
HAL Id: hal-00903568
https://hal.science/hal-00903568v2

Submitted on 3 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A survey of RDB to RDF translation approaches and
tools

Franck Michel, Johan Montagnat, Catherine Faron Zucker

To cite this version:
Franck Michel, Johan Montagnat, Catherine Faron Zucker. A survey of RDB to RDF translation
approaches and tools. [Research Report] I3S. 2014. �hal-00903568v2�

https://hal.science/hal-00903568v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR7271

A survey of RDB to RDF translation approaches and tools

Franck Michel, Johan Montagnat, Catherine Faron-Zucker

Equipes Modalis/Wimmics

Rapport de Recherche
ISRN I3S/RR 2013-04-FR

Version 2

May 2014 - 23 pages

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS
2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France

http://www.i3s.unice.fr

A survey of RDB to RDF translation
approaches and tools
Franck Michel a, Johan Montagnat a and Catherine Faron-Zucker a
a Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
E-mail: franck.michel@cnrs.fr, johan.montagnat@cnrs.fr, faron@i3s.unice.fr

Abstract. Relational databases scattered over the web are generally opaque to regular web crawling tools. To address this
concern, many RDB-to-RDF approaches have been proposed over the last years. In this paper, we propose a detailed review
of seventeen RDB-to-RDF initiatives, considering end-to-end projects that delivered operational tools. The different tools are
classified along three major axes: mapping description language, mapping implementation and data retrieval method. We analyse
the motivations, commonalities and differences between existing approaches. The expressiveness of existing mapping languages
is not always sufficient to produce semantically rich data and make it usable, interoperable and linkable. We therefore briefly
present various strategies investigated in the literature to produce additional knowledge. Finally, we show that R2RML, the W3C
recommendation for describing RDB to RDF mappings, may not apply to all needs in the wide scope of RDB to RDF translation
applications, leaving space for future extensions.

Keywords: Semantic Web, Database semantics, Database integration, RDB-to-RDF Mapping

1. Introduction

Making data hosted in relational databases (RDB)
accessible to the semantic web has been an active field
of research during the last decade. Converting rela-
tional data into RDF or exposing relational data so
that it can be queried through the SPARQL1 query
language for RDF, is often referred to as the "RDB-
to-RDF" process. In September 2012, the publication
by the W3C of the R2RML recommendation [20], a
standard language to describe mappings between a re-
lational database and an equivalent RDF dataset, has
marked a new step towards the actualization of the web
of data. R2RML encourages RDB-to-RDF tool devel-
opers to comply with a standard mapping language.
Data providers should benefit from the adoption of this
common language, allowing them to decouple rela-
tional data integration problems from specific tools or
approaches, and ensuring sustainability.

Many RDB-to-RDF techniques and corresponding
tools have been proposed over the last years. In spite of
the observed convergence of several of them towards

1http://www.w3.org/TR/sparql11-overview/

R2RML, data providers willing to publish their data
in a machine-readable format may find it difficult to
make a choice. Firstly, different techniques convey dif-
ferent philosophical approaches (e.g. focus on ontol-
ogy learning, mapping language design, query engine
design...) which have implications on the way the rela-
tional data is exposed. Secondly, choosing the R2RML
recommendation does not answer all the questions:
like any other language, R2RML has some limitations
with regards to the types of mappings that can be ex-
pressed. Besides, as an implementation-independent
mapping language, R2RML does not address some
common questions that occur when translating rela-
tional data into RDF, such as the implementation of the
translation process, or the way the translated RDF data
is accessed. Lastly, existing reviews of RDB-to-RDF
approaches often provide very brief descriptions of
the tools developed, making them difficult to compare.
Operational questions such as the choice between the
conversion of relational data into RDF repositories and
the real-time use of the native relational databases, the
choice of access and querying means to the exposed
data, tools sustainability, etc., are hardly addressed.

1.1. Motivations for RDB-to-RDF Translation

In order to grasp the diversity of RDB-to-RDF ap-
proaches, it is useful to understand the motivations of
the RDB-to-RDF studies and projects, which led to
the emergence of R2RML. We identified three com-
mon needs often targeted: accessing data from the deep
web, linking data, and integrating multiple heteroge-
neous data sources. We describe them in the following.

The "deep web", as opposed to the "surface web", is
a part of the web content that is hardly indexed by stan-
dard search engines. It refers to the data hidden in un-
structured documents (images, scans), semi-structured
documents (CSV files, PDF files...), or structured data
sources (relational databases, XML databases, NoSQL
databases, LDAP directories...) that standard web tools
cannot browse, but that are only accessible through
query forms. As an illustration, in 2007, 70% of web
sites were backed up by RDBs, which contained 500
times more data than directly available [34]. Mak-
ing this huge amount of data available in a machine-
readable format is expected to create opportunities for
novel applications and services. In this regard, RDF
is a powerful pivot format. Yet, in order to ensure
the sustainability of the applications that were devel-
oped along with the data they exploit, and to lever-
age the properties engineered into RDB systems for
decades (scalability, ACID2 properties, security and
performance optimizations), the data should remain
hosted and delivered by the legacy RDBs, hence the
need for RDB-to-RDF techniques that can access rela-
tional data and convert it into RDF triples.

Linking open data to other related pieces of data
increases its value. From this simple statement, the
Linked Data principles, proposed by Tim Berners-
Lee [9], recommend best practices for exposing, shar-
ing, and connecting pieces of data, information, and
knowledge on the Semantic Web using URIs and
RDF. Driven by these recommendations, the Link-
ing Open Data3 community project aims at extending
today’s web by publishing various open data sets in
the RDF model, and setting RDF links between data
sources. In other words, it intends to solve the seman-
tic web chicken-and-egg dilemma, stating that a crit-
ical mass of machine-readable data must be available
for novel mash-up applications to arise. Such applica-
tions should create added-value by repurposing data
sets, using the data in some new way, possibly beyond

2atomicity, consistency, isolation, durability
3http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

what data providers may have initially expected. In this
regard, the success of the Linking Open Data project
largely depends on the accessibility of the deep web
data, and the availability of RDB-to-RDF tools to help
publish the existing relational data into RDF.

Integrating heterogeneous data has become a ma-
jor challenge in several domains [46,14]. For instance,
in neurosciences it is increasingly needed to con-
nect, make sense of, and search across heterogeneous
data and knowledge describing different organization
scales (molecules, proteins, genes, cells, physiology,
behaviours...) [1]. The first major step to integrating
heterogeneous relational data sources is to make their
semantics explicit. Relational schemas usually con-
vey no or poor semantics. To some limited extent, im-
plicit semantics can be figured out from integrity con-
straints or usual database design patterns such as n-
ary relations and inheritance. But additional seman-
tics is frequently encoded in the application exploit-
ing a relational database, for instance by means of do-
main specific rules. Moreover, relational schemas are
often fine-tuned and customized for performance rea-
sons. This results in mixing data semantics with tech-
nical concerns, making it even more difficult to figure
out the original data semantics. As a result, in order to
tackle the challenges of data integration in translational
science, data integration techniques have to capture
and expose its semantics in an explicit and machine-
readable manner. Using RDF as a format for represent-
ing relational data appears as a powerful and promis-
ing method to achieve such data integration, in which
RDB-to-RDF methods will play a key role.

1.2. Previous Works

Facing the large variety of RDB-to-RDF mapping
initiatives, several studies have been conducted to
compare approaches and techniques.

In 2007 the W3C created the RDB2RDF Work-
ing Group4 to standardize languages for mapping re-
lational database schemas into RDF and OWL. Sahoo
et al. [47] conducted a wide scope review, addressing
theoretical articles, proofs of concept, domain-specific
projects as well as generic mapping tools. The goal of
this survey was not to get into the details of each ap-
proach, but to provide the RDB2RDF Working Group
with a comprehensive overview of the different ap-
proaches that had been investigated so far, in order to
serve as a basis for the definition of R2RML.

4http://www.w3.org/2001/sw/rdb2rdf/

Hert et al. [36] proposed a feature-based compar-
ison framework that they have applied to state of
the art mapping languages. It is derived from the
use cases and requirements described by the W3C
RDB2RDF Working Group [5]. The mapping lan-
guages are sorted into four categories: direct map-
ping, read-only general-purpose mapping, read-write
general-purpose mapping, special-purpose mapping.
This paper focuses on the comparison of the mapping
language features and expressiveness, and it does not
address the implementations proposed by their authors
or the way queries are rewritten.

In 2010, Spanos et al. [53] wrote a comprehen-
sive review of RDB-to-RDF methods, with a particu-
lar effort to classify them among disjoint categories:
creation of database schema ontology, creation of a
domain-specific ontology using either database model
reverse engineering or database expert knowledge, and
definition or discovery of mappings between a rela-
tional database and an existing ontology. Then, fea-
tures are explored within each category, such as data
accessibility or ontology language used. Nevertheless,
the paper does not detail the specific features and ex-
pressiveness of the mapping languages, and the au-
thors put the stress specifically on the creation and
alignment of ontologies.

Sequeda et al. [50] surveyed methods that apply Di-
rect Mapping principles to automatically translate a
relational database into RDF. They studied existing
methods to extract ontological knowledge as RDFS
or OWL data from SQL DDL (Data Description Lan-
guage) representations. This ranges from simple ap-
proaches (table to class, column to property) to more
advanced ones that try to discover relations such as
many-to-many, subsumption, meronymy, symmetric
and transitive relations, and SQL features such as in-
tegrity constraints, checks and triggers. Finally, the au-
thors extend the work of Tirmizi et al. [55], that ex-
ploits all the possible combinations of primary and for-
eign keys in relational tables. One of their conclusions
is that the quality of an ontology resulting from a direct
mapping highly depends on the richness of the SQL
schema with respect to its encoding of domain seman-
tics.

Also to be mentioned, Sequeda proposed a short
high-level review5 of major RDB-to-RDF mapping
products, along with a brief description of each of
them. Unlike the two previous reviews that almost ex-

5http://semanticweb.com/relational-database-and-the-semantic-
web_b16083

clusively focus on academic works, this blog article re-
views products either from the academic world or from
the industry. Hence, although very succinct, this work
broadens the scope towards the industrial approaches.

To our knowledge, no RDB-to-RDF study has been
conducted since R2RML was published in 2012. As
a result, none of the aforementioned articles reviewed
R2RML compliant tools.

1.3. Goal of this work

In this paper, we propose a detailed review of state
of the art RDB-to-RDF tools, either academic or indus-
trial. Especially, we take into account R2RML imple-
mentations that recently emerged. We make a specific
focus on the specificities of each technique, and we de-
scribe, as much as possible, the capabilities of the dif-
ferent tools studied. Taking into account practical con-
cerns, we specifically consider end-to-end projects that
delivered operational tools to implement the RDB-to-
RDF process, avoiding proofs of concepts and early
prototypes. A classification is proposed to identify the
different approaches along three major axes that span
from mapping design to service deployment concerns:
(i) mapping description (type of mapping, expressive-
ness); (ii) mapping implementation (how and when
the data is converted into RDF), and (iii) data re-
trieval method (query-based, linked-data). These cate-
gories are well identified in the literature. They avoid
overlaps, they can be identified non-ambiguously and
they cover the major concerns motivating RDB-to-
RDF transformation. We also provide information on
the project maturity and sustainability when available.

2. Classification of RDB-To-RDF Approaches

2.1. Mapping Description

The mapping description refers to the way the map-
ping between a relational database and an RDF rep-
resentation of it is described. It is generally driven
by the fact that the resulting mapping should either
come up with an ad-hoc ontology that reflects the
relational schema (Direct Mapping), or comply with
existing well-defined domain-specific semantics, by
reusing domain ontologies and possibly entailing more
complex mappings (Domain Semantics-Driven Map-
pings).

In the literature, Direct Mapping is frequently used
as a synonym of Automatic Mapping, and Manual
Mapping as a synonym of Domain Semantics-Driven

Mapping, although this happens to be misleading: a
direct mapping is generally created automatically and
later customized manually. Yet, despite the manual
edition, it can remain nothing more than a direct map-
ping. Conversely, the domain semantics-driven map-
ping is often called manual mapping, although an auto-
matically generated direct mapping is frequently used
as a starting point to more complex domain-specific
mappings. In addition, some approaches attempt to
augment direct mapping by automatically discover-
ing domain semantics, we shall refer to this as the
augmented direct mapping. Consequently, hereafter
we shall sort the approaches along three distinct cat-
egories: Direct Mapping, Augmented Direct Mapping
and Domain Semantics-Driven Mapping. The terms
manual and automatic will be used for exactly what
they mean: the manual edition of a mapping by a hu-
man agent, vs. the automatic generation of a mapping
by a program.

Direct Mapping
The direct mapping approach intends to convert re-

lational data into RDF in a straightforward manner,
by making explicit the semantics encoded in the re-
lational schema. It involves the automatic creation of
URIs following simple rules, such as those defined by
Tim Berners-Lee [8]:

– table-to-class: a table is translated into an onto-
logical class identified by a URI whose construc-
tion follows the pattern "namespace/database/table";

– column-to-property: each column of a table is
translated into an ontological property whose URI
follows the pattern "namespace/database/table/-
column";

– row-to-resource: each row of a table is trans-
lated into a resource whose type is the class rep-
resenting the table and whose URI is formed
by using the table’s primary key: "namespace/-
database/table/primaryKey" or "namespace/database
/table#primaryKey";

– cell-to-literal-value: each cell with a literal value
is translated into the value of a data property;

– cell-to-resource-URI: each cell with a foreign key
constraint is translated into a URI which is the
value of an object property.

Applying this set of rules automatically creates an ad-
hoc RDFS or OWL vocabulary reflecting the struc-
ture of the relational schema. The ontology thus cre-
ated by the direct mapping process is referred to as
the database schema ontology in [53], while ontology
learning approaches often use the term local ontology.

To avoid exposing unnecessary or sensitive data such
as passwords, most approaches automatically gener-
ate a first mapping that can be manually customized to
some extent. Some specific cases such as multi-column
primary keys and tables with no primary key are also
generally addressed.

The Direct Mapping method typically applies when
no ontology suitably describes the domain of the re-
lational database, or when the goal is to rapidly make
data sources available in a web machine-readable for-
mat, with little concern for semantic interoperability.
Direct Mapping can also address versatile environ-
ments in which databases may appear and disappear
frequently with no time for manual alignment [22].
When semantic interoperability is required, ontology
alignment methods can be used later on to align the
local ontology with existing domain ontologies.

The W3C recommendation "A Direct Mapping of
Relational Data to RDF" specifies direct mapping good
practices [2]. It essentially proposes a formalization of
the rules enounced by Tim Berners-Lee.

Augmented Direct Mapping
Augmented Direct Mapping targets to improve the

quality of a direct mapping by the automatic detec-
tion of common database design patterns that can con-
vey domain semantics. For instance, many-to-many re-
lations are suggested by tables in which all non pri-
mary key columns are foreign keys to other tables; nul-
lable/not nullable columns can be converted into OWL
cardinality constraints; implicit subclass relationships
are often suggested by a primary key used as a for-
eign key [18]. In the latter case though, the literature
argues that, in the context of databases not in the third
normal form, this pattern may reveal a vertical parti-
tioning (splitting of a table into several smaller tables
for performance concerns) rather than a subsumption
relationship [55,50].

Some semi-automatic approaches propose an iter-
ative process in which a domain expert validates or
dismisses proposed mappings. Classes may be refined
based on the detection of lexical clues in the column
names or data redundancy suggesting categorization
patterns [16]. Additionally, some research questions
remain open with regards to the possibility of translat-
ing relational database triggers into additional knowl-
edge in the form of semantic rules.

Domain Semantics-Driven Mapping
The direct mapping approach is hardly sufficient

in real world applications, in which the data seman-
tics lies outside the RDB schema, in domain-specific

rules encoded in the application that exploits the
database. This is outlined in a short but enlightening
feedback from the Ordnance Survey of Great Britain:
"databases are rarely good descriptions of a domain,
being the result of both performance optimisation pro-
cesses and contingent maintenance history. And, in
any case, the schema itself will not support a full de-
scription of the domain, other relevant relationships
often being buried in code or in the encoding of var-
ious attributes" [26]. To overcome these limitations,
the domain semantics-driven mapping approach ap-
plies when the relational database must be translated
using classes and properties of existing ontologies. The
database and the ontology may have been designed
separately, and their similarity level may be low. A
typical use case is the alignment of a legacy database
with an existing ontology describing or referring to the
same domain of interest.

Domain semantics-driven systems rely on mapping
description languages to allow the description of ex-
pressive mappings, able to bridge the conceptual gap
between RDB and RDF. Mapping description lan-
guages may support various features listed in Table 1.
In any case, those languages generally implement two
different strategies:

(i) The mapping description essentially relies on
SQL queries to present the data as RDF triples. The
expressiveness of mappings is therefore constrained by
that of the SQL flavour used; in other words, complex
cases that would require a richer expressiveness can-
not be addressed, unless they are supported by exten-
sions of a specific RDBMS. On the other hand, the
rewriting of a query on the target RDF data (generally
a SPARQL query [33]) into SQL is almost straight-
forward, and the query execution can benefit from the
native database optimizer. Besides, the great popular-
ity of SQL facilitates the adoption of the mapping lan-
guage by data providers who do not need to learn a
new mapping language.

(ii) The mapping description uses a specific dedi-
cated language. In this approach, the query rewriting
process is more complex as it does not rely on SQL
queries written by the person who wrote the mapping.
The mapping is not constrained by the expressiveness
of SQL. As a result it can be extended in order to meet
specific complex needs such as keyword search, regu-
lar expression matching, natural language processing,
data mining, etc. Nevertheless, it must be underlined
that most existing projects hardly reach the expressive-
ness of SQL (for instance, aggregation and grouping
are not always possible although they are natively sup-
ported by SQL).

Some mapping languages such as R2RML and
D2RQ use both strategies simultaneously: they are
able to complement SQL snippets with specific map-
ping descriptors.

2.2. Mapping Implementation

Given a mapping description, that is, the set of rules
that map a relational model to a target ontology, the
mapping implementation refers to the way database tu-
ples are translated into ontological instances (individ-
uals). Two methods can be applied: data materialisa-
tion, or on-demand mapping.

Data Materialisation
Data materialisation is the static transformation of

the source database into an RDF representation, like in
warehouse approaches. Mapping rules are applied to
the whole content of the database to create an equiv-
alent RDF graph. For this reason, it is also referred to
as "graph dump", "graph extraction" or "RDF dump".
When the materialisation process completes, the re-
sulting RDF graph can be loaded into a triple store and
accessed through a SPARQL query engine. This whole
process is often referred to as the Extract-Transform-
Load (ETL) approach that conveys the idea of data ma-
terialisation and loading into a triple store.

With this approach, the number of data sources that
can be integrated is only limited by the triple store and
query engine capacity. Besides, a major advantage of
the materialisation is to facilitate further processing,
analysis or reasoning on the RDF data, including its
linking to the Linked Open Data and the execution of
heavy inference rules on it. Indeed, as the RDF data is
made available at once, third party reasoning tools can
be used to apply complex entailments. Later on, com-
plex queries can be answered without compromising
run-time performances since the reasoning has been
performed at an earlier stage.

Several limitations are to be noticed though. This
solution hardly supports very large data sets, as the
size of the graph produced may exceed memory capac-
ity. Another limitation concerns the way to deal with
outdated data: in the context of an application that up-
dates the relational data frequently, the materialized
RDF graph may be rapidly outdated. A solution is to
run the extraction process periodically, which raises
the question of compromising between the cost of ma-
terializing and reloading the graph, and the tolerance
of the application to outdated data.

On-Demand Mapping

Table 1
Features of mapping languages

Feature description Feature description

generation of user defined unique Ids Ability to generate URIs of resources beyond the simple use of primary key values: reusing
and combining column values, allowing for conversion tables, etc.

logical table Ability to read tuples not only from tables but also from SQL views or from the result of an
SQL query.

column selection (also called projection) Ability to select only a subset of the columns of a table to translate. This is a very basic feature,
almost a minimum pre-requisite of any RDB-to-RDF tool.

column renaming Ability to map a column to an RDF property with a different name. This is not always possible
in a direct mapping but quite obvious in a domain semantics-driven mapping.

select conditions Ability to translate only a subset of the tuples of a table using a select-where condition.

vocabulary reuse Ability to map relational entities to instances of existing vocabularies and ontologies. This
is the main difference between domain semantics-driven mapping and direct mapping ap-
proaches.

1 table to n classes Ability to use the values of a column as a categorization pattern: tuples of the table will be
translated into instances of different ontological classes based on the value of this attribute.
This feature can be seen as an extension of the "select conditions" feature as it results in not
only filtering out rows, but the filter helps selecting rows to be converted into instance of one
class or another.

many-to-many relation to simple triples Many-to-many relations are usually implemented in relational databases as a join table in
which all columns are foreign keys to other tables (n-ary relations). This feature refers to the
ability to translate many-to-many join tables into simple triples, as opposed to a basic direct
mapping in which the join table will be translated into a distinct class.

blank nodes Ability to generate blank nodes and refer to them within the graph produced during the trans-
lation process. Blank nodes can be used for instance to translate a table without a primary
key.

data types Ability to handle relational data types consistently with RDF data types per SQL-XSD map-
ping.

data transformation Ability to apply transformation functions to the values before generating the RDF triples. This
can be used to perform complex type conversion, compute a value using several columns, and
applying methods such as string manipulation functions, decimals type conversions, etc.

named graphs Ability to create not only one default RDF graph but also multiple named graphs within a
single mapping definition.

user-defined namespaces Ability to declare and use namespace prefixes.

static metadata Ability to attach static metadata (such as licensing or provenance information) to the produced
graphs, and possibly to all RDF entities or instances of a certain class.

Conversely to the data materialisation method, the
on-demand mapping approach is the run time eval-
uation of queries against the relational data. In this
model, the data remains located in the legacy database.
Whatever the way the converted data is accessed,
queries to the target RDF data must be rewritten into
SQL at query evaluation time.

The advantages and drawbacks of this approach are
the opposite of the materialisation approach. It is well
suited in the context of very large data sets that would
hardly support centralization due to resource limita-
tions. It guarantees that the returned data is always up
to date since no copy of the RDF data is made. Besides,
it allows for the enforcement of access control policies
implemented in the RDBMS.

On the other hand, query performance can be
severely penalised if entailment regimes must be im-
plemented [47], or if many data sources are to be in-
tegrated together. It has been suggested that in some
cases, the expressiveness of SPARQL queries should
be limited, in order to be processed by on-demand
mapping systems: in particular, a variable in the pred-
icate position (resourceA ?r resourceB) or
a variable in the object position representing a class
(resourceA rdf:type ?c) can lead to "union
bomb" issues [28,27].

2.3. Data Retrieval

Independently of the way a mapping is imple-
mented, the RDF data can be retrieved using two main
query implementation methods: by sending a query

to a query processing engine or using the linked data
paradigm. The choice of the method largely depends
on how the data should be exploited, as detailed below.

Query-based access
RDF data is retrieved by means of a query, generally

expressed in SPARQL, the standard query language
for RDF. A SPARQL query engine may be accessed
through an API6, or exposed through the SPARQL pro-
tocol [29] resulting in a SPARQL endpoint.

In the data materialisation approach the SPARQL
query engine evaluates a query against the RDF repos-
itory in which the materialised RDF data has been
loaded. In the case of the on-demand mapping, it eval-
uates the query against a relational database. This in-
volves rewriting the SPARQL query into SQL and,
conversely, translating SQL results into equivalent
SPARQL results according to the mapping.

Early approaches proposed query languages other
than SPARQL. Nevertheless they were deprecated by
the standardization of SPARQL. Additionally, some
RDBS providers have proposed alternative solutions
by integrating a SPARQL query evaluation engine
within the native RDBS evaluation engine. This is
the case of SPASQL7 that allows for the execution of
SPARQL queries within SQL statements.

Linked Data
During the RDB-to-RDF process, each logical rela-

tional entity translated into RDF is assigned a unique
URI that identifies it in the data graph. According to
the principles of the Linked Data [9], it should be pos-
sible to dereference any such URI by submitting an
HTTP GET request with this URI, as if it was a URL.
The HTTP response should provide a representation of
the entity identified by the URI. The output format of
the data description is generally agreed during a regu-
lar HTTP content type negotiation procedure between
the client and the web server.

Two access methods are advised in [45], in relation
to good practices for defining URIs:

(i) For an informational resource, a simple web
lookup with HTTP content negotiation will return a
representation of the entity (in XHTML, RDF/XML,
N3, JSON, etc.).

(ii) If the URI refers to a non-informational re-
source, i.e. an abstract concept or a physical object,
it should not be dereferenced directly (dereferencing
the URI of a person cannot return this physical per-

6http://www.w3.org/wiki/SparqlImplementations
7http://www.w3.org/wiki/SPASQL

son). An HTTP GET with such a URI should return
HTTP status 303 See other, providing the URI of an
informational resource that relates to or is a representa-
tion of the non-informational resource, e.g. an HTML
document describing a person. This recommendation
may somehow be relaxed for technical concerns such
as the extra network traffic entailed by the additional
HTTP request, or time consuming definition of multi-
ple URIs.

In the RDB-to-RDF context, the term Linked Data
sometimes refers to the ability to dereference not only
a resource URI, but also a URI to a logical entity of
the source database. For instance, dereferencing the
URI of a database will return a human-readable list
of classes corresponding to the tables, dereferencing
the URI of a class will return URIs of instances of
this class. Closer to the spirit of the Linked Data,
D2RQ dereferences a class URI by providing a few
triples stating that it is a database or a class, including
rdfs:seeAlso statements when relevant. Such methods
can be exploited by crawlers of external search engines
to index the content of the database.

Graph Dump Access
One could argue that a third data retrieval method

exists: graph dump over HTTP access. In this method,
a client performs an HTTP GET request to the database
URI and retrieves the entire RDF graph at once. The
"SPARQL 1.1 Graph Store HTTP Protocol" [39] stan-
dardizes this method within the wider scope of graph
management methods. Nevertheless, none of the tools
that we have studied implements the graph dump over
HTTP access method. This can be explained by the
fact that the data materialisation process produces a
graph serialization, generally in the form of an RDF
file. Hence, using the graph dump over HTTP access
method would be just another way of getting an al-
ternative representation of the same graph from an
HTTP endpoint. Moreover, in conjunction with the on-
demand mapping implementation, the dump of large
graphs may induce significant performance issues.
Therefore, in the following, we shall not consider the
Graph Dump over HTTP access in the list of data re-
trieval methods.

3. R2RML

R2RML [20] is a generic language to describe a
set of mappings that translate data from a relational
database into RDF. It is the result of preliminary works
held by the W3C. Starting from an initial proposal in

2007 [24], the W3C RDB2RDF Incubator Group8 ran
a comprehensive survey of existing approaches [47]
and described high level characteristics that a language
should cover to map relational databases to RDF [3].
Finally, the RDB2RDF Working Group standardized
the R2RML mapping language in 2012. As a standard,
R2RML has a particular importance as it steers the de-
velopment of many RDB-to-RDF tools. Yet, it only
covers the mapping description language, but does not
recommend any implementation. Compliant tools may
therefore adopt completely different strategies.

3.1. R2RML Features

The W3C RDB2RDF Working Group proposed
a list of 11 mandatory or optional requirements for
R2RML [5]. Table 1 provides a detailed description of
each of these features.

Mandatory features state that R2RML must (i)
support both the direct mapping and the domain
semantics-driven mapping (called transformative map-
ping); (ii) provide sufficient information for a proces-
sor to support both the on-demand mapping (rewrite
SPARQL queries into SQL) and the data materiali-
sation. Other mandatory features are: generation of
unique identifiers, support of data types conversions,
column renaming, many-to-many relation to simple
triples, 1 table to n classes.

Optional features include data transformation, named
graphs, namespace declaration, static metadata. Ad-
ditionally, the "update logs" feature is also listed as
a "nice-to-have feature": the mapping should provide
extension points to support the creation of update logs
of relational data. The final R2RML recommendation
includes all features listed above with the exception
of the update logs and the data transformation that is
left to the capabilities of SQL in terms of string or
number manipulations (no complex data transforma-
tion method is specified).

Table 1 includes three additional features that were
not explicitly addressed in [5], but that are part of
R2RML: select conditions, column selection and blank
nodes. The "select conditions" feature is implicit in
R2RML as it is a pre-requisite of the "1 table to n
classes" feature. Similarly, the "column selection" fea-
ture is implied by the more global support of the trans-
formative mapping.

8http://www.w3.org/2005/Incubator/rdb2rdf/

3.2. R2RML Mapping Description

An R2RML mapping document is called an R2RML
mapping graph. It is written in RDF with the Tur-
tle syntax9. In the following, we describe R2RML
main components along with a running example. Let
a database describe courses and participating students.
Table COURSE has two columns: ID (primary key)
and TITLE. Table PARTICIPATES has two columns:
SID (a student identifier), and CID (foreign key to
column ID in table COURSE). The R2RML mapping
in Listing 1 maps this database to RDF triples us-
ing an existing ontology with classes co:Course,
co:Student, a co:participatesIn object prop-
erty and a co:title data property .

A mapping consists of several TriplesMaps, each
one specifying how to map rows of a logical table to
RDF triples. The logical table may be a table, an SQL
view, or the result of any valid SQL query. Our exam-
ple defines two TriplesMaps, Course with logical ta-
ble COURSE and Participates with logical table
PARTICIPATES.

A TriplesMap is composed of exactly one Sub-
jectMap and any number of PredicateObjectMaps. For
each row of the logical table, the SubjectMap generates
the subject URI, for instance using the logical table
primary key. The SubjectMap in TriplesMap Course
defines a subject URI as the concatenation of names-
pace http://univ.org/course/ with the value
of column ID. PredicateObjectMaps consist of Pred-
icateMaps and ObjectMaps. Triples are produced by
combining the subject map with each predicate from
the PredicateMap and each value from its associated
ObjectMap. In TriplesMap Course, each subject URI
will have a predicate co:title with literal value
read from column TITLE.

@pref ix r r : < h t t p : / / www. w3 . org / ns / r 2 r m l # >.
@pref ix co : < h t t p : / / c o u r s e s . o rg # >.
@base < h t t p : / / example . com / base # >.

<Course >
r r : l o g i c a l T a b l e [r r : tableName "COURSE"] ;
r r : sub jec tMap [

r r : t e m p l a t e " h t t p : / / un iv . edu / c o u r s e / { ID } " ;
r r : c l a s s co : Course ;

] ;
r r : p r e d i c a t e O b j e c t M a p [

r r : p r e d i c a t e co : t i t l e ;
r r : ob jec tMap [r r : column " TITLE "] ;

] .

9http://www.w3.org/TR/turtle/

< P a r t i c i p a t e s >
r r : l o g i c a l T a b l e

[r r : tab leName "PARTICIPATES"] ;
r r : sub jec tMap [

r r : t e m p l a t e
" h t t p : / / un iv . edu / s t u d e n t / { SID } " ;

r r : c l a s s co : S t u d e n t ;
] ;
r r : p r e d i c a t e O b j e c t M a p [

r r : p r e d i c a t e co : p a r t i c i p a t e s I n ;
r r : ob jec tMap [

r r : p a r e n t T r i p l e s M a p <Course > ;
r r : j o i n C o n d i t i o n

[r r : c h i l d "CID " ; r r : p a r e n t " ID " .] ;
] ;

] .

Listing 1: Example of an R2RML mapping

In TriplesMap Participates, object property
rr:subjectMap defines URIs for students, while
rr:predicateObjectMap describes an SQL in-
ner join between tables COURSE and PARTICI-
PATES. This is denoted by the value of property
rr:objectMap having two specific properties: prop-
erty rr:parentTriplesMap refers to TriplesMap
Course as the parent in the join condition, and prop-
erty rr:joinCondition defines the columns to
join: PARTICIPATES.CID and COURSE.ID.

Assuming table COURSE contains one course with
identifier 1 and title "Semantic Web" and table PAR-
TICIPATE contains one student with identifier 2 who
participates in course 1, the above R2RML mapping
will produce four RDF triples:

< h t t p : / / un iv . edu / c o u r s e /1 >
a co : Course ;
co : t i t l e " Semant i c Web " .

< h t t p : / / un iv . edu / s t u d e n t /2 >
a co : S t u d e n t ;
co : p a r t i c i p a t e s I n
< h t t p : / / un iv . edu / c o u r s e / 1 > .

By default, all RDF triples are in the default graph
of the output dataset. A TriplesMap can contain
GraphMaps that place some or all of the generated
triples into named graphs.

The R2RML recommendation specifies that an
R2RML processor may include an R2RML default
mapping generator complying with the W3C direct
mapping rules [2].

3.3. Implementations

The first R2RML recommendation was issued Sept.
27th 2012. Several candidate implementations have
been evaluated against compliance tests described in
the R2RML and Direct Mapping Test Cases10, com-
prising 24 Direct Mapping tests and 62 R2RML tests.
Results are reported in the RDB2RDF Implementation
Report11.

4. RDB-to-RDF tools

This section describes RDB-to-RDF tools classified
along the axis defined in section 2. Section 4.1 presents
the tools that comply with R2RML, while section 4.2
describes the tools that propose their own mapping lan-
guage. In each section, tools are listed by alphabetical
order. Table 2 (section 4.3) summarizes the informa-
tion provided here after.

4.1. R2RML-Compliant Tools

Below we consider the R2RML candidate im-
plementations and their results with regards to the
R2RML test cases. Oracle Spatial and Graph 12c, re-
leased in July 2013, supports R2RML. Yet, at the time
of writing, it has not been officially tested against the
R2RML test cases and thus is not yet mentioned in the
RDB2RDF Implementation Report.

4.1.1. DB2Triples
DB2Triples1213 is an implementation of R2RML

and the W3C Direct Mapping based on the Work-
ing Draft of May 29th 201214. It is developed by the
Antidot15 company as part of a larger software suite.
DB2Triples is delivered as a Java library, available un-
der the LGPL 2.1 open source licence, and validated
with MySQL and PostgreSQL back-ends. It supports
the data materialisation mapping implementation, but
provides no data retrieval method. The materialized
graph can be serialized in RDF/XML, N3, N-Triples
or Turtle. In the direct mapping mode, DB2Triples can

10http://www.w3.org/TR/2012/NOTE-rdb2rdf-test-cases-
20120814/

11http://www.w3.org/TR/2012/NOTE-rdb2rdf-implementations-
20120814/

12http://www.antidot.net/fr/Actualites/Produit/Antidot-fournit-
db2triples-en-Open-Source

13https://github.com/antidot/db2triples
14http://www.w3.org/TR/2012/WD-rdb-direct-mapping-20120529
15http://www.antidot.net/

optionally apply queries from a SPARQL file in order
to transform the graph. This may be used to produce
additional triples using deduction rules in the form of
SPARQL INSERT clauses.

Compliance: DB2Triples failed on one of the 62
R2RML test cases regarding the detection of a non-
conforming mapping.

Sustainability: DB2triples version 0.9.9 was re-
leased in 2012. No indication as to its support is pro-
vided, one can expect Antidot to maintain it as part of
Antidot’s software suite.

4.1.2. Morph-RDB
Morph-RDB16 is an implementation of R2RML, de-

veloped by the developers of R2O and ODEMapster. It
supports the data materialisation (called data upgrade
mode) and the on-demand mapping using SPARQL
queries. In [43], authors describe the method they de-
veloped to enable R2RML-based SPARQL to SQL
query translation.

Morph-RDB is developed in Scala and Java and
is available under the Apache 2.0 open source li-
cence. The development is ongoing. Authors are
also working on two other versions of Morph, that
rely on R2RML although they address non-relational
databases: Morph-streams deals with streamed data
typically produced by sensors, and Morph-GFT queries
Google Fusion Tables17 like relational tables.

Compliance: Morph-RDB failed on 8 of the 62
R2RML test cases regarding the generation of a default
mapping for tables without a primary key (2 tests),
data type conversions (3 tests), different blank nodes
generated for different rows when they should be the
same, detection of non-conforming mappings (2 tests).
R2RML named graphs are not supported in the on-
demand mapping but is supported in the data material-
isation.

Sustainability: developers intend to continue the
support and evolution of Morph-RDB, possibly ex-
tending it beyond the official R2RML specification,
e.g. by adding support for Google Fusion Tables. Little
documentation is available, but extensive usage exam-
ples are provided.

4.1.3. Oracle Database 12c
Oracle Spatial and Graph18 (formerly Oracle Se-

mantic Technologies) [41,40] is an option of Oracle

16https://github.com/fpriyatna/odemapster/wiki
17http://www.google.com/drive/apps.html#fusiontables
18http://www.oracle.com/technetwork/database-

options/spatialandgraph/overview/rdfsemantic-graph-
1902016.html

Database Enterprise Edition (EE). Version 12c, re-
leased in July 2013 comes with the RDF Semantic
Graph data management and analysis features, that
support RDB-to-RDF conversion.

RDF Semantic Graph mainly focuses on the storage,
simultaneous querying and reasoning on relational and
RDF data. The RDF graph store can scale up to billions
of triples, supports graph versioning and the semantic
indexing of documents. SPARQL graph patterns can
be included within an SQL query in order to join RDF
and relational data. Extensive RDFS/OWL2 capabili-
ties support the simultaneous reasoning on RDF and
relational data. The security model can enforce restric-
tions at different levels, from graph to triple granular-
ity.

RDB-to-RDF conversion is supported since version
12c by providing RDF views on relational tables, SQL
views, and SQL query results. R2RML and the W3C
Direct Mapping are supported. The RDF view can be
queried through SPARQL 1.1.

Oracle Spatial and Graph exploits several enter-
prise features such as table compression (optimize disk
space and memory usage), partitioning (performance,
scalability), and Real Applications Clusters (availabil-
ity, scalability). As a result, using Oracle Spatial and
Graph requires the acquisition of licenses for Oracle
Database EE and Partitioning option.

Compliance: no result is available as to the R2RML
compliance tests, consequently, Table 2 shows ques-
tion marks for all the features.

Sustainability: RDB-to-RDF is a newly added fea-
ture in release 12c. No information is available on its
support by Oracle in the future.

4.1.4. RDF-RDB2RDF
Perl RDF is an open source software library de-

livered under the GPL license. It is a very complete
library including the following features: RDF store
in memory, support for relational databases (MySQL,
PostgreSQL) and SQLite, SPARQL 1.1 query proces-
sor and endpoint, Linked Data server, RDFa parser,
WebID (FOAF+SSL) + ACLs, GRDDL, Microfor-
mats, HTML5.

RDF-RDB2RDF19 is an additional library, devel-
oped on top of Perl RDF, that implements R2RML
and the W3C Direct Mapping based on the Working
Draft of May 29th 2012. RDF-RDB2RDF implements
the data materialisation method. The materialized RDF
data can be loaded into the SPARQL endpoint pro-
vided by Perl RDF, thus falling in the ETL approach.

19https://metacpan.org/release/RDF-RDB2RDF

Compliance: RDF-RDB2RDF failed on 12 of the 62
R2RML test cases (either with PostgreSQL or SQLite)
regarding data type conversions (5 tests), management
of joins and inverse expression (4 tests), named graphs,
logical table named column, special chars and back-
slashes.

Sustainability: the implementation of R2RML and
the direct mapping dates back to version 0.006 de-
livered in June 2012. However Perl RDF is actively
maintained, version 0.008 was delivered in September
2013.

4.1.5. Ultrawrap
Initially developed by the University of Texas in

Austin, Ultrawrap20 is now a commercial product of
the Capsenta company, founded in 2011 as a spin-off
of the University of Texas. It is based on SQL views to
present relational data as RDF triples.

A local ontology is defined through the direct map-
ping. The RDF representation is implemented as a
three-column SQL view (subject, predicate, object),
defined as the union of all the queries that material-
ize all the RDF triples as defined by the local ontol-
ogy [52]. Consequently, a SPARQL query can be sim-
ply rewritten into an SQL query on the SQL view.
In [51], authors explain the need for two additional
columns in the SQL views: the primary keys of the
subject and the object. This change allows the native
query optimizer to take advantage of existing indexes.
Along with two other optimizations (the self-join elim-
ination and the detection of unsatisfiable conditions),
authors show that the query evaluation time is com-
parable to that of SQL queries written directly for the
relational representation. Ultrawrap also supports the
Linked Data retrieval method (HTTP GET requests).

Recently, support for R2RML and D2RQ mapping
languages has been added. There is no description,
however, of the way the mapping description is de-
rived into the SQL view. We make the hypothesis
that an R2RML/D2RQ document is compiled into an
SQL view that reflects each triple map. The support of
R2RML named graphs does not seem easy using only
the SQL triple view. A GUI that is part of the tool suite
helps align the local ontology with a domain ontology.

Compliance: Ultrawrap passed all R2RML test
cases.

Sustainability: Ultrawrap was released to first beta
customers in May 2012. No information is given as to
future releases. Prices are available on demand only.

20http://capsenta.com/ultrawrap

4.1.6. Virtuoso Universal Server & Virtuoso’s RDF
Views

Virtuoso Universal Server21 is a commercial and
open-source comprehensive tool suite developed by
OpenLink, designed to meet enterprise data manage-
ment, access and integration needs. It comes with
production-class features such as a relational database,
clustering, data replication, RDF triple store, reason-
ing capabilities (entailment regimes), multiple data
sources integration (SQL, RDF, XML, free text, CMS,
aggregation feeds...). The Virtuoso Open-Source Edi-
tion22 is a sub-set of the Universal Server. Limitations
concern production-class features such as the cluster-
ing and data replication functions.

The RDF and SPARQL tool suite open source
edition provides features such as: Object-Relational
Database for SQL, XML, RDF, and Free Text; RDF
store and SPARQL end-point; Web Application Server
(see the full feature list23). In particular the RDF Views
of SQL data functionality implements the RDB-to-
RDF functionality. The open source edition only sup-
ports the Virtuoso-based relational database whereas
the commercial edition supports most well known re-
lational database systems.

The declarative Meta Schema Language24 (MSL) is
an extension of the SPARQL query language, meshed
with Virtuoso’s SPASQL functionality (SPARQL-
inside-SQL). The mapping does not only involve an
MSL document, but it is itself a repository in which
mapping patterns can be grouped in named sets, and
managed using operations such as create, drop, alter,
etc. A rich web interface provides a wizard to auto-
matically generate a direct mapping. R2RML support
is achieved by the inclusion of a simple adaptor which
basically translates R2RML syntax to Virtuoso’s own
Linked Data Views syntax, which can then be executed
to create the Linked Data Views themselves.

The on-demand mapping is provided through Vir-
tuoso SPARQL 1.1 endpoint. The data materialisation
may be possible but this is not the goal of Virtuoso.
The Linked Data retrieval method is also available
and exposes any Virtuoso-housed data (SQL and XML
data sources) as dereferenceable URI. RDF data may
be retrieved as RDF/XML, JSON or N3 syntaxes.

Compliance: Virtuoso RDF Views did not pass 29
of the 62 R2RML test cases; those are in status "can-

21http://www.w3.org/wiki/VirtuosoUniversalServer
22http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIndex
23http://virtuoso.openlinksw.com/features-comparison-matrix/
24http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

VOSSQL2RDF

notTell", meaning that the test could not be run. No
explanation is provided.

Sustainability: Virtuoso is actively maintained by
the company OpenLink. Note that the DBpedia project
is operated using a Virtuoso triple store.

4.1.7. XSPARQL
RDF/XML syntax provides a lot of variability

in the serialization of an RDF graph. As a result,
XSLT+XPath processors are inappropriate to inte-
grate XML and RDF/XML data. The XSPARQL25

query language was designed to address this diffi-
culty, by combining XQuery and SPARQL for bidirec-
tional transformations between RDF and XML: XS-
PARQL merges SPARQL components into XQuery
FLWOR expressions. XSPARQL is typically designed
to extract RDF data out of existing Web pages, al-
low an RDF-based client software to communicate
with XML-based Web services, or even enrich an RDF
graph with deduction rules described as RDF-to-RDF
mappings.

Recently, Lopes et al. [38] have defined an RDB-
to-RDF extension to XSPARQL, that provides the
ability to embed SQL snippets (select-from-where) in
XQuery FLWOR expressions. Thus, the relational data
can be queried and transformed into XML or RDF. On
top of this, an R2RML mapping document can be in-
terpreted to produce appropriate XSPARQL construct
expressions that materialize the RDF data. The origi-
nality of this approach is that it did not require the de-
velopment of a specific module in the XSPARQL pro-
cessing engine. Instead, the whole process is described
in XSPARQL: the R2RML mapping document is read
as input RDF data, XQuery FLWOR expressions parse
it, query the database accordingly, and ultimately gen-
erate the RDF data using XSPARQL construct expres-
sions.

XSPARQL comes with a prototype implementation
developed in Java and distributed under the Apache
2 open source license. It implements the data mate-
rialisation approach. Supporting the on-demand map-
ping should be possible but is not straightforward: it
would require designing a query rewriter to convert a
SPARQL query into an XSPARQL query that would
in turn make the appropriate SQL queries.

Compliance: XSPARQL passed all R2RML test
cases, although discussions with the developers re-
vealed that named graphs are not supported, and logi-
cal tables cannot refer to SQL queries (only relational
tables and views are supported).

25http://xsparql.deri.org/

Sustainability: Version 0.5 was released in Novem-
ber 2012, supporting both Direct Mapping and R2RML.
Several fixes were provided in early 2014.

4.2. Non-R2RML Tools

4.2.1. Asio Semantic Bridge for Relational Databases
and Automapper

Asio Tool Suite26 is a commercial product devel-
oped by BBN Technologies. It provides several com-
ponents: Asio Semantic Query Decomposition (SQD),
Asio Semantic Bridge for Relational Databases27

(SBRD), Asio Semantic Bridge for Web Services, and
two open source tools: Parliament and Snoggle.

Asio SBRD implements the RDB-to-RDF process.
The BBN’s Automapper tool applies D2RQ-based di-
rect mapping rules to create the local ontology that
describes the relational schema. The direct mapping
is then augmented with OWL property restrictions
to model data types and nullable/not nullable prop-
erties. Additional mapping rules between the domain
ontology and the local ontology are described as a
set of SWRL28 rules. Asio SBRD implements the on-
demand query mode: it rewrites SPARQL queries into
SQL queries and applies query planning and optimiza-
tion techniques. The data materialisation mode is not
available. The precise set of supported mapping fea-
tures is not available, consequently we did not include
it in Table 2.

The Asio SQD module addresses the federation of
multiple data sources: it breaks down SPARQL queries
expressed using a domain ontology into sub-queries
using the local ontology of each data source, and dis-
tributes these optimized sub-queries to the applica-
ble data sources: relational databases, web services or
triple stores.

4.2.2. D2R Server and the D2RQ language
The D2R Server29 [12,13] is an open source aca-

demic project. It provides an integrated environment
with multiple options to access relational data us-
ing different methods such as the SPARQL endpoint,
Linked Data (content negotiation, HTTP 303 deref-
erencing), RDF dump. D2RQ supports both direct
and domain semantics-driven mappings. The DR2Q
declarative mapping language [19] is formally defined
by an RDFS schema. It is the successor to the XML-

26http://bbn.com/technology/knowledge/asio_tool_suite
27http://bbn.com/technology/knowledge/asio_sbrd
28http://www.w3.org/Submission/SWRL/
29http://d2rq.org/

based D2R MAP language [11]. The mappings are ex-
pressed in RDF, but also largely rely on SQL frag-
ments to express SELECT statements or to use aggre-
gate functions. The D2RQ direct mapping automati-
cally creates a local ontology. This direct mapping can
be customized manually. Optionally, the direct map-
ping generated can comply with the rules proposed in
the W3C Direct Mapping specification [2].

The Linked Data retrieval method is supported with
HTTP content negotiation (RDF or XHTML), includ-
ing HTTP status 303 See other.

The automatic addition of rdfs:seeAlso prop-
erties and HTML hyperlinks leads to navigation pages
containing lists of other resources of the same class,
and to an overview page that lists all of these naviga-
tion pages. This overview page provides an entry point
for external Web search engines to index the content of
the database.

The performance varies depending on the access
method and is reported to perform reasonably well for
basic triple patterns, but there are limitations for graph
patterns with filters and solution sequence modifiers.

Sustainability: D2R is a very active project. The last
version released in June 2012 supports the W3C’s Di-
rect Mapping specification. The first release of DBpe-
dia in 2007 was done using D2R Server, which since
then migrated to Virtuoso RDF Views.

4.2.3. Datalift
Datalift30 is an experimental research project aimed

at helping users to publish and interlink their data
sets on the web as Linked Data. It provides an inte-
grated set of tools that ease the publication process of
raw structured data coming from various formats (re-
lational databases, CSV, XML, ...). The tools cover the
following functions: selecting ontologies for publish-
ing data, converting it to RDF by using the selected on-
tology, publishing the produced RDF data, interlinking
it with other RDF datasets.

Datalift implements the ETL approach: the data is
first materialised, loaded into the triple store, then it is
retrieved through a SPARQL query engine or Linked
Data navigation (URIs dereferencing based on content
negotiation: RDF, CSV or XHTML).

The mapping description is done interactively through
a web-based GUI: a user selects a data source that is
automatically translated following the direct mapping
method. Then, a set of modules helps align the pro-
duced RDF data on chosen ontologies: RDF-to-RDF
transformation (by means of SPARQL queries), re-

30http://datalift.org/en

naming of URIs (using regular expressions), conver-
sion of strings into URIs, automatic discovery of links
with other RDF datasets with the SILK31 tool. As a re-
sult, although it starts with a Direct Mapping, the dif-
ferent modules provide enough flexibility to perform
an a posteriori alignment with capabilities comparable
to domain semantics-driven mapping approaches.

Sustainability: The project completed in March
2014. The Datalift association has recently been founded,
which should guarantee a maintenance task force.

4.2.4. DB2OWL
DB2OWL is a proof of concept that was proposed

by Cullot et al. [18]. In the domain of ontology learn-
ing, its goal is to automatically generate a direct map-
ping describing a relational database, then refine this
mapping by exploiting relational schema characteris-
tics: detect many-to-many join tables (translated into
RDF triples) and concept subsumptions (when a pri-
mary key is also a foreign key in another table). The
ontology produced is expressed in OWL-DL, while the
mapping description is stored in an R2O document
(see section 4.2.6).

DB2OWL is exclusively focused on the automatic
creation of ontologies (classes and properties) that re-
flect the relational schema; it does not tackle the con-
version of the relational data. It must be noticed that
most direct mapping implementations are now able to
handle many-to-many relation (although it is not part
of the W3C Direct Mapping), whereas this is hardly
the case of subsumption relations.

In [30], the authors of DB2OWL apply the on-
demand mapping implementation to perform the inte-
gration of several relational databases using two dif-
ferent levels of ontologies: DB2OWL creates a local
ontology for each database and a wrapper converts
queries to a local ontology into SQL queries. At the
top, user queries expressed on a domain ontology are
mapped to queries on local ontologies.

Sustainability: DB2OWL is a prototype, with no
more development since 2007. The source code is not
available.

4.2.5. METAmorphoses
The METAmorphoses processor32 transforms rela-

tional data into RDF using existing target ontologies.
The mappings are specified in a declarative XML-
based mapping language [54], and the RDF graph
is produced at once (data materialisation) in an RD-

31http://silk.semwebcentral.org/
32http://www.svihla.net/metamorphoses/METAmorphoses_pro-

cessor/#documentation

F/XML output document. METAmorphoses is pro-
vided as a Java library under the LGPL open source li-
cense. Although quite simple, METAmorphoses is an
effective tool. As other standalone applications, it does
not require any complex deployment. Mappings can be
implemented and tested easily and quickly.

The mapping language is organised as a two-layer
data transformation model. The mapping layer de-
scribes how to map database tuples, selected by em-
bedded SQL snippets, to RDF individuals using exist-
ing ontologies. The template layer describes how to se-
rialize the mapped entities into RDF/XML.

METAmorphoses does not provide any data re-
trieval method, but relies on the ETL approach to query
the materialized graph.

Sustainability: No update was provided since 2007.

4.2.6. R2O and ODEMapster
R2O is a declarative XML-based language [7] that

allows the description of complex domain semantics-
driven mappings between existing ontologies and re-
lational elements (relations and attributes). It was ini-
tially designed to overcome weaknesses of D2R MAP
[11], the predecessor of the D2RQ mapping language,
for cases where the similarity between the relational
database and the ontology is low. It addresses situa-
tions such as: 1-table-to-n-classes or joined-tables-to-
1-class, that are commonly addressed by other projects
such as D2RQ or Virtuoso. R2O also provides data
transformation primitives such as string manipula-
tions, arithmetic calculations, definition of order rela-
tions, expression of restriction on range of values, etc.
To our knowledge, other RDB-to-RDF tools do not
address such transformations, but one can argue that
major RDB systems do cover such data manipulations
through specific SQL extensions.

R2O is an evolution of eD2R [6], which addressed
the mapping of lightly structured databases or databases
not in first normal form. eD2R proposed complex
transformations on field values based on techniques
such as keyword search, regular expression matching,
natural language processing and others.

The ODEMapster33 query engine uses an R2O map-
ping document to either execute the transformation in
response to a query expressed in the ODEMQL query
language, or to apply the data materialisation approach
(called massive upgrade). SPARQL and the Linked
Data retrieval methods are not supported, but the ETL
approach can be applied by loading the materialised
RDF data into a third party triple store.

33http://neon-toolkit.org/wiki/ODEMapster

Sustainability: ODEMapster has been integrated as
a plug-in into the NeOn34 toolkit, an open source on-
tology engineering environment (ODEMapster plug-
in still maintained in last toolkit version Dec. 2011).
The EU ADMIRE project reused the NeOn toolkit and
provided a distributed access to ODEMapster by us-
ing OGSA-DAI [42]. It is likely that the R2O language
will no longer be maintained as authors have rewritten
ODEMapster into the Morph-RDB R2RML-compliant
product (see section 4.1.2).

4.2.7. RDBToOnto
The RDBToOnto35 tool was designed in the context

of the TAO project36 (ended in early 2009) whose goal
was to allow a fast and effective transition of existing
legacy applications to ontologies.

RDBToOnto consists of a GUI-based extensible tool
and a framework to ease the development and exper-
imentation of "transitioning methods", i.e. ontology
learning from relational databases. RDBToOnto pro-
poses a semi-automated method: first, a direct map-
ping automatically creates a local ontology; then, the
classes of this ontology are refined based on the rela-
tional data itself [16]: find lexical clues in the column
names (matched against a predefined list of keywords
e.g. "Type") or use data redundancy to discover cate-
gorization patterns. Another step allows for database
optimization (removal of redundancies using the third
party tool LATINO). The whole process is interactive
(user defined rules) and iterative. The process com-
pletes with the production of the populated ontology:
RDBToOnto implements the data materialisation ap-
proach.

RDBToOnto can be extended by means of connec-
tors and converters to implement new learning meth-
ods. It does not specify any mapping language: con-
straint rules are stored in application specific project
files and edited through the GUI only.

Sustainability: RDBToOnto has been used in a large
real-world case study in aircraft maintenance37, in-
cluding mixing with existing ontologies, maintenance
documentation annotation and WSDL annotation. No
indication of use and maintenance outside of this con-
text is found.

34http://www.neon-project.org/nw/Welcome_to_the_NeOn_Project
35http://www.tao-project.eu/researchanddevelopment/demosand-

downloads/RDBToOnto.html
36http://www.tao-project.eu/index.html
37http://videolectures.net/eswc08_cebrah_tla/

4.2.8. Relational.OWL
Peer-to-peer databases are volatile distributed databases,

with frequently changing data and schema. Sharing
data between such databases requires an exchange for-
mat that can be understood instantly, without requiring
content negotiation or ontology alignment. The goal
of Relational.OWL38 is to enable such data sharing
by providing an application independent representa-
tion technique expressed as an OWL ontology. Rela-
tional.OWL helps represent relational schema compo-
nents by means of a local ontology (e.g. complying
with direct mapping rules), as well as the relational
data itself. It defines classes for tables, columns, pri-
mary and foreign keys, data types, and relations (prop-
erties) between those classes. OWL-full is required
in order to allow the creation of an ontology with
classes defined as instances of the Relational.OWL on-
tology classes. The use of OWL-full may be consid-
ered as a hurdle to the adoption of Relational.OWL,
as it is non decidable. Nevertheless authors are "confi-
dent of most OWL reasoning tools being able to han-
dle data and schema representations created using Re-
lational.OWL" [21].

The Relational.OWL application is a GUI that au-
tomates the process of converting a database into its
equivalent OWL full expression. No data retrieval
method is provided, but based on Relational.OWL, De
Laborda and Conrad [23] proposed a method to per-
form domain-semantics mapping: in a nutshell, the
system first implements the ETL approach, then aligns
the produced RDF data with the target ontology by
processing SPARQL CONSTRUCT queries.

The advantage of expressing the schema of a re-
lational database by building an ontology based on
the Relational.OWL ontology is interoperability. The
fact that two database schemas are described using
the same base ontology helps compare classes with
classes and properties with properties. However it does
not solve alignment issues: for instance, it cannot
help figure out that two columns from two databases
bear the same semantics. Another advantage of Rela-
tional.OWL pointed out by De Laborda and Conrad
[22] is that it keeps track of the relationship between
the produced RDF data and the original database. Ap-
plications of this property could be the tracing of data
provenance, the explanation of query results, or the as-
sessment of confidence in query results.

Sustainability: Relational.OWL was not updated
since 2006.

38http://sourceforge.net/projects/relational-owl/

4.2.9. SPASQL
SPASQL39 is an open-source modified MySQL

server, able to parse both SQL and SPARQL queries.
The goal of providing MySQL with native support for
SPARQL is to allow the same performance as for well-
tailored SQL queries, by avoiding a complex rewrit-
ing phase [44]: SPARQL and SQL queries are com-
piled into the same data structures, and are then equally
processed by the MySQL query processing engine.
SPASQL is an extension of SQL allowing the exe-
cution of SPARQL queries within SQL statements,
typically by treating them as sub-queries or function
clauses. Variables in a SPARQL query are treated like
any variable in an SQL query, making the two lan-
guages interchangeable to query the same database.

SPASQL applies an automatic direct mapping ap-
proach, along with the on-demand query processing.
No query rewriting process is needed, the SQL inter-
preter is extended to support both SQL and SPARQL.
The support of SPARQL is limited to SELECT clauses
with no variable in the predicate position of triple pat-
terns. Results are returned like usual MySQL result
sets.

Sustainability: SPASQL was designed in the project
FeDeRate for Drug Research40 and remained in an
early prototype status . No update was reported since
2008.

4.2.10. SquirrelRDF
With SquirrelRDF41, Seaborne et al. [48] propose a

tool to apply direct mapping rules to an input database
or an LDAP directory, and to answer SPARQL queries
through an on-demand query rewriting process. Map-
ping principles roughly follow [8]. The mapping de-
scription file (in RDF/Turtle) can be generated auto-
matically from the database. Note that we could not
find a definition of the mapping file vocabulary on the
internet nor in the downloaded archives. The mapping
may be customized in order to use an existing tar-
get vocabulary, nevertheless the customization is rather
limited, and the mapping essentially remains driven by
direct mapping rules. Jena rules may be used to pro-
duce additional knowledge in the perspective of more
domain-driven mappings.

The data can be retrieved using SPARQL SELECT,
ASK and CONSTRUCT query forms issued to the
Jena SPARQL API. A CLI tool is available to test
whether the configuration is properly set. A limited

39http://www.w3.org/wiki/SPASQL
40http://www.w3.org/2004/10/04-pharmaFederate/
41http://jena.sourceforge.net/SquirrelRDF/

demo SPARQL endpoint supports the SELECT query
form. Whatever the access method used, variables are
not allowed in the predicate position of triple pat-
terns. An originality of SquirrelRDF is that it can query
multiple databases simultaneously (n tables from m
databases).

Sustainability: SquirrelRDF has not been updated
since 2006. It was delivered as part of the Jena frame-
work distribution in 2006, however it is no longer part
of it since Jena42 moved to the Apache foundation.

4.2.11. Triplify
The goal of Triplify43 is to enable popular Web ap-

plications (like CMS or blog applications) to publish
the content of their relational database as RDF Linked
Data or JSON. Given that many instances of such web
applications are deployed over the internet, helping
them to quickly expose their database is expected to
result in a boost of the Semantic Web adoption [4].

Triplify is a simple but effective approach to be used
as a lightweight easy-to-learn plug-in for existing web
applications. It is based on the mapping of HTTP URI
requests onto queries to the relational database. Com-
pared to the direct mapping approach, Triplify takes
the problem the other way round: it first focuses on
the relational data that actually matters and the queries
that should be needed, instead of translating the whole
relational schema into an ad-hoc ontology. Mappings
are implemented as SQL statements embedded in PHP
scripts, therefore any SQL construct or aggregation
function of the back-end may be used. Transformation
functions written in PHP may in turn be applied to
the data returned by the SQL queries. Authors argue
that "Triplify facilitates the creation of custom-tailored
search engines targeted at certain niches, e.g. searching
for specific content in various blogs, wikis, or forums"
[4].

Triplify provides the on-demand and data materi-
alisation implementations. In the on-demand mode,
data is retrieved as RDF Linked Data or JSON (both
through HTTP GET), but no query rewriting process is
supported.

Some Triplify modules specifically address the
provenance metadata generation (using the Prove-
nance Vocabulary44), as well as the support of the Link
Data Update Logs by interpreting URIs that contain
the update keyword, and mapping them to appropriate
queries to update the database.

42http://jena.sourceforge.net/SquirrelRDF/
43http://triplify.org/
44http://sourceforge.net/apps/mediawiki/trdf/index.php?title=

Provenance_Vocabulary

Triplify is aimed at small to medium Web applica-
tions (i.e. less than 100MB database content). How-
ever, it supports the caching of the triplification re-
sults and can hence be used with large Web applica-
tions (160GB data for OpenStreetMap). It has been
adapted to several popular web applications (Word-
Press, Joomla, osCommerce, etc.).

Sustainability: Triplify is provided under the LGPL
v2 licence. The last version 0.8 was published in
March 2010. However it seems to have a large and ac-
tive user communities. Triplify is maintained by the
Agile Knowledge Engineering and Semantic Web45.

4.3. Summary

Table 2 summarizes the characteristics of the tools
studied in this section along the three axis defined in
section 2 and the mapping features listed in Table 1.
The two columns under the Characteristics category
specify whether each tool comes with a specific map-
ping language and/or an implementation of a transfor-
mation engine.

5. Synthesis

The previous section shows a large diversity of ap-
proaches among the tools designed to translate rela-
tional databases into RDF. Overall, although the var-
ious approaches are driven by various motivations,
three steps cannot be circumvented: the mapping de-
scription (direct vs. domain semantics-driven), the
mapping implementation (data materialisation or on-
demand) and the data retrieval (query-based access or
linked data). These steps have been described in sec-
tions 2.1, 2.2 and 2.3. Figure 1 depicts their sequential
composition as well as the options applicable at each
step. The figure reads from top to bottom, following
the chronological order involved when setting up the
translation process.

45http://aksw.org/About.html

Ta
bl

e
2

Sy
nt

he
tic

vi
ew

of
to

ol
s

fe
at

ur
es

.T
he

"X
"

cr
os

s
m

ea
ns

su
pp

or
te

d,
an

em
pt

y
ce

ll
m

ea
ns

un
su

pp
or

te
d.

Q
ue

st
io

n
m

ar
ks

m
ea

n
th

at
av

ai
la

bl
e

in
fo

rm
at

io
n

di
d

no
tp

er
m

it
to

fig
ur

e
ou

ti
ft

he
fe

at
ur

e
is

su
pp

or
te

d
or

no
t.

To
ol

s

C
ha

ra
ct

er
is

tic
s

M
ap

pi
ng

de
sc

ri
pt

io
n

M
ap

pi
ng

im
pl

em
en

ta
tio

n
D

at
a

re
tr

ie
va

l
Fe

at
ur

es
of

m
ap

pi
ng

de
sc

ri
pt

io
n

Mappinglanguage

Transformationengine

Directmapping

AugmentedDirectmapping

DomainSemantics-Drivenmapping

Datamaterialisation

On-demandmapping

Query-basedaccess

Linkeddata

UserdefineduniqueIds

Logicaltable

Columnselection

Columnrenaming

Selectconditions

Vocabularyreuse

1tabletonclasses

many-to-manytosimpletriples

Blanknodes

Datatypes

Datatransformation

Namedgraphs

User-definednamespaces

Staticmetadata

NonR2RML

D
2R

Q
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

D
at

al
if

t
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
D

B
2O

W
L

X
n.

a
n.

a
X

?
X

?
?

?
M

E
TA

m
or

ph
os

es
X

X
X

X
n.

a
X

X
X

X
X

X
X

X
X

X
R

2O
/O

D
E

M
ap

st
er

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

R
D

B
To

O
nt

o
X

X
n.

a
X

?
X

X
X

X
X

?
X

?
?

X
?

R
el

at
io

na
l.O

W
L

X
X

n.
a

X
X

X
?

?
SP

A
SQ

L
X

X
X

X
?

?
?

?
Sq

ui
rr

el
R

D
F

X
X

X
X

X
X

X
X

?
?

?
Tr

ip
lif

y
X

X
X

X
X

X
X

X
X

X
X

X
X

X
?

X
X

X

R2RML

D
B

2T
ri

pl
es

X
X

X
X

n.
a

X
X

X
X

X
X

X
X

X
X

X
X

X
M

or
ph

-R
D

B
X

X
X

X
X

X
X

X
X

X
X

X
X

X
?

X
X

O
ra

cl
e

12
c

X
X

X
X

?
?

?
?

?
?

?
?

?
?

?
?

?
?

R
D

F-
R

D
B

2R
D

F
X

X
X

X
n.

a
X

X
X

X
X

X
X

?
X

?
X

X
V

ir
tu

os
o

R
D

F
V

ie
w

s
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

?
?

?
X

?
U

ltr
aw

ra
p

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

?
X

X
X

X
SP

A
R

Q
L

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Fig. 1. Steps of the RDB-to-RDF process. From top to bottom, the
figure depicts the steps needed to set up the translation process.
Blue paths start with a direct mapping description, red paths
start with a domain semantics-driven mapping description

The insight gained from this study suggests that the
mapping description method (top layer in Figure 1)
splits existing approaches into two families with re-
gards to the overall RDB-to-RDF process: the direct
mapping family is denoted by the blue arrows on Fig-
ure 1, and the domain semantics-driven mapping fam-
ily is denoted by the red arrows. In section 5.1 we high-
light both families by examining the mapping steps or-
chestration strategies, and we underline the relation-
ship between the initial motivation and the way the
tools were designed. Then, in section 5.2, we underline
that the expressiveness of existing mapping languages
is not always sufficient to produce semantically rich
data and make it usable, interoperable and linkable. We
therefore briefly present various strategies investigated
in the literature to produce additional knowledge. Fi-
nally, we discuss the applicability of R2RML to the
wide scope of RDB to RDF translation needs.

5.1. Direct Mapping vs. Domain Semantics-Driven
Mapping

5.1.1. Direct Mapping and Augmented Direct
Mapping

The direct mapping approach transforms the content
of a relational database into RDF by reflecting the re-
lational schema in an ad-hoc ontology. Nevertheless,
it is hardly a goal in itself and it is generally comple-
mented by further steps depending on the work moti-

vation. The initial motivation of tools applying the Di-
rect Mapping method is generally either to quickly ex-
pose relational data on the web, or to learn ontologies
from a relational databases.

Direct Mapping and On-demand Implementa-
tion

SquirrelRDF, SPASQL and Ultrawrap fall in the first
category (although Ultrawrap now supports domain
semantics-driven mapping with R2RML, but its pri-
mary goal was the direct mapping implementation).
Their point is to address the semantic web chicken-
and-egg dilemma mentioned in the introduction: they
enable the publication of relational data as RDF, leav-
ing the semantic interoperability concerns for a later
step. All three provide an on-demand mapping im-
plementation, thus focusing on the efficient imple-
mentation of a query-rewriting process. Furthermore,
SPASQL and Ultrawrap rely on the optimization en-
gine of the relational backend to optimize rewritten
SQL queries.

Ontology Learning, Augmented Direct Mapping
and Data Materialisation

Ontology learning approaches focus on the engi-
neering of ontologies by extracting classes and proper-
ties from relational schemas and data. The scope varies
from the search for specific database design patterns
such as many-to-many relations or subsumption rela-
tions, to data analysis techniques that help discover
or refine ontological classes and properties. Often this
is accompanied by semi-automatic methods that itera-
tively extend the ontology with classes and properties
learnt from the database, or suggest probable matches
with existing ontologies. Various such strategies can be
found in [50] and [53].

All the ontology learning tools studied in this paper
(DB2OWL, RDBToOnto, Relational.OWL) apply the
augmented direct mapping description, that Spanos et
al. [53] name creation of a domain-specific ontology
with database reverse engineering. This choice seems
natural since their goal is not to align the database on
existing ontologies but to discover ontological knowl-
edge. This is corroborated by Sequeda et al.’s sur-
vey of direct mapping approaches [50]: all of the
seven reviewed papers mainly address ontology learn-
ing through the augmented direct mapping principles.

Most ontology learning approaches implement data
materialisation. This is the case of RDBToOnto and
Relational.OWL (DB2OWL does not provide any im-
plementation) as well as the seven papers reviewed by
Sequeda et al. [50]. This choice does not seem obvious

though, as an on-demand implementation can apply
too, as illustrated by Ultrawrap. Two reasons mainly
explain this choice. (i) As a pragmatic reason, ontol-
ogy learning approaches need to demonstrate their fea-
sibility, keeping the development effort as low as pos-
sible. In this regard, implementing the data material-
isation method is more straight-forward than the on-
demand mapping. (ii) Some ontology learning meth-
ods entail schema and data analysis possibly requiring
many requests to the RDF dataset, e.g. statistical anal-
ysis of occurrences of values in a table, which may be
very inefficient in an on-demand implementation.

5.1.2. Domain Semantics-Driven Mapping
Tools based on domain semantics-driven mapping

generally result from two motivations, the implemen-
tation of an efficient transformation engine or the def-
inition of a generic mapping language (or eventually
both).

Asio SBRD, D2R server, Triplify, Morph-RDB, Or-
acle, Virtuoso and Ultrawrap target the development
of production-class query engines able to handle a
large number of concurrent, potentially complex re-
quests while ensuring acceptable performances. Those
tools apply the on-demand mapping implementation:
they investigate methods to efficiently rewrite a query
on the target data model (either SPARQL or linked
data HTTP dereferencing) into an SQL query, and ef-
ficiently execute the translated query (query optimiza-
tion and query planning).

Such tools may come with the definition of an
expressive generic mapping language (D2RQ, Virtu-
oso), unless they rely on an existing language such as
R2RML. The mapping language is even the prior focus
of R2O/ODEMapster and METAmorphoses that both
implement data materialisation. To some varying ex-
tend, mapping languages rely on a mix of specific con-
structors and embedded SQL snippets. Besides, Asio,
Datalift and Virtuoso can be classified in a data inte-
gration framework category: their focus is not only to
translate relational data into RDF, but also to query
this data along with other data sources. Datalift applies
data materialisation to merge heterogeneous sources as
multiple graphs in a single RDF repository, while Asio
and Virtuoso apply on-demand mapping.

5.1.3. Data Retrieval Methods
Query-based retrieval is the most commonly im-

plemented method within the tools we have stud-
ied, as evidenced by the "Query-based access" col-
umn in Table 2. Five tools support the Linked Data
method (D2RQ, Datalift, Triplify, Virtuoso, Ultra-

wrap). Triplify is the only one to support exclusively
the Linked Data method.

5.1.4. Extract-Transform-Load (ETL)
The Extract-Transform-Load (ETL) expression is

used in the literature to denote a 3-step approach: de-
fine a mapping, materialise the RDF data based on that
mapping, and load the RDF data into a triple store
to query it, typically through a SPARQL endpoint.
The green dotted line in Figure 1 denotes this whole
process. It shows that any of the direct or domain
semantics-driven mappings can apply. Strictly speak-
ing, and as there is no formal definition of the ETL ap-
proach, the Linked Data retrieval method could also be
included. In practice though, ETL generally refers to
query-based retrieval, and more precisely the use of a
SPARQL endpoint.

5.2. A posteriori Production of Semantically Rich
Data

Producing RDF data with sufficient semantics, in
order to make it usable, interoperable and linkable, is
a critical concern in most RDB-to-RDF tools. Exper-
imentations that use direct mapping-based tools often
underline the weaknesses of this method: the reuse of
the RDF data produced is not easy due to the lack of
formal semantic reference. Hence, its interoperability
with other datasets requires to lift the data to a higher
level of semantic formalisation. Furthermore, even in
the case of a domain semantics-driven mapping, the
production of sufficiently semantically rich data can-
not always be achieved by the expressiveness of exist-
ing mapping languages. In other words, the alignment
of RDF data with existing ontologies has to be con-
sidered carefully in any case. Consequently, various
strategies are investigated in the literature to produce
additional semantics, a posteriori. Below we briefly
present most common ones.

Aligning multiple levels of ontologies
Several RDB-to-RDF projects propose to enhance

the direct mapping by aligning the local ontology
with higher levels of abstraction formalized by domain
and application ontologies. In this case, the domain
semantics-mapping is not performed beforehand as in
domain semantics-driven mapping tools, but involves
the later alignment of ontologies.

Asio SBRD, DataLift, as well as a DB2OWL-based
approach [30], propose comparable methods using two
distinct levels of ontologies. In a first step, the direct
mapping method is applied to create a local ontology

that reflects the structure of the relational database. In
a second step, the local ontology is manually aligned
with an ontology that models some part of the domain
which the relational database refers to. A query engine
translates a query to the domain ontology into a query
to the local ontology. The query to the local ontology
is in turn translated into an SQL query to the relational
database.

Alternatively, the alignment of the local ontology
with a domain ontology may be achieved by using
SPARQL CONSTRUCT or INSERT queries: given a
graph pattern expressed with local ontology classes
and properties, they produce new RDF data using
classes and properties of the domain ontology. De
Laborda and Conrad [23] describe a use case in which
they have applied this method with Relational.OWL.
This turns out to be equivalent to the execution of rules
in a rule engine (see below). The difference, here, is
that the rules description language is SPARQL.

Hu and Qu [37] propose to apply data mining tech-
niques to automatically disco ver simple mappings be-
tween the relational entities (tables, columns, integrity
constraints) and the classes and properties of an ex-
isting ontology. Relational and ontological entities are
compared using distance measures such as the TF-IDF
(Term Frequency-Inverse Document Frequency), in ad-
dition to the computation of the confidence in a map-
ping and a validation phase. In this sense, it can be seen
as an automatic, domain semantics-driven approach.
However, for this method to perform efficiently, the
similarity between the relational schema and the ontol-
ogy should be high, unless human users provide initial
reference mappings.

Besides the aforementioned generic methods, some
domain-specific projects propose alternative methods.
For instance, Green et al. [32] describe a demonstra-
tor that relies on existing tools to allow for the "spa-
tial attribution" of RDF data sources, for the predic-
tive modelling of diffuse water pollution. The feder-
ation of different data sources lies on a 3-layer on-
tology stack. The ontologies at the first level (called
data ontologies) are used to map each data source to
classes of domain ontologies (at the second level) writ-
ten by domain experts. At the top, the application on-
tology links the domain ontologies together with the
addition of application-specific information. Much of
the application ontology is created manually, as it re-
quires domain knowledge of the scenario being mod-
elled. D2RQ is used to map data sources to the data
ontologies, and is extended to include spatial operators
provided by the Oracle Spatial database.

Fig. 2. Semantic enrichment. The green layer depicts strategies aimed
at a posteriori production of additional semantic data

Using rules to infer additional knowledge
Rule engines or reasoners are an alternative way to

enrich the semantics of RDF data. This option is de-
picted by the green layer in Figure 2. Such techniques
can easily be used in conjunction with data materi-
alisation in which case the whole graph is available
at once. The NeuroLOG project [31] illustrates this
method: it uses METAmorphoses to create an RDF
materialisation of federated neuro-imaging relational
databases. Some relational columns help infer whether
resources belong to specific classes of the application
ontology (1-table-to-n-classes property in table 1). As
the METAmorphes mapping language is not capable
of describing such categorization patterns, they are de-
scribed as SWRL rules executed by the CORESE [17]
semantic search engine. By raising the semantics of the
data, the process improves the possibilities of further
application-specific reasoning.

Rule engines and reasoners can also apply on RDF
data translated on-demand, although the execution of
complex deduction rules, or the application of complex
entailments, may generate a high volume of queries to
the database. In the worst case, the process may re-
quire to translate the whole relational data to complete.
Among the tools studied in this paper, several support
rules: SWRL rules for Asio, Silk module in DataLift,
Jena Rules in SquirrelRDF, and proprietary RDF-to-
RDF deduction rules in XSPARQL.

5.3. R2RML or not?

Today, R2RML seems to be inescapable when it
comes to transform relational data into RDF. It re-
sults from the study of previous initiatives, it takes ad-
vantage of their experience and encompasses most of
their expressiveness. To our knowledge, one graphical
editor currently proposes to help users write R2RML
mappings [49]. However, along with the wider adop-
tion of the language, it is likely that other initiatives
will show up. Additionally, major actors born before
R2RML now comply with it (D2R server, Virtuoso,
Ultrawrap). Consequently, anyone looking for a ma-
ture tool to perform RDB-to-RDF translation will most
likely choose an R2RML compliant initiative.

Nevertheless, some situations suggest that R2RML
cannot be considered as a "catch-all" mapping lan-
guage. Firstly, direct mapping based approaches do not
necessarily require a mapping language: direct map-
ping rules can easily be encoded in a program with-
out needing to interpret a mapping language. Sec-
ondly, certain approaches (such as ontology learning)
deal with complex patterns that cannot be expressed in
R2RML. For instance, RDBToOnto [16] analyses data
redundancy to discover categorization patterns. Hu and
Qu [37] apply data mining techniques to automatically
discover mappings between the database and an ex-
isting ontology. Lastly, R2RML does not provide data
manipulation functions but relies on the capabilities of
the relational backend instead. To address those situa-
tions, a further version of R2RML could, for instance,
provide language extension points to enable the invo-
cation of domain specific functions provided as a soft-
ware plug-in.

6. Conclusion and Open Questions

Many techniques and tools have been proposed over
the last years to enable the publication of relational
data on the web in RDF. RDB-to-RDF methods are
one of the keys to populate the web of data by un-
locking the huge amount of data stored in relational
databases. In this paper, we have described three axes
to categorize such RDB-to-RDF approaches. We have
proposed a detailed review of seventeen RDB-to-RDF
tools, either supporting the R2RML W3C recommen-
dation or providing their own mapping language. The
proposed categorization helped us identify common-
alities and differences between existing tools, under-
line the relationship between the initial motivation and
the way the tools were designed, and discuss the or-

chestration of the solutions applicable at each step of
the RDB-to-RDF translation process. Since producing
RDF data with sufficiently rich semantics is often im-
portant in order to make the data usable, interopera-
ble and linkable, we have also briefly presented var-
ious strategies investigated in the literature to enrich
data semantics. Finally, we have shown that, although
R2RML is a promising language, it may not apply to
all situations in the wide scope of RDB to RDF trans-
lation needs, leaving space for future extensions.

Beyond RDB-to-RDF methods, a wide range of
other initiatives target the publication of non-RDF
data sources in RDF, such as academic tools (XS-
PARQL supports XML sources, Datalift supports CSV
and XML sources), ontology-based access to data
streamed from sensor webs [15], extension of R2RML
to support XML and JSON data sources [25], wrappers
of popular web site APIs (e.g. flickrdf library) or mis-
cellaneous format-specific converters and "RDFizers".
Whatever the method though, the result is a read-only
web of data. And similarly to the tremendous change
of paradigm that lead to the Web 2.0 where the user
contribution plays a major role, the web of data will
necessarily have to shift to a write-enabled model. In
the case of relational databases, although the expres-
siveness of RDB-to-RDF mappings is a key to rich
semantic alignment, it also often results in one-way
transformation mappings (one-way mappings cannot
be used to revert RDF data to the original relational
data). Consequently, it will be necessarily to find a
compromise between the expressiveness of RDB-to-
RDF mapping languages and the need for updating re-
lational data using protocols of the semantic web. The
R3M mapping language is an example of the search
for such a compromise [35].

Berners-Lee et al. [10] investigate some of the is-
sues and challenges related to a read-write web of data.
They underline that creating, updating and deleting
RDF data should only be made possible in a secure,
reliable, trustworthy and scalable way. This questions
the way to authenticate people and programs in the
web of data, to securely assign authorizations, to track
the changes made, etc. As to the trustworthiness ques-
tion, in a global data space made of heterogeneous data
sources integrated together, it will become crucial to
explain query results, or to assess the confidence a user
can have in query results. To this end, applications ex-
posing non-RDF data sources into RDF will have to
ensure the preservation of provenance information, al-
lowing to track a piece of data back to its original data
source.

References

[1] H. Akil, M. E. Martone, and D. C. Van Essen. Challenges and
opportunities in mining neuroscience data. Science, 331(6018):
708–712, 2011. ISSN 0036-8075, 1095-9203.

[2] M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Se-
queda. A direct mapping of relational data to RDF,
Sept. 2012. URL http://www.w3.org/TR/2012/
REC-rdb-direct-mapping-20120927/.

[3] M. Ashok. W3C RDB2RDF incubator group report,
2009. URL http://www.w3.org/2005/Incubator/
rdb2rdf/XGR-rdb2rdf-20090126/.

[4] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Au-
mueller. Triplify: light-weight linked data publication from
relational databases. In Proceedings of the 18th Interna-
tional conference on World Wide Web, pages 621–630, Madrid,
Spain, 2009.

[5] S. Auer, L. Feigenbaum, D. Miranker, A. Fogarolli, and J. Se-
queda. Use cases and requirements for mapping relational
databases to RDF, June 2010. URL http://www.w3.org/
TR/2010/WD-rdb2rdf-ucr-20100608/.

[6] J. Barrasa, O. Corcho, and A. Gómez-Pérez. Fund finder: A
case study of database-to-ontology mapping. In Semantic In-
tegration Workshop, in Proceedings of the 2nd International
Semantic Web Conference (ISWC 2003), 2003.

[7] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O, an extensi-
ble and semantically based database-to-ontology mapping lan-
guage. In Proceedings of the 2nd Workshop on Semantic Web
and Databases (SWDB 2004), volume 3372, Toronto, Canada,
2004. Springer-Verlag. ISBN 978-3-540-24576-6.

[8] T. Berners-Lee. Relational databases and the semantic web, in
design issues of the WWW, 1998. URL http://www.w3.
org/DesignIssues/RDB-RDF.html.

[9] T. Berners-Lee. Linked data, in design issues of the WWW,
2006. URL http://www.w3.org/DesignIssues/
LinkedData.html.

[10] T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey,
O. Seneviratne, and O.-E. Ureche. Realising a read-write web
of data, 2009. URL http://web.mit.edu/presbrey/
Public/rw-wod.pdf.

[11] C. Bizer. D2R MAP - a database to RDF mapping language.
In Proceedings of the 12th International World Wide Web Con-
ference (WWW 2003), Budapest, Hungary, 2003.

[12] C. Bizer and R. Cyganiak. D2R server - publishing relational
databases on the semantic web. In Proceeding of the 5th Inter-
national Semantic Web Conference (ISWC 2006), 2006.

[13] C. Bizer and A. Seaborne. D2RQ - treating non-RDF databases
as virtual RDF graphs. In Proceedings of the 3rd International
Semantic Web Conference (ISWC 2004), 2004.

[14] A. Burgun, O. Bodenreider, et al. Accessing and integrating
data and knowledge for biomedical research. Yearbook of Med-
ical Informatics, 47 Suppl. 1:91–101, 2008.

[15] J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer. En-
abling query technologies for the semantic sensor web. Inter-
national Journal on Semantic Web and Information Systems, 8
(1):43–63, 2012. ISSN 1552-6283, 1552-6291.

[16] F. Cerbah. Learning highly structured semantic repositories
from relational databases: The RDBToOnto tool. In Proceed-
ings of the 5th European Semantic Web Conference (ESWC
2008), pages 777–781, Athens, GA, USA, 2008. ISBN 3-540-
68233-3 978-3-540-68233-2.

[17] O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying
the semantic web with corese search engine. In Proceedings
of 16th European Conference on Artificial Intelligence, vol-
ume 16, page 705, Valencia, Spain, 2004.

[18] N. Cullot, R. Ghawi, and K. Yetongnon. DB2OWL : A tool
for automatic database-to-ontology mapping. In Proceedings
of the 15th Italian Symposium on Advanced Database Systems,
pages 491–494, Torre Canne, Fasano, BR, Italy, 2007.

[19] R. Cyganiak, C. Bizer, O. Maresch, and C. Becker. The D2RQ
mapping language v0.8, 2012. URL http://d2rq.org/
d2rq-language.

[20] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF
mapping language, Sept. 2012. URL http://www.w3.
org/TR/2012/REC-r2rml-20120927/.

[21] C. P. De Laborda and S. Conrad. Querying relational databases
with RDQL. In Proceeding of the Berliner XML Tage 2005,
pages 161–172. Citeseer, 2005.

[22] C. P. De Laborda and S. Conrad. Relational.OWL: a data and
schema representation format based on OWL. In Proceedings
of the 2nd Asia-Pacific conference on Conceptual modelling,
volume 43, pages 89–96, Newcastle, Australia, 2005.

[23] C. P. De Laborda and S. Conrad. Database to semantic web
mapping using RDF query languages. Conceptual Modeling-
ER 2006, pages 241–254, 2006.

[24] M. Dean. Suggestions for semantic web interfaces to
relational databases. In W3C Workshop on RDF Ac-
cess to Relational Databases, Cambridge, MA, USA,
2007. URL http://www.w3.org/2007/03/RdfRDB/
papers/dean.html.

[25] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Man-
nens, and R. Van de Walle. RML: a generic language for inte-
grated RDF mappings of heterogeneous data. In Proceedings
of the 7th Workshop on Linked Data on the Web (LDOW2014),
Seoul, Korea, 2014.

[26] C. Dolbear and J. Goodwin. Position paper on expressing re-
lational data as RDF. In W3C Workshop on RDF Access to
Relational Databases, 2007. URL http://www.w3.org/
2007/03/RdfRDB/papers/dolbear.pdf.

[27] O. Erling. Requirements for relational-to-RDF mapping, blog
additional, 2008. URL http://www.openlinksw.com/
weblog/oerling/index.vspx?page=&id=1434.

[28] O. Erling. Requirements for relational to RDF mapping,
2008. URL http://www.w3.org/wiki/Rdb2RdfXG/
ReqForMappingByOErling.

[29] L. Feigenbaum, G. Todd Williams, K. Grant Clark,
and E. Torres. SPARQL 1.1 protocol, Mar.
2013. URL http://www.w3.org/TR/2013/
REC-sparql11-protocol-20130321/.

[30] R. Ghawi and N. Cullot. Database-to-ontology mapping gen-
eration for semantic interoperability. In Third International
Workshop on Database Interoperability (InterDB 2007), in
conjunction with VLDB 2007, Vienna, Austria, 2007.

[31] B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel,
A. Gaignard, and J. Montagnat. NeuroLOG: sharing neu-
roimaging data using an ontology-based federated approach.
In Proceedings of the AMIA Annual Symposium, volume 2011,
page 472, Washington DC, USA, 2011.

[32] J. Green, C. Dolbear, G. Hart, J. Goodwin, and P. Engelbrecht.
Creating a semantic integration system using spatial data. In
Proceedings of the 7th International Semantic Web Conference
(ISWC 2008), pages 26–30, Karlshue, Germany, 2008.

http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/
http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/
http://www.w3.org/TR/2010/WD-rdb2rdf-ucr-20100608/
http://www.w3.org/TR/2010/WD-rdb2rdf-ucr-20100608/
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://d2rq.org/d2rq-language
http://d2rq.org/d2rq-language
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/2007/03/RdfRDB/papers/dean.html
http://www.w3.org/2007/03/RdfRDB/papers/dean.html
http://www.w3.org/2007/03/RdfRDB/papers/dolbear.pdf
http://www.w3.org/2007/03/RdfRDB/papers/dolbear.pdf
http://www.openlinksw.com/weblog/oerling/index.vspx?page=&id=1434
http://www.openlinksw.com/weblog/oerling/index.vspx?page=&id=1434
http://www.w3.org/wiki/Rdb2RdfXG/ReqForMappingByOErling
http://www.w3.org/wiki/Rdb2RdfXG/ReqForMappingByOErling
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

[33] S. Harris and A. Seaborne. SPARQL 1.1 query language,
Mar. 2013. URL http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

[34] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the
deep web. Communications of the ACM, 50(5):94–101, 2007.
ISSN 0001-0782. .

[35] M. Hert, G. Reif, and H. C. Gall. Updating relational data via
SPARQL/update. In Proceedings of the EDBT/ICDT Work-
shops 2010, page 24, 2010.

[36] M. Hert, G. Reif, and H. C. Gall. A comparison of RDB-to-
RDF mapping languages. In Proceedings of the 7th Interna-
tional Conference on Semantic Systems, pages 25–32, Graz,
Austria, 2011. ACM.

[37] W. Hu and Y. Qu. Discovering simple mappings between re-
lational database schemas and ontologies. The Semantic Web,
pages 225–238, 2007.

[38] N. Lopes, S. Bischof, S. Decker, and A. Polleres. On the
semantics of heterogeneous querying of relational, XML and
RDF data with XSPARQL. In Proceedings of the 15th Por-
tuguese Conference on Artificial Intelligence (EPIA 2011), Lis-
bon, Portugal, 2011.

[39] C. Ogbuji. SPARQL 1.1 graph store HTTP protocol,
Mar. 2013. URL http://www.w3.org/TR/2013/
REC-sparql11-http-rdf-update-20130321/.

[40] Oracle. Semantic technologies in oracle database 11g
release 2: Capabilities, interfaces, performance, 2010.
URL http://download.oracle.com/otndocs/
tech/semantic_web/pdf/2010_ora_semtech_
capintper.pdf.

[41] Oracle. Oracle spatial and graph 12c, RDF semantic
graph, 2013. URL http://download.oracle.com/
otndocs/products/semantic_tech/pdf/12c/
rdfsemanticgraph_12c_fo.pdf.

[42] F. Priyatna. RDF-based access to multiple relational data
sources. PhD thesis, Universidad Politecnica de Madrid,
Madrid, Spain, 2009.

[43] F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and ex-
periences of R2RML-based SPARQL to SQL query translation
using morph. In Proceeding of the World Wide Web Conference
2014, Seoul, Corea, 2014.

[44] E. Prud’hommeaux. SPASQL: SPARQL support in
MySQL, 2007. URL http://www.w3.org/2005/05/

22-SPARQL-MySQL/XTech.
[45] L. Rhys. Dereferencing HTTP URIs - draft tag finding

31 august 2007, 2007. URL http://www.w3.org/
2001/tag/doc/httpRange-14/2007-08-31/
HttpRange-14.html.

[46] A. Ruttenberg, T. Clark, W. Bug, M. Samwald, O. Bodenreider,
H. Chen, D. Doherty, K. Forsberg, Y. Gao, V. Kashyap, et al.
Advancing translational research with the semantic web. BMC
bioinformatics, 8(Suppl 3):S2, 2007.

[47] S. Sahoo, W. Halb, S. Hellman, K. Idehen, T. Thibodeau,
S. Auer, J. Sequeda, and A. Ezzat. A survey of cur-
rent approaches for mapping of relational databases to RDF,
2009. URL http://www.w3.org/2005/Incubator/
rdb2rdf/RDB2RDF_SurveyReport_01082009.pdf.

[48] A. Seaborne, D. Steer, and S. Williams. RDF-SQL (Squir-
relRDF). In W3C Workshop on RDF Access to Relational
Databases, 2007. URL http://www.w3.org/2007/03/
RdfRDB/papers/seaborne.html.

[49] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler. Editing
R2RML mappings made easy. In 12th International Semantic
Web Conference (posters and demos), Sydney, Australia, 2013.

[50] J. Sequeda, S. H. Tirmizi, O. Corcho, and D. P. Miranker. Sur-
vey of directly mapping SQL databases to the semantic web.
Knowledge Eng. Review, 26(4):445–486, 2011.

[51] J. F. Sequeda and D. P. Miranker. Ultrawrap: SPARQL execu-
tion on relational data. Web Semantics: Science, Services and
Agents on the World Wide Web, 22:19–39, Oct. 2013. ISSN
15708268.

[52] J. F. Sequeda, R. Depena, and D. P. Miranker. Ultrawrap: Using
sql views for rdb2rdf. In Proceedings of the 8th International
Semantic Web Conference (ISWC 2009), Chantilly, VA, USA,
2009.

[53] D.-E. Spanos, P. Stavrou, and N. Mitrou. Bringing relational
databases into the semantic web: A survey. Semantic Web Jour-
nal, 3(2):169–209, 2012.

[54] M. Svihla and I. Jelinek. Two layer mapping from database to
RDF. In Proceedings of Electronic Computers and Informatics
(ECI), 2004.

[55] S. Tirmizi, J. Sequeda, and D. Miranker. Translating sql appli-
cations to the semantic web. In Proceedings of the 19th inter-
national conference on Database and Expert Systems Applica-
tions (DEXA’08), pages 450–464, 2008.

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-http-rdf-update-20130321/
http://download.oracle.com/otndocs/tech/semantic_web/pdf/2010_ora_semtech_capintper.pdf
http://download.oracle.com/otndocs/tech/semantic_web/pdf/2010_ora_semtech_capintper.pdf
http://download.oracle.com/otndocs/tech/semantic_web/pdf/2010_ora_semtech_capintper.pdf
http://download.oracle.com/otndocs/products/semantic_tech/pdf/12c/rdfsemanticgraph_12c_fo.pdf
http://download.oracle.com/otndocs/products/semantic_tech/pdf/12c/rdfsemanticgraph_12c_fo.pdf
http://download.oracle.com/otndocs/products/semantic_tech/pdf/12c/rdfsemanticgraph_12c_fo.pdf
http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech
http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech
http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14.html
http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14.html
http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14.html
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport_01082009.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport_01082009.pdf
http://www.w3.org/2007/03/RdfRDB/papers/seaborne.html
http://www.w3.org/2007/03/RdfRDB/papers/seaborne.html

