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CONVERGENCE AND PERFORMANCE OF THE PEELING
WAVELET DENOISING ALGORITHM

CÉLINE LACAUX, AURÉLIE MULLER-GUEUDIN, RADU RANTA, AND SAMY TINDEL

Abstract. This note is devoted to an analysis of the so-called peeling algorithm in
wavelet denoising. Assuming that the wavelet coefficients of the useful signal are modeled
by generalized Gaussian random variables and its noisy part by independent Gaussian
variables, we compute a critical thresholding constant for the algorithm, which depends
on the shape parameter of the generalized Gaussian distribution. We also quantify the
optimal number of steps which have to be performed, and analyze the convergence of
the algorithm. Several implementations are tested against classical wavelet denoising
procedures on benchmark and simulated biological signals.

1. Introduction

Among the wide range of applications of wavelet theory which have emerged during
the last 20 years, the processing of noisy signals is certainly one of the most important
one. In general, denoising is performed by thresholding and/or shrinkage algorithms, as
discussed and analysed for example in [7], in the application oriented presentation [1] or
by the sharp uniform central limit theorems in [8]. This fundamental algorithm can be
summarized in the following way: recall that the wavelet decomposition of a function
z ∈ L2(R) is usually written as:

z(t) =
2j0−1∑

k=0

αj0kφj0k(t) +
∞∑

j=j0

2j−1∑

k=0

βjkψjk(t), (1)

where the coefficients α, β are obtained by projection in L2(R):

αj0k = 〈φj0k, z〉L2(R) , and βjk = 〈ψjk, z〉L2(R) .

The functions ψ and φ are respectively called mother and father wavelets (or, alternatively,
wavelets and scaling functions respectively), and enjoy some suitable scaling and algebraic
properties (see e.g. [5, 12] for a complete account on wavelet decompositions). In this
context, the thresholding algorithm assumes that, if z can be decomposed into z = x+w,
where x is the useful signal and w its noisy part, then the wavelet coefficients corresponding
to w will typically be very small. A reasonable estimation for the signal x is thus:

x̂(t) =
2j0−1∑

k=0

αj0k 1{|αj0k
|≥τ} φj0k(t) +

J∑

j=j0

2j−1∑

k=0

βjk 1{|βjk|≥τ} ψjk(t), (2)

Date: November 12, 2013.
2000 Mathematics Subject Classification. 62G08,62G20.
Key words and phrases. Wavelets, denoising, peeling algorithm, empirical processes, generalized Gauss-

ian distribution.
C. Lacaux, A. Muller-Gueudin and S. Tindel are members of the BIGS (BIology, Genetics and Statis-

tics) team at INRIA.
1



2 C. LACAUX, A. MULLER-GUEUDIN, R. RANTA, AND S. TINDEL

where τ is a suitable threshold (which may also depend on the resolution j and, in practice,
except for very sparse signals, is often zero for the coefficients αj0 of the scaling function)
and where J corresponds to the maximal resolution one is allowed to consider. It is then
proved in the aforementioned references [1, 7] that this kind of estimator satisfies some
nice properties concerning the asymptotic behavior of the approximation error, in terms
of the total number of wavelet coefficients (which is denoted by N in the sequel).

To properly fix the notations employed in this paper, note that continuous time func-
tions z, x and w can be approximated, after sampling, by vectors containing their discrete
time versions. Moreover, as the wavelet decomposition is linear, the model z = x + w
equally holds for the wavelet coefficients of the aforementioned functions. Therefore, in
the sequel, we will denote by z, x and w respectively the wavelet coefficients of the mea-
sured signal, of the underlying noise-free signal and of the noise.

The literature on wavelet thresholding methods is very rich (see [1] for a review), but
most of the algorithms consist in two steps: (i) compute τ starting from some hypothesis
on the statistical properties of the wavelet coefficients and (ii) reconstruct the denoised
signal according to (2).

The critical issue is thus the value of the threshold(s) τ : too low it is inefficient, too high
it distorts the information from x. In order to improve the performances of wavelet-based
denoising algorithms by adapting them to the processed signals, an iterative method called
peeling algorithm has been introduced and shown to be particularly useful for biomedical
applications in [4, 9].

The main algorithmic difference between peeling algorithms and classical methods con-
sists in the threshold computing method: iterative for the former, one-step for the latter.
Furthermore, peeling algorithms do not assume explicitly an underlying model z = x+w
(signal + noise, each one with its different statistical properties), but it focuses instead
on the method used to estimate the threshold between large and small magnitude coeffi-
cients. Nevertheless, the two approaches are equivalent and the goal is strictly the same:
separating large significant wavelet coefficients from small ones, attributed to noise.
With this equivalence in mind, the algorithm introduced in [4, 9] intends then to sep-

arate x from w iteratively. Indeed, the kth step of the procedure produces an estimated
signal x̂k, as well as an estimated noise ŵk, initialized for k = 0 as ŵ0 = z. Then the
(k + 1)th step is as follows:

(1) Compute σ̂2
k = ‖ŵk‖2

N
, where we recall that N denotes the total number of wavelet

coefficients involved in the analysis.
(2) Set a thresholding level Tk+1 as Tk+1 = h(σ̂k), where h is usually linear, which

means that Tk+1 = F σ̂k for a certain coefficient F .
(3) Compute ∆x̂k+1 as:

∆x̂k+1(q) = ŵk(q)1{|ŵk(q)|≥Tk+1},

for all the coefficients q of the wavelet decomposition. The vectors x̂k+1, ŵk+1 are
then defined as x̂k+1 = x̂k +∆x̂k+1, and ŵk+1 = ŵk −∆x̂k+1.

(4) Loop this procedure until a stop criterion of the form ‖ŵk‖2 − ‖ŵk+1‖2 ≤ ε is
reached, for a certain positive constant ε. Notice that one can choose ε = 0.
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This iterative procedure tends to retrieve a higher quantity of (approximate) signal x from
the noisy input z, correcting some of the failures of the original thresholding algorithm in
some special situations.

On the basis of these promising experimental results, the peeling algorithm has been
further investigated in [14, 15], and it has been first observed in those references that the
peeling problem could be handled through a fixed point algorithm. This possibility stems
basically from the fact that the sequence {Tk; k ≥ 0} is decreasing (as ‖ŵk‖2 ≥ ‖ŵk+1‖2),
which means that the previous algorithm can be reduced to the following:

(1) Set T0 = +∞ and Tk+1 = fN(Tk), where

fN(t) = F

[∑
q≤N z

2(q)1{|z(q)|<t}

N

]1/2
, (3)

with F a user chosen parameter that modifies the decreasing sequence {Tk; k ≥ 0}
and its final value at convergence Tf ∈ [0,+∞).

(2) Stop the loop when Tk+1 = Tf , and then set

x̂(q) = z(q)1{|z(q)|≥Tf}. (4)

The main issue is to ensure that the random threshold Tf is positive almost surely. Under
some hypothesis on the signal z, it is shown in [14] for F large enough. Moreover, a
further analysis on the choice of the coefficient F is performed in [15].

However, in spite of the efforts made in the aforementioned references [14, 15], a prob-
abilistic analysis of the algorithm is still missing. The current article proposes to make a
step in this direction, and we proceed now to describe the results we have obtained.

First of all, our measured signal z is of course characterized by the family of its wavelets
coefficients, which will be denoted from now on by {z(q); q ≤ N}. As said previously,
most of the literature considers z = x + w a sum between an ideal signal and the noise,
generally presumed Gaussian. It is also quite usual to model the distribution of the wavelet
coefficients of “real” signals or images as uncorrelated generalized Gaussian variables
[11, 21, 22, 23, 25]. This hypothesis was empirically verified on several real images in
[24, 23]. In all these references, by “real” signal the authors designate the ideal x, while
the wavelet coefficients of the noisy part are assumed independent Gaussian. In the
current article, we take up this classical model of wavelet decomposition, and assume the
following:

Hypothesis 1.1. Our signal z = x+ w can be decomposed as follows:

(1) The wavelet coefficients {x(q); q ≤ N} of the useful signal x form an i.i.d family
of generalized Gaussian variables, whose marginal density (pσ,u(t))t∈R is given by

pσ,u(t) =
α

σ
e−

|βt|u

σu , with β =

(
Γ(3/u)

Γ(1/u)

)1/2

, α =
βu

2Γ(1/u)
, (5)

where Γ stands for the usual Gamma function Γ(ξ) =
∫∞
0
e−ttξ−1dt. Notice that

the coefficient σ > 0 above is the standard deviation of each random variable x(q),
and that u > 0 represents the shape parameter of the probability law (u = 2 for the
Gaussian, u = 1 for the Laplace pdf).
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(2) The wavelet coefficients {w(q), q ≤ N} of the noisy part of the signal form an i.i.d.
family of centered Gaussian variables, with standard deviation σw. Their common
density is noted pσw .

(3) The coefficients {x(q), q ≤ N} and {w(q), q ≤ N} are independent.

With these preliminary considerations in mind, the two main results which will be
presented in this paper are the following:

(1) As shown in [14], the sequence of thresholds {Tk; k ≥ 0} involved in the peeling
algorithm converges almost surely. However, it is easily checked that it can converge
either to a strictly positive quantity Tf , either to 0. This latter limit is not suitable for
our purposes, since it means that no noise will be extracted from our signal. One of the
main questions raised by the peeling algorithm is thus to find an appropriate constant F
in (3) such that (i) The algorithm yields a convergence to a non trivial threshold Tf > 0.
(ii) F is small enough, so that a sufficient part of the original signal is retrieved.

The previous attempts in this direction were simply (see [9]) to take F = 3σ with
experimental arguments; after the analysis performed in [15], this quantity was reduced
to F = Fm, a quantity which is defined by

Fm =

√
3Γ(1/u)

u
(ue)1/u. (6)

However, the latter bound has been obtained thanks to some rough estimates, and we
have thus decided here to go one step further into this direction. Indeed, our first task will
be to determine precisely, on a mathematical ground, a constant Fc = Fc(u, σ) such that:
if F > Fc, the algorithm yields a convergence, with high probability, to a strictly positive
constant Tf = Tf (ω). In particular, we will see that our constant Fc is always lower than
Fm. Whenever F < Fc, we also show that Tk converges to 0 with high probability (see
Proposition 3.4).

(2) In the regime F > Fc, we determine that the optimal number of steps for the peeling
algorithm is of order log(N), where we recall that N is the total number of wavelet
coefficients involved in the analysis. After this optimal number of steps, Theorem 3.1
quantifies also sharply the oscillations of Tf with respect to a typical non-random value.

It is important to show that our theoretical results can really be applied to real data.
We have thus decided first to compare the performances of our algorithm with other
wavelet denoising procedures, on some classical benchmark signals proposed in [6]. It will
be seen that our algorithm performs well with respect to other methods, independently
of the value of the shape parameter in (5) and of the form of the benchmark signal.

A second step in our practical part of the study is the following: since the peeling
algorithm has been introduced first in a medical context, we give an illustration of its
performances on ECG type signals. More specifically, we shall consider a simulated ECG
signal, and observe the denoising effect of our algorithm on a perturbed version of those
electrocardiograms. As we shall see, the algorithm under analysis is a good compromise
between denoising and preservation of the original signal. We also investigate the behavior
of our method with non Gaussian noises, which is a possibility left open by our theoretical
analysis.

Let us mention some open problems that have been left for a subsequent publication:
first, let us recall that the so-called block thresholding has improved the behavior of
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the original thresholding algorithm in a certain number of situations (see e.g. [2] for a
nice overview). It would be interesting to analyze the effect of this procedure in our
peeling context. In relation to this problem, one should also care about some reasonable
dependence structure among wavelet coefficients, beyond the independent case treated in
this article. Finally, we have assumed in this paper that the parameters of the distributions
pσ,u and pσw were known, which is typically not true in real world applications. One should
thus be able to quantify the effect of parameter estimation on the whole denoising process.

Here is how our article is structured: we show how to compute optimal constants for the
peeling algorithm at Section 2. Then the probabilistic analysis of the algorithm is carried
out at Section 3. Finally, some numerical experiment on simulated and pseudo-real data
are performed at Section 4.

2. Critical constants for the peeling algorithm

This section is devoted to the computation of an optimal constant F in equation (3),
ensuring a convergence of the threshold Tk to a non trivial Tf , and still allowing to retrieve
a maximal amount of approximate signal from our noisy input z.

Let us start this procedure by changing slightly the setting of the peeling algorithm.
Indeed, it will be essential for our convergence theorems at Section 3, to be able to express
the fixed point algorithm in terms of empirical processes. To this purpose, we resort to a
simple change of variables by setting:

Uk = T 2
k , Uf = T 2

f and Y (q) = z(q)2 = (x(q) + w(q))2.

Note that U0 = +∞ and that the decreasing sequence {Uk; k ≥ 0} converges to Uf .
Moreover, for any integer k ≥ 0, since Tk+1 = fN(Tk) with fN defined by (3), we have:

Uk+1 = gN,w(Uk), (7)

where

gN,w(t) = f 2
N(t) =

F 2

N

∑

q≤N

Y (q)1{Y (q)<t}. (8)

The random fixed point Uf = Uf (ω) is then solution of the random equation

gN,w(t) = t. (9)

Remark 2.1. Observe that we have emphasized the dependence of the function gN,w on the
noise w. The reader should be aware that in the sequel of the paper, w denotes the noisy
part of our signal, while ω stands for the generic element of an underlying probability
space (Ω,F ,P).

We wish to find the critical (minimal) F which ensures Uf > 0. First, we reduce the
random fixed point equation (9) to a deterministic one. Then we focus on the fixed point
study of this deterministic fixed point equation.



6 C. LACAUX, A. MULLER-GUEUDIN, R. RANTA, AND S. TINDEL

2.1. Reduction to a deterministic problem. We shall identify here a natural deter-
ministic problem related to equation (9). Indeed, for t ∈ R+, the law of large numbers
asserts that

a.s.− lim
N→∞

gN,w(t) = gσ,u,σw(t) = 2F 2

∫ √
t

0

y2 [pσ,u ∗ pσw ] (y) dy, (10)

where pσ,u and pσw are defined at Hypothesis 1.1. Moreover, letting σw → 0+, for any
t ∈ R+,

lim
σw→0

gσ,u,σw(t) = gσ,u(t) = 2F 2

∫ √
t

0

y2pσ,u(y)dy = F 2σ2Γinc

((
β

σ

√
t

)u

, 3/u

)
(11)

where Γinc is the incomplete Gamma function and β is defined at Hypothesis 1.1.

Though both equations (10) and (11) are expressed as simple limits of functions, it is
thus reasonable to think that Uf (fixed point of gN,w) will be close to a fixed point of
gσ,u. This is indeed the content of our Theorem 3.1 and Remark 3.2. Our first aim is
thus to give some sharp conditions on the coefficient F ensuring that the equation the
deterministic fixed point equation

gσ,u(t) = t (12)

has at least one solution t > 0.

2.2. Deterministic fixed point study. In this section, we are first interested in the
solutions of the equation (12) and then in the fixed point study of gσ,u,σw .

Observe that a trivial change of variables y 7→ σ2y in the integral (11) yields that

gσ,u(t) = σ2g1,u(t/σ
2). (13)

Hence to solve equation (12) for any σ > 0 and u > 0, it is sufficient to deal with the case
σ = 1, up to replace t by v = t/σ2. An elementary analysis of g1,u, whose details are left
to the reader, leads to the following lemma.

Lemma 2.2. Recall that g1,u and β are defined by (11) and (5) with u > 0 the shape of
the distribution of each wavelet coefficient x(q).

(1) Then, the function g1,u is increasing, convex on [0, β−2u−2/u], concave on the in-
terval [β−2u−2/u,+∞) and such that limt→∞ g1,u(t) = F 2.

(2) Moreover there exists a critical value Fc, depending only on u, such that the fol-
lowing assertions hold.

(a) If F < Fc, the only fixed point of g1,u is 0.
(b) If F = Fc, g1,u has exactly two fixed points 0 and t∗c > β−2u−2/u.
(c) If F > Fc, g1,u has exactly three fixed points 0, ℓ1 > 0 and t∗ > max(ℓ1, β

−2u−2/u).

The content of the above lemma is well illustrated by Figure 1.

Let us turn now to the computation of the critical coefficient Fc and the critical fixed
point t∗c . In fact, it is also easy to show that (Fc, t

∗
c) is the solution (F, r) of the system

{
g′1,u(r) = 1,
g1,u(r) = r
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super-critical : F=1.15 Fc

critical : F=Fc

sub-critical : F=0.9 Fc

Figure 1. Curves corresponding to g1,u with F ∈ {0.9Fc, Fc, 1.15Fc}, with
u defined in Hypothesis 1.1 and Fc in Lemma 2.2.

where we recall that the coefficient F enters into the definition of g1,u. This system is
equivalent to: {

F 2α
√
re−(β

√
r)u − 1 = 0,

F 2Γinc((β
√
r)u, 3/u)− r = 0

(14)

where it should be reminded that Γ and Γinc designate respectively Gamma and incomplete
Gamma functions. The latter system can be solved with the Mathematica software, and
the solutions for different u are illustrated in Figure 2 and Table 1.

1 2 3 4
u

2.0

2.5

3.0

3.5

4.0

F

Fc

Fm

Figure 2. Evolution of Fm and of critical Fc (respectively defined in Equa-
tion (6) and Lemma 2.2) in function of the shape u (defined in Hypothesis
1.1).

u 0.1 0.5 1 2 3 4
Fc 4.0215 2.7830 2.42537 2.16169 2.0472 1.98181

Table 1. Critical constant Fc for different shapes u. The shape u is defined
in Hypothesis 1.1 and the critical coefficient Fc in Lemma 2.2.

In particular, as illustrated in Figure 2 it can be observed that Fc < Fm where Fm is
the bound proposed by [15], and has been recalled at equation (6).
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We are now interested in the deterministic dynamic in presence of noise, that is in the
sequence {uwk ; k ≥ 0} defined by

{
uw0 = +∞

uwk+1 = gσ,u,σw(u
w
k ), k ≥ 0.

(15)

with gσ,u,σw defined by (10). Indeed, the stochastic dynamic {Uk; k ≥ 0} may converge to
Uf close to the limit of the deterministic sequence {uwk ; k ≥ 0}, which is a fixed point of
gσ,u,w. We only focus on the case F > Fc, since we shall mainly analyze the performances
of the peeling algorithm under this condition.

Proposition 2.3. For σ > 0, u > 0 and σw > 0, let gσ,u and gσ,u,σw be defined by (11)
and (10). Assume F > Fc with Fc introduced in Lemma 2.2. Recall that the fixed points of
gσ,u are 0 < σ2ℓ1 < σ2t∗, with ℓ1 and t∗ defined in Lemma 2.2. Then define the sequence
{uwk ; k ≥ 0} by (15) and fix M > F 2. Then there exists three constants ℓ2 ∈ (0, t∗),

C ∈ (0,∞), M̃ ∈ (0, 1), which depend neither on σ nor on σw, such that for σw/σ small
enough, the following assertions hold.

(1) sup{gσ,u,σw(t); t ∈ R+} < Mσ2 and gσ,u,σw(σ
2ℓ2) > σ2ℓ2.

(2) sup{g′σ,u,σw
(t); t ∈ [σ2ℓ2, σ

2M ]} ≤ M̃ < 1.

(3) The function gσ,u,σw has exactly one fixed point in [ℓ2σ
2,∞), called t∗σ,w. Moreover

t∗σ,w ∈ (ℓ2σ
2,Mσ2) and for any k ≥ 1,

|uwk − t∗σ,w| ≤ σ2MM̃k−1. (16)

Furthermore, the quantity t∗σ,w − σ2t∗ can be bounded as

|t∗σ,w − σ2t∗| ≤ Cσ2
(σw
σ

)min(1,u)

. (17)

Proof. See Appendix, Section A. �

Then, for F > Fc, the deterministic sequence {uwk ; k ≥ 0}, given by (15) and obtained
letting the number of wavelet coefficients N goes to infinity in the peeling algorithm,
converges to a positive value. Moreover, this limit is very close to the greater fixed point
σ2t∗ of gσ,u when the noise-to-signal ratio σw/σ goes to 0.

3. Probabilistic analysis of the algorithm

In this section, we are interested in the convergence for the peeling algorithm, that
is in the random sequence {Uk; k ≥ 0}. Comparing this random sequence with the
deterministic dynamic given by (15) , we establish a concentration result on {Uk; k ≥ 0}.
In the supercritical case F > Fc, the following theorem states that the peeling algorithm

converges to a fixed point which is close to a fixed point of the non-noisy deterministic
dynamic governed by gσ,u. The proof, which is given in Appendix B.2, hinges heavily on
some empirical processes tools.

Theorem 3.1. Assume F > Fc and that Hypothesis 1.1 is fulfilled. Let

ηu = min
(u
2
, 1
)
,

where u is the shape parameter of the wavelet coefficients of the signal x. Let us also recall
that σ > 0 (respectively) is the variance of the wavelet coefficients of the signal x. Then,
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there exist some finite positive constant c, C, A and γ̃ such that if σw/σ ≤ c we have: for
all α ∈ (0, 1) and for all N ∈ N

∗, choosing k = k(N) := [Cα log(N)] + 1,

P
(∣∣Uk − t∗σ,w

∣∣ ≥ N−α/2
)
≤ Ae−γ̃N [(1−α)ηu]/2

. (18)

Remark 3.2. This theorem induces several informations about the convergence of our al-
gorithm: (i) For a fixed number of wavelet coefficients N , the optimal number of iterations
n for the peeling algorithm is of order log(N). (ii) Once n is fixed in this optimal way,
Uk is close to the fixed point t∗σ,w of gσ,u,σw , the magnitude of |Un − t∗σ,w| being of order

N−(1/2−ε) for any ε > 0. (iii) The deviations of Uk from t∗σ,w are controlled exponentially
in probability. (iv) Adding the information contained in Proposition 2.3, we obtain that
|t∗σ,w − σ2t∗| is of order σw/σ, where t

∗ is the fixed point of function g1,u alluded to at
Lemma A.1. Hence, if the ratio signal/noise is large, the iterated value Uk of the peeling
algorithm will be very close to σ2t∗ when k is of order log(N).

Remark 3.3. In Theorem 3.1, we have assumed a classical Gaussian structure for the
noisy part w of the signal. Notice however that we could have derived all our results with
different distributions, up to a change on all the scaling factors in (18). This is the reason
why we shall investigate the performances of the peeling algorithms with different shapes
of noises at Section 4.

We finish this section by establishing that the choice of the constant Fc for the peeling
algorithm is optimal in the following sense: if one chooses a parameter F < Fc, then the
threshold sequence converges to 0 with high probability. Specifically, we get the following
result:

Proposition 3.4. Consider F < Fc and assume that our signal z satisfies Hypothesis 1.1.
Let α ∈ (0, 1). Then, there exist some finite positive constants c, C,A and γ̃ such that if
σw/σ ≤ c, we have: for any N ∈ N

∗ and any integer k ≥ C log(N),

P
(
Uk ≥ N−α/2

)
≤ Ae−γ̃N(1−α)ηu/2

. (19)

Remark 3.5. We have chosen here to investigate the case of a probability P(Uk ≥ N−α/2)
and of a logarithmic number of iterations k, in order to be consistent with Theorem
3.1. However, in the simpler subcritical setting, one could have considered a number of
iterations of order N , opening the door to a possible almost sure convergence of Uk to
0. We have not entered into those details for sake of conciseness. In the same spirit, we
have not tried to solve the (much harder) problem of the behavior of our algorithm in the
critical case F = Fc.

4. Simulation results

The aim of this section is two-folded:

• We wish to illustrate by numerical simulations the analysis presented above,
namely the peeling algorithm convergence.

• We will also evaluate the denoising performances of our method, and compare it
to other thresholding algorithms.

These two goals and the respective simulation setups are detailed below.
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Figure 3. Convergence speed for different versions of the peeling algo-
rithms, based on the parameters (ux, σx) and (uz, σz). The constant lines
correspond to the deterministic thresholds. The number of iterations until
convergence and our final values for the thresholds, followed by the deter-
ministic value given by Lemma A.1, are given in parenthesis. Recall that,
for signals having N = 10000 points, the convergence should occur after a
number of iterations of order log(N) = 9.21.

4.1. Convergence issues. One of the assumptions made above was that the influence of
the noise is limited (and obviously, controlled by its variance). Under this hypothesis, the
peeling algorithm iterations should converge in about log(N) iterations to a deterministic
threshold uniquely determined by the parameters of the signal probability law (assumed
Generalized Gaussian). This convergence should take place for multiplicative constants
F greater than the critical value Fc.
The following simulation illustrates this convergence: we have generated the wavelet

coefficients of an original signal x according to a Generalized Gaussians (GG) law with
zero mean, unitary standard deviation (σx = 1) and a shape factor ux = 1 (Laplace
distribution). A Gaussian noise w was then added with a signal to noise ratios SNR=5.
The length of the considered signals was N = 10000 (namely log(N) = 9.21). With this
simulated noisy signal in hand, we have performed the following steps:
(i) According to the real value of ux, we have computed the critical constant Fc solution
of the Equations (14). We have also displayed two other values for the multiplicative
constant F , both greater than Fc (namely F05 = 1.05Fc and F15 = 1.15Fc). We denote
by Tc,x, T05,x and T15,x the thresholds corresponding to Fc, F05 and F15 respectively.
(ii) We have also pretended to know the observation z = x + w only, which was as-
sumed to follow a GG law. We have then estimated uz and σz by means of classical
moments methods as described in [11]. Once uz and σz were estimated, our procedure (i)
has been performed again, replacing ux, σx by uz, σz (the final threshold being obtained
by Lemma A.1 and Proposition 2.3). We denote by Tc,z, T05,z and T15,z the thresholds
corresponding to Fc, F05 and F15 respectively.

The results of steps (i) and (ii) have been compared to the deterministic thresholds
obtained using the constants in Lemma A.1. The experiment, which exhibits a reasonable
convergence of the iterated thresholds to the deterministic ones, is summarized in Figure 3.
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(a)

(b)

(c)

(d)

(e)

Figure 4. Clean test signals, from top to bottom: Blocks, Bumps, Heavi-
Sine, Doppler, ECG

Similar results, not presented here, were obtained for other GG signals (varying ux)
and noises (not only Gaussian, but Generalized Gaussian), for relatively high SNRs (10
to 5). For lowed SNR, as expected the performances degrade: the peeling algorithms
continue to converge in log(N) iterations, but the final value of the threshold becomes
more significantly different from the deterministic value.

4.2. Denoising performances. The previous subsection aimed at shedding light on the
convergence properties of the peeling algorithm. According to the presented analysis and
the simulation results, the deterministic threshold can be used instead of the iterative
algorithm. We now wish to test this algorithm in terms of denoising performances on
an empirical basis, i.e., on benchmark and on realistic signals (the four classical signals
proposed in [6] plus an ECG-like signal - recall that the peeling algorithms were proposed
and mainly used in bio-medical applications [4, 9, 16]). The signals are displayed at
Figure 4.

In real situations, one does not have access to the distribution of the underlying clean
signal x and to its parameters. Therefore our simulation assumes that the noisy signal z =
x+w is not very far from x, which means that we can use estimated uz and σz to compute
the critical constant Fc. We denote by T05,z and T15,z the thresholds corresponding to F05

and F15 respectively.
Several simulations were made, using different types of white noise: Laplacian uw = 1,

Gaussian uw = 2 and quasi-uniform uw = 20 (noted further on by ∼Uniform) and SNRs
(10, 5, 2 and 1).
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Signals having N=2048 points were considered, the algorithm performance being evalu-
ated using the SNR obtained after denoising. We considered here a level 5 decomposition
and classical symlets with 8 null moments sym8.

We compare two traditional wavelet denoising procedures, namely Universal and SURE
shrinkage (see [6]) with two of the peeling algorithms described above. Soft thresholding
was implemented for all algorithms. The noise being white (namely, i.i.d coefficients with
equal variance σ2

w for all scales), we did not considered scale-by-scale implementations for
the compared algorithms (except for SURE, originally proposed with different thresholds
by scale; note that peeling algorithms can also be implemented scale-by-scale).
To ease the comparisons, we present the results in a graphical manner in figure 5.
A first analysis of these results indicates that, as expected, SURE thresholding is the

best option for Gaussian noise, regardless of the SNR. The Heavisine signal is a particular
case: indeed, aggressive high thresholds such as Universal and T15,z seem to work better,
except when the noise is very small (SNR=10). This situation is even clearer for ∼Uniform
noise, when Heavisine makes no exception. It is interesting to note that T15,z thresholding
performs generally better than Universal and it can constitute an alternative if the main
goal is a quasi-complete noise elimination and a visually clean signal (recall that Universal
thresholding is also known as VisuShrink because of its almost noise-free results).
On the other hand, the performances are quite different for Laplacian noise, when SURE

thresholding performs very poorly. In this case, T05,z is the best option for rather low-
power noises, except for the Heavisine and Doppler benchmarks, when the high thresholds
as Universal and T15,z become more performant (as for low SNR).

To conclude, the T05,z threshold derived from the minimal denoising peeling algorithm
from [15] seems to be a good choice for heavy-tailed noises and high to moderate sig-
nal to noise ratios. On the contrary, for Gaussian and supra-Gaussian noises, SURE
remains the best option for the considered model (i.e., independent wavelet coefficients,
excluding thus block-thresholding algorithms like [18, 19]). Notice however that our T15,z
threshold performs similarly to SURE in this context, while preserving better the visual
aspect of the signal. Furthermore, these conclusions could be challenged by scale-by-scale
implementations of the Tc-type thresholds.
We finish this implementation section by presenting two examples of denoising of Blocks

and ECG signals in Figure 6, which confirm the aforementioned considerations. Two-
dimensional versions of the tested algorithms have also been applied on real benchmark
images (Lena, House, Barbara, Peppers), with similar performances to those obtained for
the 1-D signals. They are not presented here for sake of conciseness.

Appendix A. Proof of Proposition 2.3

A.1. Preliminaries. This section gives the main tools to prove Proposition 2.3. The
first lemma is interested in some useful properties of g1,u, which is defined by (11), and in
the associated deterministic dynamic.

Lemma A.1. Assume F > Fc. Let g1,u : R+ → R+ be defined by (11), where u is the
shape parameter given in Hypothesis 1.1. Let ℓ1 < t∗ be the two positive fixed points of
g1,u as defined in Lemma 2.2.
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Figure 5. Denoising results comparisons between 4 algorithms on 5 sig-
nals. We considered Laplacian, Gaussian and ∼Uniform noises, with SNR
varying from 10 to 1. The original SNR σx/σw before denoising is repre-
sented by the dotted line, while the bar heights represent the final SNR
after denoising
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(a)

(b)

(c)

(d)

(e)

(f)

(a) Blocks

(a)

(b)

(c)

(d)

(e)

(f)

(b) ECG

Figure 6. Denoising example. From top to bottom: (a) clean signal;
(b) noisy signal (Laplacian noise, SNR=3); (c) Universal thresholding
(Blocks: SNR=5.7, ECG: SNR=4.8); (d) SURE thresholding (Blocks:
SNR=5.9, ECG: SNR=5.4); (e) T05,z thresholding (Blocks: SNR=6.8, ECG:
SNR=5.9); (f) T15,z thresholding (Blocks: SNR=6.4, ECG: SNR=5.2)

(1) Then there exists ℓ2 ∈ (ℓ1, t
∗) such that g1,u(ℓ2) > ℓ2, g

′
1,u(ℓ2) < 1 and g1,u is

concave on [ℓ2,∞).
(2) Define the deterministic sequence {uk; k ≥ 0} recursively by

{
u0 = +∞

uk+1 = g1,u(uk), k ≥ 0.
(20)

Then for k ≥ 1,

|uk − t∗| ≤Mk−1
t∗

(
F 2 − t∗

)
· (21)

where Mt∗ = g′1,u(t
∗) ∈ (0, 1).

Proof. The first assertion is easily deduced from the variations of t 7→ d1,u(t) = g1,u(t)− t,
and its proof is left to the reader. Let us now prove the second assertion. According to
Lemma 2.2, g1,u is an increasing function and has exactly three fixed points: 0 < ℓ1 < t∗.
Then the sequence {uk; k ≥ 0}, defined by (20), is decreasing and converges to t∗ as
k → ∞. Furthermore,

|uk+1 − t∗| = uk+1 − t∗ = g1,u(uk)− g1,u(t
∗) ≤Mt∗ (uk − t∗) ,



PEELING WAVELET DENOISING ALGORITHM 15

with Mt∗ = sup{|g′1,u(t)|; t ≥ t∗}. Since g1,u is increasing and concave on [ℓ2,+∞) with
ℓ2 < t∗ and g1,u′(ℓ2) < 1,

Mt∗ = g′1,u(t
∗) ∈ (0, 1).

Then, Assertion (2) follows by a trivial induction procedure. The proof of Lemma A.1 is
then complete. �

The following lemma compares the functions gσ,u,σw and gσ,u defined by (10) and (11)
respectively.

Lemma A.2. Assume F > Fc. For u > 0, σ > 0 and σw > 0, let gσ,u and gσ,u,σw be
defined by (11) and (10) with pσ,u and pσw introduced in Hypothesis 1.1. Let ℓ1 < t∗ be the
two positive fixed points of g1,u as defined in Lemma 2.2. Then, there exists C := C(u) ∈
(0,∞) a constant which does not depend on (σ, σw, F ) such that for any t ∈ R+ we have

|g′σ,u,w(t)− g′σ,u(t)| ≤
CF 2

√
t

σ

(σw
σ

)min(1,u)

(22)

and

|gσ,u,σw(t)− gσ,u(t)| ≤
CF 2t3/2

σ

(σw
σ

)min(1,u)

. (23)

In particular, gσ,u,σw → gσ,u and g′σ,u,w → g′σ,u uniformly on every compact set of R+, as
σw goes to 0.

Proof. Since (23) is a direct consequence of (22), we only prove (22). By definition of
gσ,u,σw and gσ,u, for any t ∈ R+,

|g′σ,u,σw
(t)− g′σ,u(t)| = F 2

√
t|pσ,u ∗ pσw(

√
t)− pσ,u(

√
t)|. (24)

Notice that for all y ∈ R+

pσ,u ∗ pσw(y)− pσ,u(y) =

∫

R

(pσ,u(r)− pσ,u(y)) pσw(y − r)dr. (25)

It can be readily checked that

∀t ∈ R, pσ,u(t) =
1

σ
p1,u

(
t

σ

)
=
α

σ
e−|βtσ |

u

.

Let us first assume u ≥ 1. Then t 7→ p1,u(t) is C1 on R and its derivate p′1,u is bounded
on R. In this case,

|pσ,u(r)− pσ,u(y)| ≤
|r − y|

∥∥p′1,u
∥∥
∞

σ2
. (26)

Assume now that u ∈ (0, 1]. Then by the Mean Value Theorem applied to the exponential
map,

|pσ,u(r)− pσ,u(y)| ≤
αβu

σ1+u

∣∣∣|r|u − |y|u
∣∣∣.

Since for any γ ∈ (0, 1) and 0 ≤ b ≤ a, aγ − bγ ≤ |a− b|γ, one checks that

|pσ,u(r)− pσ,u(y)| ≤
αβu

σ1+u
|r − y|u. (27)
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Plugging (26) or (27) in (25), we now get the existence of a finite positive constant
c := c(u) which only depends on u such that

|pσ,u ∗ pσw(y)− pσ,u(y)| ≤
c

σ1+min(1,u)

∫

R

|v|min(1,u)pσw(v)dv.

Since pσw is the density of a centered Gaussian variable of variance σw,

|pσ,u ∗ pσw(y)− pσ,u(y)| ≤ cE(|W |min(1,u))
(σw
σ

)min(1,u)

,

with W a standard Gaussian variable. This inequality and equation (24) lead to (22)
setting C = cE(|W |min(1,u)), which concludes the proof. �

A.2. Proof of Proposition 2.3. This section is devoted to the proof of Proposition 2.3.
In this proof, c and C denote two unspecified positive and finite constant which may not
be the same in each occurrence and depend neither on the standard deviation σ of the
signal x nor on the standard deviation σw of the noise w. Let us recall that gσ,u,σw is
defined by (10).

(1) First observe that

∀t ∈ R+, gσ,u,σw(t) ≤ F 2

∫ +∞

0

y2pσ,u ∗ pσw(y)dy = F 2
E
(
z(1)2

)
,

owing to the fact that pσ,u ∗ pσw is the density of the wavelet coefficient z(1) =
x(1) + w(1). Since the centered random variable x(1) and w(1) are independent,
this leads to

∀t ∈ R+, gσ,u,σw(t) ≤ F 2
(
σ2 + σ2

w

)
.

Thanks to the relation M > F 2, there exists a finite positive constant c1 :=
c1(M,F ) depending only on M and F so that, if σw/σ ≤ c1, F

2 (σ2 + σ2
w) < Mσ2

and henceforth,

sup{gσ,u,σw(t); t ∈ R+} < Mσ2.

Let ℓ2 ∈ (ℓ1, t
∗) be defined by Lemma A.1. Note that ℓ2 only depends on g1,u

and thus on both parameters F and u. Since t∗ is a fixed point of the increasing
function g1,u, we get

ℓ2 < t∗ ≤ F 2 = lim
t→+∞

g1,u(t) < M.

Hence, applying (23) and (13), we have :

gσ,u,σw

(
σ2ℓ2

)
≥ σ2

(
g1,u (ℓ2)− C

(σw
σ

)min(1,u)
)

where C := C(M,F, u) ∈ (0,+∞) does not depend on (σ, σw). Since g1,u (ℓ2) > ℓ2
by Lemma A.1, the previous equation leads to the existence of a constant c :=
c(M,F, u) ∈ (0, c1(M,F )], such that if σw/σ ≤ c,

gσ,u,σw

(
σ2ℓ2

)
> σ2ℓ2.

Then, the proof of Assertion (1) is complete.
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(2) According to (22) and (13),

∀t ∈ [σ2ℓ2, σ
2M ], g′σ,u,w (t) ≤ g′1,u

(
t

σ2

)
+ C

(σw
σ

)min(1,u)

where C := C(M,F, u) ∈ (0,+∞). Thanks to Lemma A.1,

sup
{
g′1,u(y), y ≥ ℓ2

}
= g′1,u(ℓ2) < 1. (28)

Then, choosing c := c(M,F, u) small enough, if σw/σ ≤ c, we obtain

∀t ∈ [σ2ℓ2, σ
2M ], g′σ,u,w (t) ≤ g′1,u(ℓ2) + Cc

min(1,u)
2 := M̃ < 1, (29)

which establishes Assertion (2).

(3) Let us now prove Assertion (3). Assume that σw/σ ≤ c. By Assertions (1)
and (2), dσ,u,σw : t 7→ gσ,u,σw(t) − t is a decreasing function on [σ2ℓ2, σ

2M ] such
that dw(σ

2ℓ2) > 0 and dw(σ
2M) < 0. Then, there exists an unique number t∗σ,w ∈

(σ2ℓ2, σ
2M) such that gσ,u,σw(t

∗
σ,w) = t∗σ,w. Moreover, since gσ,u,σw takes its values

in [0, σ2M), t∗σ,w is the only fixed point for gσ,u,σw in [σ2ℓ2,∞).
Consider now the sequence {uwk ; k ≥ 0} defined by equation (15). Since gσ,u,σw

is an increasing function which admits as unique fixed point t∗σ,w in [σ2ℓ2,∞), it is
easily seen that {uwk ; k ≥ 0} is a decreasing sequence such that limk→∞ uwk = t∗σ,w.

Moreover, for any k ≥ 1, uwk ∈ [t∗σ,w, F
2(σ2 + σ2

w)] ⊂ [σ2ℓ2, σ
2M ]. Then, using that

t∗σ,w ∈ (σ2ℓ2, σ
2M) is a fixed point and Equation (29), we get

|uwk+1 − t∗σ,w| ≤ M̃k|uw1 − t∗σ,w|
for any k ≥ 1. We can now bound trivially |uw1 − t∗σ,w| as follows:

|uw1 − t∗σ,w| = uw1 − t∗σ,w ≤Mσ2,

so that we end up with

|uwk+1 − t∗σ,w| ≤Mσ2M̃k

for any k ≥ 1. This equation, which is equation (16) also holds for k = 0.

Consider now the sequence {uk; k ≥ 0} defined by equation (20). Using (13),
(23), (28) and the Mean Value Theorem, we get:

|uwk+1 − σ2uk+1| = |gσ,u,σw(u
w
k )− σ2g1,u(uk)|

≤ |gσ,u,σw(u
w
k )− gσ,u(u

w
k )|+ σ2|g1,u(uwk /σ2)− g1,u(uk)|

≤ Cσ2
(
σw

σ

)min(1,u)
+ g′1,u(ℓ2)|uwk − σ2uk|

since uwk /σ
2, uk ∈ [ℓ2,∞). By iterating this procedure, with C := C(M,F, u) that

may change in each occurrence, we get:

|uwk+1 − σ2uk+1| ≤ Cσ2
(
σw

σ

)min(1,u)∑k−1
n=0 g

′
1,u(ℓ2)

k + g′1,u(ℓ2)
k|uw1 − σ2u1|

≤ Cσ2
(
σw

σ

)min(1,u)
+ F 2σ2

w g
′
1,u(ℓ2)

k
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since g′1,u(ℓ2) < 1, uw1 = F 2(σ2 + σ2
w) and u1 = F 2. Taking limits in the relation

above as k → ∞ we get (17), which ends the proof. �

Appendix B. Probabilistic analysis of the algorithm

B.1. Preliminaries: Comparison Noisy dynamics/ Deterministic dynamics. As
mentioned at equation (8), the exact dynamics governing the sequence {Uk; k ≥ 0} is of
the form Uk+1 = gN,w(Uk) with gN,w defined by (8). In order to compare this with the
deterministic dynamics (15), let us recast this relation into:

Uk+1 = gσ,u,σw(Uk) + εk,N , where εk,N = gN,w(Uk)− gσ,u,σw(Uk). (30)

Notice that the errors εk,N are far from being independent, which means that the relation
above does not define a Markov chain. However, a fairly simple expression is available
for Uk:

Proposition B.1. Let Uk be defined by (7), gσ,u,σw by (10) and εk,N by (30). For k ≥ 0,
set g◦kσ,u,σw

for the kth iteration of gσ,u,σw .Then for k ≥ 0, we have:

Uk = g◦kσ,u,σw
(U0) +Rk, with Rk =

k−1∑

p=0

εp,N

k−p∏

q=2

g′σ,u,σw
(Cp+q),

where the random variable Cj (j ≥ 2) is a certain real number within the interval

[g
◦(j−1)
σ,u,σw (U0); Uj−1]. In the definition of Rk, we have also used the conventions

∏1
q=2 aq = 1

and R0 = 0.

Proof. It is easily seen inductively that R0 = 0, R1 = ε0,N and for k ≥ 1

Rk+1 = g′σ,u,σw
(Ck+1)Rk + εk,N .

Hence, by a backward induction, we obtain:

Rk =
k∑

j=1

εk−j,N

j−2∏

l=0

g′σ,u,σw
(Ck−l) =

k−1∑

p=0

εp,N

k−p∏

q=2

g′σ,u,σw
(Cp+q),

which ends the proof. �

A useful property of the errors εp,N is that they concentrate exponentially fast (in terms
of N) around 0. This can be quantified in the following:

Lemma B.2. Assume that our signal z = x+ w satisfies Hypothesis 1.1, and recall that
F is defined by equation (3). Set

ηu = min
(u
2
, 1
)

and γu =
1

2max(2ηu−1,0)F 2ηu
min

(
βu

σu
,

1

2σ2
w

)
(31)

where parameters u, σ, σw and β are defined at Hypothesis 1.1. Then for every 0 < γ < γu,
there exists a finite positive constant K > 0 such that for all N ≥ 1, for all p ≥ 0 and for
all λ ∈ [0, γNηu/2],

E
[
eλ|εp,N |ηu ] ≤ K. (32)

Moreover, for all N ≥ 1, p ≥ 0 and l > 0,

P (|εp,N | ≥ l) ≤ Ke−γlηuNηu/2

. (33)
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Proof. Recall that εp,N is defined by:

εp,N = gN,w(Up)− gσ,u,σw(Up) =
1

N

N∑

q=1

(
F 2Y (q)1{Y (q)<Up} − gσ,u,σw(Up)

)
,

for a collection {Y (q); q ≤ N} of i.i.d random variables, where Y (q) = z(q)2. Moreover,
z(q) = x(q) + w(q), with x(q) a centered generalized Gaussian random variable with
parameter u > 0 (whose density is given by (5)) and w(q) ∼ N (0, σ2

w). For a fixed
positive t, the fluctuations gN,w(t)− gσ,u,σw(t) are easily controlled thanks to the classical
central limit theorem or large deviations principle. The difficulty in our case arises from
the fact that Up is itself a random variable, which rules out the possibility of applying
those classical results. However, uniform central limit theorems and deviation inequalities
have been thoroughly studied, and our result will be obtained by translating our problem
in terms of empirical processes like in [17].

In order to express εp,N in terms of empirical processes, consider t ∈ [0,∞] and define
ht : R+ → R+ by ht(v) = F 2v 1{v<t}. Next, for f : R+ → R, set

GNf =
1√
N

N∑

q=1

[f(Y (q))− E[f(Y (q))]] ,

and with these notations in mind, observe that

GNht =
1√
N

N∑

q=1

[ht(Y (q))− gσ,u,σw(t)] .

It is now easily seen that

εp,N =
GNhUp√

N
,

and the key to our result will be to get good control on GNht in terms of N , uniformly
in t ∈ [0,∞].

Let us consider the class of functions G = {ht; t ∈ [0,+∞]}. According to the termi-
nology of [17], the uniform central limit theorems are obtained when G is a Donsker class
of functions. A typical example of Donsker setting is provided by some VC classes (see
[17, Section 2.6.2]). The VC classes can be briefly described as sets of functions whose
subgraphs can only shatter a finite collection of points, with a finite maximal cardinality,
in R

2. For instance, the collections of indicators

F =
{
1[0,t); t ∈ [0,+∞]

}
.

is a VC class. Thanks to [17, Lemma 2.6.18], G is also a VC class since it can be written
as

G = F · h = {fh; f ∈ F} ,
where h : R+ → R+ is defined by h(v) = h∞(v) = F 2v.

In order to state our concentration result, we still need to introduce the envelope G of
G, which is a function G : R+ → R defined as

G(v) = sup{f(v); f ∈ G}, v ∈ R+.
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Note that in our particular example of application, we simply have G = h. Let us also
introduce the following notation:

N [GN ;G, λ,m] := E
∗ [eλ supf∈G |GNf |m] , and N [h;λ,m] := E

[
eλ|h(Y )|m] , (34)

where E
∗ is the outer expectation (defined in [17] for measurability issues), and Y can

be decomposed as Y = (X +W )2 for a centered generalized Gaussian random variable
X with parameter u > 0 and an independent variable W ∼ N (0, σ2

w). In (34), we also
assume λ > 0 and m ≥ 0.

Then, since G is a VC class with measurable envelope, G is a Donsker class and [17,
Theorem 2.14.5 p. 244] leads to:

N [GN ;G, λ,m] ≤ cN [h;λ,m],

with c a finite positive constant which does not depend on N, λ and G. Furthermore,
since Y can be decomposed as Y = (X +W )2 and invoking the elementary inequality
(a+ b)p ≤ 2max(p−1,0)(ap + bp), valid for a, b ≥ 0 and p > 0, it is readily checked that

N [h;λ,m] <∞
for λ < γu with γu defined at (31), and where m = ηu := min

(
u
2
, 1
)
. Recalling now that

εp,N = N−1/2
GNhUp , we have obtained:

E

[
eλ|N

1/2εp,N |ηu
]
≤ N [GN ;G, λ, ηu] ≤ cN [h; γ, ηu] = K <∞

for λ ≤ γ < γu, which easily implies our claim (32).

Let l > 0. Then,

P (|εp,N | ≥ l) = P

(
eγN

ηu/2|εp,N |ηu ≥ eγl
ηuNηu/2

)
.

The concentration property (33) is thus an easy consequence of (32) and Markov’s in-
equality.

�

B.2. Proof of Theorem 3.1. Observe first that, owing to Proposition B.1 and inequality
(16), we have

∣∣Uk − t∗σ,w
∣∣ =

∣∣g◦kσ,u,σw
(U0)− t∗σ,w +Rk

∣∣ =
∣∣uwk − t∗σ,w +Rk

∣∣ ≤MM̃k−1σ2 + |Rk| ,

for any k ≥ 1. Let then δ̂ > 0 and let us fix k ≥ 1 such that

MM̃k−1σ2 ≤ δ̂

2
, (35)

i.e.

k ≥ 1 + log(δ̂/(2Mσ2))/ log(M̃)· (36)

Then it is readily checked that:

P

(∣∣Uk − t∗σ,w
∣∣ ≥ δ̂

)
≤ P

(
|Rk| ≥

δ̂

2

)
, (37)
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and we will now bound the probability in the right hand side of this inequality. To
this purpose, let us introduce a little more notation: recall that ℓ2 has been defined at
Lemma A.1 and for n ≥ 1, let Ωn be the set defined by

Ωn =
{
ω ∈ Ω; inf

{
j ≥ 0 /Uj(ω) ≤ σ2ℓ2

}
= n

}

and set also

Ω̃k =
k⋃

n=1

Ωn ∪
{
U1 > Mσ2

}
.

Then we can decompose (37) into:

P

(∣∣Uk − t∗σ,w
∣∣ ≥ δ̂

)
≤ P

(
Ω̃k

)
+ P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
. (38)

We will now control these two terms separately.

Step 1: Upper bound for P(Ω̃k). Let us fix n ≥ 1 and first study P (Ωn). To this purpose,
observe first that

Ωn ⊂
{
Un ≤ σ2ℓ2 < Un−1

}
.

Hence, since Un = gN,w(Un−1) and invoking that gσ,u,σw is an increasing function, the
following relation holds true on Ωn:

gN,w(Un−1) = Un ≤ σ2ℓ2 and gσ,u,σw(σ
2ℓ2) < gσ,u,σw(Un−1).

We have thus proved that

Ωn ⊂
{
gN,w(Un−1)− gσ,u,σw(Un−1) ≤ σ2ℓ2 − gσ,u,σw(σ

2ℓ2)
}
,

where, by Assertion (1) of Proposition 2.3, σ2ℓ2 − gσ,u,σw(σ
2ℓ2) =: −L1 < 0. Since

gN,w(Un−1)− gσ,u,σw(Un−1) = εn−1,N by definition, we end up with:

P(Ωn) ≤ P (|εn−1,N | ≥ L1) .

Moreover,
P(U1 > Mσ2) ≤ P(|ε0,N | > L2)

with L2 =Mσ2 − gσ,u,σw(+∞) > 0 by Assertion (1) of Proposition 2.3.
A direct application of Lemma B.2 yields now the existence of γ,K ∈ (0,∞) such that
for all n ≥ 1 and all N ≥ 1

P(Ωn) ≤ Ke−γLηu
1 Nηu/2

and P(U1 > Mσ2) ≤ Ke−γLηu
2 Nηu/2

with ηu = min
(
u
2
, 1
)
. Hence

P(Ω̃k) ≤
k∑

n=1

P(Ωn) + P(U1 > Mσ2) ≤ (k + 1)Ke−γLηuNηu/2

(39)

where L := min(L1, L2) > 0.

Step 2: Upper bound for P(Ω̃c
k ∩ {|Rk| ≥ δ̂

2
}). We have constructed the set Ω̃k so that,

for all 2 ≤ p ≤ k + 1, the random variables Cp introduced at Proposition B.1 satisfy

0 ≤ g′σ,u,σw
(Cp) ≤ ρ := M̃ℓ2 < 1 on Ω̃c

k. Thus

P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
≤ P

(
k−1∑

p=0

|εp,N | ρk−1−p ≥ δ̂

2

)
≤ P

(
k−1∑

p=0

|εp,N | νp ≥ Lk,δ̂

)
, (40)
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where we have set

νp =
ρk−1−p(1− ρ)

1− ρk
, and Lk,δ̂ =

δ̂(1− ρ)

2(1− ρk)
,

so that {νp; 0 ≤ p ≤ k − 1} is a probability measure on {0, . . . , k − 1}.
We introduce now a convex non-decreasing function au which only depends on the

shape parameter u, and which behaves like exp(tηu) at infinity. Observe that, setting

su = (1/ηu − 1)1/ηu , the function t 7→ exp(tηu) is concave on [0, su] and convex on [su,+∞)
Then, we consider the convex function au defined by

au(t) = et
ηu
1[su,∞)(t) + es

ηu
u 1[0,su)(t). (41)

Observe that if u ≥ 2, au is the exponential map.

Since au is a non-decreasing function, for all λ > 0, relation (40) implies that:

P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
≤ P

(
au

(
λ

k−1∑

p=0

|εp,N | νp
)

≥ au

(
λLk,δ̂

) )

≤ 1

au

(
λLk,δ̂

)E
[
au

(
λ

k−1∑

p=0

|εp,N |νp
)]

,

where we have invoked Markov’s inequality for the second step. Hence, applying Jensen’s
inequality, for all λ > 0, we obtain:

P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
≤ 1

au

(
λLk,δ̂

)
k−1∑

p=0

νpE (au (λ|εp,N |)) .

Furthermore, owing to the definition (41) of au,

E (au (λ|εp,N |)) ≤ E
(
eλ

ηu |εp,N |ηu)+ e1/ηu−1

for all p ≥ 0, all N ≥ 1 and all λ > 0.

Then, applying Lemma B.2, we have:

P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
≤ K + e1/ηu−1

au

(
λLk,δ̂

)

for any λ ≤ γ1/ηuN1/2 with γ < γu. Since Lk,δ̂ ≥ (1−ρ)δ̂/2 and since au is a non-decreasing

function, by choosing λ = γ1/ηuN1/2, we obtain:

P

(
Ω̃c

k ∩
{
|Rk| ≥

δ̂

2

})
≤ K1

au

(
γ1δ̂N1/2

)

with γ1 = (1− ρ)γ1/ηu/2 > 0 and K1 = K + e1/ηu−1.

Choose now δ̂ = N−α/2, with α < 1. Observe that for N large enough, γ1δ̂N
1/2 > su

and thus au

(
γ1δ̂N

1/2
)
= eγ

ηu
1 N(1−α)ηu/2

. Hence, there exists a finite positive constant K ′
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such that for all N ≥ 1

P

(
Ω̃c

k ∩
{
|Rk| ≥

1

2Nα/2

})
≤ K ′e−γ̃N(1−α)ηu/2

(42)

with γ̃ = γηu1 .

Step 3: Conclusion. Putting together (38), (39) and (42), choosing δ̂ = N−α/2 with α < 1,
we end up with:

P
(∣∣Uk − t∗σ,w

∣∣ ≥ N−α/2
)
≤ (k + 1)Ke−γLηuNηu/2

+K ′e−γ̃ N(1−α)ηu/2

, (43)

for any k satisfying (36). Choose now k = k(N) := [Cα log(N)] + 1. If the following
condition holds true:

lim
N→+∞

(
k +

α

2
log(N)/ log(M̃)

)
= +∞

i.e. if C > −1/(2 log(M̃)), then for N ≥ N0 with N0 large enough, (36) holds. We
thus choose C = −1/(2 log(M̃)) + η with η > 0. Then, for N ≥ N0 and k = k(N) :=
[Cα log(N)] + 1, we have (43). Therefore, since (1− α)ηu/2 ≤ ηu/2 we have proved that
there exists a positive finite constant A such that for all N ∈ N

∗,

P
(∣∣Uk − t∗σ,w

∣∣ ≥ N−α/2
)
≤ Ae−γ̃N(1−α)ηu/2

,

which is the desired result.

B.3. Proof of Proposition 3.4. In the subcritical case, the following property holds
true for the function g1,u defined by (13): there exists a constant κ1 ∈ (0, 1) such that,
for all t ≥ 0, 0 ≤ g1,u(t) ≤ κ1t.
Let us now fix κ2 ∈ (κ1, 1) and L ∈ (0,∞). Then, by (13) and (23), for σw/σ ≤ c with c
small enough,

∀t ∈ [0, L], 0 ≤ gσ,u,σw(t) ≤ κ2t.

Since gσ,u,σw is upper bounded by 2F 2σ2 (for σw/σ ≤ c with c small enough), choosing L
such that κ2L > 2F 2σ2, the previous equation holds on [0,∞). We thus have the following
relation for the noisy dynamics of Uk: for every k ≥ 2,

Uk = gσ,u,σw(Uk−1) + εk−1,N ≤ κ2Uk−1 + εk−1,N .

Iterating this inequality, we have: for every k ≥ 2,

Uk ≤ κk−1
2 U1 +

k−1∑

j=1

κj−1
2 εk−j,N .

According to the fact that U1 = F 2(σ2 + σ2
w) + ε0,N , we end up with:

Uk ≤ κk−1
2 F 2(σ2 + σ2

w) +
k∑

j=1

κj−1
2 εk−j,N , (44)

a relation which is valid for any k ≥ 1.

Consider now α < 1, assume that σw/σ ≤ c and choose C > −α/(2 log(κ2)). Then
there exists N0 ∈ N

∗ such that for any integers N ≥ N0 and k ≥ C log(N),

κk−1
2 F 2(σ2 + σ2

w) ≤ κk−1
2 F 2σ2(1 + c2) ≤ N−α/2

2
.
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Hence, for any integers N ≥ N0 and k ≥ C log(N), invoking (44), we have:

P
(
Uk ≥ N−α/2

)
≤ P

(
k∑

j=1

κj−1
2 εk−j,N ≥ N−α/2

2

)
.

We are thus back to the setting of the proof of Theorem 3.1, Step 2. Along the same lines
as in this proof (changing just the name of the constants there), the reader can now easily
check inequality (19).
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