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GENERALIZED POWER DOMINATION IN REGULAR GRAPHS∗

PAUL DORBEC† , MICHAEL A. HENNING‡ , CHRISTIAN LÖWENSTEIN‡ , MICKAEL

MONTASSIER† , AND ANDRÉ RASPAUD†

Abstract. In this paper, we continue the study of power domination in graphs (see [T. W.
Haynes et al., SIAM J. Discrete Math., 15 (2002), pp. 519–529; P. Dorbec et al., SIAM J. Discrete
Math., 22 (2008), pp. 554–567; A. Aazami et al., SIAM J. Discrete Math., 23 (2009), pp. 1382–1399]).
Power domination in graphs was birthed from the problem of monitoring an electric power system
by placing as few measurement devices in the system as possible. A set of vertices is defined to be
a power dominating set of a graph if every vertex and every edge in the system is monitored by the
set following a set of rules (according to Kirschoff laws) for power system monitoring. The minimum
cardinality of a power dominating set of a graph is its power domination number. We show that the
power domination of a connected cubic graph on n vertices different from K3,3 is at most n/4 and
this bound is tight. More generally, we show that for k ≥ 1, the k-power domination number of a
connected (k+2)-regular graph on n vertices different from Kk+2,k+2 is at most n/(k+3), where the
1-power domination number is the ordinary power domination number. We show that these bounds
are tight.
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1. Introduction. In this paper we continue the study of the power domination
in graphs started in [3, 13] and which is now well-studied in the literature (see, for
example, [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16]).

For notation and graph theory terminology not defined herein, we in general
follow [10]. In this paper we only consider simple graphs, which are graphs without
multiple edges or loops. Let G = (V,E) be a graph with vertex set V = V (G), edge set
E = E(G), order n(G) = |V |, and sizem(G) = |E|. The open neighborhood of a vertex
v ∈ V is NG(v) = {u ∈ V |uv ∈ E}, and the degree of v is dG(v) = |NG(v)|. The
closed neighborhood of v is the set NG[v] = NG(v)∪{v}. The open neighborhood of a
subset S ⊆ V of vertices is the set NG(S) = ∪v∈SN(v), while the closed neighborhood
of S is the set NG[S] = NG(S) ∪ S. The open neighborhood of v in the set S is the
set NS(v) = NG(v) ∩ S, while the closed neighborhood of v in the set S is the set
NS [v] = NG[v] ∩ S. If the graph G is clear from the context, we simply write n, m,
N(v), N [v], N(S), N [S], and d(v) rather than n(G), m(G), NG(v), NG[v], NG(S),
NG[S], and dG(v), respectively.

The graph G is a k-regular if d(v) = k for every vertex v ∈ V . A regular graph is a
graph that if k-regular for some k ≥ 0. The complete bipartite graph with partite sets
of cardinality i and j we denote by Ki,j. The graph obtained from Ki,j by deleting
one edge we denote by Ki,j − e.

∗Received by the editors September 13, 2012; accepted for publication (in revised form) July 8,
2013; published electronically September 19, 2013.

http://www.siam.org/journals/sidma/27-3/89135.html
†University Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France and CNRS, LaBRI, UMR

5800, F-33400 Talence, France (dorbec@labri.fr, montassi@labri.fr, raspaud@labri.fr). The research
of these authors was supported in part by ANR/NSC contract Gratel: ANR09-blan-0373-01.

‡Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa
(mahenning@uj.ac.za, christian.loewenstein@uni-ulm.de). The second author’s research was sup-
ported in part by the South African National Research Foundation and the University of Johannes-
burg.

1559
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For a set S ⊆ V , we let G[S] denote the subgraph induced by S. The graph
obtained from G by deleting the vertices in S and all edges incident with vertices in S
is denoted by G−S. In the special case when S = {v}, we also denote G−S by G−v
for simplicity. If w ∈ V , then the degree of w in S, denoted dS(w), is the number of
vertices in S adjacent to w, that is, dS(w) = |N(w)∩S|. In particular, dV (w) = d(w).
The set S is an independent set (also called a stable set in the literature) if no two
vertices of S are adjacent in G, while the set S is a packing if the vertices in S are
pairwise at distance at least 3 apart in G.

For subsets X,Y ⊆ V , we denote the set of edges that join a vertex of X and a
vertex of Y by [X,Y ]. Thus, |[X,Y ]| is the number of edges with one end in X and
the other end in Y . In particular, |[X,X ]| = m(G[X ]). If all possible edges in [X,Y ]
are present, we say that [X,Y ] is full. If there is no edge in [X,Y ], we say that [X,Y ]
is empty. If X,Y ⊆ V , then the set X is said to dominate the set Y if Y ⊆ N [X ]. In
particular, if X dominates V , then N [X ] = V and the set X is called a dominating
set in G. Thus if X is a dominating set in G, then every vertex v ∈ V is either in X
or adjacent to a vertex of X . The domination number of G, denoted by γ(G), is the
minimum cardinality of a dominating set.

The notion of power domination in graphs was introduced in [3, 13] to model the
problem of monitoring electrical networks and was first described as a graph theo-
retical problem in [9]. The problem has a domination flavor to it, but in addition
to domination properties there is the possibility of some propagation according to
Kirschoff laws. The original definition of power domination, which required the sys-
tem to monitor both edges and vertices, was simplified to the following definition
independently in [5, 6].

Let G = (V,E) be a graph and let S ⊆ V be a subset of its vertices. The set
monitored by S, denoted by M(S), is defined algorithmically as follows:

• (domination) M(S)← S ∪N(S),
• (propagation) as long as there exists v ∈ M(S) such that N(v) ∩ (V (G) −
M(S)) = {w}, set M(S)←M(S) ∪ {w}.

Equivalently, the set M(S) of vertices monitored by the set S is obtained from S
as follows. Initially, the setM(S) consists of the vertices from the closed neighborhood
of S, that is, M(S) consists of all vertices dominated by S. Thereafter we repeatedly
add to M(S) vertices w that have a neighbor v in M(S) such that all the other
neighbors of v are already in M(S). We continue this process until no such vertex
w exists, at which stage the set monitored by S has been constructed. The set S is
called a power dominating set of G, abbreviated PD-set, if M(S) = V and the power
domination number γP(G) is the minimum cardinality of a PD-set in G.

As remarked in [4], the definition of a power dominating set implies some prop-
agating behavior of the set of monitored vertices, a phenomenon very different from
the standard domination parameter. Power domination is now well-studied in graph
theory. From the algorithmic and complexity point of view, the power domination
problem is known to be NP-complete [1, 2, 7, 8, 9], and approximation algorithms were
given, for example, in [2]. On the other hand, linear-time algorithms for the power
domination problem were given for trees [9], for interval graphs [12], and for block
graphs [14]. Parameterized results were given in [11]. The exact values for the power
domination numbers are determined for various products of graphs in [5, 6]. Bounds
for the power domination numbers of connected graphs and of claw-free cubic graphs
are given in [16], and for planar or outerplanar graphs with bounded diameter in [15].

Motivated by Aazami’s [1] work on domination in graphs with bounded propaga-
tion, Chang et al. [4] defined generalized power domination in graphs. For k ≥ 0 an
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integer, they introduce the concept of k-power domination in graphs as a natural gen-
eralization of power domination, with correspondence when k = 1. When k = 0, their
definition also generalizes usual domination, thereby unifying the seemingly unrelated
notions of power domination and ordinary domination in graphs.

Definition 1.1 (monitored set). Let G = (V,E) be a graph and let S ⊆ V .
For k ≥ 0, we define the sets (P i

G(S))i≥0 of vertices monitored by S at step i by the
following rules:

• P0
G(S) = N [S].

• P i+1
G (S) =

⋃{N [v]: v ∈ P i
G(S) such that |N [v] \ P i

G(S)| ≤ k}.
We remark that for i ≥ 0 we have P i

G(S) ⊆ P i+1
G (S) ⊆ V . Furthermore if

a vertex v in the set P i
G(S) has at most k neighbors outside the set, then the set

P i+1
G (S) contains N [v]. As observed in [4], if P i0

G (S) = P i0+1
G (S) for some i0, then

Pj
G(S) = P i0

G (S) for every j ≥ i0 and we accordingly define P∞
G (S) = P i0

G (S). If the
graph G is clear from the context, we simply write P i(S) and P∞(S) rather than
P i
G(S) and P∞

G (S). We are now in a position to state the definition of a k-power
dominating set in a graph first defined by Chang et al. [4].

Definition 1.2 (k-power dominating set). Let G = (V,E) be a graph, let S ⊆ V ,
and let k ≥ 0 be an integer. If P∞

G (S) = V , then the set S is called a k-power
dominating set of G, abbreviated kPD-set. The minimum cardinality of a kPD-set in
G is called the k-power domination number of G, written γP,k(G). A γP,k(G)-set is
a kPD-set in G of cardinality γP,k(G).

2. Main result. Our aim in this paper is to establish a sharp upper bound on
the k-power domination number of a connected (k + 2)-regular graph in terms of its
order for all k ≥ 1. Corresponding to the case when k = 1, Zhao, Kang, and Chang
proved in [16] that the power domination number of connected claw-free cubic graphs
is at most n

4 . Later, Chang et al. [4] generalized this result and proved that connected
claw-free (k+2)-regular graphs of order n have a k-power domination number at most
n

k+3 . In this paper, we prove that the claw-free condition can be dropped, and thus
prove the following result.

Theorem 2.1. Let k ≥ 1 and let G be a connected (k+2)-regular graph of order
n. If G 	= Kk+2,k+2, then γP,k(G) ≤ n/(k + 3), and this bound is tight.

We remark that as a special case of Theorem 2.1 when k = 1, we have that if
G 	= K3,3 is a connected cubic regular graph of order n, then γP(G) ≤ n/4, and this
bound is tight. Note also that the k-power domination number of the only exception
to the general bound is γP(Kk+2,k+2) = 2 = n+2

k+3 . A proof of Theorem 2.1 is presented
in section 5. First we construct a special family of graphs in section 3. In order to
present a proof of Theorem 2.1, we shall need the concept of an (A,B)-configuration
in a graph which we define in section 4. In that section, we establish important
properties of (A,B)-configurations that we shall need in the proof of our main result.
Throughout the rest of the paper k will denote a positive integer.

3. The family Fk. In this section, we define a special family Fk of graphs as
follows (see Figure 3.1).

Definition 3.1 (the family Fk). For k ≥ 2, let Fk be a graph on 2k+5 vertices
constructed as follows. Let two independent sets X1 and X2 of order k + 1 form
together with three vertices u, x, and y the set of vertices of Fk. Join by an edge
every vertex of X2 to x, and every vertex of X1 to y. Join u to any k + 2 vertices
in X1 ∪X2. Finally, add edges arbitrarily between X1 and X2 so that every vertex of
X1 ∪ X2 reaches degree k + 2, (i.e., for i ∈ {1, 2}, every vertex in Xi is adjacent to
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Fig. 3.1. A graph of the family Fk.

k+1 vertices in X3−i ∪ {u} and to either x or y). Note that this is possible only if k
is even and the neighbors of u are equally distributed among X1 and X2. Thereafter,
every vertex in V (Fk) is of degree k+2 except for x and y, which are of degree k+1.
We call the vertex u the focal vertex of Fk. For k ≥ 2, let Fk be the family of all such
graphs Fk.

Definition 3.2 (a subgraph of type-Fk). If a graph G has a subgraph, not
necessarily induced, that is isomorphic to a graph in the family Fk, then we call such
a subgraph of G a subgraph of type-Fk.

4. (A,B)-configurations. In this section, we define an (A,B)-configuration in
a graph, a key concept to prove our main result, namely, Theorem 2.1.

Definition 4.1 ((A,B)-configurations). Let G be a connected (k + 2)-regular
graph. For subsets A and B of vertices in G, we define the subgraph G[A ∪ B] of G
induced by the sets A∪B to be an (A,B)-configuration if the following four properties
hold:

(P1) |A| ∈ {k + 1, k + 2}.
(P2) B = N(A) \A.
(P3) dA(v) = k + 1 for each vertex v ∈ B.
(P4) B is an independent set.
Note that if a graph contains a subgraph of type-Fk, then it contains at least two

(A,B)-configurations: one where A = X2∪{u} and B = X1∪{x}, and another where
A′ = X1 ∪ {u} and B′ = X2 ∪ {y}. Also, a subgraph isomorphic to Kk+2,k+2 − e,
say, with bipartition V = (X ∪ {x}, Y ∪ {y}) and e = xy, contains two (A,B)-
configurations: one where A = X and B = Y ∪ {y}, and another where A′ = Y and
B′ = X ∪ {x}. These two examples will prove key in the following.

We next establish three additional properties of an (A,B)-configuration that will
prove to be useful.

Lemma 4.2. Let G be a connected (k+2)-regular graph and let A and B be subsets
of vertices in G that induce an (A,B)-configuration. Then the following properties
hold:

(P5) dB(v) ≥ 1 for each vertex v ∈ A.
(P6) If k is odd, then |A| = k + 1.
(P7) |B| ≤ k + 2.
Proof. (P5) Let v ∈ A. By the regularity of G, we have d(v) = k + 2. Further,

since |A| ≤ k + 2 by property (P1), we note that dA(v) ≤ |A| − 1 ≤ k + 1. By
property (P2), every neighbor of v not in A belongs to B, and so k + 2 = d(v) =
dA(v) + dB(v) ≤ k + 1 + dB(v), implying that dB(v) ≥ 1.
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(P6) Suppose that k is odd but |A| = k + 2. We reach a contradiction by double
counting the number of edges in [A,B] as follows. By property (P3), we have that

|[A,B]| = |B| × (k + 1),

while summing the degrees of vertices in A, we have by property (P2) that

|[A,B]| = |A| × (k + 2)− (2× |[A,A]|)
= (k + 2)2 − 2|[A,A]|.

Hence,

(k + 1)|B| = (k + 2)2 − 2|[A,A]|.(4.1)

By assumption, k is odd, and so (k + 1)|B| is even, whereas (k + 2)2 − 2|[A,A]|
is odd. Hence, the left hand side of equality (4.1) is odd, while the right hand side
is even, a contradiction. Therefore if k is odd, and then |A| 	= k + 2, implying by
property (P1) that |A| = k + 1. This proves property (P6).

(P7) To prove property (P7), we consider two cases depending on the order of |A|.
Suppose that |A| = k + 1. Then by property (P3), we have that dA(v) = k + 1 for
each vertex v ∈ B, implying that NA(v) = A for each v ∈ B. Hence, if y ∈ A,
then B ⊆ N(y), and so k + 2 = d(y) = dA(y) + dB(y) = dA(y) + |B|, implying
that |B| = k + 2 − dA(y) ≤ k + 2. Hence, we may assume that |A| = k + 2, for
otherwise |B| ≤ k+2, as desired. But then equality (4.1) holds as shown in the proof
of property (P6). If k is odd, then as before the left hand side of equality (4.1) is
even, while the right hand side is odd, a contradiction. Hence, k is even. Thus, the
right hand side of equality (4.1) is even, implying that |B| is even since k + 1 is odd.
Further, by equality (4.1), we have that

|B| = (k + 2)2

k + 1
− 2|[A,A]|

k + 1

≤ (k + 2)2

k + 1

= k + 3 +
1

k + 1
≤ k + 3

as k > 0. However, |B| is even and k + 3 is odd, implying that |B| ≤ k + 2, as de-
sired.

Throughout the rest of this section 4 on (A,B)-configurations, we let G = (V,E)
be a connected (k + 2)-regular graph of order at least 2k + 4. Further, we let A
and B be subsets of vertices in G that induce an (A,B)-configuration and let A′ and
B′ be subsets of vertices in G that induce an (A′, B′)-configuration, where A 	= A′.
We proceed further with seven key lemmas about structural properties of (A,B)-
configurations.

Lemma 4.3. The following properties hold in the graph G:
(a) If |A ∩ A′| > 1, then B ∪B′ ⊆ A ∪A′ ∪ (B ∩B′).
(b) If |A ∩ A′| > 1, then B ∩B′ 	= ∅.
(c) If |A ∩ A′| ≥ 1, then |A ∩ A′| ∈ {1, k, k + 1}.
Proof. (a) Suppose |A ∩ A′| > 1. Let u and v be two distinct vertices in A ∩ A′.

By properties (P1) and (P3), every vertex in B is adjacent to at least one of u and v,
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implying that B ⊆ N(u) ∪N(v). Analogously, B′ ⊆ N(u) ∪N(v). Since {u, v} ⊆ A,
we note thatN(u)∪N(v) ⊆ A∪B by property (P2). Analogously, since {u, v} ⊆ A′ we
have thatN(u)∪N(v) ⊆ A′∪B′. Therefore, B∪B′ ⊆ N(u)∪N(v) ⊆ (A∪B)∩(A′∪B′).
Part (a) now follows from the observation that (A∪B)∩(A′ ∪B′) ⊆ A∪A′∪(B∩B′).

(b) Suppose |A∩A′| > 1. We show that B∩B′ 	= ∅. For the sake of contradiction,
assume that B ∩B′ = ∅. Then by part (a), B ∪B′ ⊆ A∪A′. Thus by property (P2),
N(A ∪ A′) ⊆ A ∪ A′ ∪ (B ∪ B′) ⊆ A ∪ A′. Hence, the connectivity of G implies
that the vertices of A ∪ A′ induce the whole graph, i.e., G = G[A ∪ A′]. Further, by
property (P1) and since |A ∩ A′| ≥ 2 by assumption, we have that |V | = |A ∪ A′| =
|A|+ |A′|− |A∩A′| ≤ (k+2)+ (k+2)− 2 = 2k+2. This contradicts our assumption
that |V | ≥ 2k + 4. Therefore, B ∩B′ 	= ∅, establishing part (b).

(c) Suppose |A ∩ A′| ≥ 1. If |A ∩ A′| = 1, then part (c) is immediate. Hence, we
may assume that |A ∩ A′| ≥ 2, for otherwise there is nothing to prove. By part (b),
B ∩ B′ 	= ∅. Let x ∈ B ∩ B′. By property (P3), dA(x) = k + 1 and dA′(x) = k + 1.
Hence,

k + 2 = d(x) ≥ dA∪A′(x) = dA(x) + dA′(x)− dA∩A′(x) = 2(k + 1)− dA∩A′(x),

and so dA∩A′(x) ≥ k, implying that |A ∩ A′| ≥ k. Further, since A 	= A′, property
(P1) implies that |A ∩ A′| ≤ k + 1. Hence, |A ∩ A′| ∈ {k, k + 1}. This proves
part (c).

Lemma 4.4. If |A ∩ A′| = k, where k ≥ 2, then G = Kk+2,k+2.
Proof. Suppose |A ∩ A′| = k, where k ≥ 2. By Lemma 4.3(b), B ∩ B′ 	= ∅. Let

x ∈ B ∩B′. By property (P3), dA(x) = k + 1 and dA′(x) = k + 1. Hence,

k + 2 = d(x) ≥ dA∪A′(x) = dA(x) + dA′(x)− dA∩A′(x) = 2(k + 1)− dA∩A′(x),(4.2)

and so dA∩A′(x) ≥ k. However, since |A ∩ A′| = k, we note that dA∩A′(x) ≤ k.
Consequently, dA∩A′(x) = k. Hence, we must have equality throughout the inequality
chain (4.2). In particular, d(x) = dA∪A′(x). Since dA(x) = dA′(x) = k + 1 and
dA∩A′(x) = k, we have that dA\A′(x) = 1 and dA′\A(x) = 1. Since d(x) = k + 2, we
note that x has no further neighbors in G. Since x is an arbitrary vertex in B∩B′, we
therefore have that every vertex in B∩B′ is adjacent to every vertex in A∩A′ and to
exactly one vertex in each of the sets A \A′ and A′ \A. In particular, each vertex in
B∩B′ has no neighbor in V \ (A∪A′). Thus, N(B∩B′) ⊆ A∪A′. By Lemma 4.3(a),
B ∪B′ ⊆ A ∪ A′ ∪ (B ∩B′). Therefore, by the connectivity of G we deduce that the
vertices of A ∪A′ ∪ (B ∩B′) induce the whole graph, i.e., G = G[A ∪ A′ ∪ (B ∩B′)].

We consider once again the vertex x ∈ B ∩B′. As observed earlier, dA\A′(x) = 1
and dA′\A(x) = 1. Let u be the unique vertex in NA\A′(x) and let v be the unique
vertex in NA′\A(x). If u ∈ B′, then there is an edge joining two vertices in B′,
namely the edge ux, contradicting the independence of the set B′ by property (P4).
Hence, u /∈ B′, implying that u is not adjacent to any vertex in A′. However, by
Lemma 4.3(a), B ∪ B′ ⊆ A ∪ A′ ∪ (B ∩ B′). Hence, since N(u) ∩ (A′ ∪ {u}) = ∅
and N(u) ⊆ A ∪ B, we have that N(u) ⊆ (A \ (A′ ∪ {u})) ∪ (B ∩ B′). However,
|A \ (A′ ∪ {u})| ≤ 1. Thus,

k + 2 = d(u) = dA\(A′∪{u})(u) + dB∩B′(u) ≤ 1 + dB∩B′(u),(4.3)

and so dB∩B′(u) ≥ k + 1, implying that |B ∩B′| ≥ k + 1.
Suppose that |B∩B′| = k+1. Then, dB∩B′(u) = k+1 and we must have equality

throughout the inequality chain (4.3). In particular, dA\(A′∪{u})(u) = 1. However,
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|A| ≤ k + 2 and |A ∩ A′| = k, and so |A \ A′| = 2 and |A| = k + 2. Let y be the
vertex of A \ A′ adjacent to u, and so A \ A′ = {u, y} and uy ∈ E. Analogously, we
have that v /∈ B, v is not adjacent to any vertex in A, dB∩B′(v) = k + 1, and v is
adjacent to a vertex, z, say, in A′ \ A. Thus, A′ \ A = {v, z} and vz ∈ E. Hence,
every vertex in B∩B′ is adjacent to the k vertices in A∩A′ and to both u and v (and
thus to no other vertices). Since v is not adjacent to any vertex in A, we note that
vy /∈ E. Thus, N(y) ⊆ (A ∩ A′) ∪ {u, z}, and so k + 2 = d(y) ≤ |A ∩A′|+ 2 = k + 2,
implying that we must have equality throughout this inequality chain and therefore
N(y) = (A ∩ A′) ∪ {u, z}. Analogously, N(z) = (A ∩ A′) ∪ {v, y}. But then each
vertex in A ∩ A′ is adjacent to both y and z and to the k + 1 vertices in B ∩ B′

and therefore has degree at least k + 3, contradicting the (k + 2)-regularity of G.
Hence, |B ∩ B′| ≥ k + 2. Consequently, by property (P7), |B ∩ B′| = k + 2 and
B ∩B′ = B = B′.

We show next that |A| = k+1. Assume, to the contrary, that |A| = k+2. Then,
|A \A′| = 2. Let y denote the vertex in A \A′ distinct from u, and so A \A′ = {u, y}.
Since {u, y} ⊆ A, we note by property (P2) that neither u nor y belong to B. Thus
since B = B′, neither u nor y belong to B′, implying that u and y are not adjacent
to any vertex in A′. Every vertex in B ∩B′ is adjacent to the k vertices in A∩A′ and
to exactly one of u and y. Hence, defining δE(e) = 1 when e ∈ E and 0 otherwise, we
have that

2k + 4 = d(u) + d(y) = |[{u, y}, B ∩B′]|+ 2δE(uy) = |B ∩B′|+ 2δE(uy) ≤ k + 4,

and so k ≤ 0, contradicting our assumption that k ≥ 2. Hence, |A| = k + 1. Anal-
ogously, |A′| = k + 1. Thus, A \ A′ = {u} and A′ \ A = {v}. From our earlier
observations, |B ∩ B′| = k + 2 and every vertex in B ∩ B′ is adjacent to the k ver-
tices in A ∩ A′ and to both u and v, implying by the (k + 2)-regularity of G that
G = Kk+2,k+2.

Lemma 4.5. If |A ∩ A′| = k + 1, where k ≥ 1, then γP,k(G) = 1.
Proof. Suppose |A ∩ A′| = k + 1, where k ≥ 1. In particular, |A ∩ A′| ≥ 2. By

assumption, A 	= A′. Renaming the sets A and A′, if necessary, we may assume that
there exists a vertex x ∈ A \ A′. By property (P1), |A| ≤ k + 2, and so |A| = k + 2
and A = (A ∩ A′) ∪ {x}. By property (P5), dB(x) ≥ 1. Let y ∈ NB(x).

Suppose y /∈ B ∩ B′. Since y ∈ B, by property (P2), y /∈ A. Hence, by
Lemma 4.3(a) we have that y ∈ A′ \ A. This is true for every neighbor of x in
B \ B′. Since x /∈ A′, we note that x ∈ B′. By property (P4), the set B′ is an
independent set, and so x is not adjacent to any vertex in B ∩ B′. Since x ∈ A,
we have that N(x) ⊆ A ∪ B and every neighbor of x in B belongs to the set
A′ \ A. We deduce, therefore, that N(x) ⊆ (A ∩ A′) ∪ (A′ \ A) = A′, and so
k + 2 = d(x) = dA′(x) ≤ |A′| ≤ k + 2. Hence, we must have equality through-
out this inequality chain. In particular, dA′(x) = k + 2. However, x ∈ B′, and so by
property (P3), dA′(x) = k + 1, a contradiction. Therefore, y ∈ B ∩ B′. This is true
for every neighbor of x in B, and so NB(x) ⊆ B ∩B′.

By property (P3), dA(y) = k + 1, and so the vertex y is adjacent to exactly k
vertices in A∩A′. Further, dA′(y) = k+ 1, implying that y is adjacent to a vertex in
A′ \A, say z. Since |A′| ≤ k+2, we therefore have that |A′| = k+2 and A′ \A = {z}.
By property (P4), the set B is an independent set. Hence, since z is adjacent to a
vertex in B, namely, to the vertex y, we note that z /∈ B. Thus, z is not adjacent to
any vertex of A, and so xz /∈ E and z is not adjacent to any vertex in A ∩ A′. An
analogous argument as with the vertex x ∈ A\A′ shows that for the vertex z ∈ A′ \A,
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we have NB′(z) ⊆ B ∩B′. Since (A′ ∪A) \ {z} = A and z is adjacent to no vertex in
A, we have that N(z) ⊆ B ∩B′. By property (P7), |B ∩B′| ≤ k+2, implying by the
(k + 2)-regularity of G that N(z) = B ∩B′, |B ∩B′| = k + 2, and B = B′ = B ∩B′.
Analogously, N(x) = B ∩ B′. Thus every vertex in B ∩ B′ is adjacent to exactly k
vertices in A∩A′ and to both x and z. Hence, N(B∩B′) ⊆ A∪A′. By Lemma 4.3(a),
B ∪B′ ⊆ A ∪ A′ ∪ (B ∩B′). Therefore, by the connectivity of G we deduce that the
vertices of A ∪A′ ∪ (B ∩B′) induce the whole graph, i.e., G = G[A ∪ A′ ∪ (B ∩B′)].

We now double count the edges in the set [A ∩ A′, B ∩ B′]. First counting the
edges emanating from B ∩B′, we have

|[A ∩ A′, B ∩B′]| = |B ∩B′| × k = k(k + 2).

Counting the edges emanating from A ∩ A′, we have

|[A ∩ A′, B ∩B′]| = |A ∩ A′| × (k + 2)− (2× |[A ∩ A′, A ∩ A′]|)
= (k + 1)(k + 2)−

∑

u∈A∩A′
dA∩A′(u).

Therefore,

∑

u∈A∩A′
dA∩A′(u) = k + 2.

Since |A∩A′| = k+1, there exists a vertex v ∈ A∩A′ with dA∩A′(v) ≥ 2. Let u and
w be two neighbors of v in A∩A′. We show that {v} is a kPD-set in G. As observed
earlier, every vertex in B∩B′ is adjacent to exactly k vertices in A∩A′. Equivalently,
every vertex in B ∩B′ is not adjacent to exactly one vertex in A ∩A′. Let u′ and w′

be the vertices in B∩B′ not adjacent to u and w, respectively. Thus, u′ is adjacent to
every vertex of A ∩A′ different from u (among which w, implying u′ 	= w′), while w′

is adjacent to every vertex of A∩A′ different from w. In particular, since vw′ ∈ E, we
have that w′ ∈ P0({v}). Since uw′ ∈ E, we note that |N [w′]\P0({v})| ≤ d(w′)−2 = k,
and so N [w′] ⊆ P1({v}). In particular, {x, z} ⊆ P1({v}). Analogously, u′ ∈ P0({v})
and N [u′] ⊆ P1({v}). Hence, |N [x] \ P1({v})| ≤ |(B ∩ B′) \ {u′, w′}| = k, and so
N [x] ⊆ P2({v}). Therefore, V = N [x] ∪ N [w′] ∪ {w} ⊆ P2({v}), and so {v} is a
kPD-set in G. Thus, γP,k(G) = 1.

Lemma 4.6. If |A ∩ A′| = 1, then either G[A ∪ A′ ∪ B ∪ B′] is a subgraph of G
of type-Fk or k = 1 and G = K3,3.

Proof. Suppose |A ∩ A′| = 1 and let A ∩ A′ = {u}. We proceed further with a
series of four claims.

Claim I. If A′ ∩B = ∅ or A ∩B′ = ∅, then G = K3,3.
Proof. Suppose that A′ ∩ B = ∅. By property (P5), the vertex u is adjacent to

a vertex in B, say, v. Since v /∈ A′ and v is adjacent to a vertex of A′, we note that
v ∈ B′, and so v ∈ B ∩ B′. By property (P3), dA(v) = dA′(v) = k + 1. Hence,
k + 2 = d(v) ≥ dA∪A′(v) = dA(v) + dA′(v) − dA∩A′(v) = 2(k + 1) − 1 = 2k + 1,
and so k ≤ 1. Consequently, k = 1, and therefore by property (P6) we have that
|A| = |A′| = k + 1 = 2. Thus by property (P3), every vertex in B is adjacent to
both vertices in A. In particular, every vertex in B is adjacent to the vertex u. Since
u ∈ A′ and A′ ∩ B = ∅, this implies that B ⊆ B′ and every vertex in B is adjacent
to both vertices in A′. Analogously, B′ ⊆ B. Consequently, B = B′ = B ∩B′. Since
k = 1, we note that G is a 3-regular graph. Therefore, since each vertex in B ∩B′ is
adjacent to all three vertices in A ∪ A′, we have that N(v) = A ∪ A′ for each vertex
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v ∈ B∩B′. The connectivity of G implies that the vertices of A∪A′∪ (B∩B′) induce
the whole graph, i.e., G = G[A ∪A′ ∪ (B ∩B′)]. Let |B ∩B′| = �. By property (P7),
we note that 1 ≤ � ≤ 3 since k = 1. Since G is 3-regular and every vertex in B ∩B′ is
adjacent to every vertex in A ∪ A′, the set [A ∪ A′, B ∩B′] is full, implying that the
graph G[A ∪ A′] is a (3 − �)-regular graph. Hence, since |A ∪ A′| = 3, we note that
3 − � is even, and so � ∈ {1, 3}. If � = 1, then G = K4 and so |V | = 4, contradicting
the assumption that |V | ≥ 2k + 4 = 6. Therefore, � = 3 and G = K3,3. Analogously,
if A ∩B′ = ∅, then G = K3,3.

By Claim I, we may assume that A′ ∩ B 	= ∅ and B′ ∩ A 	= ∅, for otherwise
G = K3,3 and we are done.

Claim II. |A ∩B′| ≥ k and |A′ ∩B| ≥ k.
Proof. By assumption, A′ ∩ B 	= ∅. Let v ∈ B ∩ A′. By property (P3), dA(v) =

k+1, and by property (P2), N(v) ⊆ A′∪B′. Hence, since |A∩A′| = 1 and the vertex v
is adjacent to at least k vertices of A \ A′ (= A \ {u}), we have that |A ∩ B′| ≥ k.
Analogously, |A′ ∩B| ≥ k.

Claim III. A \ (A′ ∪B′) = ∅ and A′ \ (A ∪B) = ∅.
Proof. For the sake of contradiction, assume that |A\(A′∪B′)| ≥ 1. By Claim II,

|A ∩ B′| ≥ k. Thus since |A ∩ A′| = 1 and A′ ∩ B′ = ∅, we have that k + 2 ≥ |A| =
|A \ (A′ ∪B′)|+ |A∩B′|+ |A∩A′| ≥ 1+ k+1 = k+2. Hence, we must have equality
throughout this inequality chain, implying that |A| = k + 2, |A \ (A′ ∪B′)| = 1, and
|A ∩ B′| = k. In particular since |A| = k + 2, we have by property (P6) that k is
even, and so k ≥ 2. Let A \ (A′ ∪B′) = {x}, and so A = {u, x} ∪ (A ∩B′). Since the
vertex x has no neighbors in A′, we note that all k + 2 neighbors of x belong to the
set (A\A′)∪ (B \A′). Thus, since |A| = k+2 and since |B| ≤ k+2 by property (P7),
we have that

k + 2 = d(x)

= dA\A′(x) + dB\A′(x)

≤ |A \ {u, x}|+ |B \A′|
= k + |B| − |A′ ∩B|
≤ k + (k + 2)− k

= k + 2.

Consequently, we must have equality throughout the above inequality chain, im-
plying that |A \ {u, x}| = k, |A′ ∩ B| = k and |B \ A′| = 2. Further, A \ {u, x} =
A∩B′ ⊆ N(x). Let B\A′ = {y, z}. By property (P3), dA(y) = k+1. Since k ≥ 2, the
vertex y therefore has a neighbor in A ∩B′, say, w. Since w ∈ B′, by property (P3),
dA′(w) = k + 1. However, w is adjacent to x and y, neither of which belong to A′.
Hence, d(w) ≥ dA′(w) + 2 ≥ k + 3, a contradiction. Therefore, A \ (A′ ∪ B′) = ∅.
Analogously, A′ \ (A ∪B) = ∅. This completes the proof of Claim III.

By Claim III, A \ (A′ ∪ B′) = ∅, and so A ⊆ A′ ∪ B′. Further, by Claim III,
A′ \ (A ∪B) = ∅, and so A′ ⊆ A ∪B.

Claim IV. B′ \ (A ∪B) 	= ∅ and B \ (A′ ∪B′) 	= ∅.
Proof. Suppose that B′ ⊆ A ∪ B. By Claim II, |A′ ∩ B| ≥ k. Let v ∈ A′ ∩ B.

Since v ∈ A′, by property (P2) we note that N(v) ⊆ A′ ∪ B′. As observed earlier,
A′ ⊆ A∪B. By assumption, B′ ⊆ A∪B. Hence, A∪B′ ⊆ A∪B, and so N(v) ⊆ A∪B
and dA∪B(v) = d(v) = k + 2. However, v ∈ B, and by property (P4) the set B
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is an independent set, implying that dB(v) = 0 and dA(v) = k + 2, contradicting
property (P3). Hence, B′ \ (A ∪B) 	= ∅. Analogously, B \ (A′ ∪B′) 	= ∅.

By Claim IV, B′ \ (A ∪ B) 	= ∅ and B \ (A′ ∪ B′) 	= ∅. Let x ∈ B \ (A′ ∪ B′)
and let y ∈ B′ \ (A ∪ B). Set X1 = A′ \ {u} and X2 = A \ {u}. Since A ∩ A′ = {u}
and A ⊆ A′ ∪ B′ while A′ ⊆ A ∪ B, we note that X1 = A′ ∩ B and X2 = A ∩ B′.
Since x ∈ B, by property (P3) we have dA(x) = k + 1. However, x /∈ A′ ∪B′, and so
N(x) ∩ A′ = ∅. Hence, NA(x) ⊆ A \ {u} = X2, implying that |X2| = k + 1 and x is
adjacent to every vertex ofX2. Since {y}∪X2 ⊆ B′ and |B′| ≤ k+2 by property (P7),
we have that |B′| = k+2 and B′ = {y}∪X2. Analogously, |X1| = k+1, |B| = k+2,
B = {x} ∪X1, and y is adjacent to every vertex in X1. In particular, we have that
{u, x, y}∪X1 ∪X2 is a partition of the set A ∪A′ ∪B ∪B′. The vertex u is adjacent
to neither x nor y, and so N(u) ⊆ X1 ∪X2. By the (k+2)-regularity of G, the vertex
u therefore has k + 2 neighbors in X1 ∪ X2. Since X1 ⊂ B and A = X2 ∪ {u}, by
property (P3) every vertex in X1 has k+1 neighbors in X2 ∪{u}. Analogously, every
vertex in X2 has k+1 neighbors in X1 ∪ {u}. Therefore, G[A∪A′ ∪B ∪B′] contains
a subgraph of type-Fk. We remark that if xy /∈ E, then this subgraph is an induced
subgraph of G. This completes the proof of Lemma 4.6.

Lemma 4.7. If |B ∩B′| ≥ 1, then |A ∩ A′| ≥ k.
Proof. Suppose B ∩ B′ 	= ∅. Let u ∈ B ∩ B′. By property (P3), dA(u) = k + 1

and dA′(u) = k + 1. Hence, k + 2 = d(u) ≥ dA∪A′(u) = dA(u) + dA′(u)− dA∩A′(u) =
2(k + 1)− dA∩A′(u), and so dA∩A′(u) ≥ k.

Lemma 4.8. If A ∩ A′ = ∅ and A ∩ B′ 	= ∅, then the graph Kk+2,k+2 − e is a
spanning subgraph of G[A ∪ A′ ∪B ∪B′].

Proof. Suppose A ∩ A′ = ∅ and A ∩ B′ 	= ∅. Let x ∈ A ∩ B′. Since x ∈ B′,
by property (P3), dA′(x) = k + 1. Since x ∈ A, by property (P2), N(x) ⊆ A ∪ B.
By assumption, A ∩ A′ = ∅, and so the k + 1 neighbors of x in A′ all belong to B,
implying that |A′ ∩ B| ≥ k + 1. Thus, since A′ ∩ B 	= ∅, analogously we have that
|A ∩B′| ≥ k + 1.

Suppose A \ B′ 	= ∅. Let u ∈ A \ B′ and let v ∈ A′ ∩ B. Since u /∈ A′ ∪ B′

and v ∈ A′, we note that uv /∈ E. However, v ∈ B and dA(v) = k + 1, implying
that NA(v) ⊆ A ∩ B′ ⊆ A \ {u}. Thus, k + 1 = dA(v) ≤ |A ∩ B′| ≤ |A| − 1 ≤
k + 1. Hence, we must have equality throughout this inequality chain, implying that
NA(v) = A ∩B′ = A \ {u}, |A ∩B′| = k+ 1, and |A| = k+ 2. Since v is an arbitrary
vertex in A′ ∩ B, we have that every vertex in A′ ∩ B is adjacent to every vertex
in A ∩ B′, that is, [A′ ∩ B,A ∩ B′] is full. By property (P7), |B| ≤ k + 2. Hence,
|B \A′| = |B| − |A′ ∩B| ≤ (k+ 2)− (k+ 1) = 1. As observed earlier, N(u) ⊆ A∪B.
Since A ∩ A′ = ∅ and u ∈ A, we note that u /∈ A′, and since it is not either in B′,
N(u) ⊆ A∪ (B \A′). Hence, k+2 = d(u) = dA(u)+dB\A′(u) ≤ |A\ {u}|+ |B \A′| ≤
(k + 1) + 1 = k + 2. Therefore, we must have equality throughout this inequality
chain, implying that |A| = k + 2, |B \ A′| = 1, dA(u) = k + 1, and dB\A′(u) = 1.
In particular, we note that the vertex u is adjacent to every vertex in A \ {u}. Let
B \A′ = {w}. Then, uw ∈ E. Since w ∈ B, by property (P3), dA(w) = k + 1. Let z
be a neighbor of w in A \ {u} = A ∩ B′. As observed earlier, [A′ ∩ B,A ∩ B′] is full
and |A′ ∩B| = k+ 1. Hence, z is adjacent to k+ 1 vertices in A′ ∩B and is adjacent
to both u ∈ A \ A′ and w ∈ B \ A′, implying that d(z) ≥ k + 3, a contradiction.
Therefore, A \B′ = ∅, and so A ⊆ B′. Analogously, A′ ⊆ B.

By property (P4), the set B′ is an independent set. Hence, since A ⊆ B′, the set
A is an independent set, implying by property (P2) that N(v) ⊆ B for every vertex
v ∈ A. By property (P7), |B| ≤ k+2. Hence, k+ 2 = d(v) ≤ |B| ≤ k+2. Therefore,
we must have equality throughout this inequality chain, implying that |B| = k + 2
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and N(v) = B for every v ∈ A. Hence, [A,B] is full. Analogously, |B′| = k + 2 and
[A′, B′] is full. If y ∈ B ∩ B′, then since A ∩ A′ = ∅, we have by property (P3) that
k + 2 = d(y) ≥ dA(y) + dA′(y) = 2(k + 1), and so k ≤ 0, a contradiction. Hence,
B ∩ B′ = ∅. Thus since A ⊆ B′ and A′ ⊆ B′, and |B| = |B′| = k + 2, the graph
Kk+2,k+2 − e is a spanning subgraph of G[A ∪ A′ ∪B ∪B′].

5. Proof of Theorem 2.1. In this section, we present a proof of our main result,
namely, Theorem 2.1. For this purpose, we first prove four preliminary lemmas. We
define the reduced graph of G, denoted G∗, to be the graph obtained from G by
deleting all edges that do not belong to a cycle of length 3 or 4 in G.

Lemma 5.1. For k ≥ 1, let G be a connected (k + 2)-regular graph of order at
least 2k+4. Suppose G contains a subgraph Fk of type-Fk, and let (X1, X2, {u, x, y})
be the partition of V (Fk), as defined in Definition 3.1. Then the subgraph Fk is a
component of G∗ (possibly with the edge xy).

Proof. Suppose that G = (V,E) contains a subgraph Fk of type-Fk. By definition,
we note that k ≥ 2. We show first that every edge of Fk is an edge of the reduced graph
G∗. Let (X1, X2, {u, x, y}) be the partition of V (Fk), as defined in Definition 3.1.

Let e be an arbitrary edge in [X1, X2]. Let e = vw, where v ∈ X2 (and w ∈ X1).
Since dX1∪{u}(v) = k + 1, the vertex v is adjacent to all but one of the k + 2 vertices
in the set X1 ∪ {u}. In particular, the vertex v is adjacent to at least k ≥ 2 vertices
in X1. Let w

′ be a neighbor of v in X1 different from w. Then, vwyw′v is a 4-cycle in
G containing the edge e. Hence, every edge in [X1, X2] is contained in a 4-cycle in G.

Let f be an arbitrary edge in [X1, {y}]. Let f ′ be an edge in [X1, {y}] different
from f , and let f = wy and f ′ = w′y. If w and w′ have no common neighbor in
X2 ∪ {u}, then k + 2 = |X2 ∪ {u}| ≥ dX2∪{u}(w) + dX2∪{u}(w′) = 2(k + 1), and
so k ≤ 0, a contradiction. Hence, w and w′ have a common neighbor in X2 ∪ {u},
say, z. But then ywzw′y is a 4-cycle in G containing the edge f . Hence, every edge
in [X1, {y}] is contained in a 4-cycle in G. Analogously, every edge in [X2, {x}] is
contained in a 4-cycle in G.

It remains to show that every edge incident with u belongs to a 3-cycle or a
4-cycle. Let g be an arbitrary edge incident with u. Let g = uv, where we may
assume that v ∈ X2. If dX2 (u) ≥ 2, then let v′ be a neighbor of u in X2 different
from v. Then, uvxv′u is a 4-cycle in G containing the edge g. If dX2(u) = 1, then
dX1(u) = |X1| = k + 1. In this case, given any neighbor u1 of u in X1, uu1vu is a
3-cycle in G containing the edge g. Hence, every edge incident with u belongs to a
3-cycle or a 4-cycle.

We have therefore shown that every edge in Fk belongs to a 3-cycle or a 4-cycle
and therefore belongs to the reduced graph G∗. We prove next that Fk is a component
of G∗. If xy ∈ E, then the graph G is determined and G = Fk + xy, the vertices
of Fk indeed forming a component of G∗. Otherwise, by the (k + 2)-regularity of G,
there is exactly one edge incident with each of x and y that does not belong to Fk.
Let ex and ey be the edges incident with x and y, respectively, that do not belong
to Fk. By assumption, ex 	= ey. Every cycle containing the edge ex contains a path
in Fk from x to y as well as the edge ey. Since the distance between x and y in Fk

is 3, such a cycle has length at least 5, implying that the edge ex does not belong to
G∗. Analogously, the edge ey does not belong to G∗. Therefore, Fk is a component of
G∗.

Lemma 5.2. For k ≥ 1, let G be a connected (k + 2)-regular graph of order at
least 2k+4. If G 	= Kk+2,k+2 and G contains a subgraph isomorphic to Kk+2,k+2− e,
then such a subgraph is a component of G∗.
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Proof. Suppose that G 	= Kk+2,k+2 but G contains a subgraph, F , say, isomorphic
to Kk+2,k+2 − e. Since every edge of F belongs to a 4-cycle, every edge of F is an
edge of the reduced graph G∗. It remains to prove that F is a component of G∗. Let
x and y be the ends of the nonedge e in F . By the (k + 2)-regularity of G, there
is exactly one edge incident that does not belong to F . Let ex and ey be the edges
incident with x and y, respectively, that do not belong to F . Since G 	= Kk+2,k+2, we
note that ex 	= ey. Every cycle containing the edge ex contains a path in F from x to
y as well as the edge ey. Since the distance between x and y in F is 3, such a cycle
has length at least 5, implying that the edge ex does not belong to G∗. Analogously,
the edge ey does not belong to G∗. Therefore, F is a component of G∗.

Recall that if X and Y are subsets of vertices and there is no edge in [X,Y ], then
we say that [X,Y ] is empty.

Lemma 5.3. For k ≥ 1, let G = (V,E) be a connected (k + 2)-regular graph of
order at least 2k + 4. Suppose there exist subsets A, B, and S of vertices in G such
that M = P∞(S), M = V \M , and B = N(A) ∩M , and such that the following
holds:

(a) A ∩M = ∅.
(b) |A| ≤ k + 2.
(c) [A ∪B,M \A] is empty.

Then, the sets A and B induce an (A,B)-configuration in G.
Proof. In order to prove that A and B induce an (A,B)-configuration in G, we

need to prove that properties (P1) to (P4) hold.
By part (c) in the statement of the lemma, N(A) ⊆ A∪M . Therefore, N(A)\A =

N(A) ∩M = B. This proves property (P2).
By part (c) in the statement of the lemma, N(B) ⊆ A ∪M . Therefore, N(B) ∩

M = A. Let x ∈ B. Then, x ∈ N(A), and so dA(x) ≥ 1. By definition, M = P∞(S).
Hence, every vertex in M that has a neighbor in M does not belong to the set S and
contains at least k+1 neighbors in M . In particular, x /∈ S and dA(x) ≥ k+1. Since
x ∈ M \ S, there exists a vertex v ∈ M adjacent to x, and so dM (x) ≥ 1. Hence,
k+2 = d(x) ≥ dM (x)+dA(x) ≥ 1+(k+1) = k+2. Therefore, we must have equality
throughout this inequality chain. In particular, dA(x) = k+1. Since x is an arbitrary
vertex in B, this proves property (P3).

As an immediate consequence of property (P3), we have that |A| ≥ k + 1, which
together with part (b) in the statement of the lemma proves property (P1).

It remains to prove that B is an independent set. Suppose that u, v ∈ B with
uv ∈ E. By property (P3), dA(u) = dA(v) = k + 1, and so by the (k + 2)-regularity
of G we have that N(u) ⊆ A∪{v} and N(v) ⊆ A∪ {u}. Thus, u is the only neighbor
of v in M and v is the only neighbor of u in M . If S ∩ {u, v} = ∅, then by part (a)
in the statement of the lemma, neither u nor v belong to the set M , a contradiction.
Hence, |S ∩ {u, v}| ≥ 1. Renaming u and v if necessary, we may assume that u ∈ S.
But then NA(u) ⊂ M , contradicting part (a). Therefore, B is an independent set.
This proves property (P4).

We are now in a position to prove our final preliminary lemma. Recall that if Fk

is a graph in the family Fk with vertex partition as defined in Definition 3.1, then we
call the vertex u the focal vertex of Fk.

Lemma 5.4. For k ≥ 1, let G = (V,E) be a connected (k + 2)-regular graph of
order at least 2k + 4 such that G 	= Kk+2,k+2 and γP,k(G) > 1. Then there exists a
sequence S0, . . . , S� such that the following holds:

(a) S0 is a packing in G.
(b) For all i ≥ 0, |Si+1| = |Si|+ 1.
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(c) |P∞(Si+1)| ≥ |P∞(Si)|+ k + 3.
(d) P∞(S�) = V .
Proof. We first construct a packing S0 in G as follows. Let P0 be the set consisting

of the focal vertex from each component of type-Fk in the reduced graph G∗ and a
vertex of degree k + 2 from every component of G∗ isomorphic to Kk+2,k+2 − e. It
follows from Lemma 5.1 and Lemma 5.2 that the set P0 so constructed is a packing
in the graph G.

Let A and B be subsets of vertices in G that induce an (A,B)-configuration
that is not totally included in a component of type-Fk or in a component isomor-
phic to Kk+2,k+2 − e in G∗. Let A′ and B′ be subsets of vertices in G that in-
duce an (A′, B′)-configuration with A 	= A′. By Lemma 4.3(c), if |A ∩ A′| ≥ 1,
then |A ∩ A′| ∈ {1, k, k + 1}. By assumption, γP,k(G) > 1, and so by Lemma 4.5
we note that |A ∩ A′| 	= k + 1. Further, by assumption, G 	= Kk+2,k+2, and so
by Lemma 4.4 we note that |A ∩ A′| 	= k or k = 1. If |A ∩ A′| = 1, then by
Lemma 4.6 either the (A,B)-configuration is included in a component of type-Fk in
G∗, or k = 1 and G = K3,3, contradicting in both cases the assumptions. It follows
that A ∩ A′ = ∅. This in turn implies by Lemma 4.7 that B ∩ B′ = ∅. Observe
now that A ∩ B′ = ∅. Otherwise the (A,B)-configuration is contained in a compo-
nent isomorphic to Kk+2,k+2 − e in G∗ by Lemma 4.8, contradicting the choice of
A and B. Similarly we have B ∩ A′ = ∅. It follows that the (A,B)-configuration
and the (A′, B′)-configuration do not intersect. Also, since every vertex of a sub-
graph of type-Fk or a subgraph isomorphic to Kk+2,k+2 − e is contained in some
(A′, B′)-configuration, the (A,B)-configuration is totally disjoint from any such sub-
graph. From each such (A,B)-configuration, we select an arbitrary vertex from A
and add it to the set P0. Let P1 denote the resulting set of vertices. Since these
(A,B)-configurations (that do not belong to a component of type-Fk in G∗ or to a
component of G∗ isomorphic to Kk+2,k+2−e) do not intersect, the set P1 is a packing
in G.

By construction, if A and B are subsets of vertices in G that induce an (A,B)-
configuration, then A and N [P1] intersect. Finally, we extend the packing P1 into
a maximal packing of G and we let S0 denote the resulting maximal packing. This
establishes the packing in the statement of part (a).

We now prove part (b) and part (c) by induction on i ≥ 0. If P∞(S0) = V , then
there is nothing to prove. Hence, we may assume that P∞(S0) 	= V . Let i ≥ 0 and
suppose that Si exists and P∞(Si) 	= V . Let u ∈ P∞(Si) such thatN(u)\P∞(Si) 	= ∅.
Let A = N(u) \ P∞(Si) and denote by M = P∞(Si) and M = V \ P∞(Si). Since
N [u] 	⊂ P∞(Si), we note that u /∈ Si, dM (u) ≥ 1 and dA(u) ≥ k + 1. Therefore,
by the (k + 2)-regularity of G, we note that dM (u) = 1 and dA(u) = k + 1, and so
|A| = k + 1.

Suppose that there exists a vertex x ∈ A such that dM\A(x) ≥ 2. In this case,

we define Si+1 = Si ∪ {x} and we let j be the minimum integer such that Pj(Si) =
P∞(Si). Then, N [u] \ Pj(Si+1) ⊆ (N [u] \ Pj(Si)) \ {x}, and so N [u] \ Pj(Si+1) ≤ k,
implying that N [u] ⊆ Pj+1(Si+1). Also, N [x] ⊆ P0(Si+1) ⊆ Pj+1(Si+1). Therefore,
|P∞(Si+1)| ≥ |P∞(Si)| + k + 3. Hence we may assume that dM\A(x) ≤ 1 for every

vertex x ∈ A, for otherwise part (b) and part (c) follow as desired.
Let B = N(A) ∩M . From the choice of our packing S0 and since A ⊆ M , the

sets A and B do not induce an (A,B)-configuration in G. We deduce, therefore, by
Lemma 5.3 that [A ∪ B,M \ A] is not empty. Thus there exists an edge vw ∈ E
where v ∈ A ∪ B and w ∈ M \ A. Let A′ = A ∪ {w} and let B′ = NM (A′). Once
again by our construction of the packing S0, the sets A′ and B′ do not induce an
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(A′, B′)-configuration in G. Hence by Lemma 5.3 there exists an edge v′w′ ∈ E
where v′ ∈ A′ ∪B′ and w′ ∈M \A′.

We now define Si+1 = Si ∪ {w}. We show that P∞(Si+1) contains A′ ∪ {w′}.
Since w ∈ Si+1, we note that N [w] ⊆ P0(Si+1), and so {v, w} ⊂ P0(Si+1). Let j be
the smallest integer such that P∞(Si) = Pj(Si).

On the one hand, suppose that v ∈ B. Since B = NM (A), we note that dA(v) ≥ 1
and we let x ∈ NA(v). Since v ∈M and w ∈ Si+1, we have that

N [v] \ Pj(Si+1) ⊆ N [v] \ (Pj(Si) ∪ {w}),
and so

|N [v] \ Pj(Si+1)| ≤ |N [v] \ Pj(Si)| − 1 = (k + 1)− 1 = k,

implying that N [v] ⊆ Pj+1(Si+1) and therefore that x ∈ Pj+1(Si+1) (where we recall
that x ∈ A). On the other hand, suppose that v /∈ B. Then, v ∈ A. Further,
v ∈ N [u] ∩N [w]. Since w ∈ Si+1, we note that v ∈ P0(Si+1) ⊆ Pj(Si+1). Hence, in
both cases there is a vertex in the set A that belongs to the set Pj+1(Si+1), implying
that

|N [u] \ Pj+1(Si+1)| ≤ |N [u] \ Pj(Si)| − 1 = |A| − 1 = k.

Hence, A ⊆ N [u] ⊆ Pj+2(Si+1). It remains to show that w′ ∈ P∞(Si+1). If v′ = w,
then w′ ∈ P0(Si+1), and we are done. If v′ ∈ A, then v′ ∈ Pj+2(Si+1), and since
dM\A(v

′) ≤ 1, the vertex w′ is the only neighbor of v′ not in Pj+2(Si+1), implying

that w′ ∈ Pj+3(Si+1). Finally, if v
′ ∈ B′, then N(v′) ∩ A′ 	= ∅, and so

|N(v′) \ Pj+2(Si+1)| ≤ |N(v′) \M | − |N(v′) ∩ A′| ≤ (k + 1)− 1 = k,

implying that N(v′) ⊆ Pj+3(Si+1) and therefore that w′ ∈ Pj+3(Si+1). In all cases,
we have shown that w′ ∈ P∞(Si+1). Hence, A ∪ {w,w′} ⊆ P∞(Si+1) \ P∞(Si), and
so |P∞(Si+1)| ≥ |P∞(Si)|+ k + 3. This establishes part (b) and part (c).

We have shown that for i ≥ 0, if the set Si exists and P∞(Si) 	= V , then
|P∞(Si+1)| > |P∞(Si)|. Hence, since |V | is finite, there must exist an integer �
such that P∞(S�) = V , which establishes part (d).

We are now in a position to prove our main result, namely, Theorem 2.1. Recall
its statement.

Theorem 2.1. Let k ≥ 1 and let G be a connected (k+2)-regular graph of order
n. If G 	= Kk+2,k+2, then γP,k(G) ≤ n/(k + 3), and this bound is tight.

Proof of Theorem 2.1. If γP,k(G) = 1, the result is immediate since n ≥ k + 3.
Hence, we may assume that γP,k(G) ≥ 2. In particular this implies that n ≥ 2k + 4,
for otherwise any vertex in G is a kPD-set in G (and γP,k(G) = 1). We may therefore
apply Lemma 5.4 to the graph G. Let S0, . . . , S� be a sequence satisfying properties
(a)–(d) in the statement of Lemma 5.4 with � as small as possible. By Lemma 5.4(d),
the set S� is a kPD-set in G, and so γP,k(G) ≤ |S�|. Since S0 is a packing in G, we
have that |P0(S0)| = |N [S0]| = |S0| × (k + 3). If � = 0, then n = (k + 3)|S0| and
γP,k(G) ≤ |S0| = n/(k + 3), and we are done. Hence, we may assume that � ≥ 1.
By Lemma 5.4(b), |S�| = |S0|+ �. By our choice of �, we have by Lemma 5.4(c) that
|P∞(Si+1)| ≥ |P∞(Si)|+ k + 3 for 0 ≤ i ≤ �− 1, and so

n = |P∞(S�)| ≥ |P0(S0)|+ �(k + 3) = (|S0|+ �)(k + 3) = |S�|(k + 3),

and so γP,k(G) ≤ |S�| ≤ n/(k + 3), as desired. This proves the desired upper bound.
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Fig. 5.1. The graph Gk,6.

That this bound is tight, may be seen as follows. Let k ≥ 1 and r ≥ 2 be integers.
For 1 ≤ i ≤ r, let Gi be a complete graph on k+3 vertices minus one edge xiyi, and so
Gi
∼= Kk+3− e. Let Gk,r be the graph obtained from the disjoint union of the graphs

G1, G2, . . . , Gr by adding the edges yixi+1 for i = 1, 2, . . . , r, where xr+1 = x1 (see
Figure 5.1). Then, Gk,r is a connected (k+2)-regular graph of order n = r(k+3). Let
S be an arbitrary kPD-set in Gk,r . If S∩V (Gi) = ∅, then no vertex in V (Gi)\{xi, yi}
belongs to the set P∞(S), contradicting the assumption that S is a kPD-set in Gk,r .
Hence, |S ∩ V (Gi)| ≥ 1 for all i, 1 ≤ i ≤ r, implying that γP,k(Gk,r) ≥ r = n/(k+3).
However, as shown earlier, if G is a connected (k + 2)-regular graph of order n and
G 	= Kk+2,k+2, then γP,k(G) ≤ n/(k+3). Consequently, γP,k(Gk,r) = n/(k+3). This
completes the proof of Theorem 2.1.

6. Conclusion. We pose the following conjecture that we have yet to settle.
Conjecture 1. For k ≥ 1 and r ≥ 3, if G 	= Kr,r is a connected r-regular graph

of order n, then γP,k(G) ≤ n/(r + 1).
We remark that if k ≥ r − 1 in the statement of Conjecture 1, then γP,k(G) =

1 ≤ n/(r + 1) and the conjecture is trivially true. If k = r − 2, then the conjecture is
true by our main result, namely, Theorem 2.1. When k ≤ r− 3, we have yet to settle
the conjecture. We close with the following question.

Question 1. For r ≥ 3, let G 	= Kr,r be a connected r-regular graph of order n.
Determine the smallest positive value, kmin(r), of k such that γP,k(G) ≤ n/(r + 1).

We remark that by our main result, namely Theorem 2.1, we know that kmin(r) ≤
r − 2. If Conjecture 1 is true, then kmin(r) = 1.
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