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MIMO Conditional Integrator Control for

Unmanned Airlaunch

Van Cuong Nguyen and Gilney Damm

Abstract

A Nonlinear Multiple Input Multiple Output (MIMO) controller based
on the conditional integrator technique is designed for the robust stabi-
lization of a new satellite launching strategy called (unmanned) airlaunch.
This control technique performs as a nonlinear robust controller when the
system is outside a boundary layer defined by the controller (large errors),
and as a nonlinear controller that provides an integral term when the sys-
tem enters into the boundary layer (small errors). While the airlaunch
strategy consists in using a two-stages launching system. The first stage
is composed of an airplane (manned or unmanned) that carries a rocket
launcher which constitute the subsequent stages. The control objective is
to stabilize the aircraft in the launch phase. It is developed separately for
two nonlinear MIMO motion modes of the model, the longitudinal mode
and lateral mode, and is then applied to the full model of the aircraft.
The considered model is highly nonlinear, mostly as a consequence of
possible large angle of attack, sideslip and roll angle. Finally, the present
work illustrates through simulations the good performance of the proposed
control algorithm.

Keywords:Conditional Integrator; Airlaunch; F-16 Aircraft; Non-
linear System

1 Introduction

Satellites launching is a strategical activity today. Launchers are able to carry
from micro-satellites of some tens of kilograms up to 10 tons in the case of
French Ariane 5 launcher. Recently, new applications have called upon very
small satellites mostly used in groups (see [1]). These small satellites need a
new class of launchers since launching implies in many fixed costs that are in-
dependent of the size and weight of the launched device. For this reason, the
ratio price-per-kilogram launched in space becomes too high. A quite logical
solution in this case would be to pack many small devices to be launched to-
gether. Unfortunately this implies many additional risks in the split phase and
is not envisaged.

*IBISC - Université d’Evry Val d’Essonne, Evry, France // E-mail: gilney.damm@univ-
eiffel.fr

2



Figure 1: Stratolaunch system credited © Stratolaunch Systems, Inc.

A more efficient solution in this case is to use the procedure of airlaunch
(see [12], [4]). It consists of using a two stages launching system (see Fig.
1). The first stage is composed of an air vehicle (manned or unmanned) that
carries (inside, beneath or above) a launcher which constitutes the second stage.
There are many advantages in airlaunch, mainly because there is no need for
specific large non populated launching areas. The aerial vehicle takes-off from
a standard runway and fly to open ocean, avoiding populated areas or ship
and airplane paths. For this reason there is also a minimization of weather
constraints, since the vehicle can fly to open sky, and as consequence the launch
delay can be significantly shortened. Similarly, instead of waiting for specific
launch windows (to attain desired orbits), the vehicle may be flown to a better
suited launch point, with a better alignment with the desired orbit. The fact
that the first stage is a reusable aerial vehicle allows a much smaller launching
delay. In the same way, launching reuse time may be very short (one or two
days). These characteristics provide great flexibility, and allow to deploy small
satellites designed for specific tasks of communication or data gathering in real
time for urgent situations.

Airlaunch provides the advantages of two stage launchers. The second
(dropped) stage may use specific nozzles and propellants for the low outside
atmospheric pressure at altitude (20 000 meters or 60000 feet). This is ob-
tained without the complex, expensive and relatively dangerous high pressure
ground-launched first stage that is replaced by the aerial vehicle. Most current
airlaunch projects use standard or lightly modified airplanes as first stage. For
example, there has been tests using F15, C17, B52, L-1011 in Rascal, Quick-
Reach, Proteus and Pegasus projects.

It is important to remark that airplanes use the wing’s lift force to fly. For
this reason, higher (low altitude) air density benefit the flight while the aircraft
uses standard fuel to keep flying. A first stage rocket would use a much more
complex, dangerous and expensive fuel while in this higher air density. From
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a certain altitude, air density is too low to be useful for an airplane, while not
representing anymore a drawback for rockets.

Unlike the before-mentioned projects, other ones aim in developing an air-
launch system that uses an Unmanned Aerial Vehicle (UAV) instead of a stan-
dard aircraft with a human pilot inboard. The current paper addresses their
launching phase, it intends to introduce modeling and a robust nonlinear con-
troller for this delicate procedure. In fact, airlaunch may be very challenging
since the rocket may be almost as heavy as the UAV. This means that the
aircraft will instantaneously lose almost half of its mass. As consequence, the
stabilization task is much more complex during and after the launching phase
with a much more adverse mass ratio. To our best knowledge, it does not ex-
ist an equivalent research line, and then there is no results in the literature
considering this problem.

The paper is organized as follows: in section 2, we describe the nonlinear
mathematical system model. A conditional integrator control design and its
application to the full system model is discussed in section 3. The paper is
completed by computer simulations and conclusions.
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2 Modeling

Figure 2: Frames: Body fixed axes OXBYBZB , Stability axes OXSYSZS , Aero-
dynamic axes OXWYWZW

Modeling an air launch system and its separation phase is a difficult task which
requires many data and informations about the real system. We have based our
work on the model of an F-16 aircraft (that already has been tested for manned
airlaunch). We have also used it to verify in simulations the reactions of the
system when modeling the air launch phase.

We suppose that the studied system is a set of a reusable launch vehicle and
a down stage, whose mass is equivalent to the reusable launch vehicle’s own
mass. For the sake of simplicity, this set is considered as a complete aircraft
before air launching. In this paper the airlaunch system is considered as a hybrid
system composed by two continuous models that are switched in three phases,
representing the system before, during and after the separation phase (see [11]).

1. before the separation ⇒ the first aircraft model (representing the UAV
and the rocket) is in a stable operating condition

2. during the separation ⇒ a second aircraft model representing only the
UAV, starting on the previous operating condition, is disturbed by im-
pulses on forces and moments representing a not perfect separation inside
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a time interval Tint. Furthermore the initial conditions, inherited from the
first phase, are not an equilibrium point for the second aircraft model.

3. after the separation ⇒ the disturbances stop (UAV and rocket are not in
physical contact anymore).

It can be shown that the effect of launching the rocket from the UAV impacts
most the lift force, and the roll and pitch moments. We suppose that these per-
turbing force and moments are constant during interval Tint, and we represent
then Fzp , Lp and Mp for the perturbations on the lift force, on the roll moment
and pitch moment respectively.

Figure 3: The launcher attached to the aircraft carrier in the worst case

In the present work we will study a worst case of disturbance. We consider
that the separation phase is not simultaneous in all links that attach the rocket
and the UAV. For this reason, the rocket remains attached to one end of the
UAV during Tint. We have then studied how long the disturbance could last
and that the control algorithm could still stabilize the aircraft back.

We suppose that:

� the perturbation on lift force during Tint is equal to the air launch vehicle’s
mass, that means Fwp = mrg cos θ0.

� the perturbation on drag force is Fup = −Fwp sin θ0 = −mrg sin θ0 where
θ0 is the initial pitch angle of the first model at the launching phase and
mr is the rocket’s weight.
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� the perturbation on pitch moment during Tint is an worst case that is
represented by the rocket that remains attached to the aircraft by only
one end during Tint, applying a rotational movement to the aircraft, so a
moment with value Mp = mrglr cos θ0/2 where lr is the rocket length.

� the perturbation on roll moment during Tint is small because of the rocket
shape (long and thin).

� the model following the launch phase is the F-16 model. Its initial condi-
tion is the state at an equilibrium point of the model previous the launch
phase that is the F-16 model but with twice its standard mass. That
means the rocket’s mass is equal to the aircraft carrier. It is a hypothesis
in the worst case because in practice the aircraft carrier’s weight is greater
than the rocket’s weight.

The model of the dynamic airlaunch after the split phase is described by the
Newton-Euler’s law in the aerodynamic axes (OXWYWZW in Fig. 2) i.e. the
reference frame attached to the airspeed vector V (see [6], [13] and [14]), instead
of using variables in the body fixed axes because of the measurability of these
state variables:



α̇ = − cosα tanβp+ q − sinα tanβr − sinα
mV cos β (T + Fx) + cosα

mV cos βFz
+ g
V cos β [sinα cos θ + cosα cosφ cos θ]

β̇ = sinαp− cosαr − cosα sin β
mV [T + Fx] + cos β

mV Fy −
sinα sin β
mV Fz + g

V [cosα sinβ sin θ
+ cosβ cos θ sinφ− sinα sinβ cosφ cos θ]

V̇ = cosα cos β
m [T + Fx] + sin β

m Fy + sinα cos β
m Fz + g[cosα cosβ sin θ

+ sinβ sinφ cos θ + sinα cosβ cosφ cos θ]
ṗ = 1

IxxIzz−I2xz
[(IyyIzz − I2

zz − I2
xz)rq − Ixz(Ixx + Izz − Iyy)pq + IzzL− IxzN ]

q̇ = 1
Iyy

[(Izz − Ixx)pr + Ixz(p
2 − r2) +M ]

ṙ = 1
IxxIzz−I2xz

[(−IxxIyy + I2
zz + I2

xz)pq + Ixz(Ixx + Izz − Iyy)rq + IxxN − IxzL]

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ+r cosφ
cos θ

(1)
in which Ixx, Iyy, Izz, Ixz are the moments of inertia, m is the mass of the system
(kg) and g the gravity constant. α, β, V, p, q, r, φ, θ, ψ are the state variables of
the airlaunch aircraft model, they are the angle of attack, sideslip, airspeed, roll
rate, pitch rate, yaw rate, roll angle, pitch angle and yaw angle respectively.
α, β, φ, θ, ψ are expressed in rad, p, q, r in rad/s and V in m/s. T is the thrust
force, Fx, Fy, Fz and L,M,N are aerodynamic forces and moments respectively.
All forces and moments are expressed in N and Nm.

These aerodynamic forces and moments are function of all considered states.
In this model, these aerodynamic forces and moments are under look-up table
from wind tunnel data measurements as may be found in [9]. Finally, the control
inputs are respectively the aileron (δa), rudder (δr) and elevator (δe) angles.
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This model is based on wind tunnel data from NASA, considering the fol-
lowing conditions:

� angle of attack is in the range of [−10◦, 45◦] and sideslip of [−30◦, 30◦]

� flap deflection is ignored

� physical constraints for aileron (|δa| ≤ 21.5◦), rudders (|δe| ≤ 25◦) and
elevator (|δr| ≤ 30◦)

� all actuators are modeled as a first order model (τ = 0.0495s) with limit
rates 60◦/s for aileron and elevator, and 120◦/s for rudder.

In particular, we use the low quality mode of the F-16 model, and the aero-
dynamic data is interpolated and extrapolated linearly in simulation from tables
found in [9].

3 Control design

3.1 Conditional integrator control design

The MIMO conditional integrator (CI) controller design for the output regula-
tion of a class of minimum-phase nonlinear systems in case of asymptotically
constant references is studied in [7], [5] and extended in [3]. Our present work is
dedicated to use a nonlinear extension of these results developed in [2] and [10],
for stabilizing an unmanned aircraft during and immediately after the airlaunch
phase.

This modified CI is composed of two main nonlinear terms, one saturated
and one that may grow unbounded. The condition is responsible to choose
where each term dominates the controller. In this way it behaves differently
following some conditions (how big the errors are) that are tunned by the design
parameters.

We remind the theory of conditional integrator control design for a nonlinear
system.

Consider the system:{
ė1 = e2

ė2 = f(e1, e2) + g(e1, e2)u
(2)

where e1(t) ∈ Rn
is an output error vector, e2 = ė1, u ∈ Rn

control input and

f(e1, e2) ∈ Rn
, g(e1, e2) ∈ Rn×n

are continuous functions.
Let us define an intermediate variable:

s = k0σ +K1e1 + e2 (3)

where σ ∈ Rn
is the output of the conditional integrator

σ̇ = −k0σ + µsat(s/µ) (4)
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in which µ is the boundary layer, k0 is a positive parameter, K1 ∈ Rn×n
is a

positive definite matrix.
The saturation function is determined as:

sat(s/µ) =

{
s/‖s‖ if ‖s‖ ≥ µ
s/µ if ‖s‖ < µ

(5)

We denote Oµ as the region neighborhood of (e1, e2) = (0, 0) with a radius
Rµ for ‖s‖ < µ

Oµ = {e = (e1, e2) ∈ Rn ×Rn | ‖e‖ ≤ Rµ} (6)

We state the following assumptions on the forcing terms f(e1, e2) and g(e1, e2)
to design the control algorithm.

Assumption 3.1 f(e1, e2) is bounded by a function γ(‖e1‖+ ‖e2‖) of class K
and a positive constant ∆0 = ‖f(0, 0)‖

‖f(e1, e2)‖ ≤ γ(‖e1‖+ ‖e2‖) + ∆0 (7)

for (e1, e2) ∈ Rn×Rn
and while the sliding surface does not enter the boundary

layer, i.e.‖s‖ ≥ µ.
Inside the boundary layer, the function f(e1, e2) is required to be Lipschitz

for (e1, e2) ∈ Oµ, as a consequence

‖f(e1, e2)− f(0, 0)‖ ≤ L1‖K1e1‖+ L2‖e2‖ (8)

γ(‖e1‖+ ‖e2‖) is also required to be Lipschitz for (e1, e2) ∈ Oµ:

γ(‖e1‖+ ‖e2‖) ≤ γ1‖K1e1‖+ γ2‖e2‖ (9)

where L1 and L2, γ1 and γ2 ∈ R+
.

�

Assumption 3.2 g(e1, e2) is invertible for (e1, e2) ∈ Rn ×Rn
.

�

Following these assumptions, the controller u defined below in (10) can be
applied to (2) to stabilize the system.

u = −π(e1, e2)sat(s/µ) (10)

in which,
π(·) = (π0 + γ(·) + k0µ+ ∆0)g−1(·) (11)

π0 and k0 are positive constants, µ is the boundary layer as defined above.
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Remark 1 It is important to remark that the control can even grow unbounded
since the term (11) is not necessarily bounded. Functions γ(·) and g−1(·) can
grow continuously. For this reason we call this controller a modified Conditional
Integrator, composed of two terms (see (10-11)) one saturated and one not. The
later will dominate for small errors, and as a consequence the controller will
behave as an integrator. In the case of large errors, it is the first that dominates,
and the controller acts as a robust controller.

The stability in the general case of the control law (10) for system (2) is
demonstrated in [2].

3.2 Lateral control design

In the lateral control design, we assume that all longitudinal state variables are
null or constant, only lateral states are time varying. Moreover it is assumed
that the airspeed’s response is much slower than other states, and that the control
surface deflection has no effects on the aerodynamic force components (lift and
drag) but only on moments. Aerodynamic force Fy and moments L, N are
calculated by their aerodynamic coefficients (see more in [6]).

Fy = (Cy(β) + (Cyp(α)p+ +Cyr (α)r)b̄/(2V ))q̄S

L = (Cl(β) +Clp(α, β)pb̄/(2V ) +Clr (α, β)rb̄/(2V ) +Clδa (α)δa +Clδr (α)δr)q̄Sb̄

N = (Cn(β)+Cnp(α, β)pb̄/(2V )+Cnr (α, β)rb̄/(2V )+Cnδa (α)δa+Cnδr (α)δr)q̄Sb̄

By replacing Fy, moments L, N and α = α0, θ = θ0 in (1), the lateral nonlinear
dynamic model used for the control design procedure is consequently reduced as:

β̇= 1
mV

(− cos(α0) sin(β)(T + Cx(α0)q̄S) + cos(β)Cy(β)q̄S − sin(α0) sin(β)Cz(α0, β)q̄S)

+ sin(α0)p− cos(α0)r + ρS
4m

(cos(β)Cyp(α0)b̄p+ cos(β)Cyr (α0)b̄r)
+ g
V

(cos(α0) sin(β) sin(θ0) + cos(β) cos(θ0) sin(φ)− sin(α0) sin(β) cos(φ))

φ̇=p+ cos(φ) tan(θ0)r

ṗ=I3Cl(α0, β)q̄Sb̄+ I4Cn(α0, β)q̄Sb̄+ ρV Sb̄
4

[(I3Clp(α0)
+I4Cnp(α0))p+ (I3Clr (α0) + I4Cnr (α0))r]
+q̄S[(I3Clδa (α0) + I4Cnδa (α0))δa + (I3Clδr (α0) + I4Cnδr (α0))δr]

ṙ=I4Cl(α0, β)q̄Sb̄+ I9Cn(α0, β)q̄Sb̄+ ρV Sb̄
4

[(I4Clp(α0)
+I9Cnp(α0))p+ (I4Clr (α0) + I9Cnr (α0))r]
+q̄S[(I4Clδa (α0) + I9Cnδa (α0))δa + (I4Clδr (α0) + I9Cnδr (α0))δr]

(12)

in which S is the wing area, q̄ dynamic pressure, b̄ is reference wing span, I3 =
Izz

(IxxIzz−I2xz) , I4 = Ixz
(IxxIzz−I2xz) , I9 = Ixx

(IxxIzz−I2xz) . Cy(α, δe), Cyp(α0), Cyr (α0),

Cl(α0, β), Cn(α0, β), Clp(α0), Cnp(α0), Clr (α0), Cnr (α0), Clδa (α0), Cnδa (α0),
Clδr (α0), Cnδr (α0) are lateral aerodynamic coefficients taken from [8].

The previous equation can be rearranged as:
[
β̇

φ̇

]
=fβ11(β, φ) + fβ12(β, φ)

[
p
r

]
[
ṗ
ṙ

]
=fβ21(β, φ) + fβ22(β, φ)

[
p
r

]
+ gβ2 (β, φ)

[
δa
δr

] (13)

10



where fβ11(·), fβ12(·), fβ13(·), fβ21(·), fβ22(·), and gβ2 (·) represent the terms of (12)
respectively (see Appendix A).

Let us define xβ1 = [β, φ]T , xβ2 = ẋβ1 = [β̇, φ̇]T and uβ = (δa, δr)
T , that allow

us to rewrite equation (13) to:{
ẋβ1 = xβ2
ẋβ2 = F β

′

(xβ1 , x
β
2 ) +Gβ

′

(xβ1 , x
β
2 )uβ

(14)

where 
F β

′

(·) = (
∂fβ11(·)
∂xβ1

+ (fβ(·) + fβ12(·)fβ22(·))(fβ12(·))−1)xβ2

−(fβ(·) + fβ12(·)fβ22(·))(fβ12(·))−1fβ11(·) + fβ12(·)fβ21(·)
Gβ

′

(·) = fβ12(·)gβ2 (·)
fβ(·) [p, r]

T
=

∂(fβ12(·)[p,r]T )

∂xβ1

(15)

We define an output error vector eβ1 = xβ1 −x
β
1ref and eβ2 = ėβ1 where xβ1ref =

(βref , φref )T is the output reference considered as constant. Equation (15) can

be transformed into (16) with two new state variables eβ1 and eβ2 .{
ėβ1 = eβ2

ėβ2 = F β(eβ1 , e
β
2 ) +Gβ(eβ1 , e

β
2 )uβ

(16a)

(16b)

Gβ(xβ1 , x
β
2 ) is invertible in the considered domain of xβ1 = [β, φ]T , ẋβ1 = xβ2

with β ∈ (−30◦, 30◦) and φ ∈ (−180◦, 180◦).
Application of control law (10) for system (16) leads to the controller:{

uβ = −πβ(eβ1 , e
β
2 )sat(sβ/µβ)

πβ(·) = (πβ0 + γβ(·) + kβ0µ
β + ∆β

0 )(Gβ(·))−1
(17)

with {
sβ = kβ0 σ

β +Kβ
1 e

β
1 + eβ2

σ̇β = −kβ0 σβ + µβsat(sβ/µβ)
(18)

where πβ0 is a constant large enough, kβ0 is a positive parameter, µβ is the bound-

ary layer and Kβ
1 is a positive definite matrix chosen such a way that Kβ

1 + sI2
is Hurwitz.

�

Theorem 3.1 System (16) with F β(·) which satisfies assumption 3.1, Gβ(·)
satisfying assumption 3.2, and applying the control law (17- 18), will globally
reach an arbitrary error region in finite time, and there on will be exponentially
stabilized towards its equilibrium point.

�

11



Proof: In order to demonstrate the exponential stability of designed con-
troller (17) and (18) for the lateral mode in (16) which is a nonlinear MIMO
system where the sideslip and roll angle are the outputs and aileron and rud-
der are the inputs, we will consider two regions: outside the boundary layer
(‖sβ‖ ≥ µβ) and inside the boundary layer (‖sβ‖ ≤ µβ).

3.2.1 In the region ‖sβ‖ ≥ µβ, sat(sβ/µβ) = sβ/‖sβ‖

.
The derivative of variable s can be expressed as:

ṡβ = kβ0 σ̇
β +Kβ

1 ė
β
1 + ėβ2

= −kβ0 sβ + kβ0µ
βsat(sβ/µβ) + kβ0 (Kβ

1 e
β
1 + eβ2 ) +Kβ

1 e
β
2 + F β(·) +Gβ(·)uβ

Now by letting

∆β(·) = kβ0 (Kβ
1 e

β
1 + eβ2 ) +Kβ

1 e
β
2 + F β(·) (19)

Its derivative becomes:

ṡβ=−kβ0 sβ + kβ0µ
βsat(sβ/µβ) + ∆β(·) +Gβ(·)uβ (20)

Because of boundedness of F β(xβ1 , x
β
2 , θ), ∆β(·) is bounded by a function of

γβ(‖eβ1‖+ ‖eβ2‖) (where γβ(·) is a class K function) and a positive constant ∆β
0

(assumption 3.1):

‖∆β(eβ1 , e
β
2 )‖ ≤ γβ(‖eβ1‖+ ‖eβ2‖) + ∆β

0 (21)

and as a consequence,

‖∆β(eβ1 = 0, eβ2 = 0)‖ = ‖F β(0, 0)‖ ≤ ∆β
0 (22)

for (eβ1 , e
β
2 ) ∈ Rn ×Rn

.
Let’s consider the product (sβ)T ṡβ

(sβ)T ṡβ = −(sβ)T kβ0 s
β + kβ0µ

β(sβ)T sat(sβ/µβ) + (sβ)T∆β(eβ1 , e
β
2 ) + (sβ)TGβ(eβ1 , e

β
2 )uβ

(23)
This product (sβ)T ṡβ can be developed with the definition of saturation func-

tion (5):

(sβ)T ṡβ=−(sβ)T kβ0 s
β + µβ(sβ)T kβ0 s

β/‖sβ‖+ (sβ)T∆β(·)− (sβ)TGβ(·)πβ(·)sβ/‖sβ‖
≤−(sβ)T kβ0 s

β + µβ(sβ)T kβ0 s
β/‖sβ‖+ ‖∆β(·)‖‖sβ‖ − (sβ)TGβ(·)πβ(·)sβ/‖sβ‖

≤−(sβ)T kβ0 s
β + µβ(sβ)T kβ0 s

β/‖sβ‖+ (γβ(·) + ∆β
0 )‖sβ‖ − (sβ)TGβ(·)πβ(·)sβ/‖sβ‖

≤−(sβ)T kβ0 s
β − (sβ)T (Gβ(·)πβ(·)− (µβkβ0 + γβ(·) + ∆β

0 )In)sβ/‖sβ‖
(24)

Replacing the control law in (17) and (18), the term (sβ)T ṡβ can be expressed
as:

(sβ)T ṡβ≤−(sβ)T kβ0 s
β − (sβ)T (Gβ(·)πβ(·)− (µβkβ0 + γβ(·) + ∆β

0 )In)sβ/‖sβ‖
≤−(sβ)T kβ0 s

β − (sβ)Tπβ0 s
β/‖sβ‖

≤−kβ0 ‖sβ‖2 − π
β
0 ‖sβ‖

(25)
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The product (sβ)T ṡβ is then not positive and we have also

d(‖sβ‖2)
dt =2‖sβ‖d(‖sβ‖)

dt = 2 (sβ)T ṡβ

dt ≤ 2(−πβ0 ‖sβ‖ − k
β
0 ‖sβ‖2)

∴ d(‖sβ‖)
dt ≤−πβ0 − k

β
0 ‖sβ‖

∴ ‖sβ(t)‖≤‖sβ(0)‖ − πβ0 t− ‖sβ(0)‖(eβ)−k
β
0 t − 1)

(26)

Then sβ(t) reaches the boundary layer µβ in finite time.

�

3.2.2 In the region ‖s‖ ≤ µβ, sat(s/µβ) = s/µβ

.
Consider again (18) and (20), which inside the boundary layer may be rewrit-

ten as: 
σ̇β = −kβ0 σβ + sβ

ėβ1 = −Kβ
1 e

β
1 + sβ − kβ0 σβ

ṡβ = ∆β(·)−Gβ(·)πβ(·)sβ/µβ

(27a)

(27b)

(27c)

It can be shown that this system has an equilibrium point: ēβ1 = ēβ2 = 0,

sβ = s̄β, σβ = σ̄β with s̄β = kβ0 σ̄
β = µβ(πβ(0, 0))−1(Gβ(0, 0))−1F β(0, 0) =

µβF β(0, 0)/(πβ0 + kβ0µ
β + ∆β

0 ).
System (27) may be rewritten with respect to s̄β and σ̄β:

˙̃σβ = −kβ0 σ̃β + s̃β

ėβ1 = −Kβ
1 e

β
1 + s̃β − kβ0 σ̃β

˙̃sβ = ∆β(·)−Gβ(·)πβ(·)s̃β/µβ −Gβ(·)πβ(·)s̄β/µβ

(28a)

(28b)

(28c)

where σ̃β = σβ − σ̄β, s̃β = sβ − s̄β.
F β(xβ1 , x

β
2 ) is a Lipschitz function inside the boundary region e.g. ‖sβ‖ ≤ µβ,

such that:
‖F β(eβ1 , e

β
2 )− F β(0, 0)‖ ≤ lβ1 ‖e

β
1‖+ lβ2 ‖e

β
2‖ (29)

where lβ1 and lβ2 ∈ R
+

.
Following assumption 3.1, γ(·) is also a Lipschitz function:, such that:

γβ(·)‖F β(0, 0)‖ ≤ (πβ0 + kβ0µ
β + ∆β

0 )(γβ1 ‖e
β
1‖+ γβ2 ‖e

β
2‖) (30)

where γβ1 and γβ2 ∈ R
+

.
We would like to demonstrate that every trajectory of system (28) starting

inside the boundary layer, will approach the equilibrium point as time tends to
infinity when the control law (10) is applied. Toward that end, we take:

W β =
λβ1
2

(σ̃β)T σ̃β +
λβ2
2

(eβ1 )T eβ1 +
(s̃β)T s̃β

2
(31)
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as a Lyapunov candidate, where λβ1 and λβ2 are positive constants.
Its derivative can be easily developed as:

Ẇ=λ1k
β
0 (σ̃β)T ˙̃σβ + λ2(eβ1 )TKβ

1 ė
β
1 + (s̃β)T ˙̃sβ

=λ1k
β
0 (σ̃β)T (−kβ0 σ̃β + s̃β) + λ2(eβ1 )TKβ

1 (−Kβ
1 e

β
1 + s̃β − kβ0 σ̃β)

+(s̃β)T (∆β(·)−Gβ(·)πβ(·)s̃β/µβ −Gβ(·)πβ(·)s̄/µβ)

(32)

Since ‖sβ‖ ≤ µβ, ∆β(·) can be expressed as:

∆β(·)=kβ0 s̃β − (kβ0 )2σ̃β − (Kβ
1 )2eβ1 +Kβ

1 s̃
β − kβ0K

β
1 σ̃

β + F β(·) (33)

Replacing system (28) and ∆β(·) into the derivative of the Lyapunov func-
tion, we have then (reminding that s̄β = µβ(πβ(0, 0))−1(Gβ(0, 0))−1F β(0, 0)

and πβ(0, 0) = (πβ0 + kβ0µ
β + ∆β

0 )(Gβ(0, 0))−1):

Ẇ=λ1k
β
0 (σ̃β)T (−kβ0 σ̃β + s̃β) + λ2(eβ1 )TKβ

1 (−Kβ
1 e

β
1 + s̃β − kβ0 σ̃β)

+(s̃β)T (kβ0 s̃
β − (kβ0 )2σ̃β − (Kβ

1 )2eβ1 +Kβ
1 s̃

β − kβ0K
β
1 σ̃

β −Gβ(·)πβ(·)s̃β/µβ)
+(s̃β)T (F β(·)−Gβ(·)πβ(·)s̄β/µβ)

=−λ1(kβ0 )2(σ̃β)T σ̃β + λ1k
β
0 (σ̃β)T s̃β − λ2(eβ1 )T (Kβ

1 )2eβ1 + λ2(eβ1 )TKβ
1 (s̃β − kβ0 σ̃β)

+((s̃β)T (kβ0 In +Kβ
1 )s̃β + (s̃β)T (kβ0 +Kβ

1 )kβ0 σ̃
β − (s̃β)T (Kβ

1 )2eβ1 − (s̃β)TGβ(·)πβ(·)s̃β/µβ)

+(s̃β)T (F β(·)− F β(0, 0)− γβ(·)
πβ0 +kβ0 µ

β+∆β
0

F β(0, 0))

Using equations (16a), (28b) and Assumption 29, we can have:

(s̃β)T (F β(·)− F β(0, 0)− γβ(·)
πβ0 +kβ0 µ

β+∆β
0

F β(0, 0))

≤ ‖s̃‖(lβ1 ‖K
β
1 e

β
1‖+ lβ2 ‖e2‖) + γβ(·)

πβ0 +kβ0 µ
β+∆β

0

‖s̃‖‖F β(0, 0)‖

≤ ‖s̃‖(lβ1 ‖K
β
1 e

β
1‖+ lβ2 ‖e2‖) +

∆β
0

πβ0 +kβ0 µ
β+∆β

0

‖s̃‖(γβ1 ‖K
β
1 e

β
1‖+ γβ2 ‖e2‖)

≤ ‖s̃‖(lβ1 ‖K
β
1 e

β
1‖+ lβ2 ‖e2‖) + ‖s̃‖(γβ1 ‖K

β
1 e

β
1‖+ γβ2 ‖e2‖)

≤ (lβ1 + γβ1 )‖s̃‖‖Kβ
1 e

β
1‖+ (lβ2 + γβ2 )‖s̃‖‖e2‖

≤ (lβ1 +γβ1 )
2 ((s̃β)T s̃+ (eβ1 )T (Kβ

1 )2eβ1 ) +
(lβ2 +γβ2 )

2 ((s̃β)T s̃+ eT2 e2)

≤ (lβ1 +γβ1 )
2 ((s̃β)T s̃+ (eβ1 )T (Kβ

1 )2eβ1 ) +
(lβ2 +γβ2 )

2 ((s̃β)T s̃

+(s̃− kβ0 σ̃β −K
β
1 e

β
1 )T (s̃− kβ0 σ̃β −K

β
1 e

β
1 ))

≤ (lβ1 +γβ1 )
2 ((s̃β)T s̃+ (eβ1 )T (Kβ

1 )2eβ1 ) +
(lβ2 +γβ2 )

2 ((s̃β)T s̃

+3((s̃β)T s̃+ (kβ0 )2(σ̃β)T σ̃β + eβ1 (Kβ
1 )2eβ1 ))

≤ 3(lβ2 +γβ2 )
2 (kβ0 )2(σ̃β)T σ̃β +

(lβ1 +γβ1 )+3(lβ2 +γβ2 )
2 ((eβ1 )T (Kβ

1 )2eβ1 )

+
(lβ1 +γβ1 )+4(lβ2 +γβ2 )

2 ((s̃β)T s̃)

≤ c1(kβ0 )2(σ̃β)T σ̃β + c2(s̃β)T s̃+ c3(eβ1 )T (Kβ
1 )2eβ1

(34)

where c1 =
3(lβ2 +γβ2 )

2 and c2 =
(lβ1 +γβ1 )+3(lβ2 +γβ2 )

2 and c3 =
(lβ1 +γβ1 )+4(lβ2 +γβ2 )

2 .
Using (28) and (34), the derivative of the Lyapunov function is developed:
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Ẇ=−λ1(kβ0 )2(σ̃β)T σ̃β + λ1(σ̃β)T kβ0 s̃− λ2(eβ1 )T (Kβ
1 )2eβ1 + λ2(eβ1 )TKβ

1 (s̃− kβ0 σ̃β)

+((s̃β)T (kβ0 In +Kβ
1 )s̃− (s̃β)T (kβ0 +Kβ

1 )kβ0 σ̃
β − (s̃β)T (Kβ

1 )2eβ1 − (s̃β)TGβ(·)πβ(·)s̃β/µβ
+(s̃β)T (F β(·)−Gβ(·)πβ(·)s̄/µβ))

≤−λ1(kβ0 )2(σ̃β)T σ̃β + λ1/2((s̃β)T s̃β + (kβ0 )2(σ̃β)T σ̃β)− λ2(eβ1 )T (Kβ
1 )2eβ1

+λ2/2((eβ1 )T (Kβ
1 )2eβ1 + (s̃β − kβ0 σ̃β)T (s̃β − kβ0 σ̃β)) + ((s̃β)T (kβ0 In +Kβ

1 )s̃β

+1/2((s̃β)T (kβ0 In +Kβ
1 )2s̃β + λ1(kβ0 )2(σ̃β)T σ̃β) + 1/2((s̃β)T (Kβ

1 )2s̃β + (eβ1 )T (Kβ
1 )2eβ1 )

−(s̃β)TGβ(·)πβ(·)s̃β/µβ + c1(kβ0 )2(σ̃β)T σ̃β + c2(eβ1 )T (Kβ
1 )2eβ1 + c3(s̃β)T s̃β)

≤−λ1(kβ0 )2(σ̃β)T σ̃β + λ1/2((s̃β)T s̃β + (kβ0 )2(σ̃β)T σ̃β)− λ2(eβ1 )T (Kβ
1 )2eβ1

+λ2/2((eβ1 )T (Kβ
1 )2eβ1 + 2((s̃β)T s̃β + (kβ0 )2(σ̃β)T σ̃β)) + ((s̃β)T (kβ0 In +Kβ

1 )s̃β

+1/2((s̃β)T (kβ0 In +Kβ
1 )2s̃β + (kβ0 )2(σ̃β)T σ̃β) + 1/2((s̃β)T (Kβ

1 )2s̃β + (eβ1 )T (Kβ
1 )2eβ1 )

−(s̃β)TGβ(·)πβ(·)s̃β/µβ + c1(kβ0 )2(σ̃β)T σ̃β + c2(eβ1 )T (Kβ
1 )2eβ1 + c3(s̃β)T s̃β)

≤−(λ1(kβ0 )2 − λ1/2(kβ0 )2 − λ2(kβ0 )2 − 1/2(kβ0 )2 − c1(kβ0 )2)(σ̃β)T σ̃β

−(eβ1 )T (λ2(Kβ
1 )2 − λ2/2(Kβ

1 )2 − 1/2(Kβ
1 )2 − c2(Kβ

1 )2)eβ1
−(s̃β)T ((Gβ(·)πβ(·)/µβ − (kβ0 In +Kβ

1 )− λ1/2In − λ2In
−1/2(kβ0 In +Kβ

1 )2 − 1/2(Kβ
1 )2 − c3In))s̃β

≤−(λ1/2− λ2 − 1/2− c1)(kβ0 )2(σ̃β)T σ̃β − (λ2/2− 1/2− c2)(eβ1 )T (Kβ
1 )2eβ1

−(s̃β)T ((πβ0 + kβ0µ
β + γβ(·) + ∆β

0 )/µβ − (kβ0 In +Kβ
1 )− 1/2(kβ0 In +Kβ

1 )2

−1/2(Kβ
1 )2 − (λ1/2 + λ2 + c3)In)s̃β

(35)

It can be verified that by taking λβ1 , λ
β
2 and πβ(·) large enough and µβ small

enough, the derivative of Lyapunov function is negative. We establish the addi-
tional design parameter’s condition:

λ1/2− λ2 − 1/2 >c1
λ2/2− 1/2 >c2

(
(π
β
0 +k

β
0 µ

β+γβ(·)+∆
β
0 )

µβ
)In>((kβ0 In +Kβ

1 )− 1/2(kβ0 In +Kβ
1 )2 − 1/2(Kβ

1 )2)

+(λ1/2 + λ2 + c3)In

(36)

Inequality (36) implies that the design condition of parameter kβ0 and matrix

Kβ
1 must satisfy:


λ1 − 2λ2 >1 + 2c1
λ2 >1 + 2c2
(πβ0 +∆β

0 )

µβ
In −Kβ

1 − 1/2(kβ0 In +Kβ
1 )2 − 1/2(Kβ

1 )2>(λ1

2 + λ2 + c3)In

(37)

In this way, W β(t) satisfies W β(t) > 0 and Ẇ β < −w0W
β (where w0 is a

positive constant) for all σβ 6= σ̄β, eβ1 6= 0 and sβ 6= s̄β. Then W β(t) reaches
exponentially zero when time tends to infinite. As consequence, the output error
eβ1 (t) tends to zero, σβ and sβ tend to their equilibrium values as time tends to
infinite. We may assure the exponential stability of the system in the region of
‖sβ‖ ≤ µβ.

�
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3.3 Longitudinal control design

As in the case of lateral control design, in the longitudinal case it is considered
that only longitudinal state variables are time varying. It is a single input single
output system where angle of attack is the output and elevator is the input.
Aerodynamic forces Fx, Fz and moment M can be calculated by its aerodynamic
coefficients (see more in [6]).

Fx = (Cx(α) + c̄Cxq (α)q/(2V ))q̄S

Fz = (Cz(α, β) + c̄Czq (α)q/(2V ))q̄S

M = (Cm(α) + Cmq (α)qc̄/(2V ) + Cmδe (α)δe)q̄Sc̄

By replacing Fx, Fz, moment M and β = 0, φ = 0, p = 0, r = 0 in (1), the
model for longitudinal dynamic can be written as:

α̇= 1
mV [− sinα(T + Cx(α)q̄S) + cosαCz(α)q̄S] + q + ρS

4m (− sinαCxq (α)c̄
+ cosαCzq (α)c̄)q + g

V cos (θ − α)
q̇=I7q̄S(Cm(α)c̄+ Cmq (α)c̄q + Cmδe (α)c̄δe)

θ̇=q
(38)

in which c̄ mean aerodynamic chord, I7 = 1/Iyy, Cx(α), Cxq (α), Cz(α), Czq (α),
Cm(α), Cmq (α) Cmδe (α) are aerodynamic coefficients taken from [8].

Equation (38) can be rearranged as: θ̇ = q
α̇ = fα11(α) + (1 + fα12(α))q + fα13(α, θ)
q̇ = fα21(α) + fα22(α)q + gα2 (α)δe

(39)

where fα11(α), fα12(α), fα13(α, θ), fα21(α), fα22(α) and gα2 (α) represent the terms of
(38) respectively (see Appendix B).

Let us define xα1 = α, xα2 = ẋα1 = α̇ and uα = δe, which allow us to rewrite
(39) into:

θ̇ = ηα(xα1 , x
α
2 , θ) (40a)

ẋα1 = xα2

ẋα2 = Fα′ (xα1 , x
α
2 ) + h

′
(xα1 , x

α
2 , θ) +Gα′ (xα1 , x

α
2 )uα (40b)

where 

ηα(·) =(xα2 − fα11(xα1 )− fα13(xα1 , θ))/(1 + fα12(xα1 ))

Fα
′
(·)= ∂fα11(xα1 )

∂xα1
xα2 + (1 + fα12(xα1 ))fα21(xα1 ) + (

∂(1+fα12(xα1 ))

∂xα1
xα2

+(1 + fα12(xα1 ))fα22(xα1 ))
(xα2 −fα11(xα1 ))

(1+fα12(xα1 ))

h
′
(·) =

∂fα12(xα1 )

∂xα1
xα2

(−fα13(xα1 ,θ))

(1+fα12(xα1 ))
− fα13(xα1 , θ)f

α
22(xα1 ) +

∂fα13(xα1 ,θ)

∂xα1
xα2

+
∂fα13(xα1 ,θ)

∂θ

(xα2 −fα11(xα1 )−fα13(xα1 ,θ))

(1+fα12(xα1 ))

Gα
′
(·)=(1 + fα12(xα1 ))gα2 (xα1 )

(41)
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In (40b), Fα
′

(·) is function of xα1 and xα2 . Function h
′
(·) is function of xα1 ,

xα2 and θ, it can be expressed as:

h
′
(·) = − g

V
cos (θ−α)

(1+fα12(xα1 ))
∂fα12(xα1 )
∂xα1

xα2 −
g
V cos (θ − α)fα22(xα1 ) + g

V sin (θ − α)xα2
fα12(xα1 )

(1+fα12(xα1 ))

+( gV )2 sin (θ−α) cos (θ−α)
(1+fα12(xα1 )) + g

V
sin (θ−α)fα11(xα1 )

(1+fα12(xα1 ))

(42)

Remark 2 We have some remarks:

� fα11, fα12, fα13, fα21, fα22 and gα2 are function of aerodynamic coefficients

under analytical forms by interpolation from wind tunnel test data. Fα
′

and h
′
, formed from these functions, can be then bounded by a class K

function and be a Lipschitz function in a flighting envelop.

� Gα
′

is invertible in the flight domain, that means α ∈ (−10◦, 45◦) and
θ ∈ (−90◦, 90◦).

As a consequence, they fulfill Assumptions 3.1 and 3.2.

We define now the reference for the angle of attack αref considered as con-
stant in this study, and the error vector of angle of attack eα1 = xα1 − xα1ref =
α− αref and the variable eα2 = ėα1 . Equation (40b) can be transformed into:{

ėα1 = eα2

ėα2 = Fα(eα1 , e
α
2 ) + h(eα1 , e

α
2 , θ) +Gα(eα1 , e

α
2 )uα

(43a)

(43b)

Since function h(·) depends on θ under cosines and sinus functions, it is
easy to show that h(·) is bounded by a function of class K γα1 (·) and a constant
H0.

|h(eα1 , e
α
2 , θ)| ≤ γα1 (|eα1 |+ |eα2 |) +H0 (44)

Here we remark that Gα(xα1 , x
α
2 ) is invertible for the entire domain of attrac-

tion of the system. It is important to remark that pitch angle θ is not included
in the considered system, and is left free in the analysis that follows. The reason
for this is to acknowledge the possibility of airlaunching under different possi-
ble angles θ, and even under a looping like trajectory that naturally brings the
aircraft away of the rocket.

Applying the control algorithm presented in (10) for system (43) which in
this case is a nonlinear single input single output system, gives the controller:{

uα = −πα(eα1 , e
α
2 )sat(sα/µα)

πα(·) = (πα0 + γα(·) + kα0 µ
α + ∆α

0 )(Gα(·))−1 (45)

with {
sα = kα0 σ

α +Kα
1 e

α
1 + eα2

σ̇α = −kα0 σα + µαsat(sα/µα)
(46)

where πα0 , µα, Kα
1 and kα0 are positive constants.
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Theorem 3.2 System (43) with Fα(·) satisfying assumption 3.1, Gα(·) which
satisfies assumption 3.2, and the control law (45-46), will globally reach an
arbitrary error region in finite time, and there on will be exponentially stabilized
towards its equilibrium point.

�

Proof: In order to demonstrate the exponential stability of designed con-
troller (45) and (46) for the longitudinal mode in (43), we will consider in two
regions outside the boundary layer (|sα| ≥ µα) and inside the boundary layer
(|sα| ≤ µα). The longitudinal mode in this study is a single input single output
system.

3.3.1 In the region |sα| ≥ µα, sat(sα/µα) = sα/|sα|

.
The derivative of the integral error measurement surface can be then ex-

pressed as:
ṡα = kα0 σ̇

α + kα1 ė
α
1 + ėα2 (47)

From (43) and (46), the previous equation may be written again :

ṡα=kα0 (−kα0 σα + µαsat(sα/µα)) + kα1 e
α
2 + ėα2

=kα0 (−(sα − (kα1 e
α
1 + eα2 )) + µαsat(sα/µα)) + kα1 e

α
2 + ėα2

=−kα0 sα + kα0 µ
αsat(sα/µα) + kα0 (kα1 e

α
1 + eα2 ) + kα1 e

α
2 + fα(·) + gα(·)uα

Now by letting

δα(·) = kα0 (kα1 e
α
1 + eα2 ) + kα1 e

α
2 + fα(·) + h(·) (48)

The derivative of the integral error measurement surface becomes:

ṡα=−kα0 sα + kα0 µ
αsat(sα/µα) + δα(·) + gα(·)uα (49)

The term fα(xα1 , x
α
2 ) is bounded by a function γα2 (|eα1 | + |eα2 |) outside the

boundary region e.g. |sα| ≥ µα and a positive constant fα0 , where γα2 (·) is a
class K function.

|fα(eα1 , e
α
2 )| ≤ γα2 (|eα1 |+ |eα2 |) + fα0 (50)

Function h(·) is also bounded in the same way (see (44)). Then δα(·) is
bounded by a γα(·) class K function and a positive constant δα0 :

|δα(eα1 , e
α
2 )| ≤ γα1 (|eα1 |+ |eα2 |) + h0 + γα2 (|eα1 |+ |eα2 |) + fα0

|δα(eα1 , e
α
2 )| ≤ γα(|eα1 |+ |eα2 |) + δα0

(51)
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where γα(·) = γα1 (·) + γα2 (·) and δα0 = h0 + fα0
and as a consequence,

|δα(eα1 = 0, eα2 = 0)| = |fα(0, 0)| ≤ δα0 (52)

for (eα1 , e
α
2 ) ∈ Rn ×Rn

.
Let’s consider the product sαṡα (since s is a scalar)

sαṡα = −kα0 (sα)2 + kα0 µ
αsαsat(sα/µα) + sαδα(eα1 , e

α
2 ) + sαgα(eα1 , e

α
2 )uα

(53)
This product (sα)T ṡα can be developed with the definition of saturation func-

tion (5):

sαṡα=−kα0 (sα)2 + µαkα0 (sα)2/|sα|+ sαδα(·)− sαgα(·)πα(·)sα/|sα|
≤−kα0 (sα)2 + µαkα0 (sα)2/|sα|+ |δα(·)||sα| − sαgα(·)πα(·)sα/|sα|
≤−kα0 (sα)2 + µαkα0 (sα)2/|sα|+ (γα(·) + δα0 )|sα| − sαgα(·)πα(·)sα/|sα|
≤−kα0 (sα)2 − sα(gα(·)πα(·)− (µαkα0 + γα(·) + δα0 ))sα/|sα|

(54)
Replacing the control law in (45) and (46), the term sαṡα can be expressed

as:

sαṡα≤−kα0 (sα)2 − sα(gα(·)πα(·)− (µαkα0 + γα(·) + δα0 ))sα/|sα|
≤−kα0 (sα)2 − πα0 (sα)2/|sα|
≤−kα0 (sα)2 − πα0 |sα|

(55)

The product sαṡα is then not positive and we have also

d((sα)2)
dt =2|sα|d(|sα|)

dt = 2 s
αṡα

dt ≤ 2(−πα0 |sα| − kα0 (sα)2)

∴ d(|sα|)
dt ≤−π

α
0 − kα0 |sα|

∴ |sα(t)|≤|sα(0)| − πα0 t− |sα(0)|(eα)−k
α
0 t − 1)

(56)

Then the integral error measurement surface sα(t) reaches the boundary layer
µα in finite time.

�

3.3.2 In the region |s| ≤ µα, sat(s/µα) = s/µα.

Consider again (46) and (49), which inside the boundary layer may be rewritten
as: 

σ̇α = −kα0 σα + sα

ėα1 = −kα1 eα1 + sα − kα0 σα

ṡα = δα(·)− gα(·)πα(·)sα/µα

(57a)

(57b)

(57c)
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It can be shown that this system has an equilibrium point: ēα1 = ēα2 = 0,
sα = s̄α, σα = σ̄α with s̄ = kα0 σ̄

α = µα(πα(0, 0))−1(gα(0, 0))−1(fα(0, 0) +
h(0, 0, θ)) = (fα(0, 0) + h(0, 0, θ))/(πα0 + kα0 µ

α + δα0 ).
System (57) may be rewritten with respect to s̄α and σ̄α:

˙̃σα = −kα0 σ̃α + s̃α

ėα1 = −kα1 eα1 + s̃α − kα0 σ̃α

˙̃sα = δα(·)− gα(·)πα(·)s̃α/µα − gα(·)πα(·)s̄α/µα

(58a)

(58b)

(58c)

where σ̃α = σα − σ̄α, s̃α = sα − s̄α.
Function fα(xα1 , x

α
2 ) is Lipschitz inside the boundary region e.g. |sα| ≤ µα

(see remark 2), such that:

|fα(eα1 , e
α
2 )− fα(0, 0)| ≤ lα1 |kα1 eα1 |+ lα2 |eα2 | (59)

where lα1 and lα2 ∈ R
+

.
γα2 (·) and γα1 (·) is are chosen so that are differentiable, then Lipschitz. As a

consequence, function γα(·) is then Lipschitz.

γα(·) ≤ dα1 |kα1 eα1 |+ dα2 |eα2 | (60)

where dα1 and dα2 ∈ R
+

.
We would like to demonstrate that every trajectory of system (58) starting

inside the boundary layer, will approach the equilibrium point as time tends to
infinity when the control law (45) is applied. Toward that end, we take:

Wα =
λα1
2
kα0 (σ̃α)2 +

λα2
2
kα1 (eα1 )2 +

(s̃α)2

2
(61)

as a Lyapunov candidate, where λα1 and λα2 are positive constants.
Since |sα| ≤ µα, δα(·) can be expressed as:

δα(·)=(kα0 + kα1 )s̃α − (kα0 + kα1 )kα0 σ̃
α − (kα1 )2eα1 + fα(·) + h(·) (62)

From (58) and reminding that s̄ = (fα(0, 0) + h(0, 0, θ))/(πα0 + kα0 µ
α + δα0 )

and gα(·)πα(·) = (πα0 + kα0 µ
α + γα(·) + δα0 ), the derivative of the Lyapunov
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function is developed:

Ẇα=λα1 k
α
0 σ̃

α ˙̃σα + λα2 k
α
1 e

α
1 ė
α
1 + s̃α ˙̃sα

=λα1 σ̃
αkα0 (−kα0 σ̃α + s̃α) + λα2 k

α
1 e

α
1 (−kα1 eα1 + s̃α − kα0 σ̃α)

+s̃α(δα(·)− gα(·)πα(·)s̃α/µα − gα(·)πα(·)s̄α/µα)
=−λα1 (kα0 σ̃

α)2 + λα1 k
α
0 σ̃

αs̃α − λα2 (kα1 e
α
1 )2 + λα2 k

α
1 e

α
1 (s̃α − kα0 σ̃α)

+(kα0 + kα1 )(s̃α)2 − (kα0 + kα1 )kα0 s̃
ασ̃α − (kα1 )2eα1 s̃

α − gα(·)πα(·)/µα(s̃α)2

+s̃α(fα(·) + h(·)− gα(·)πα(·)s̄α/µα)
=−λα1 (kα0 σ̃

α)2 + λα1 k
α
0 σ̃

αs̃α − λα2 (kα1 e
α
1 )2 + λα2 k

α
1 e

α
1 (s̃α − kα0 σ̃α)

+(kα0 + kα1 )(s̃α)2 − (kα0 + kα1 )kα0 s̃
ασ̃α − (kα1 )2eα1 s̃

α − gα(·)πα(·)/µα(s̃α)2

+s̃α(fα(·) + h(·)− πα0 +kα0 µ
α+γ(·)+δα0

(πα0 +kα0 µ
α+δα0 ) (fα(0, 0) + h(0, 0, θ)))

=−λα1 (kα0 σ̃
α)2 + λα1 k

α
0 σ̃

αs̃α − λα2 (kα1 e
α
1 )2 + λα2 k

α
1 e

α
1 (s̃α − kα0 σ̃α)

+(kα0 + kα1 )(s̃α)2 − (kα0 + kα1 )kα0 s̃
ασ̃α − (kα1 )2eα1 s̃

α − gα(·)πα(·)/µα(s̃α)2

+s̃α(fα(·)− fα(0, 0)− γα(·)
(πα0 +kα0 µ

α+δα0 )f
α(0, 0))

+s̃α(hα(·)− hα(0, 0, θ)− γα(·)
(πα0 +kα0 µ

α+δα0 )h
α(0, 0, θ))

(63)
Using equations (43a) and (58b), the relation in (59) and in (60) can be

expressed as:

s̃α(fα(eα1 , e
α
2 )− fα(0, 0)− γα(·)

(πα0 +kα0 µ
α+δα0 )f

α(0, 0))

≤ |s̃α|(|fα(eα1 , e
α
2 )− fα(0, 0)|+ | γα(·)

(πα0 +kα0 µ
α+δα0 )f

α(0, 0)|)
≤ |s̃α|(lα1 |kα1 eα1 |+ lα2 |eα2 |+ dα1 |kα1 eα1 |+ dα2 |eα2 |)
≤ (dα1 + lα1 )|eα1 ||s̃α|+ (dα2 + lα2 )|eα2 ||s̃α|
≤ 1/2(dα1 + lα1 )((kα1 e

α
1 )2 + (s̃α)2) + 1/2(dα2 + lα2 )((s̃α)2

+3((s̃α)2 + ((kα1 e
α
1 )2 + (kα0 σ̃

α)2))
≤ c1(kα0 σ̃

α)2 + c2(kα1 e
α
1 )2 + c3(s̃α)2

(64)

where c1 = 3/2(dα2 + lα2 ), c2 = 1/2(dα1 + lα1 ) + 3/2(dα2 + lα2 ) and c3 = 1/2(dα1 +
lα1 ) + 2(dα2 + lα2 ). and then,

Ẇα≤−λα1 (kα0 σ̃
α)2 + 1/2λα1 ((kα0 σ̃

α)2 + (s̃α)2)− λα2 (kα1 e
α
1 )2

+1/2λα2 ((kα1 e
α
1 )2 + 2((s̃α)2 + (kα0 σ̃

α)2)) + (kα0 + kα1 )(s̃α)2

+1/2((kα0 σ̃
α)2 + ((kα0 + kα1 )s̃α)2) + 1/2((kα1 e

α
1 )2 + (kα1 s̃

α)2)− gα(·)πα(·)/µα(s̃α)2

+c1(kα0 σ̃
α)2 + c2(kα1 e

α
1 )2 + c3(s̃α)2 + |hα(·)− hα(0, 0, θ)− γα(·)

(πα0 +kα0 µ
α+δα0 )h

α(0, 0, θ)||s̃α|
≤−(1/2λα1 − λα2 − 1/2− c1)(kα0 σ̃

α)2 − (1/2λα2 − 1/2− c2)(kα1 e
α
1 )2

−(gα(·)πα(·)/µα − 1/2λα1 − λα2 − (kα0 + kα1 )− 1/2(kα0 + kα1 )2 − 1/2(kα1 )2 − c3)(s̃α)2

+|hα(·)− hα(0, 0, θ)− γα(·)
(πα0 +kα0 µ

α+δα0 )h
α(0, 0, θ)||s̃α|

(65)
Because inside the boundary region e.g. |sα| ≤ µα, functions h(·) and γα(·)

are bounded, the following term is bounded by a positive constant Cµ:

|hα(·)− hα(0, 0, θ)− γα(·)
(πα0 + kα0 µ

α + δα0 )
hα(0, 0, θ)||s̃α| ≤ Cµ (66)

For any value of θ, it is very important to remark that this variable was not
included in this analysis, even if its derivative is. We will discuss this point
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again later, but the main reason is that the airlaunch may be performed under
any pitch angle θ, and even under a looping-like trajectory. From (65), the
derivative of the Lyapunov function can be further developed:

Ẇα≤−(1/2λα1 − λα2 − 1/2− c1)(kα0 σ̃
α)2 − (1/2λα2 − 1/2− c2)(kα1 e

α
1 )2

−(gα(·)πα(·)/µα − 1/2λα1 − λα2 − (kα0 + kα1 )− 1/2(kα0 + kα1 )2 − 1/2(kα1 )2 − c3)(s̃α)2

+Cµ

≤−λ
α
1w1

2 kα0 (σ̃α)2 − λα2w2

2 kα1 (eα1 )2 − w3

2 (s̃α)2 + Cµ

≤w0(−λ
α
1w1

2w0
(σ̃α)2 − λα2w2

2w0
(eα1 )2 − w3

2w0
(s̃α)2) + Cµ

≤w0(−λ
α
1

2 (σ̃α)2 − λα2
2 (eα1 )2 − 1

2 (s̃α)2) + Cµ
≤−w0W

α + Cµ
(67)

where


w1=(1− 2λα2 +1/2+2c1

λα1
)kα0

w2=(1− 1+2c2
λα2

)kα1
w3=2((πα0 + kα0 µ

α + δα0 )/µα − 1/2λα1 − λα2 − (kα0 + kα1 )− 1/2(kα0 + kα1 )2 − 1/2(kα1 )2 − c3)
w0=min(w1, w2, w3)

(68)
The derivative of Lyapunov function negative implies that λα1 , λ

α
2 and πα0

large enough and µα small enough, to satisfy:


1 >

2λα2 +1/2+2c1
λα1

1 > 1+2c2
λα2

(πα0 + δα0 )/µα − kα1 − 1/2(kα0 + kα1 )2 − 1/2(kα1 )2 > 1/2λα1 + λα2 + c3

(69)

In this way, Wα(t) satisfies Wα(t) > 0 and Ẇα < −w0W
α +Cµ (where w0

is a positive constant) for all σα 6= σ̄α, eα1 6= 0 and sα 6= s̄α. Then Wα(t) is
ultimately bounded towards a neighborhood of zero when time tends to infinite,
independent of the pitch angle θ. As consequence, eα1 (t), σα and sα tend to
a region around their equilibrium point as time tends to infinite and for every
pitch angle θ. The system is then said to be ultimately bounded to a small region
which is function of pitch angle θ. Finally, it is interesting to remark that, as
said before, variable θ is left free in order to allow situations as a looping, where
θ is continuously varying. Its derivative on the other hand is bounded, and
also goes to a residual set. In fact, the best trajectory for airlaunch is still an
open problem. There are proposals of launching in horizontal, constant angle
(climbing), concave or convex (zero gravity instant) trajectories.

�

Since the airspeed control is only a secondary objective, we design a simple
PI controller for the thrust to regulate airspeed. Its form is:
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T = −kP (V − Vref )− kI(V̇ − V̇ref )

where Vref is the airspeed reference, kP = 1242 and kI = 955.

4 Simulation Results

In section 3, the design methodology of the conditional integrator controller to
stabilize the angle of attack, sideslip and roll angle is proposed when full knowl-
edge of the aerodynamic characteristics is available. This section presents nu-
merical simulation results for the controller to demonstrate the performance of
the proposed conditional integrator control laws in the drop phase.

As mentioned in section 2, we have considered the launch phase as impulses
on aerodynamic force and moments during a time interval Tint, and that the
model following the launch phase is that of an F-16. This model is used since
it has already been applied for (manned) airlaunch, and because its nonlinear
model, wind tunnel informations and data are widely known and used for con-
trol design. It is important to remark that the model used in the following
simulations is even more complete than that used in the control design, for ex-
ample it includes actuator dynamics and their limitations. As a consequence,
simulations also illustrate some properties of robustness to unmodeled dynamics.

In the following simulations, we have simultaneously applied the SISO longi-
tudinal controller for angle of attack, and the MIMO lateral one for the sideslip
and roll angles in the full nonlinear F-16 aircraft model. We may note that the
control inputs are limited by their physical bounds introduced in section 2.

The control law in (11) whose π(·) can be written simpler as:

π(·) = (π0 + γ(·))G(·)−1 (70)

in which, γ(·) = γ1‖e1‖2 + γ2‖e2‖2, γ1 and γ2 are positive constant. G(·)−1 is
defined in (43) or in (16) depending on longitudinal mode or lateral mode.

Application of this control law to two motion modes presented in subsections
(3.3) and (3.2) is done by determining the set of parameters πi0, γi1, γi2, µi,
Ki

1 and ki0 with i = α, β corresponding to longitudinal mode and lateral mode
respectively. We use the design parameters in the Table 1 for the longitudinal
controller, and the design parameters in Table 2 for the lateral controller.

πα0 µα γα1 and γα2 kα0 Kα
1

25.0 1.0 0.001 and 0.001 2.0 2.0

Table 1: Parameters for the longitudinal mode

πβ0 µβ γβ1 and γβ2 kβ0 Kβ
1[

10 0.0
0.0 10

]
1.0 0.01 and 0.01

[
0.8 0.0
0.0 0.8

] [
1.2 0.0
0.0 1.2

]
Table 2: Parameters for the lateral mode
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We will stabilize the second model following the launch phase to its equi-
librium point (V, h) = (154m/s, 6500m) corresponding to angle of attack αr to
2.7◦, sideslip βr to 0◦, and roll angle φr to 0◦.

Its initial condition is the final state of the first model (α = 12.5◦, β = 0◦

and φ = 0◦) as in Section 2. Moreover, we add on its initial condition a small
disturbance on system output. That means the initial condition of second model
is (α0 = 17.5◦, β0 = 4◦ and φ0 = 10◦) for all numerical simulations.

The second model is disturbed on its aerodynamic force and moments during
an interval Tint as in Section 2.

Figure 4: System Output: Angle of attack, Sideslip Angle and Roll angle stabi-
lized

Figure 5: Control surface: Aileron, Elevator and Rudder

We simulate three sets of time lengths:
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1. Tint = 0.2s (corresponding to solid lines in Fig. 4 to Fig. 6) produces
damped oscillations.

2. Tint = 0.227s, the Conditional Integrator is able to stabilize the system
as can be seen in the dashed lines in Fig. 4 to Fig. 6, but the bounds on
actuator dynamics are reached.

3. Tint = 0.3s (corresponding to dash dotted lines in Fig. 4 to Fig. 6) one
can see that the controller is still able to stabilize the system.

Fig. 4 illustrates the convergence of the system output to the operating point
of the aircraft at the end of 5s without static steady error for the three cases
of Tint = (0.2s, 0.227s, 0.3s). All system outputs are still under their physical
limitation.

Figure 6: State variables: Angular rates of system

Figs. 6 shows that angular rates converge to zero in all cases. In Fig. 5, it
can be seen that the control variables are saturated by their physical limitations
due to a high perturbation on aerodynamic forces and moments.

Finally we show in Fig. 7 and Fig. 8 that the system will be unstable for an
interval Tint = 0.39s.
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Figure 7: Angle of attack, Sideslip Angle and Roll angle unstable

5 Conclusion

We have developed a MIMO nonlinear Conditional Integrator Controller for
the staging phase of an airlaunch system. Because our airlaunch system has
a down stage mass close to the launch vehicle, the separation phase produces
large changes in aerodynamic force and moment, as shown in section 2, which
may turn the system unstable. These changes may, specially in the case of a non
perfect separation phase, produce large impulses on forces and moments, making
the system unstable. These impulses are considered to last a time interval, that
is then evaluated in simulations.
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Figure 8: Saturation of Aileron, Elevator and Rudder

To stabilize the airlaunch system after this stage separation phase, a condi-
tional integrator control is considered. This controller is designed using an F-16
MIMO nonlinear model representing the aircraft during and after dropping the
second stage, and as a consequence disturbed by large impulses.

For a perturbation on aerodynamic forces and moments during an interval
Tint, the stability of the system after the drop stage may be assured for small
time intervals. When Tint becomes large, the system becomes unstable even with
the proposed controller, that is bounded by actuator’s limitations.
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A Functions in the lateral mode

fβ11(·) =

[
1
mV (− cos(α0) sin(β)(T + Cx(α0)q̄S) + cos(β)Cy(β)q̄S − sin(α0) sin(β)Cz(α0, β)q̄S)
0

+ g
V (cos(α0) sin(β) sin(θ0) + cos(β) cos(θ0) sin(φ)− sin(α0) sin(β) cos(φ))

]

fβ12(·) =

[
sin(α0) + ρS

4m cos(β)Cyp(α0)b̄ − cos(α0) + ρS
4m cos(β)Cyr (α0)b̄

1 cos(φ) tan(θ0)

]

fβ21(·) =

[
I3Cl(α0, β)q̄Sb̄+ I4Cn(α0, β)q̄Sb̄
I4Cl(α0, β)q̄Sb̄+ I9Cn(α0, β)q̄Sb̄

]
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fβ22(·) =
ρV Sb̄

4

[
(I3Clp(α0) + I4Cnp(α0)) (I3Clr (α0) + I4Cnr (α0))
(I4Clp(α0) + I9Cnp(α0)) (I4Clr (α0) + I9Cnr (α0))

]

gβ2 (·) = q̄S

[
(I3Clδa (α0) + I4Cnδa (α0)) (I3Clδr (α0) + I4Cnδr (α0))
(I4Clδa (α0) + I9Cnδa (α0)) (I4Clδr (α0) + I9Cnδr (α0))

]

B Functions in the longitudinal mode

fα11(α) =
1

mV
[− sinα(T + Cx(α)q̄S) + cosαCz(α)q̄S]

fα12(α) =
ρS

4m
(− sinαCxq (α)c̄+ cosαCzq (α)c̄)

fα13(α, θ) =
g

V
cos (θ0 − α)

fα21(α) = I7q̄S(Cm(α)c̄

fα22(α) = Cmq (α)c̄

gα2 (α) = Cmδe (α)c̄
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