the media

sources/output devices are all mapped to the slower sensors/ac-

tuators. Figure 7 shows the configuration (C2) of the mapping

scenario with the synchronization component allocated to the

hardware accelerator and all the other components allocated to

the faster devices. The mappings from software components

to hardware resources are noted by dotted lines in the figures.

<<configuration>> {mode=C1}
Mode_LipSyn1

:Application

slide:SynchronizationVideo

Audio

Screener

Speaker

jpeg

sparc

jpeg jpeg
jpeg

sparc sparc
sparc

:ExecutionPlatform

<<HwComputingResource>>
 Mp:ProcessingUnit

<<HwComputingResource>>
 :QuadriPro Architecture

<<HwCommunicationResource>>
 crossbar: Crossbar

 <<HwRAM>>
datamem:nSRAM

<<HwPLD>>
 acc: HwAcc

<<HwSensor>>
 VSen1: Sensor

 <<HwActuator>>
 ScAct1: Actuator

<<HwSensor>>
 ASen1: Sensor

 <<HwActuator>>
 SpAct1: Actuator

 <<HwRom>>
 im: InstructionMemory

Figure 6. A configuration executed on the processor

<<configuration>> {mode=C2}
Mode_LipSync2

:Application

slide:SynchronizationVideo

Audio

Screener

Speaker

jpeg

sparc

jpeg jpeg
jpeg

sparc sparc
sparc

:ExecutionPlatform

<<HwComputingResource>>
 Mp:ProcessingUnit

<<HwComputingResource>>
 :QuadriPro Architecture

<<HwCommunicationResource>>
 crossbar: Crossbar

 <<HwRAM>>
datamem:nSRAM

<<HwPLD>>
 acc: HwAcc

<<HwSensor>>
 VSen2: Sensor

 <<HwActuator>>
 ScAct2: Actuator

<<HwSensor>>
 ASen2: Sensor

 <<HwActuator>>
 SpAct2: Actuator

 <<HwRom>>
 im: InstructionMemory

Figure 7. A configuration executed on the hardware accelerator

C. Step 2: Formal Analysis of System Models

1) Configuration Analysis: Due to space limitations, we

illustrate only the analysis of configurations w.r.t the lip

synchronization mode concerning their correctness, execution

time as well as energy consumptions. The method proposed

in [1] is employed for the analysis. For simplicity, a single

playable unit is considered for the analysis. We firstly identify

temporal properties by defining logical clocks for each com-

ponent, then synthesize a physical clock for each hardware

resource, and at last analyze each configuration by mapping

logical clocks to physical ones.

Identification of functional temporal properties. The tem-

poral relations between the components are modeled by using

a logical binary clock. An occurrence of 1 means the activation

of the component whereas 0 means no activation. And at each

activation instant (which corresponds to an instruction cycle),

one logical data unit is consumed and produced. Figure 8

depicts the activation traces of logical clocks Vclk, Aclk, Sclk,

SCclk and SPclk corresponding to components video, audio,

the lip synchronization, screener and speaker.

Vclk: 1 1 1 1 ... 0

Aclk: 1 0 1 0 ... 0

Sclk: 0 1 0 1 ... 0

SCclk: 0 1 0 1 ... 0

SPclk: 0 1 0 1 ... 0

Figure 8. The functional temporal property of the system

Synthesis of physical clocks. In order to relate the log-

ical clocks to physical ones, the approach in [1] traces

the activation of each hardware resource by computing the

period value between two successive processing cycles, e.g.

a processor with frequency 30 MHz has the period value

equal to approximately 0.033 microseconds, that is 1/(30

MHz). A most frequent clock, called ideal clock, is also

defined (by computing the Least Common Multiple) in or-

der to synchronize multi clocks. Figure 9 depicts the the

ideal clock and different physical clocks (resp. VSen1Clk,

ProClk and HwAClk) associated with the hardware resources

(resp. VSen1, processor and hardware accelerator) as well

as their relations. The physical clocks ASen1Clk, ScAct1Clk

and SpAct1Clk (resp. VSen2Clk, ASen2Clk, ScAct2Clk and

SpAct2Clk) associated with ASen1, ScAct1 and SpAct1 (resp.

VSen2, ASen2, ScAct2 and SpAct2) have the same clock as

VSen1Clk (resp. HwAClk).

IdealClk: | | | | | | | | | | | | | ...

VSen1Clk: | | | ...

ProClk: | | | | | ...

HwAClk: | | | | | | | ...

Figure 9. Physical clocks of hardware resources w.r.t an ideal clock

Analysis of configurations. We firstly consider the con-

figuration (C1) of Figure 6. We assume the number of cycles

executed, at the activation instant of components, by hardware

resources is 1. By means of mapping the logical clocks onto

the physical ones, we get the result shown in Figure 10. The

value -1, whose meaning depends on its nearest preceding

value that is not -1, means active when it is 1 and idle when 0.

As we can see the logical clock properties are not respected.

The constraint between VSen1Clk′ and ProClk′ is violated,

because the first activation of ProClk5′ happens earlier than

the second activation of VSen1Clk′. That is, the video sensor

is activated not frequently enough while the processor does

not get the data required for its processing.

Then, we consider the configuration (C2) in Figure 7, for

which the hardware accelerator is used for the synchronization

process whereas both media sensors use the faster frequency

value 45 MHz. Figure 11 gives the result of this mapping. This

time the temporal properties are respected, and the execution

time, which is pointed out by the empty triangle, is 7 ticks (or

(7− 1)× 0.011 microseconds). However, in consideration of

| | | | | | | | | | | | | | | | | | |
1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1
1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0
0 -1 -1 1 -1 -1 0 -1 -1 1 -1 -1 0 -1 -1 0 -1 -1 0
0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1
0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1

 VSen1Clk':
 ASen1Clk':
 ProClk':
ScAct1Clk':
SpAct1Clk':

Figure 10. Mapping trace for C1 shown in Figure 6

energy consumption minimization, the slack time, defined by

the difference of the task deadline (pointed out by the black

triangle) and execution time, is big (12 ticks for each hardware

resource). Thus, we consider another configuration (C3) that

replaces the accelerator and actuators in C2 with the processor

and slower actuators and analyze it in the same way (see

Figure 12). As a result, it respects the temporal properties,

takes 19 ticks for the execution time, and has a relatively

small slack time (12 ticks for two sensors and 9 ticks for

the processor).

| | | | | | | | | | | | | | | | | | |
1 -1 1 -1 1 -1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
1 -1 0 -1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
0 -1 1 -1 0 -1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
0 -1 1 -1 0 -1 1 -1 -0 -1 0 -1 0 -1 0 -1 0 -1 0
0 -1 1 -1 0 -1 1 -1 -0 -1 0 -1 0 -1 0 -1 0 -1 0

 VSen2Clk':
 ASen2Clk':
 HwAClk':
ScAct2Clk':
SpAct2Clk':

Figure 11. Mapping trace for C2 shown in Figure 7

| | | | | | | | | | | | | | | | | | |
1 -1 1 -1 1 -1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
1 -1 0 -1 1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
0 -1 -1 1 -1 -1 0 -1 -1 1 -1 -1 0 -1 -1 0 -1 -1 0
0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1
0 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 1

 VSen2Clk':
 ASen2Clk':
 ProClk':
ScAct1Clk':
SpAct1Clk':

Figure 12. Mapping trace for C3

Similarly, all possible configurations of the system can

be analyzed, and meaningful information, e.g. correctness,

execution time, can be collected.

2) Reconfiguration Analysis: We take into account the

previous three configurations C1, C2 and C3 for the LipSync

mode and a correct configuration for the SlideShowSync mode

C4 to describe our reconfiguration analysis.

Specification of configuration controller. Having a number

of possible configurations/modes for the system, the UML

Finite State Machine (FSM) is used to model and manage

all these configurations as well as their switches. As shown in

Figure 13, the FSM specifies how mode values are produced

for selecting configurations of the system. It has four states

corresponding to the four configurations we have mentioned

above. Each state is associated with a specific mode value and

the active configuration is the one having the same mode value

of the current state of the controller FSM.

We assume that the controller has two inputs: mode switch

and the current energy level (High or Not High). As we can

see, the designed controller controls that the system chooses

the correct mode for the synchronization processing, and in

each mode, it behaves according to the current energy level.

Controllable variables (i.e. ctr1, ..., ctr6) are also defined in

<<mode>>

C2

<<mode>>

C1

<<mode>>

C3

<<modeBehavior>>
 LipSyn

<<mode>>

SlideShowSyn
 (C4)

 <<modeTransition>>
 [switch]/
SwitchtoSlideShowmode

<<modeTransition>>
 [switch]/
 SwitchtoLipSynmode

<<modeTransition>>
NH&ctr1

H&ctr2

NH&ctr3

H&ctr5
NH&ctr6

<<modeBehavior>>
 SystemModes

stm <<modeBehavior>> SystemModes

H&ctr4

Figure 13. The FSM for system configurations

the controller in order to provide controllable points for the

DCS tool to enforce system requirements as shown next.

Enforcing system requirements. We firstly encode the

designed configuration controller described in Figure 13 into

BZR (see Figure 14). Meanwhile, the analysis results for each

configuration, i.e. its correctness, execution time and energy

consumption, from Section IV-C1 are also associated with

each state. In the program, we simply use the amount of ticks

of execution time and slack time as the values of the execution

time and energy consumption.

automaton
state Lip
do
 automaton
 state C2
 do correctness = true;
 execution_time = 7;
 energy_consumption = 60;
 until not energy_high & ctr6 then C1
 | not energy_high & ctr1 then C3

 state C1
 do correctness = false;
 execution_time = 19;
 energy_consumption = 0;
 until energy_high & ctr5 then C2
 | not energy_high & ctr4 then C3

 state C3
 do correctness = true;
 execution_time = 19;
 energy_consumption = 33;
 until energy_high & ctr2 then C2
 | not energy_high & ctr3 then C1
 end

until swtch then Slide

state Slide
do
 correctness = true;
 execution_time = 10;
 energy_consumption = 46;
until swtch then Lip
end;

Figure 14. The BZR program for the control automaton

The system constrains are defined by using BZR contracts

[10]. Figure 15 gives the code of the contract description of the

system requirement that the system always stays away from

incorrect configurations, and meanwhile, the execution time

constraint, whose limit is defined as a constant (e.g. 19 ticks),

must also be respected.

contract
var time_constraint:bool;
let
 time_constraint = (execution_time<=19);
tel
assume true
enforce (correctness & time_constraint)
with (ctr1,ctr2,ctr3,ctr4,ctr5,ctr6:bool)

Figure 15. The BZR contract enforcing system requirements

At last, by feeding the BZR program and the contract to

the BZR compiler, it will synthesize a controller (if it exists)

automatically satisfying the system requirement. Figure 16

depicts the simulation results of this case study with respect

to different execution time limits (i.e. 19 ticks for the left

simulation and 10 ticks for the right one).

Figure 16. The simulations of controlled system w.r.t the execution time
limit being 19 and 10 ticks respectively

Let’s firstly look at the simulation on the left, for which all

three configurations satisfy the execution time limit 19 ticks.

Initially, the system is in state C2, and when the energy level

is low (depicted as energy high equal to 0 in the figure), the

controller inhibits the system from going to state C1, by setting

the value of the controllable variable ctr6 to 0, which is an

incorrect configuration. The same happens when the system is

in state C3. As a result, the system stays in configurations C2

and C3. When the execution time limit is set to 10 ticks, for

which only C2 satisfies the execution time limit. As we can

see from the simulation on the right, the controller forbids all

transitions by setting corresponding controllable variables to

0 and makes the system stay in configuration C2.

D. Step 3: Composition of synthesized controller

Finally, the synthesized controller generated by BZR is

integrated into the initial system model (as shown in Figure

17). It gives the values of the controllable variables w.r.t the

current system state and input such that the resulting controlled

system satisfies the system requirements.

C1 C2

Synthesized
 controller

system
 inputs

...

<<mode>>

C2

<<mode>>

C1

<<mode>>

C3

<<modeBehavior>>
 LipSyn

<<mode>>

SlideShowSyn
 (C4)

 <<modeTransition>>
 [switch]/
SwitchtoSlideShowmode

<<modeTransition>>
 [switch]/
 SwitchtoLipSynmode

<<modeTransition>>
NH&ctr1

H&ctr2

NH&ctr3

H&ctr5
NH&ctr6

<<modeBehavior>>
 SystemModes

H&ctr4

stm <<modeBehavior>> SystemModes

...C3 Cn

system states

 ctr
values

Figure 17. The final CM player model

V. CONCLUSIONS

In this paper, we propose a methodology for the safe

design of dynamically reconfigurable embedded systems. Such

systems are getting an increasing attention due to the crucial

needs to address the frequent evolution of embedded systems,

regarding requirements from their environments or execution

platform in terms of performance and energy consumption.

The UML standard profile MARTE has been adopted for the

high-level modeling of system configurations (i.e. function-

ality, execution platform and their allocation). The resulting

models are analyzed by using the approach proposed in [1],

which employs abstract clocks inspired by the synchronous ap-

proach [2], for a fast and qualitative analysis about functional

and nonfunctional properties of system configurations via the

analysis of scheduling traces resulting from the mapping of

logical clocks (capturing functional properties) onto physical

ones (derived from hardware processing frequencies). The

DCS formal technique is then used for synthesizing a correct

controller enforcing reconfiguration correctness. The domain

specific language BZR [10] has been adopted for this purpose.

At last a CM player case study has been given to illustrate our

approach.

REFERENCES

[1] Adolf Abdallah, Abdoulaye Gamatié, and Jean-Luc Dekeyser. Correct
and energy-efficient design of SoCs: the H.264 encoder case study.
In International Symposium on System-on-Chip (SoC’2010), Tampere
Finland, 2010.

[2] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, Robert, and De Simone. The synchronous languages
12 years later. In Proceedings of The IEEE, pages 64–83, 2003.

[3] Gerold Blakowski and Ralf Steinmetz. A media synchronization survey:
reference model, specification and case studies. IEEE journal on selected

area in communications, 1996.
[4] Abdoulaye Gamatié. Designing embedded systems with the SIGNAL

programming language: synchronous, reactive specification. Springer
New York, 2010.

[5] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Anne Etien, Rabie
Ben Atitallah, Philippe Marquet, and Jean-Luc Dekeyser. A model
driven design framework for high performance embedded systems.
Research Report RR-6614, INRIA, 2008.

[6] Abdoulaye Gamatié, Éric Rutten, Huafeng Yu, Pierre Boulet, and Jean-
Luc Dekeyser. Synchronous modeling of data intensive applications.
Research Report RR-5876, INRIA, 2006.

[7] Abdoulaye Gamatié, Huafeng YU, Gwenaël Delaval, and Éric Rutten. A
case study on controller synthesis for data-intensive embedded systems.
In Embedded Software and Systems, pages 75–82, 2009.

[8] OMG Group. Modeling and analysis of real-time and embedded systems
(marte). www.omgmarte.org/. 2007.

[9] Sébastien Guillet, Florent de Lamotte, Éric Rutten, Guy Gogniat, and
Jean-Philippe Diguet. Modeling and formal control of partial dynamic
reconfiguration. In Proceedings of the 6th International Conference on

ReConFigurable Computing and FPGAs, Cancun, Mexico, 2010.
[10] Gwenaël Delaval, Hervé Marchand, and Éric Rutten. Contracts for

modular discrete controller synthesis. In Proceedings of the ACM

SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools

for embedded systems, pages 57–66, Stockholm Suède, 2010.
[11] Apostolos Kountouris and Paul Le Guernic. Profiling of SIGNAL

programs and its application in the timing evaluation of design imple-
mentations. In IEE Colloquium on the Hardware-Software Cosynthesis

for Reconfigurable, HP Labs, Bristol, UK, 1996.
[12] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le

Guernic. Synthesis of discrete-event controllers based on the SIGNAL

environment. Discrete Event Dynamic Systems, 10:325–346, 2000.
[13] Imran Rafiq Quadri, Abdoulaye Gamatié, Pierre Boulet, and Jean-Luc

Dekeyser. Modeling of configurations for embedded system implemen-
tations in MARTE. In 1st workshop on Model Based Engineering for

Embedded Systems Design - Design, Automation and Test in Europe

(DATE 2010), Dresden Germany, 2010.
[14] Lawrence A. Rowe and Brian C. Smith. A continuous media player.

In Network and Operating System Support for Digital Audio and Video,
pages 376–386. Springer Berlin / Heidelberg, 1993.

	Introduction
	Contribution of the paper
	Outline

	Design Concepts
	Modeling of reconfigurable systems with Marte
	Modeling each configuration with a synchronous language
	Modeling reconfigurations with the Bzr language

	Design Analysis Techniques
	System configurations
	Enforcing system reconfiguration correctness

	Case Study: CM player
	Informal description
	Step 1: Design of the CM Player
	Modeling of system functionality
	Modeling of system hardware platform
	Modeling of mapping

	Step 2: Formal Analysis of System Models
	Configuration Analysis
	Reconfiguration Analysis

	Step 3: Composition of synthesized controller

	Conclusions
	References

