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Abstract

We consider a continuum percolation model on R
d, d ≥ 1. For t, λ ∈ (0,∞) and

d ∈ {1, 2, 3}, the occupied set is given by the union of independent Brownian paths
running up to time t whose initial points form a Poisson point process with intensity
λ > 0. When d ≥ 4, the Brownian paths are replaced by Wiener sausages with radius
r > 0.
We establish that, for d = 1 and all choices of t, no percolation occurs, whereas for
d ≥ 2, there is a non-trivial percolation transition in t, provided λ and r are chosen
properly. The last statement means that λ has to be chosen to be strictly smaller than
the critical percolation parameter for the occupied set at time zero (which is infinite
when d ∈ {2, 3}, but finite and dependent on r when d ≥ 4). We further show that for
all d ≥ 2, the unbounded cluster in the supercritical phase is unique.
Along the line a finite box criterion for non-percolation in the Boolean model is ex-
tended to radius distributions with an exponential tails. This may be of independent
interest.
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1 Introduction

Notation. For every d ≥ 1, we denote by Lebd the Lebesgue measure on R
d. || · || and || · ||∞

stand for the Euclidean norm and supremum norm on R
d, respectively. For any set A, the

symbol A∁ refers to the complement set of A. The open ball with center z and radius r with
respect to the Euclidean norm is denoted by B(z, r), whereas B∞(z, r) stands for the same
ball with respect to the supremum norm. Furthermore, for every 0 < r < r′, we denote by
A(r, r′) = B(0, r′)\B(0, r) and A∞(r, r′) = B∞(0, r′)\B∞(0, r) the annulus delimited by the
balls of radii r and r′ with respect to the Euclidean norm and supremum norm, respectively.
Given a d-dimensional Brownian motion (Bt)t≥0, we denote its i-th component by (Bt,i)t≥0,
for i ∈ {1, 2, . . . , d}. For all I ⊆ R

+, we denote by BI the set {Bt, t ∈ I}. The symbol Pa

denotes the law of a Brownian motion starting in a. Finally, Pa1,a2 denotes the law of two
independent Brownian motions starting in a1 and a2, respectively.

1.1 Overview and motivation

For λ > 0, let (Ωp,Ap, Pλ) be a probability space on which a Poisson point process E
with intensity λ × Lebd is defined. Conditionally on E , we fix a collection of independent
Brownian motions {(Bx

t )t≥0, x ∈ E} such that for each x ∈ E , Bx
0 = x and such that

(Bx
t − x)t≥0 is independent of E . A more rigorous definition is provided in Section 1.3

below, where ergodic properties are obtained along. We study for t, r ≥ 0 the occupied set
(see Figure 1 below):

Ot,r :=
⋃

x∈E

⋃

0≤s≤t

B(Bx
s , r). (1.1)

In the rest of the paper, we write Ot instead of Ot,0.
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Figure 1: Simulations of Ot in the case d = 2, at a small time, intermediate and large time.

Two points x and y of R
d are said to be connected in Ot,r if and only if there exists

a continuous function γ : [0, 1] 7→ Ot,r such that γ(0) = x and γ(1) = y. A subset of
Ot,r is connected if and only if all of its points are pairwise connected. In the following a
connected subset of Ot,r is called a component. A component C is bounded if there exists
R > 0 such that C ⊆ B(0, R). Otherwise, the component is said to be unbounded. A cluster
is a connected component which is maximal in the sense that it is not strictly contained in
another connected component.

We are interested in the percolative properties of the occupied set: is there an un-
bounded cluster for large t? Is it unique? What happens for small t? Since an elementary
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monotonicity argument shows that t 7→ Ot,r is non-decreasing, the first and the third
question may be rephrased as follows: is there a percolation transition in t?

1.2 Results

We fix λ > 0.

Theorem 1.1. [No percolation for d = 1] Let d = 1. Then, for all t ≥ 0, the set Ot has
almost surely no unbounded cluster.

Theorem 1.2. [Percolation phase transition and uniqueness for d ∈ {2, 3}] Suppose
that d ∈ {2, 3}. There exists tc = tc(λ, d) > 0 such that for t < tc, Ot has almost surely no
unbounded cluster, whereas for t > tc, Ot has almost surely a unique unbounded cluster.

Let d ≥ 4, r > 0 and let δr be the Dirac measure concentrated on r. We denote by λc(δr)
the critical value for O0,r such that for all λ < λc(δr) the set O0,r almost surely does not
contain an unbounded cluster, and such that for λ > λc(δr) it does, see also (2.5). It follows
from Theorem 2.1, that λc(δr) > 0 and limr→0 λc(δr) =∞.

Theorem 1.3. [Percolation phase transition and uniqueness for d ≥ 4] Suppose
that d ≥ 4 and let r > 0 be such that λ < λc(δr). Then, there exists tc = tc(λ, d, r) > 0
such that for t < tc, Ot,r has almost surely no unbounded cluster, whereas for t > tc, it has
almost surely a unique unbounded cluster.

1.3 Construction and an ergodic property.

In this section we briefly outline how to construct the model described in Section 1.1 and
we state an ergodic theorem. The construction is very close to the construction of the
Boolean percolation model, in which balls of random radii are placed around each point
of a Poisson point process. We refer the reader to Section 1.4 of [MR96], where a more
detailed description of the Boolean percolation model is given (see also Section 2 in the
present work).

Construction. Let E be a Poisson point process with intensity λ × Lebd defined on
(Ωp,Ap, Pλ). Consider the family of binary cubes

K(n, z) =
d∏

i=1

(zi2
−n, (zi + 1)2−n], ∀n ∈ N, z = (zi)1≤i≤d ∈ Z

d, (1.2)

so that for each n ∈ N, {K(n, z), z ∈ Z
d} is a partition of Rd. In particular, for each x ∈ E

and n ∈ N, there exists a unique z(n, x) such that x ∈ K(n, z(n, x)). Consequently, Pλ-a.s.,
for each x ∈ E ,

n0(x) := inf{n ≥ 1 : K(n, z(n, x)) ∩ E = {x}} (1.3)

is well defined. Let B(C([0,∞),Rd)) be the Borel σ-algebra on C([0,∞),Rd) with respect

to the supremum norm. To continue define ΩB = C([0,∞),Rd)N×Z
d
, equip ΩB with the

product σ-algebra AB = B(C([0,∞),Rd))N×Z
d

and let PB = W ⊗N×Z
d

B , where WB is the
Wiener measure on C([0,∞),Rd). The Brownian path associated to x ∈ E is defined to be

wB(n0(x), z(n0(x), x)), wB ∈ ΩB . (1.4)
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Finally, we set Ω = Ωp × ΩB, A = Ap × AB and P = Pλ × PB , so that the probability
space (Ω,A, P) corresponds to the model described in Section 1.1.

Ergodicity. For x ∈ Z
d let Tx : Rd → R

d be the translation defined by Tx(y) = y + x,
y ∈ R

d. This induces a translation Sx on Ωp via the equation (Sxωp)(A) = ωp(T −1
x A),

A ∈ Ap. A translation on ΩB is given by the formula (UxωB)(n, z) = ωB(n, z − x), so that
we finally can define the translation T̃x on the product space Ω as T̃xω = (Sxωp, UxωB). A
simple adaption of the proof of Proposition 2.8 in [MR96] yields the following result.

Proposition 1.4. For all t, r ≥ 0 the set Ot,r defined in (1.1) is ergodic with respect to
the family of translations {T̃x, x ∈ Z

d}.

1.4 Discussion

Motivation and related models. Our model fits into the class of continuum percolation mod-
els, which have been studied by both mathematicians and physicists. Their first appearance
can be traced back (at least) to Gilbert [G61] under the name of random plane networks.
Gilbert was interested in modeling infinite communication networks of stations with range
R > 0. He did this by connecting each two points of a Poisson point process on R

2, when-
ever their distance is less than R. Another application, which is mentioned in his work
is the modeling of a contagious infection. Here, each individual gets infected when it has
distance less than R to an infected individual.

A subclass of continuum percolation models follows the following recipe: first throw
a point process (e.g. Poisson point process) and attach to each of its points a geometric
object, like a disk of random radius (Boolean model) or a segment of random length and
random orientation (Poisson sticks model or needle percolation). Our model also falls into
this class: we attach to each point of a Poisson point process a Brownian path (a path of
a Wiener sausage when d ≥ 4). It could actually be seen as a model of defects randomly
distributed in a material and propagating at random (see also Menshikov, Molchanov and
Sidorenko [MMS88] for other physical motivations of continuum percolation). One can
think for example of an (infinite) piece of wood containing (homogeneously distributed)
worms, where each worm tunnels through the piece of wood at random, and we wonder
when the latter “breaks”. The informal description above is reminiscent of (and actually,
borrowed from) the problem of the disconnection of a cylinder by a random walk, which
itself is linked to interlacement percolation [Szn10]. The latter is given by the random
subset obtained when looking at the trace of a simple random walk on the torus (Z/NZ)d,
when started from the uniform distribution and running up to time uNd, as N ↑ ∞. Here
u plays the role of an intensity parameter for the interlacements set. However, even though
the model of random interlacements and our model seem to share some similarities, there
is an important difference: in the interlacement model, the number of trajectories which
enter a ball of radius R scales like cRd−2 for some c > 0, whereas in our case it is at least
of order Rd.

Another motivation for studying such a model is that it should arise as the scaling limit
of a certain class of discrete dependent percolation models. More precisely, percolation mod-
els for a system of independent finite-time random walks homogeneously distributed on Z

d.
This could also be seen as a system of non-interacting ideal polymer chains.
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Comments on the results. First of all notice that we investigated a phase transition in t. It
would also be possible to play with the intensity λ instead. Indeed, multiplying the intensity
λ by a factor η changes the typical distance between two Poisson points by a factor η−1/d.
Thus, by scale invariance of Brownian motion, the percolative behaviour of the model is
the same when we consider the Brownian paths up to time η−2/dt instead. Hence, tuning
λ boils down to tuning t.

Moreover, it is worthwhile mentioning that Theorem 1.2 is stated only in the case
r = 0, which is the case of interest to us. The result is the same when r > 0, up to minor
modifications. However, if d ≥ 4 the paths of two independent d-dimensional Brownian
motions starting at different points do not intersect. Hence, in this case r has to be chosen
positive, otherwise no percolation phase transition occurs.

Besides, we draw the reader’s attention to Lemma 2.3, which is useful in proving the
continuity result in Proposition 2.2. This lemma provides a finite-box criterion for non-
percolation for the Boolean model. It is stated in the case of radius distributions with
exponential tail. To our knowledge such a criterion was only proved for bounded radii.

To sum up, the results proven in this article answer the first questions typically asked
when studying a new percolation model. However, there are still many challenges left open.
One may wonder for instance how fast is the decay of the probability (in the supercritical
regime) that there is a ball of a certain size, centered in the origin, which is contained in
the vacant set. Moreover, it would be interesting to investigate the scaling behaviour of tc

in dimension d ≥ 4 as r tends to zero. In the same line one could ask for sharp upper and
lower bounds for tc. Finally, it is not clear whether percolation occurs at tc.

1.5 Outline of the paper

We shortly describe the organization of the article. In Section 2 we introduce the Boolean
percolation model and list and prove some of its properties. In Section 3 we prove Theorem
1.1. The proofs of Theorems 1.2 and 1.3 are given in Sections 4–6. Section 4 (resp. 5) deals
with the existence of a non-percolation (resp. percolation) phase. In Section 6 the unique-
ness of the unbounded cluster is established. The appendix provides proofs of technical
lemmas, which are needed in Sections 2 and 6.

2 Preliminaries on Boolean percolation

The model of Boolean percolation has been discussed in great detail in Meester and Roy
[MR96] and we refer to this source for a discussion which goes beyond the description we
are giving here.

2.1 Introduction of the model

Let ̺ be a probability measure on [0,∞) and let χ be the Poisson point process on R
d×[0,∞)

with intensity (λ × Lebd) ⊗ ̺. We denote the corresponding probability measure by Pλ,̺.
A point (x, r(x)) ∈ χ is interpreted to be the open ball in R

d with center x and radius
r(x). Furthermore, we let E be the projection of χ onto R

d. Boolean percolation deals with
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properties of the random set
Σ =

⋃

x∈E

B(x, r(x)). (2.1)

Moreover, C(y), y ∈ R
d, denotes the cluster of Σ which contains y. If y /∈ Σ, then C(y) = ∅.

Theorem 2.1 (Gouéré, [Gou08], Theorem 2.1). For all probability measures ̺ on (0,∞)
the following assertions are equivalent:
(a) ∫ ∞

0
xd ̺(dx) <∞. (2.2)

(b) There exists λ0 ∈ (0,∞) such that for all λ < λ0,

Pλ,̺

(
C(0) is unbounded

)
= 0. (2.3)

Moreover, if (a) holds, then, for some C = C(d) > 0, (2.3) is satisfied for all

λ < C

(∫ ∞

0
xd̺(dx)

)−1

. (2.4)

It is immediate from Theorem 2.1, that

λc(̺) := inf
{
λ > 0 : Pλ,̺

(
C(0) is unbounded

)
> 0

}
> 0. (2.5)

Moreover, from the remark on page 52 of [MR96] it also follows that λc(̺) < ∞ if
̺((0,∞)) > 0. A more geometric fashion to characterize (2.5) is via crossing probabili-
ties. For that fix N1, N2, . . . , Nd > 0 and let CROSS(N1, N2, . . . , Nd) be the event that the
set [0, N1] × [0, N2] × · · · × [0, Nd] contains a component C such that C ∩ {0} × [0, N2] ×
· · · × [0, Nd] 6= ∅ and C ∩ {N1} × [0, N2]× · · · × [0, Nd] 6= ∅. The critical value λCROSS with
respect to this event is defined by

λCROSS(̺) = inf

{
λ > 0 : lim sup

N→∞
Pλ,̺ (CROSS(N, 3N, . . . , 3N)) > 0

}
. (2.6)

Assuming that ̺ has compact support, Menshikov, Molchanov and Sidorenko [MMS88]
proved that

λc(̺) = λCROSS(̺). (2.7)

2.2 Continuity of λc(̺)

Given two probability measures ν and µ on a predefined probability space we write ν � µ,
if µ stochastically dominates ν.

Proposition 2.2. Let ̺ be a probability measure on [0,∞) with bounded support and let
(̺n)n∈N be a sequence of probability measures on [0,∞) such that ̺n → ̺ weakly as n→∞
and such that ̺ � ̺n for each n ∈ N. Moreover, assume that

• there are C > 0 and R0 > 0 such that for all n ∈ N, ̺n([R,∞)) ≤ e−CR for all
R ≥ R0;
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• there is a probability measure ̺′ on [0,∞) with finite moments of order d such that
̺n � ̺′ for all n ∈ N.

Then,
lim

n→∞
λc(̺n) = λc(̺). (2.8)

The proof of Proposition 2.2 relies on the following two lemmas whose proofs are given
in the appendix and at the end of this section, respectively.

Lemma 2.3. Let N ∈ N, λ > 0 and let ̺ be a probability measure on [0,∞) such that
there are constants C = C(̺) > 0 and R0 > 0 such that ̺([R,∞)) ≤ e−CR for all R ≥ R0.
There is an ε = ε(C, d) > 0 such that if

Pλ,̺(CROSS(N, 3N, . . . , 3N)) ≤ ε, (2.9)

then Pλ,̺(∃ y ∈ R
d : Lebd(C(y)) =∞) = 0.

Lemma 2.4. Choose η > 0 and ̺′ according to Proposition 2.2, then for all N ∈ N

lim
M→∞

Pλ,̺′

(
∃ y ∈ B∞(0, M)∁ ∩ E s.t. B(y, r(y)) ∩ [0, N ] × [0, 3N ]d−1 6= ∅

)
= 0. (2.10)

Remark 2.5. We expect that our proof of Lemma 2.3 still works when ̺ has a polynomial
tail (of sufficiently large order) instead of an exponential tail. However, since we do not
need Lemma 2.3 in this stronger version, we did not verify all the details needed for that.

We start with the proof of Proposition 2.2 subject to Lemmas 2.3–2.4.

Proof of Proposition 2.2. The idea of the proof is due to Penrose [Pen95]. First, note that

lim sup
n→∞

λc(̺n) ≤ λc(̺), (2.11)

since ̺ � ̺n for all n ∈ N. Thus, we may focus on the reversed direction in (2.11). Second,
fix λ < λc(̺) and let ε > 0 be chosen according to Lemma 2.3. By (2.7) there is a N ∈ N

such that
Pλ,̺ (CROSS(N, 3N, . . . , 3N)) ≤ ε/3. (2.12)

We consider (Ω̂, P̂) the following coupling of {Pλ,̺n}n∈N and Pλ,̺:

• the points of E are sampled according to Pλ;

• for each point x ∈ E , by Skorokhod’s embedding theorem, the radii {rn(x)}n∈N and
r(x) can be chosen such that they have respective distributions {̺n}n∈N and ̺ and
are coupled such that rn(x) −−−→

n→∞
r(x) a.s.

The configurations obtained via this coupling are denoted by

Σn :=
⋃

x∈E

B(x, rn(x)), n ∈ N, and Σ∞ :=
⋃

x∈E

B(x, r(x)). (2.13)

Let M > 0 and consider the events

En = {Σ̂ := (Σk)k∈N∪{∞} : Σn ∈ CROSSM}, n ∈ N ∪ {∞},
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where

CROSSM =

{
CROSS(N, 3N, . . . , 3N) happens by open balls

whose centers are in B∞(0, M)

}
.

Since the number of points in B∞(0, M) ∩ E is finite a.s., we may conclude that

lim
n→∞

1lEn = 1lE∞ a.s. (2.14)

(Note that the convergence in (2.14) is not true for every possible realization, but indeed
on a set of probability one.) Hence, by the dominated convergence theorem,

lim
n→∞

P̂(En) = P̂(E∞).

Therefore,
lim

n→∞
Pλ,̺n(CROSSM ) = Pλ,̺(CROSSM ),

so that for all n ∈ N large enough,

Pλ,̺n(CROSSM ) ≤ 2ε/3. (2.15)

Whence, Lemma 2.4 and the fact that ̺n � ̺′ for all n ∈ N, yields that there is n0 ∈ N

such that for all n ≥ n0,

Pλ,̺n

(
CROSS(N, 3N, . . . , 3N)

)
≤ ε. (2.16)

Thus, an application of Lemma 2.3 yields that there is no unbounded component under
Pλ,̺n for all n ≥ n0. Consequently, λ < λc(̺n) for all n ≥ n0, from which Proposition 2.2
follows.

The proof of Lemma 2.3 is given in Appendix A.

Proof of Lemma 2.4. Recall thatA∞(K, K+1) denotes the annulus B∞(0, K+1)\B∞(0, K).
Then, by summing over the positions of all Poisson points,

Pλ,̺′

(
∃ y ∈ B∞(0, M)∁ ∩ E : B(y, r(y)) ∩ [0, N ] × [0, 3N ]d−1 6= ∅

)

=
∞∑

K=M

Pλ,̺′

(
∃ y ∈ A∞(K, K + 1) ∩ E : B(y, r(y)) ∩ [0, N ] × [0, 3N ]d−1 6= ∅

)

≤
∞∑

K=M

Pλ,̺′

(
∃ y ∈ A∞(K, K + 1) ∩ E : r(y) ≥ K − 3N

)

=
∞∑

K=M

∞∑

ℓ=1

Pλ,̺′

(
|A∞(K, K + 1) ∩ E| = ℓ, ∃ y ∈ A∞(K, K + 1) ∩ E : r(y) ≥ K − 3N

)
.

(2.17)
Using that for some constant c = c(d) > 0 and all K ∈ N, Lebd(A∞(K + 1, K)) = cKd−1,
the last term in (2.17) may be estimated from above by

∞∑

K=M

∞∑

ℓ=1

e−λcKd−1 (λcKd−1)ℓ

ℓ!
ℓ̺′([K − 3N,∞)) ≤ Cst

∞∑

K=M−3N

Kd−1̺′([K,∞)), (2.18)

which goes to 0 as M goes to infinity since ̺′ has moments of order d.
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3 Proof of Theorem 1.1

Let t > 0. Note that

Σt :=
⋃

x∈E

B

(
x, sup

0≤s≤t
‖Bx

s − x‖

)
(3.1)

has the same law as the occupied set in the Boolean percolation model with radius distri-
bution

̺t([L,∞)) = P
0

(
sup

0≤s≤t
||Bs|| ≥ L

)
. (3.2)

Note that ̺t has finite moments of order d. Indeed, for all L > 0,

̺t([L,∞)) ≤ 2P0
(

sup
0≤s≤t

Bs ≥ L

)
≤ 4P0

(
Bt ≥ L

)
≤

4

L

√
t

2π
e−L2/2t, (3.3)

where we used the reflexion principle in the second inequality. Thus, by Theorem 3.1 in
[MR96], almost-surely, the set Σt does not contain an unbounded cluster. Finally, the
relation Ot ⊆ Σt yields the result.

4 Theorems 1.2-1.3: no percolation for small times

In this section we show that there is a tc = tc(λ, d) > 0 (tc = tc(λ, d, r) > 0 when d ≥ 4)
such that Ot (Ot,r when d ≥ 4) does not percolate when t < tc. The proof for d ∈ {2, 3}
comes in Section 4.1, whereas the proof for d ≥ 4 comes in Section 4.2. Both proofs heavily
rely on the results of Section 2.

4.1 No percolation for d ∈ {2, 3}

Let t > 0 and define Σt and ̺t as in Section 3, but with the one-dimensional Brownian
motions of Section 3 replaced by its d-dimensional counterparts. As in Section 3 it is
sufficient to show the existence of a tc > 0 such that for all t < tc the set Σt almost surely
does not have an unbounded component. For that we intend to apply Theorem 2.1. For all
ε > 0,

∫ ∞

0
xd̺t(dx) ≤ εd

∫ ε

0
̺t(dx) +

∫ ∞

ε
xd̺t(dx) = εd +

∫ ∞

εd
̺t([y

1/d,∞))dy. (4.1)

A calculation similar to the one in (3.3) shows that the second term on the right-hand side
of (4.1) is bounded by

4d

√
td

2π

∫ ∞

εd

1

y1/d
e−y2/d/2td dy, (4.2)

which tends towards zero, as t→ 0. Thus, by (4.1)–(4.2) we see that

lim
t→0

∫ ∞

0
xd ̺t(dx) = 0. (4.3)

An application of equation (2.4) in Theorem 2.1 yields the claim.
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4.2 No percolation for d ≥ 4

Let t > 0 and let ̺r,t be the probability measure on [r,∞) defined via

̺t,r([a, b]) = P
0

(
sup

0≤s≤t
‖Bs‖ ∈ [a− r, b− r]

)
, r ≤ a ≤ b. (4.4)

Note that ̺t,r → δr weakly as t → 0. Thus, by similar calculations as in (3.3) and Propo-
sition 2.2 (with ̺′ = ̺1,r), λc(̺t,r) → λc(δr) as t → 0. Hence, there is a t0 > 0 such that
λ < λc(̺t,r) holds for all t < t0. Finally, observe that the set

Σt,r =
⋃

x∈E

B

(
x, sup

0≤s≤t
‖Bx

s − x‖+ r

)
, ∀t ≥ 0, (4.5)

is generated by the Poisson point process with intensity measure (λ × Lebd) ⊗ ̺t,r and
contains Ot,r, see (1.1). This is enough to conclude the claim.

5 Theorems 1.2–1.3: percolation for large times

In this section we establish that Ot (Ot,r when d ≥ 4) percolates, when t is sufficiently
large. The proof for d ∈ {2, 3} comes in Section 5.1, whereas the proof for d ≥ 4 comes in
Section 5.2.

5.1 Proof of the percolation phase in d ∈ {2, 3}

We use a coarse-graining argument to prove existence of a percolation phase. More precisely,
we divide Rd into boxes which are indexed by Z

d and we consider an edge percolation model
on the coarse-grained graph whose vertices are identified with the centers of the boxes and
the edges connect nearest-neighbours. An edge connecting nearest-neighbours, say x and x′,
in Z

d, is said to be open if (i) both boxes associated to x and x′ contain at least one point
of the Poisson point process, and (ii) the Brownian motions which correspond to the point
of the Poisson point process which are the closest to the centers of their respective boxes,
intersect each other. Some technical computations and a domination result by Liggett,
Schonmann and Stacey [LSS97] finally show that percolation in that coarse-grained model
occurs if one suitably chooses the size of the boxes and let time run long enough. This
implies percolation of our original model.

We now define this coarse-grained model more rigorously. Let R > 0 and t > 0 to be chosen
later. For x ∈ Z

d, we define
B(R)

x := B∞(2Rx, R) (5.1)

and the random variable
N (R)(x) := | E ∩ B(R)

x | . (5.2)

When N (R)(x) ≥ 1, we define the point z(R,x), which is almost surely uniquely determined,
via

‖z(R,x) − 2Rx‖ = inf
z∈E∩B

(R)
x

‖z − 2Rx‖. (5.3)

10



Note that z(R,x) is the point which is the closest to the center of the box B
(R)
x among all

Poisson points of B
(R)
x . We denote by B(R,x) the Brownian motion starting from z(R,x).

For all couples of nearest-neighbours (x, y) ∈ Z
d × Z

d, we say that the edge (x, y), which
connects x and y, is open if

(i) N (R)(x) ≥ 1, (5.4)

(ii) N (R)(y) ≥ 1, (5.5)

(iii) B
(R,x)
[0,t] ∩B

(R,y)
[0,t] 6= ∅. (5.6)

We let XR,t
(x,y) be the random variable which takes value 1 if the edge (x, y) is open, and 0

otherwise. In what follows, to not burden the notation, we write X(x,y) instead of XR,t
(x,y).

Lemma 5.1. Let ε > 0. There exists R > 0 and t > 0 such that for any couple of nearest-
neigbours (x, y) ∈ Z

d × Z
d, P(X(x,y) = 1) ≥ 1− ε.

The proof of Lemma 5.1 is deferred to the end of this section. We first show how one
may deduce the existence of a percolation phase from it.

Proof of the existence of a percolation phase. Note that if (x, x′) and (y, y′) is a couple of
nearest-neighbour points in Z

d such that {x, x′} ∩ {y, y′} = ∅, then X(x,x′) and X(y,y′) are
independent. Therefore, the coarse-grained percolation model is a 2-dependent percolation
model. Thus, Theorem 0.0 of Liggett, Schonmann and Stacey [LSS97] yields that we may
bound the coarse-grained percolation model from below by Bernoulli bond percolation,
whose parameter, say p∗, can be chosen to be arbitrarily close to 1, when P(X(x,y) = 1) is

sufficiently close to 1. Let pc(Z
d) be the critical percolation parameter for Bernoulli bond

percolation. Then, by Lemma 5.1, there are R0 > 0 and t0 > 0 such that p∗ > pc(Z
d) for all

R ≥ R0 and t ≥ t0. In that case, the coarse-grained model percolates, and so does Ot.

Consequently, it remains to prove Lemma 5.1. For that we need an additional lemma. It
states that the probability that two independent Brownian motions, starting at points
x, y ∈ R

d have a non-empty intersection up to time t increases, when we move the starting
points towards each other.

Lemma 5.2. Let t > 0. Then,

(x, y) 7→ P
x,y
(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
, (x, y) ∈ R

d × R
d, (5.7)

is a non-increasing function of ‖x− y‖.

We first prove Lemma 5.1 subject to Lemma 5.2. The proof of Lemma 5.2 comes afterwards.

Proof of Lemma 5.1. By independence of the events in (i)–(iii), we have

P(X(x,y) = 1) = P(N (R)(x) ≥ 1)2 × P

(
B

(R,x)
[0,t] ∩B

(R,y)
[0,t] 6= ∅

)
. (5.8)
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To proceed, we fix R > 0 large enough such that

P(N (R)(x) ≥ 1) = 1− e−λ(2R)d
≥ 1− ε. (5.9)

Furthermore, by Lemma 5.2, P(B
(R,x)
[0,t] ∩ B

(R,y)
[0,t] 6= ∅) decreases, when ‖z(R,x) − z(R,y)‖

increases. However, note that ‖z(R,x) − z(R,y)‖ ≤ R
√

4(d− 1) + 16, when ‖x − y‖ = 1.
Thus,

P
(
B

(R,x)
[0,t] ∩B

(R,y)
[0,t] 6= ∅

)
≥ P

(
B

(R,x)
[0,t] ∩B

(R,y)
[0,t] 6= ∅

∣∣‖z(R,x) − z(R,y)‖ = R
√

4(d − 1) + 16
)

(5.10)

= P
z1,z2

(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
, (5.11)

for any choice of z1 and z2 such that ‖z1 − z2‖ = R
√

4(d− 1) + 16. Using Theorem 9.1 (b)
in Mörters and Peres [MP10], there exists t large enough such that for all such choices of
z1 and z2,

P
z1,z2

(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
≥ 1− ε, (5.12)

which is enough to deduce the claim.

We now prove Lemma 5.2.

Proof of Lemma 5.2. Note that it is enough to prove the claim for the function

y 7→ P
0,y
(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
. (5.13)

We fix R′ > R > 0 and y, y′ ∈ R
d such that ||y|| = R and ||y′|| = R′, respectively.

Using rotational invariance of Brownian motion in the first equality and scale invariance
of Brownian motion in the last equality, we may write

P
0,y′
(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
= P

0,(R′/R)y
(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
(5.14)

≤ P
0,(R′/R)y

(
B

(1)
[0,(R′/R)2t] ∩B

(2)
[0,(R′/R)2t] 6= ∅

)
(5.15)

= P
0,y
(
B

(1)
[0,t] ∩B

(2)
[0,t] 6= ∅

)
. (5.16)

This yields the claim.

5.2 Proof of the percolation phase for d ≥ 4

Throughout the proof, z always denotes the d-th coordinate of x = (ξ, z) ∈ R
d. We further

define
H0 = {(ξ, z) ∈ R

d : z = 0}. (5.17)

The main idea is to reduce the problem to a Boolean percolation problem on H0. More
precisely, we use that for each x ∈ E , Bx will eventually hit H0. From this we deduce that
for t large enough, the traces of the Wiener sausages which hit H0 dominate a supercritical
(d − 1)-dimensional Boolean percolation model, and therefore percolate.
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We now formalize this strategy. For each k ∈ N, let

Sk := {(ξ, z) ∈ R
d : k − 1 < z ≤ k}, (5.18)

so that (Sk)k∈Z is a partition of Rd−1 × (0,∞). We fix k ∈ N and consider

Ek = {ξ : ∃ z ∈ R s.t. (ξ, z) ∈ Sk ∩ E}. (5.19)

Note that (Ek)k≥0 are i.i.d. Poisson point processes with parameter λ× Lebd−1. Given Ek,
we construct a random set Ck

t in the following way:

• Thinning: each ξ ∈ Ek is kept if τ0(zξ) ≤ t, where zξ is such that (ξ, zξ) ∈ Sk∩E (there
is almost-surely only one choice), and τ0(z) is the first hitting time of the origin of
an one-dimensional Brownian motion starting at z. We choose all Brownian motions,
which are associated to some ξ ∈ Ek, to be independent. Otherwise ξ is discarded.

• Translation: each ξ ∈ Ek that was not removed after the previous step is translated
by B̄(τ0(zξ)), where B̄ is (d− 1)-dimensional Brownian motion starting at the origin,
which is independent of all the previous variables.

Note that zξ is uniformly distributed in (k− 1, k). Moreover, zξ, τ0(zξ) and B̄ are indepen-
dent of ξ. Thus, Ck

t is the result of a thinning and a translation of Ek, and both operations
depend on random variables, which are independent of Ek. Therefore, (Ck

t )k≥0 is a collection
of i.i.d. Poisson point processes with parameter λpk

t × Lebd−1, where

pk
t =

∫ k

k−1
P

z
(

inf
0≤s≤t

Bs ≤ 0
)

dz ≥ P
0
(

sup
0≤s≤t

Bs ≥ k
)
. (5.20)

By independence of the Ck
t ’s, the set Ct :=

⋃∞
k=1 Ck

t is thus a Poisson point process with
parameter λ

∑
k≥1 pk

t × Lebd−1.
Let us now consider the Boolean model generated by Ct with deterministic radius r.

Observe that,

∞∑

k=1

pk
t ≥

∞∑

k=0

P
0
(

sup
0≤s≤t

Bs ≥ k
)
− P

0
(

sup
0≤s≤t

Bs ≥ 0
)
≥ E

0
[

sup
0≤s≤t

Bs

]
− 1. (5.21)

Note that the right-hand side of (5.21) tends to infinity as t→∞. Thus, by the remark
on page 52 in [MR96], there exists t0 > 0 large enough such that the Boolean model
generated by Ct percolates for all t ≥ t0. Finally, note that Ct is stochastically dominated
by Ot ∩ H0, in the sense that Ct has the same distribution as a subset of Ot ∩ H0. This
completes the proof.

6 Theorems 1.2–1.3: uniqueness of the unbounded cluster

We fix t, r, λ ≥ 0 such that t > tc(λ, d, r). In the following we denote by N∞ the number of
unbounded clusters in Ot,r, which is almost-surely a constant as a consequence of Proposi-
tion 1.4. For all d ≥ 2, the proof of uniqueness consists of (i) excluding the case N∞ = k
with k ∈ N\{1} and of (ii) excluding the case N∞ =∞. This section is organized as follows.
In Section 6.1, we give a short heuristic of (i) in the case d = 2, which we use as a guideline
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for the proofs in all other cases. Section 6.2 contains the proof of uniqueness for Wiener
sausages (r > 0) in d ≥ 4, which is also on a technical level close to the heuristics in Section
6.1. This is not true anymore in dimension d = 3, which is due to the fact that there is no
simple way under which the paths of two independent three-dimensional Brownian motions
intersect each other. Therefore, when d = 3, the strategy described in Section 6.1 needs to
be adapted, which requires a certain number of technical steps. Since the proof for d = 3
works for d = 2 as well, we decided to give a unified proof for both cases in Section 6.3.

6.1 Heuristics

Let d = 2 and r = 0. We proceed by contradiction and assume that almost-surely, N∞ = k
with k ∈ N\{1}. For R2 > R1 > 0, we introduce the event (see Fig. 2 below):

ER1,R2 =

{
B(0, R2) intersects all k unbounded clusters

without using paths starting in B(0, R1)

}
. (6.1)

We fix R1 > 0. First, note that by monotonicity in R2,

P(ER1,R2) ≥ P(ER1,R2 ∩ {E ∩ B(0, R1) = ∅})
R2→∞
−→ P(E ∩ B(0, R1) = ∅) > 0. (6.2)

Therefore, we can find a R2 > 0 such that P(ER1,R2) > 0. Let us fix such a R2 and observe
that ER1,R2 is independent from the points in E ∩ B(0, R1) and the Brownian motions
starting from them. Next, one can show that the event

LR1,R2 =

{
|B(0, R1) ∩ E| = 1 and for x ∈ E ∩ B(0, R1),

Bx
[0,t] contains a “loop” in A(R2, R2 + 1)

}
(6.3)

has positive probability. Finally, the contradiction is a consequence of

P(N∞ = 1) ≥ P(ER1,R2 ∩ LR1,R2) = P(ER1,R2)P(LR1,R2) > 0, (6.4)

since we assumed that P(N∞ = k) = 1, k ∈ N \ {1}.

Remark 6.1. The above heuristics also shows how to create trifurcation points. In combi-
nation with Lemma 6.3, the strategy alluded to above will be used to exclude the possibility
of having infinitely many unbounded clusters.

6.2 Uniqueness in d ≥ 4

6.2.1 Excluding 2 ≤ N∞ <∞

Again we proceed by contradiction. Let us assume that N∞ is almost-surely equal to a
constant k ∈ N \ {1}. For simplicity, we further assume that k = 2, the extension of the
argument to other values of k being straightforward.

For R2 > R1 > 0, let us define ER1,R2 as follows

ER1,R2 =

{
B(0, R2) intersects at least one path of each of the two

unbounded clusters, without using paths starting in B(0, R1)

}
. (6.5)
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Figure 2: The plot on the left hand side represents a configuration of the event ER1,R2
with k = 3.

The symbol • represents the points of E , whereas ◮ represents connectivity with infinity. Finally,
the dashed line emphasizes the fact that points starting inside B(0, R1) are not considered for the
intersection condition in (6.1). Because of that, the configuration represented on the right hand side
does not belong to ER1,R2

.

First, we note that there exist R1 and R2 such that

P(ER1,R2) > 0, (6.6)

which can be seen as in the lines following (6.2). Next, we consider the event analogous to
(6.3),

LR1,R2 =

{
|B(0, R1) ∩ E| = 1 and for x ∈ B(0, R1) ∩ E ,

A(R2 − 3r/2, R2 − r/2) ⊂ ∪0≤s≤tB(Bx
s , r) ⊂ B(0, R2)

}
, (6.7)

which is independent of ER1,R2 and has positive probability, see Remark 6.2 below. The
independence is due to the fact that ER1,R2 and LR1,R2 depend on different points of E and
on different Brownian paths. Note that on ER1,R2 ∩LR1,R2 the two unbounded clusters, are
only connected inside B(0, R2).
The contradiction now follows as in (6.4).

Remark 6.2. A sketch of the proof that LR1,R2 has positive probability goes as follows. Let
ε ∈ (0, r/8). By compactness, A(R−3r/2, R2−3r/2+ε) can be covered by a finite number of
balls of radius ε. Moreover, a Brownian motion starting in B(0, R1) has a positive probability
of visiting all these balls before time t and before leaving B(0, R2−r). Consequently, on the
aforementioned event, LR1,R2 is satisfied.

6.2.2 Excluding N∞ =∞

We assume that N∞ = ∞. We show that this assumption leads to a contradiction. The
proof is based on ideas of Meester and Roy [MR94, Theorem 2.1], who extended a technique
developed by Burton and Keane [BK89] to a continuous percolation model. In the proof we
use the following counting lemma, which is due to Gandolfi, Keane and Newman [GKN92].
It will yield a contradiction to the existence of trifurcation points, which will be constructed
in the first step of the proof.
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Lemma 6.3 (Lemma 4.2 in [GKN92]). Let S be a set, R be a non-empty finite subset of
S and K > 0. Suppose that
(a) for all z ∈ R, there is a family (C1

z , C2
z , . . . , Cnz

z ), nz ≥ 3, of disjoint non-empty
subsets of S, which do not contain z and are such that |Ci

z| ≥ K, for all z and for all
i ∈ {1, 2, . . . , nz},
(b) for all z, z′ ∈ R one of the following cases occurs (where we abbreviate Cz = ∪nz

i=1Ci
z

for all z ∈ R):
(i) ({z} ∪ Cz) ∩ ({z′} ∪ Cz′) = ∅;
(ii) there are i, j ∈ {1, 2, . . . , nz} such that {z′} ∪ Cz′ \ Cj

z′ ⊆ Ci
z and {z} ∪ Cz \ Ci

z ⊆ Cj
z′;

(iii) there is i ∈ {1, 2, . . . , nz} such that {z′} ∪ Cz′ ⊆ Ci
z;

(iv) there is j ∈ {1, 2, . . . , nz′} such that {z} ∪Cz ⊆ Cj
z′ .

Then |S| ≥ K(|R|+ 2).

STEP 1. Balls containing a trifurcation point. Again, we define ER1,R2(0) and
LR1,R2 as in (6.5) ,(6.7), respectively. By means of these events, in the same manner as in
Subsection 6.2.1, one can show that there are δ > 0 and R ∈ N such that the event

ER(0) :=





∃ an unbounded cluster C such that C ∩ B∞(0, R)∁ contains at
least three unbounded clusters, |C ∩ B∞(0, R) ∩ E| ≥ 1 and each
cluster which intersects B∞(0, R) belongs to C.





, (6.8)

has probability at least δ. Note that ER(0) implies that each x ∈ B∞(0, R) which belongs

to an infinite cluster also belongs to C. We call each unbounded cluster in C ∩ B∞(0, R)∁

a branch. To proceed, we fix K > 0 and choose M > 0 such that the event

ER,M (0) = ER(0)∩

{
there are at least three different branches of B∞(0, R) which
contain at least K points in E ∩ (B∞(0, RM) \ B∞(0, R))

}
, (6.9)

has probability at least δ/2 (see Fig. 3 below). For z ∈ Z
d, the events ER,M (2Rz) and

ER(2Rz) are defined in a similar manner as ER,M (0) and ER(0), except that the balls in
the definitions are centered around 2Rz.
Let L > M + 2 and define the set

R = {z ∈ Z
d : B∞(2Rz, RM) ⊆ B∞(0, LR), ER,M (2Rz) occurs}. (6.10)

Note that
|{z ∈ Z

d : B∞(2Rz, RM) ⊆ B∞(0, LR)}| ≥ (L−M − 2)d, (6.11)

so that we obtain by stationarity

E(|R|) ≥
(L−M − 2)dδ

2
. (6.12)

STEP 2. Application of Lemma 6.3 and contradiction. We identify each z ∈ R
with a Poisson point in B∞(2Rz, R) ∩ C, which is contained in the corresponding infinite
cluster. In what follows we write Λz instead of B∞(2Rz, R), for simplicity of notation. Let
nz be the total number of branches of Λz, which contain at least K Poisson points in
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Figure 3: The plot represents a configuration in ER,M (0) with K = 3 (see (6.8)-(6.9)). The thick
lines belong to the branches. As in the previous figure, ◮ represents connection to infinity.

B∞(2Rz, R). For i ∈ {1, . . . , nz}, let Bi
z be the branch which is the ith-closest to 2Rz

among all branches of B∞(2Rz, R), see Equation (6.9).
A point x is said to be connected to a set A through the set Λ if there exists a continuous

function γ : [0, 1] 7→ Λ ∩ Ot,r such that γ(0) = x and γ(1) ∈ A. We denote it briefly by

x
Λ
←→ A. Finally, we define

Ci
z = E ∩B(0, LR)∩Bi

z =

{
x ∈ E ∩ B∞(0, LR) : x

Λc
z←→ Bi

z

}
∀i ∈ {1, . . . , nz}. (6.13)

Now we proceed to check that the conditions of Lemma 6.3 are fulfilled. Here S = B∞(0, LR)∩
E . First note that, by definition of a branch, we have that for all z ∈ R:

• |Ci
z| ≥ K,

• Ci
z ∩ Cj

z = ∅ for all i, j ∈ {1, . . . , nz} with i 6= j,

• z /∈ Cz.

Hence, assumption (a) of Lemma 6.3 is met.

We now claim that the collection {Ci
z}z∈R,i∈{1,...,nz} satisfies also assumption (b) of

Lemma 6.3. At this point we would like to stress some facts to be used later:

a. Due to (6.8), z
Λz←→ Ci

z for all i ∈ {1, . . . , nz}.

b. If C̃ is an unbounded cluster such that C̃ ∩ Λz 6= ∅, then z
Λz←→ C̃.

Suppose that ({z} ∪ Cz) ∩ ({z′} ∪ Cz′) 6= ∅. We consider three different cases:

(1) If z′ ∈ Cz then there exists a unique i ∈ {1, . . . , nz} such that z′ ∈ Ci
z. We consider

two sub-cases:
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• If z ∈ Cz′ , then there exists a unique i′ ∈ {1, . . . , nz′} such that z ∈ Ci′

z′ , and
we claim that {z′} ∪ Cz′ \ Ci′

z′ ⊆ Ci
z and {z} ∪ Cz \ Ci

z ⊆ Ci′

z′ . Indeed, pick

x′ ∈ Cz′ \ Ci′

z′ . Then there exists a unique j′ 6= i′ such that x′
Λc

z′
←→ Cj′

z′ . It is

crucial to note that x′
Λc

z′∩Λc
z

←→ Cj′

z′ since otherwise, due to b., z
Λc

z′
←→ Cj′

z′ (by first

connecting z to x′ in Λc
z′ and then x′ to Cj′

z′ in Λc
z′ ), which contradicts the

uniqueness of i′.

Finally, we have that x′ Λc
z←→ Cj′

z′ , z′ Λz′ ⊂Λc
z←→ Cj′

z′ , z′ Λc
z←→ Ci

z. A concatenation of

all these paths gives x′ Λc
z←→ Ci

z, that is x′ ∈ Ci
z. This proves the first inclusion

that we claimed. The second inclusion follows by symmetry.

• If z /∈ Cz′ , then we claim: {z′} ∪ Cz′ ⊆ Ci
z.

Indeed, take x′ ∈ Cz′ , then there exists a unique j′ such that x′
Λc

z′
←→ Cj′

z′ . As

before we have that x′
Λc

z′∩Λc
z

←→ Cj′

z′ (this time the contradiction follows from
z /∈ Cz′). The conclusion follows in the same way as in the previous case.

(2) If z ∈ Cz′ , then one may conclude as in (1).

(3) Suppose that there exist i, i′such that Ci
z ∩Ci′

z′ 6= ∅. Take x′ ∈ Ci
z ∩Ci′

z′, then we have

that x′ Λc
z←→ Ci

z and x′
Λc

z′
←→ Ci′

z′ . There are two cases:

• The path x′ Λc
z←→ Ci

z intersects Λz′ : Due to b. we have that z′ Λc
z←→ Ci

z. Hence
z′ ∈ Cz, which reduces this case to a previous one.

• In the second case, x′
Λc

z∩Λc
z′

←→ Ci
z: Due to a., we have z

Λz⊂Λc
z′

←→ Ci
z. Finally, a

concatenation of the previous two paths with x′
Λc

z′
←→ Ci′

z′ yields that z ∈ Cz′ ,
which reduces this case again to a previous one.

Hence, by Lemma 6.3

E
(
|B∞(0, LR) ∩ E|

)
≥ K(E(|R|) + 2), (6.14)

so that, by (6.12),

E
(
|B∞(0, LR) ∩ E|

)
≥ K((L−M − 2)dδ/2 + 2). (6.15)

On the other hand, since E is a Poisson point process with intensity measure λ× Lebd,

E
(
|B∞(0, LR) ∩ E|

)
= λ(2LR)d. (6.16)

Thus, combining (6.15) and (6.16), yields

∀L > M + 2, K((L−M − 2)dδ/2 + 2) ≤ λ(2LR)d. (6.17)

Note that M depends on K, so in order to get a contradiction one can choose L = 2M and
let K go to ∞ in the inequality above.
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6.3 Uniqueness in d ∈ {2, 3}

6.3.1 Excluding {2 ≤ N∞ <∞}

As in the heuristic of Section 6.1, we proceed by contradiction: we assume that P(N∞ =
k) = 1 for some k ∈ N \ {1} and prove that P(N∞ = 1) > 0, which is absurd. To make the
proof more accessible, we assume that k = 2 (see Remark 6.7 below).

Remark: The previous heuristic does not work verbatim for d = 3 because of clear
geometrical reasons: a three-dimensional Brownian motion travelling around an annulus,
which is crossed by the two unbounded clusters, does not necessarily connect them. Let us
first briefly describe how we adapt this strategy. For R large enough and ε small enough,
we show that with positive probability, both unbounded clusters intersect B(0, R) in such a
way, such that each of them contains a Brownian path crossing A(R−ε, R+ε). Afterwards,
we show that, still with positive probability, we can reroute the (let us say first) excursions
inside A(R − ε, R + ε) of each of these two Brownian paths such that they intersect each
other and, as a consequence, merge the two unbounded clusters into a single one. This
leads to the desired contradiction, since our construction provides a set of configurations
of positive probability on which N∞ = 1.

We now give the proof in full detail. Let R > 0 and denote by NR
∞ the number of

unbounded clusters in Ot \ B(0, R). In the case that NR
∞ is not empty, we denote those by

{Ci(R), 1 ≤ i ≤ NR
∞} (though it has little relevance, let us agree that clusters are indexed

according to the order in which one finds them by radially exploring the occupied set from
0). We also consider the ‘extended’ clusters, defined by

Cext
i (R) =

⋃

x∈E : Bx
[0,t]

∩Ci(R)6=∅

Bx
[0,t], (6.18)

i.e. Cext
i (R) is the union of all Brownian paths up to time t, which have a non-empty

intersection with Ci(R) (see Fig. 4 below).
We further define in five steps a notion of good extended clusters and prove that those

occur with positive probability.

Good extended clusters in five steps.

STEP 1. Intersection with a large ball. We use the abbreviations Cext
1 := Cext

1 (R)
and Cext

2 := Cext
2 (R) for the two extended unbounded clusters and define

ER := {NR
∞ = 2} ∩ {Cext

1 ∩ B(0, R) 6= ∅} ∩ {Cext
2 ∩ B(0, R) 6= ∅}. (6.19)

One way of having exactly two unbounded clusters in Ot \ B(0, R) is to have exactly two
unbounded clusters in total (i.e. on the whole configuration), hence

P(ER) ≥ P(N∞ = 2, Cext
1 ∩ B(0, R) 6= ∅, Cext

2 ∩ B(0, R) 6= ∅). (6.20)

Since the event on the right-hand side of (6.20) is increasing in R, its probability converges,
as R tends to ∞, to P(N∞ = 2), which equals 1 by our initial assumption. Therefore, we
may choose R large enough such that P(ER) ≥ 1/2.
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STEP 2. Choice of a path in each cluster. For i ∈ {1, 2}, define

Cross(i) = {x ∈ E ∩ Cext
i : ∃s ∈ [0, t], (‖x‖ −R)(‖Bx

s ‖ −R) < 0}, (6.21)

that is the set of points in E ∩ Cext
i , whose associated Brownian motion crosses ∂B(0, R).

Note that Cross(i) 6= ∅ on ER. For i ∈ {1, 2} we denote by xi the almost-surely uniquely
defined xi ∈ Cross(i), such that

‖xi‖ = inf
y∈Cross(i)

‖y‖. (6.22)

Note that this way of picking xi is arbitrary. Any other way would serve our purpose as
well.

Figure 4: The regular lines are a realization of Ci, i = 1, 2. In addition with the dotted lines they
form the extended clusters Cext

i , i = 1, 2. The points marked with � are the ones in Cross(i), i = 1, 2.

STEP 3. First excursion through an annulus centered around B(0, R). For
some ε > 0 to be determined, let us consider the annulus AR,ε := A(R− ε, R + ε). Further,
define for each x ∈ E ,

I(x) := 1l{inf{s ≥ 0 : ‖Bx
s ‖ = R + ε} < inf{s ≥ 0 : ‖Bx

s ‖ = R− ε}}, (6.23)

in the case when at least one of the infima is finite. Otherwise, we set I(x) = 0. We will
see later that the latter case is of no importance. For i ∈ {1, 2}, we introduce the following
entrance and exit times:

σout
i = inf{s ≥ 0 : ‖Bxi

s ‖ = R + (−1)I(xi)ε},

σin
i = sup{s ≤ σout

i : ‖Bxi
s ‖ = R− (−1)I(xi)ε}, (6.24)

i.e. Bxi

[σin
i ,σout

i ]
is the first excursion throughAR,ε of Bxi (see Fig. 5 below). The reason for this

at a first glance strange definition is, that we do not want to exclude the possibility that x1

or x2 is located inside B(0, R). By choosing ε small enough we guarantee that the Brownian
motions started at x1 and x2 cross AR,ε, that is, σin

i ≤ σout
i ≤ t for i ∈ {1, 2}. Later in the
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proof we will merge Cext
1 and Cext

2 into a single unbounded cluster by “replacing” Bx1

[σin
1 ,σout

1 ]

and Bx2

[σin
2 ,σout

2 ]
with suitable excursions. However, this operation should not disconnect Bxi

[0,t]

from Cext
i . For that reason, we consider the event on which Bxi

[0,σin
i )

or Bxi

(σout
i ,t]

is already

connected to Cext
i , i.e. we introduce for i ∈ {1, 2}

Econn
ε,i :=

{(
Bxi

[0,σin
i )
∪Bxi

(σout
i ,t]

)
∩ Cext

i 6= ∅
}

. (6.25)

Summing everything up, we restrict ourselves to configurations in the set

ER,ε = ER

⋂

i=1,2

{σin
i ≤ σout

i ≤ t} ∩Econn
ε,i . (6.26)

By monotonicity in ε, P(ER,ε) converges to P(ER) > 1/2 as ε tends to 0. Therefore, we
may fix for the rest of the proof ε > 0 such that P(ER,ε) ≥ 1/4.

STEP 4. Restriction on the time spent to cross the annulus. As has been
explained above, our goal is to restrict ourselves to some specific excursions of Bx1

[σin
1 ,σout

1 ]

and Bx2

[σin
2 ,σout

2 ]
. The probability of those turn out to be easier to control when we have a

deterministic lower bound on the random time lengths σout
i − σin

i . Therefore, we introduce
for T ∈ (0, t) the following event:

ER,ε,T = ER,ε

⋂

i=1,2

{σout
i − σin

i ≥ T}. (6.27)

Again, by monotonicity in T , we can choose the latter small enough such that P(ER,ε,T ) ≥
P(ER,ε)/2 ≥ 1/8.

STEP 5. Staying away from the boundary of the annulus during the excur-
sion. To obtain a configuration with a unique unbounded cluster, we restrict ourselves
to configurations in the set ER,ε,T and we reroute Bx1

[σin
1 ,σout

1 ]
and Bx2

[σin
2 ,σout

2 ]
such that they

intersect each other. Since σin
i is not a stopping time, the law of Bxi

[σin
i ,σout

i ]
is not the one

of a Brownian motion. Conditioned on both endpoints,
(
Bxi

[σin
i ,σout

i ]

)
, i ∈ {1, 2}, are instead

Brownian excursions, the law of which is not absolutely continuous with respect to the
one of a Brownian motion. As a consequence, we cannot directly use our knowledge on
the intersection probabilities of two Brownian motions. This is why we will work with
(Bxi

[σin
i +δ,σout

i −δ]
), i ∈ {1, 2}, for some δ ∈ (0, T/8) instead (the restriction to consider the

Brownian motions only up to time σout
i − δ is just for esthetic reasons) . These subpaths,

when conditioned on both endpoints, are Brownian bridges conditioned to stay in AR,ε, and
indeed the density of a Brownian bridge with respect to a Brownian motion is explicit and
tractable. To be more precise, the latter property holds only on time intervals excluding
neighbourhoods of the endpoints, so we need to work with Bxi

[σin
i +2δ,σout

i −2δ]
instead. To get

a uniform lower bound on the intersection probability (see (6.37)), we consider for some
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ε ∈ (0, ε) in addition the events

ẼR,ε,T,ε := ER,ε,T

⋂

i=1,2

{
Bxi

σin
i +δ

, Bxi

σin
i +2δ

, Bxi

σout
i −2δ

, Bxi

σout
i −δ

∈ AR,ε

}
, and (6.28)

ER,ε,T,ε := ER,ε,T

⋂

i=1,2

{
Bxi

σin
i +δ

, Bxi

σout
i −δ

∈ AR,ε

}
. (6.29)

Again, by monotonicity of ER,ε,T,ε w.r.t. ε, as ε converges to ε, P(ER,ε,T,ε) converges to
P(ER,ε,T ) = 1/8. Hence, we may choose ε such that P(ER,ε,T,ε) ≥ 1/16 > 0. Finally, we
call a configuration which lies in ER,ε,T,ε a configuration of good extended clusters.

Figure 5: In this picture the points marked with ⋆ are xi, i = 1, 2. The symbols �,N refer to the
times σin and σout, respectively. The symbol ◦ represents the times σin +δ and σout−δ, respectively.
Finally, the symbol × stresses the fact that condition (6.25) is fulfilled.

Additional notation. At this point we would like to introduce some notation in order to
avoid repetitions of complicated expressions.
First, let us introduce the events of interest. Let s > r ≥ 0. For a set D ⊂ R

d, we denote
by

S[r,s](D) := {Π ∈ C([0,∞),Rd) : Π[r,s] ⊆ D}, (6.30)

the set of all continuous paths, which stay in the set D during the whole time interval [r, s],
and by

Lr,s(D) := {Π ∈ C([0,∞),Rd) : Πr, Πs ∈ D}, (6.31)

the set of all continuous paths , which belong to the set D at times r, s.
In the same fashion we also define for s1 > r1 ≥ 0 and s2 > r2 ≥ 0

I[s1,r1],[s2,r2] := {Π(1), Π(2) ∈ C([0,∞),Rd) : Π
(1)
[s1,r1]

⋂
Π

(2)
[s2,r2] 6= ∅}, (6.32)

the set of all pairs of continuous paths Π(1) and Π(2) whose traces, when restricted to the
time intervals [r1, s1] and [r2, s2], respectively, have a non-empty intersection.
Secondly, we modify our previous notation a bit: P

a
t now denotes the law of Brownian
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motion starting at a and running from time 0 up to time t. If we consider Brownian bridges
instead of Brownian motions we substitute the letter a by a = (a; a) containing the starting
and ending position of the Brownian bridge. In case of considering two independent copies
of a Brownian motion (Brownian bridge) we will add a superscript/subscript, ie. P

a1,a2
t1,t2

(Pa1,a2

t1,t2
). Finally, we will refer to a Brownian bridge as W .

Connecting Cext
1 and Cext

2 inside the annulus. Step 1–Step 5 translates into the fol-
lowing lower bound:

P(N∞ = 1) ≥ P(ẼR,ε,T,ε

⋂
{Bx1

[σin
1 +δ,σout

1 −δ]
∩Bx2

[σin
2 +δ,σout

2 −δ]
6= ∅}), (6.33)

which equals

P(ER,ε,T,ε)

× P
({

Bx1

[σin
1 +δ,σout

1 −δ]
∩Bx2

[σin
2 +δ,σout

2 −δ]
6= ∅

} ⋂

i=1,2

{
Bxi

σin
i +2δ

, Bxi

σout
i −2δ

∈ AR,ε

}
| ER,ε,T,ε

)
.

(6.34)
Observation: For i ∈ {1, 2}, conditionally on Ti := σout

i − σin
i and the endpoints

(Bxi

σin
i +δ

, Bxi

σout
i −δ

) = (ai, bi), Bxi

[σin
i +δ,σout

i −δ]
is a Brownian bridge running from ai to bi in

a time interval of length τi := Ti − 2δ ≥ 3T
4 , conditioned to stay in AR,ε (recall the defini-

tions of σin
i and σout

i , i ∈ {1, 2}).

The observation above yields,

P(N∞ = 1) ≥ P(ER,ε,T,ε) inf
τ1,τ2≥3T/4
a1,a2∈A2

R,ε

P∩(a1, a2, τ1, τ2), (6.35)

where

P∩(a1, a2, τ1, τ2) := P
a1,a2

τ1,τ2

( ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi](AR,ε)}, I[0,τ1],[0,τ2]

)
(6.36)

and the superscript i, i ∈ {1, 2}, on the events in (6.36) refers to the i-th copy of the
corresponding processes. Since P(ER,ε,T,ε) > 0, by Step 1–Step 5, it is enough to prove
that

inf
τ1,τ2≥3T/4
a1,a2∈A2

R,ε

P∩(a1, a2, τ1, τ2) > 0. (6.37)

Proof of Equation (6.37). We fix a1, a2 ∈ AR,ε and τ1, τ2 ≥ 3T/4. The right-hand side
of (6.36) may be bounded from below by

P
a1,a2

τ1,τ2

( ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi]
(AR,ε)}, I[0,τ1−δ],[0,τ2−δ]

)
, (6.38)

which equals, by the Markov property applied at time τi − δ, i ∈ {1, 2},

E
a1,a2

τ1,τ2

( ∏

i=1,2

1l
{
Li

δ,τi−δ(AR,ε̄) , Si
[0,τi−δ](AR,ε)

}
. 1l
{
I[0,τ1−δ],[0,τ2−δ]

}
Φδ((W

(i)
τi−δ; ai))

)
(6.39)
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where
Φδ(a) := P

a

δ (S[0,δ](AR,ε)), a = (a, a) ∈ (Rd)2. (6.40)

is the probability that a Brownian bridge, going from a to a within the time interval [0, δ],
stays in AR,ε. To bound (6.39) from below we use the following three lemmas, whose proofs
are postponed to the appendix.

Lemma 6.4. [Positive probability for a Brownian bridge to stay inside the an-
nulus] There exists c > 0 such that for all a ∈ A2

R,ε, Φδ(a) ≥ c.

Lemma 6.5. [Substitution of the Brownian bridge by a Brownian motion] Let
τ > 0 and δ ∈ (0, τ). There exists c > 0 such that for all a ∈ A2

R,ε, a = (a, a),

dPa

τ (W[0,τ−δ] ∈ · , Lδ,τ−δ(AR,ε))

dP
a
τ (B[0,τ−δ] ∈ · , Lδ,τ−δ(AR,ε))

≥ c. (6.41)

Lemma 6.6. [Two Brownian motions restricted to be inside the annulus do
intersect] Let τ1, τ2 > 0 and 0 < δ < τ1∧τ2

2 . There exists c > 0 such that for all a1, a2 ∈
AR,ε

P
a1,a2
τ1,τ2

( ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi−δ](AR,ε)}, I[0,τ1−δ],[0,τ2−δ]

)
≥ c. (6.42)

We now explain how to get (6.37) by applying Lemmas 6.4–6.6 to (6.39). Since the Wτi−δ,
i ∈ {1, 2}, appearing in (6.39) are in AR,ε, Lemma 6.4 yields that, for some c > 0, (6.39) is
not smaller than

c2 . Pa1,a2

τ1,τ2

( ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi−δ](AR,ε)}, I[0,τ1−δ],[0,τ2−δ]

)
. (6.43)

Next, a change of measure argument together with the bound on the Radon-Nikodym
derivative as provided in Lemma 6.5 yields, for a possibly different constant c > 0, that
(6.43) is at least

c . P
a1,a2
τ1,τ2

( ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi−δ](AR,ε)}, I[0,τ1−δ],[0,τ2−δ]

)
, (6.44)

which is positive by Lemma 6.6. To deduce Equation (6.37) from it, it is enough to note
that all the previous estimates were uniform in a1, a2 ∈ AR,ε. This finally yields the claim.

Remark 6.7. If k > 2, then one follows the same scheme. The notion of good extended
clusters is easily generalized and one ends up connecting k excursions in an annulus. Using
the same proof as for two excursions, one can connect Bx1

[σin
1 ,σout

1 ]
to Bxi

[σin
i ,σout

i ]
during the

time interval [σin
1 + (i− 1)δ/k, σin

1 + iδ/k], where δ ∈ (0, T ), for all 1 < i ≤ k.
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6.3.2 Excluding N∞ =∞

Let us assume that the number N∞ of unbounded clusters in Ot is almost-surely equal to
infinity. In the same fashion as in Subsection 6.2.2 we show that this leads to a contradiction.
We define the event

ER(0) :=





∃ an unbounded cluster C such that C ∩ B∞(0, R)∁ contains at
least three unbounded clusters and each unbounded cluster which
has a non-empty intersection with B∞(0, R) equals C.





, (6.45)

The fact that there is R large enough such that ER(0) has positive probability can be seen
as follows. First, note that for R large enough, with positive probability the event

E1
R(0) =

⋃

k≥3

{
∃ k unbounded clusters in B∞(0, R)∁ which intersect B(0, R)

}
(6.46)

happens. As a consequence, there is k∗ ≥ 3 such that the event inside the union in (6.46)
occurs for k = k∗ with positive probability. Moreover, we may write

ER(0) =
⋃

k≥3

{
∃ k unbounded clusters in B∞(0, R)∁, which intersect
B∞(0, R) and all of them are connected inside B∞(0, R)

}

⊇

{
∃ k∗ unbounded clusters in B∞(0, R)∁, which intersect
B∞(0, R) and all of them are connected inside B∞(0, R)

}
.

(6.47)

Remark 6.7 and the lines preceding (6.47) yield that the last event in (6.47) has positive
probability and consequently, so does ER(0). From now on, the proof works similarly as
the proof in Section 6.2.2. Thus, to avoid repetitions we just point out the differences with
the proof in Section 6.2.2.
The identification done in STEP 2. of Section 6.2.2 has to be changed. For each z ∈ Z

d,
we replace the Poisson point inside B∞(2Rz, R) that was used to connect the “external”
clusters by what we call an intersection point, which is just an arbitrarily chosen point
z̃ ∈ B∞(2Rz, R) contained in all the clusters. Finally, at the moment of applying Lemma
6.3, we consider

Ci
z =

{
x ∈ {E ∩ B∞(0, LR)} ∪ {intersection points} : x

Λc
z←→ Bi

z

}
i = 1, . . . , nz,

and
S = B∞(0, LR) ∩ (E ∪ {intersection points}).

This choice generates a minor difference at the moment of getting the contradiction in
(6.17). Indeed, we have that

E
(
|S|
)
≥ K((L−M − 2)dδ/2 + 2) (6.48)

but, taking into account the intersection points we have that,

E
(
|S|
)
≤ E(|B∞(0, LR) ∩ E|) + E(|R|) ≤ λ(2LR)d + (L−M + 2)d. (6.49)
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In the last inequality we used that

|R| ≤ |{z ∈ Z
d : B∞(2Rz, R) ⊆ B∞(0, LR)}| ≤ (L−M + 2)d. (6.50)

Thus, combining (6.48) and (6.49) yields

∀L > M + 2, K((L−M − 2)dδ/2 + 2) ≤ λ(2LR)d + (L−M + 2)d, (6.51)

from which we obtain the desired contradiction in the same way as in the case d ≥ 4.

A Proof of Lemma 2.3

The proof consists of two steps. In the first step a coarse-graining procedure is introduced,
which reduces the problem of showing subcriticality of a continuous percolation model
to showing subcriticality of an infinite range site percolation model on Z

d. This coarse-
graining was essentially already introduced in [MR96, Lemma 3.3], where ̺ was supposed
to have a compact support. To overcome the additional difficulties arising from the long
range dependencies in the coarse-grained model we use a renormalization scheme, which is
very similar to the one in Sznitman [Szn10, Theorem 3.5].

STEP 1. Coarse-graining.
We fix N ∈ N. For n ∈ N, a sequence of vertices z0, z1, . . . , zn−1 in Z

d is called a ∗-path, when
‖zi− zi−1‖∞ = 1 for all i ∈ {1, 2, . . . , n−1}. Furthermore, a site z = (z(j), 1 ≤ j ≤ d) ∈ Z

d

is called open when there is an occupied cluster Λ of Σ such that

(i) Λ ∩
d∏

j=1

[z(j)N, (z(j) + 1)N) 6= ∅ and (ii) Λ ∩

(
d∏

j=1

[(z(j) − 1)N, (z(j) + 2)N)

)∁

6= ∅.

(A.1)
Otherwise z is called closed. It was shown in [MR96, Lemma 3.3] that to obtain Lemma
2.3 it suffices to show that

Pλ,̺

(
0 is contained in an infinite ∗-path of open sites

)
= 0. (A.2)

To prove (A.2) we introduce a renormalization scheme.

STEP 2. Renormalization.
• New notation and a first bound. We start by introducing a fair amount of new
notation. We fix integers R > 1 and L0 > 1, both to be determined and we introduce an
increasing sequence of scales via

∀n ∈ N0, Ln+1 = Rn+1Ln. (A.3)

Moreover, for i ∈ Z
d, we introduce a sequence of increasing boxes via

Cn(i) =
d∏

j=1

[i(j)Ln, (i(j) + 1)Ln) ∩ Z
d and

C̃n(i) =
d∏

j=1

[(i(j) − 1)Ln, (i(j) + 2)Ln) ∩ Z
d.

(A.4)
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We further abbreviate Cn = Cn(0) and C̃n = C̃n(0). Thus, C̃n(i) is the union of boxes
Cn(j) such that ‖j − i‖∞ ≤ 1. Moreover, for n ∈ N, we introduce the events

An(i) =
{

There is a ∗-path of open sites from Cn(i) to ∂intC̃n(i).
}

, (A.5)

and we write An instead of An(0). Here, ∂intB refers to the inner boundary of a set B ⊆ Z
d

with respect to the ‖ · ‖∞-norm. The idea of the renormalization scheme is to bound the
probability of An+1 in terms of the probability of the intersection of events An(i) and An(k),
where i ∈ Z

d and k ∈ Z
d are far apart. By our assumption on the radius distribution ̺,

the events An(i) and An(k) can then be treated as being basically independent. This will
result in a recursion inequality, which relates the events An, n ∈ N, at different scales to
each other. For that, we fix n ∈ N and let

H1 =
{

i ∈ Z
d : Cn(i) ⊆ Cn+1, Cn(i) ∩ ∂intCn+1 6= ∅

}
and

H2 =
{

k ∈ Z
d : Cn(k) ∩

{
z ∈ Z

d : dist(z, Cn+1) =
Ln+1

2

}
6= ∅

}
.

(A.6)

Here, dist(z, Cn+1) denotes the distance of z from the set Cn+1 with respect to the supre-
mum norm. Note that here and in the rest of the proof, for notational convenience, we
pretend that expressions like Ln+1/2 are integers. Observe that if An+1 occurs, then there
are i ∈ H1 and k ∈ H2 such that both An(i) and An(k) occur. Hence,

Pλ,̺(An+1) ≤
∑

i∈H1,k∈H2

Pλ,̺(An(i) ∩An(k))

≤ c1R2(d−1)(n+1) sup
i∈H1,k∈H2

Pλ,̺(An(i) ∩An(k)),
(A.7)

where c1 = c1(d) > 0 is a constant which only depends on the dimension.

•Partition of An(i) ∩ An(k). We fix i ∈ H1 and k ∈ H2. Let z ∈ C̃n(i) and note that to
decide if z is open, it suffices to look at the trace of the Boolean percolation model on

d∏

j=1

[(z(j) − 1)N, (z(j) + 2)N). (A.8)

In a similar fashion one sees that the area which determines if An(i) occurs is given by

d∏

j=1

[((i(j) − 1)Ln − 1)N, ((i(j) + 2)Ln + 2)N ]

⊆
d∏

j=1

[(i(j) − 2)LnN, (i(j) + 3)LnN)
def
= DET(C̃n(i))

(A.9)

and likewise for An(k) with i replaced by k. Here, we used that by our choice of R and L0

the relation Ln ≥ 2 holds for all n ∈ N. We introduce

D(x, r(x)) := {B(x, r(x)) ∩DET(C̃n(i)) 6= ∅, B(x, r(x)) ∩DET(C̃n(k)) 6= ∅} (A.10)
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and
Bn(i, k) :=

⋃

x∈E

D(x, r(x)) (A.11)

so that,

Pλ,̺(An(i) ∩An(k)) = Pλ,̺(An(i) ∩An(k)
∣∣Bn(i, k)∁)× Pλ,̺(Bn(i, k)∁)

+ Pλ,̺(An(i) ∩An(k)
∣∣Bn(i, k)) × Pλ,̺(Bn(i, k)).

(A.12)

•Analysis of the first term on the right hand side of (A.12). We claim that under

Pλ,̺(·
∣∣Bn(i, k)∁) the events An(i) and An(k) are independent. To see that, note that the

Poisson point process χ on R
d × [0,∞) with intensity measure ν = (λ × Lebd) ⊗ ̺ (see

Section 2.1) is a Poisson point process under Pλ,̺(·|Bn(i, k)∁), with intensity measure

1l{there is no (x, r(x)) ∈ χ such that D(x, r(x)) occurs} × ν. (A.13)

However, on Bn(i, k)∁, the events An(i) and An(k) depend on disjoint subsets of Rd×[0,∞).

Consequently, they are independent under Pλ,̺(·
∣∣Bn(i, k)∁). Hence,

Pλ,̺(An(i) ∩An(k)
∣∣Bn(i, k)∁)× Pλ,̺(Bn(i, k)∁)

= Pλ,̺(An(i)
∣∣Bn(i, k)∁)Pλ,̺(An(k)

∣∣Bn(i, k)∁)× Pλ,̺(Bn(i, k)∁)

≤ Pλ,̺(An)2 × Pλ,̺(Bn(i, k)∁)−1.

(A.14)

For the last inequality in (A.14) we also used the fact that Pλ,̺(An(i)) does not depend on
i ∈ Z

d.

•Analysis of the second term on the right hand side of (A.12). To bound the
second term on the right hand side of (A.12) it will be enough to bound Pλ,̺(Bn(i, k)),
since the other term may be bounded by one. Note that

Pλ,̺(Bn(i, k)) ≤
∑

ℓ∈3Zd

Pλ,̺

(
∃x ∈ E ∩ C̃n+1(ℓ)N : B(x, r(x)) ∩DET(C̃n(i)) 6= ∅

and B(x, r(x)) ∩DET(C̃n(k)) 6= ∅

)
.

(A.15)
Here, the set C̃n+1(ℓ)N is the set {x ∈ R

d : x = zN, z ∈ C̃n+1(ℓ)}. To warm up, we first
treat the term ℓ = 0 in the sum (A.15). Note that,

dist(DET(C̃n(i)), DET(C̃n(k)) ≥
(Ln+1

2
− 8Ln

)
N ≥

Ln+1

3
N, (A.16)

where the last inequality holds for all n ∈ N, provided R and L0 are chosen accordingly.
Thus, if there is a Poisson point whose corresponding ball intersects DET(C̃n(i)) and
DET(C̃n(k)), then its radius is at least Ln+1N/6. This yields

Pλ,̺

(
∃x ∈ E ∩ C̃n+1N : B(x, r(x)) ∩DET(C̃n(i)) 6= ∅

and B(x, r(x)) ∩DET(C̃n(k)) 6= ∅

)

≤ Pλ,̺

(
∃x ∈ E ∩ C̃n+1N : r(x) ≥ Ln+1N/6

)
.

(A.17)
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We may rewrite (A.17) as

1−
∞∑

m=0

Pλ,̺

(
∀x ∈ E ∩ C̃n+1, r(x) < Ln+1N/6

∣∣∣|E ∩ C̃n+1N | = m
)
× Pλ,̺(|E ∩ C̃n+1N | = m)

= 1−
∞∑

m=0

[1− ̺([Ln+1N/6,∞))]m ×
(λLebd(C̃n+1N))m

m!
× e−λLebd(C̃n+1N)

= 1− exp
{
− λLebd(C̃n+1N)̺([Ln+1N/6,∞))

}
,

(A.18)
which is at most λLebd(C̃n+1N)̺([Ln+1N/6,∞)). By our assumption on the radius distri-
bution, for R and L0 large enough, there is a constant c2 = c2(̺) > 0 such that the last
term may be bounded by λ(3Ln+1N)de−c2Ln+1N/6. Similar arguments show that the left
hand side of (A.15) is at most

λ(3Ln+1N)de−c2Ln+1N/6 +
∞∑

m=1

∑

ℓ∈3Zd

‖ℓ‖∞=m

λ(3Ln+1N)d × e−c2(3(m−1)+1/2)Ln+1N . (A.19)

This may be bounded by
c3λ(3Ln+1N)de−c2Ln+1N/6, (A.20)

for some constant c3 > 0 which is independent of R, L0 and N . Hence, we have bounded
the second term on the right hand side of (A.12). In particular, we may deduce that for all

n ∈ N, again for a suitable choice of R and L0, Pλ,̺(Bn(i, k)∁) ≥ 1/2.

•Analysis of the recursion scheme. Equation (A.7) in combination with (A.12) and
the arguments following it show that

Pλ,̺(An+1) ≤ 2c1R2(d−1)(n+1)
(
Pλ,̺(An)2 + c3λ(3Ln+1N)de−c2Ln+1N/6

)
. (A.21)

To deduce the desired result, we first show with the help of (A.21) that Pλ,̺(An) being
small implies that Pλ,̺(An+1) is small as well. As a final step it then remains to show that
Pλ,̺(A0) is already small. We now make this idea more precise. We put

∀n ∈ N, an = 2c1R2(d−1)nPλ,̺(An). (A.22)

Claim A.1. For R large enough, for all n ∈ N and for all L0 ≥ 2R4(d−1)+1, the inequality
an ≤ L−1

n implies that an+1 ≤ L−1
n+1.

Proof. To prove the claim, let n ∈ N and assume that an ≤ L−1
n . Then,

an+1 = 2c1R2(d−1)(n+1)Pλ,̺(An+1)

≤ 4c2
1R4(d−1)(n+1)

[
Pλ,̺(An)2 + c3λ(3Ln+1N)de−c2Ln+1N/6

]

= a2
nR4(d−1) + 4c2

1c3R4(d−1)(n+1)λ(3Ln+1N)de−c2Ln+1N/6.

(A.23)

Thus, it is enough to show that

a2
nR4(d−1) ≤ (2Ln+1)−1 and 4c2

1c3R4(d−1)(n+1)(3Ln+1N)de−c2Ln+1N/6 ≤ (2Ln+1)−1.
(A.24)
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For that, note that by our assumption on an

a2
nR4(d−1)2Ln+1 ≤ 2L−2

n R4(d−1)Ln+1 = 2R4(d−1) Rn+1

RnLn−1
≤ 2R4(d−1)+1L−1

0 . (A.25)

Thus, choosing L0 ≥ 2R4(d−1)+1 yields the first desired inequality. The second term on the
right hand side of (A.23) may be bounded using similar considerations. This yields Claim
A.1.

Hence, to use the claim, we need that Pλ,̺(A0) ≤ L−1
0 . For that observe that

Pλ,̺(A0) = Pλ,̺

(
There is a ∗-path of open sites from [0, L0)d to ∂int[−L0, 2L0)d.

)

≤ Pλ,̺

(
There is z ∈ ∂int[−L0, 2L0)d, which is open.

)

≤ c4Ld−1
0 Pλ,̺(0 is open),

(A.26)
where c4 = c4(d) > 0 does only depend on the dimension. Equation (3.64) of [MR96] shows
that

Pλ,̺(0 is open) ≤ 2dPλ,̺(CROSS(N, 3N, . . . , 3N)). (A.27)

Therefore, if the right hand side of (A.27) is smaller than (4dc1c4Ld
0)−1, we get from (A.26)

that Pλ,̺(A0) ≤ (2c1L0)−1, which is the same as saying that a0 ≤ L−1
0 . This, in combination

with Claim A.1 and the observation that an infinite ∗-path of open sites containing zero
implies the events An for all n ∈ N, finally yields

Pλ,̺

(
0 is contained in an infinite ∗-path of open sites

)
≤ lim

n→∞
Pλ,̺(An) = 0. (A.28)

Consequently, we have shown that Lemma 2.3 is satisfied for ε ≤ (4dc1c4Ld+1
0 )−1.

B Proofs of Lemmas 6.4–6.6

B.1 Proof of Lemma 6.4

Proof. Let a ∈ A
2
R,ε. First, note that

Φδ(a) > 0. (B.1)

Indeed, since for all δ̄ < δ the path of a Brownian motion B[0,δ̄] starting in a is absolutely
continuous with respect to that of the Brownian bridge W[0,δ̄],

P
a

δ (W[0,δ/2] ⊆ AR,ε, Wδ/2 ∈ B(a, ε′)) > 0, (B.2)

where ε′ > 0 is chosen so small that B(a, ε′) ⊆ AR,ε. From the representation

∀s ∈ [0, δ], Ws = Bs −
s

δ
(Bδ − a) (B.3)

and the fact that a Brownian motion stays with a positive probability in an arbitrary small
ball around its starting point within finite time intervals, we have the following:

∀a′ ∈ B(a, ε′), P
a

δ (W[δ/2,δ] ⊆ AR,ε |Wδ/2 = a′) > 0. (B.4)
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Equation (B.1) then follows from (B.2), the Markov property applied at time δ/2 and (B.4).
Second, the representation in (B.3) shows that the map

a 7→ P
a

δ

(
W[0,δ] ∈ ·

)
, a ∈ A

2
R,ε, (B.5)

is weakly continuous. Moreover, the probability for a Brownian bridge to hit the boundary
of AR,ε but to stay inside AR,ε is zero. Thus, an application of the Portemanteau Theorem
yields that the function

a 7→ P
a

δ

(
W[0,δ] ∈ AR,ε

)
, a ∈ A

2
R,ε, (B.6)

is continuous. This fact together with (B.1) is enough to conclude the claim.

B.2 Proof of Lemma 6.5

Proof. First, for a = (a, a) ∈ AR,ε we have that (see Exercise 1.5 in [MP10])

dPa

τ (W[0,τ−δ] ∈ · )

dP
a
τ (B[0,τ−δ] ∈ · )

=
p(δ, Wτ−δ , a)

p(τ, a, a)
, (B.7)

where

p(s, x, y) :=
1

(2πs)d/2
exp

(
−
‖x− y‖2

2s

)
. (B.8)

Moreover, there exist constants c1 and c2 such that

0 < c1 ≤ inf
δ≤s≤τ

x,y∈AR,ε

p(s, x, y) ≤ sup
δ≤s≤τ

x,y∈AR,ε

p(s, x, y) ≤ c2 <∞. (B.9)

Therefore,
dPa

τ (W[0,τ−δ] ∈ ·,Lδ,τ−δ(AR,ε))

dP
a
τ (B[0,τ−δ] ∈ ·,Lδ,τ−δ(AR,ε))

≥

(
c1

c2

)
> 0. (B.10)

B.3 Proof of Lemma 6.6

Proof. To achieve the intersection event, we use the following strategy:

• before time δ, both paths enter a ball inside AR,ε, and from this moment, stay in a
slightly bigger ball;

• the two paths intersect each other between time δ and τ1 ∧ τ2 − δ, while staying in a
larger ball contained in AR,ε.

More precisely, let us choose arbitrarily d ∈ AR,ε. Let ε4 > ε3 > ε2 > ε1 > 0 to be
determined later. For the moment we only assume that B(d, ε4) ⊂ AR,ε. For i ∈ {1, 2}, let
us define

σ
(i)
1 = inf{s ≥ 0 : Bai

s ∈ B(d, ε1)} (B.11)

σ
(i)
2 = inf{s ≥ σ

(i)
1 : Bai

s /∈ B(d, ε2)}. (B.12)
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First note that with τ̂ := τ1 ∧ τ2 and τ̌ := τ1 ∨ τ2

{ ⋂

i=1,2

{Li
δ,τi−δ(AR,ε̄) , Si

[0,τi−δ](AR,ε)}, I[0,τ1−δ],[0,τ2−δ]

}
⊇ (B.13)





σ
(1)
1 ∨ σ

(2)
1 < δ, σ

(1)
2 ∧ σ

(2)
2 > δ,

⋂
i=1,2

Si
[0,δ](AR,ε),

⋂
i=1,2

{
Si

[δ,τ̂−δ](B(d, ε3)),Si
[τ̂−δ,τ̌−δ](B(d, ε4))

}
, I[δ,τ̂−δ],[δ,τ̂−δ]





.

An application of the Markov property at time δ shows that it is enough to establish that

inf
a1,a2∈AR,ε

P
a1,a2

δ,δ

(
σ

(1)
1 ∨ σ

(2)
1 < δ, σ

(1)
2 ∧ σ

(2)
2 > δ,

⋂

i=1,2

Si
[0,δ](AR,ε)

)
> 0, (B.14)

and

inf
x,y∈B(d,ε2)

P
x,y
τ̌−2δ,τ̌−2δ

(
I[0,τ̂−2δ],[0,τ̂−2δ]

⋂

i=1,2

Si
[0,τ̂−2δ](B(d, ε3)),Si

[τ̂−2δ,τ̌−2δ](B(d, ε4))
)

> 0.

(B.15)
Let us first prove (B.14). The probability in the infimum is clearly positive for all a1, a2

in the compact set AR,ε. Furthermore, one can use the same arguments as in the proof of
Lemma 6.4 to show that it is continuous in (a1, a2) on AR,ε ×AR,ε, hence the infimum is
also positive.

Now we proceed to prove (B.15). Again, an application of the Markov property at time
τ̂ − 2δ shows that it is enough to prove that

inf
x,y∈B(d,ε2)

P
x,y
τ̂−2δ,τ̂−2δ

(
I[0,τ̂−2δ],[0,τ̂−2δ]

⋂

i=1,2

Si
[0,τ̂−2δ](B(d, ε3))

)
> 0, (B.16)

and
inf

x,y∈B(d,ε3)
P

x,y
τ̌−τ̂ ,τ̌−τ̂

( ⋂

i=1,2

Si
[0,τ̌−τ̂ ](B(d, ε4))

)
> 0. (B.17)

Now we focus on (B.16). For all τ0 > 0 and R0 > 1, let us consider

̺(τ0, R0) := inf
x,y∈B(0,1)

P
x,y
τ0,τ0

(
I[0,τ0],[0,τ0]

⋂

i=1,2

Si
[0,τ0](B(0, R0))

)
(B.18)

≥ inf
x,y∈B(0,1)

P
x,y
τ0,τ0

(
I[0,τ0],[0,τ0]

)
− 2 sup

x∈B(0,1)
P

x
τ0

(
sup

s∈[0,τ0]
‖Bs‖ > R0

)
.

By using the monotonicity argument in Lemma 5.2 and Theorem 9.1 in [MP10], the last
infimum can be made arbitrarily close to 1 by choosing τ0 large enough, whereas standard
estimates yield that the supremum goes to 0 as R0 goes to infinity. Therefore, there is a
choice of τ0 and R0 leading to ̺(τ0, R0) > 0. By the scale invariance of Brownian motion,

∀u > 0, inf
x,y∈B(0,u)

P
x,y
u2τ0,u2τ0

(
I[0,u2τ0],[0,u2τ0]

⋂

i=1,2

Si
[0,u2τ0](B(0, uR0))

)
= ̺(τ0, R0) > 0.

(B.19)
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We may now choose u0 > 0 such that

τ ′ := u2
0τ0 < τ̂ − 2δ, 2u0R0 < dist(d,AR,ε), (B.20)

and we set
ε2 := u0, ε3 := 2u0R0. (B.21)

Note that we may choose R0 such that ε3/2 > ε2. Hence, an application of the Markov
property at time τ ′ to the left hand side of (B.16) yields,

l.h.s. of (B.16) ≥ ̺(τ0, R0) inf
x,y∈B(0,ε3/2)

P
x,y
τ̂−2δ−τ ′,τ̂−2δ−τ ′

( ⋂

i=1,2

Si
[0,τ̂−2δ−τ ′](B(0, ε3))

)
> 0.

(B.22)
The positivity of the second factor of (B.22) and of (B.17) may be shown by using similar
arguments as in the proof of Lemma 6.4. This finally yields the claim.
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