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Abstract. Relational databases scattered over the web are generally opaque to regular web crawling tools. To address 
this concern, many RDB-to-RDF approaches have been proposed over the last years. In this paper, we propose a detailed 
review of RDB-to-RDF methods and tools, considering end-to-end projects that delivered operational tools. The different 
approaches are classified along four major axes: motivation of the approach; mapping description language and 
expressiveness; mapping implementation; and data retrieval method. Then, we analyse commonalities and differences 
between existing approaches, and we underline common patterns in the orchestration of solutions applicable to each step 
of the translation process. Finally, we underline that the expressiveness of existing mapping languages is not always 
sufficient to produce rich semantic data and make it usable, interoperable and linkable. We therefore briefly present 
various strategies investigated in the literature to produce additional semantic data. 
 

1 Introduction 

Making data hosted in relational databases (RDB) 
accessible to the semantic web has been an active field 
of research during the last decade. Converting relational 
data into RDF or exposing relational data so that it can 
be queried through SPARQL1, the query language of 
the semantic web, is often referred to as the "RDB-to-
RDF" process. Yet, data providers willing to publish 
their data in a machine-readable format may be 
somewhat discouraged by the difficulty of choosing 
between the existing tools and associated mapping 
languages. In September 2012, the publication by the 
W3C of the first R2RML2 recommendation, a standard 
language to describe mappings between a relational 
database and an equivalent RDF representation, has 
marked a new step towards the actualization of the web 
of data. R2RML encourages RDB-to-RDF tool 
developers to comply with a standard mapping 
language. On the other side, data providers should 
benefit of the adoption of this common language, 
allowing them to decouple relational data integration 
problems from specific tools or approaches, and 
ensuring sustainability. However, the choices made in 
the R2RML specification imply some limitations on the 
kinds of mappings that can be expressed. Furthermore, 
an implementation-independent mapping language such 
as R2RML does not address some of the common 
questions that occur when translating existing relational 
data into RDF, such as the choice of reusing existing 
vocabularies, or the way the data is accessed or queried. 
Many RDB-to-RDF techniques and corresponding tools 
have been proposed over the last years. In spite of the 
observed convergence of several of them towards an 
R2RML implementation, the choice of an RDB-to-RDF 
technique and a technical implementation is not an easy 
task. Firstly, different techniques convey different 
philosophical approaches (e.g. focus on ontology 
learning, mapping language design, query engine 

                                                           
1 http://www.w3.org/TR/sparql11-overview/ 
2 http://www.w3.org/TR/r2rml/ 

design…) which have implications on the way the 
relational data exposed can be manipulated. Secondly, 
existing reviews of RDB-to-RDF approaches often 
provide very brief descriptions of the tools developed, 
making them difficult to compare. Operational 
questions such as the conversion of relational data into 
RDF repositories versus the real-time use of the native 
relational databases, the exposed data access and 
querying means, tools sustainability, etc., are hardly 
addressed. 

1.1 Motivations for RDB-to-RDF translation 

In order to grasp the diversity of RDB-to-RDF 
approaches, it is useful to understand the motivations of 
the RDB-to-RDF studies and projects, which led to the 
emergence of R2RML. Three common needs, that we 
describe below, are generally targeted: accessing data 
from the deep web, linking open data, and integrating 
multiple heterogeneous data sources. 
The "deep web", as opposed to the "surface web", is a 
part of the web content that is hardly indexed by 
standard search engines. It refers to the data hidden in 
unstructured documents (images, scans), semi-
structured documents (csv, pdf...), or structured data 
sources (relational databases, xml databases, NoSQL 
databases, LDAP directories...) only accessible through 
query forms but which content cannot be browsed by 
standard tools. As an illustration, in 2007, 70% of web 
sites were backed up by RDBs, which contained 500 
times more data than directly available [1]. Making this 
huge amount of data available in a machine-readable 
format is expected to create opportunities for novel 
applications and services. In this regards, RDF is as a 
powerful pivot format. Yet, in order to ensure the 
sustainability of the applications that were developed 
along with the data they exploit, and to leverage the 
properties engineered into RDB systems over decades 
(scalability, ACID3 properties, security and 
performance optimizations), it is preferable that the data 
remains hosted and delivered by the legacy RDBs, 
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hence the need for RDB-to-RDF techniques that can 
access relational data and convert it into RDF triples. 
Linking open data to other related pieces of data 
increases its value. From this simple statement, the 
Linked Data principles, proposed by Tim Berners-Lee 
[2], recommend best practices for exposing, sharing, 
and connecting pieces of data, information, and 
knowledge on the Semantic Web using URIs and RDF. 
Driven by these recommendations, the Linking Open 
Data4 community project aims at extending today's web 
by publishing various open data sets as RDF, and 
setting RDF links between data items from different 
data sources. In other words, it intends to solve the 
semantic web chicken-and-egg dilemma, stating that a 
critical mass of machine-readable data must be 
available for novel mash-up applications to arise. Such 
applications should create added-value by repurposing 
data sets, using the data in some new way, possibly 
beyond what data providers may have initially 
expected. In this regard, the success of the Linking 
Open Data project largely depends on the accessibility 
of the "deep web" data, and the availability of RDB-to-
RDF tools to help publish the existing relational data 
into RDF. 
Integrating heterogeneous data has become a major 
challenge in several domains. In the bio-medical 
domain in particular, translational science refers to the 
continuous information exchange between research and 
clinics [3][4]. For instance, neurosciences have to 
connect, make sense of, and search across 
heterogeneous data and knowledge describing different 
organization scales (molecule, proteins, genes, cells, 
physiology, behaviours...) [5]. The first major step to 
integrating heterogeneous relational data sources is to 
make their semantics explicit. Relational schemas 
commonly provide no or poor semantics. To some 
limited extent, implicit semantics can be figured out 
from integrity constraints or usual database design 
patterns such as n-ary relations and inheritance. But 
additional semantics is frequently encoded in the 
application exploiting a relational database, for instance 
by means of domain specific rules. Moreover, relational 
schemas are often fine-tuned and customized for 
performance reasons. This results in mixing data 
semantics with technical concerns, making it even more 
difficult to figure out the original data semantics. As a 
result, in order to tackle the challenges of data 
integration in translational science, data integration 
techniques have to "lift" the data, that is to capture and 
expose its semantics in an explicit and machine-
readable manner. Using RDF as a format for 
representing relational data appears as a powerful and 
promising method to achieve such data integration, in 
which RDB-to-RDF methods will play a key role. 

                                                           
4http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/Li
nkingOpenData 

1.2 Previous works 

Facing the large variety of initiatives in the domain of 
relational database to RDF mapping, several studies 
have been conducted to compare approaches and 
techniques. 
In 2007, the W3C decided the creation of the 
RDB2RDF Working Group5 to standardize languages 
for mapping relational database schemas into RDF and 
OWL. As members of the RDB2RDF Incubator Group, 
Sahoo et al [6] conducted a review with a wide scope, 
addressing theoretical articles, proofs of concept, 
domain-specific projects as well as generic mapping 
tools. The goal of this survey was not to get into the 
details of each approach. Instead, it aimed at providing 
members of the RDB2RDF Working Group with a 
comprehensive overview of the different approaches 
that had been investigated so far, in order to serve as a 
basis for the definition of R2RML. Consequently, the 
classification they proposed is not specifically focused 
on mapping languages but rather explores the 
approaches along diverse axes: mapping creation 
(description language), mapping implementation (how 
the data is translated into RDF), query implementation 
(how queries are (re)written). Three additional axes are 
simply mentioned: mapping representation and 
accessibility (meta-language to express mappings), 
application domain, and data integration. 
Hert et al [7] proposed a feature-based comparison 
framework that they have applied to state of the art 
mapping languages. The framework is derived from the 
use cases and requirements described by the W3C 
RDB2RDF working group [8]. The mapping languages 
are sorted into four categories: direct mapping, read-
only general-purpose mapping, read-write general-
purpose mapping, special-purpose mapping. This paper 
focuses specifically on the comparison of the mapping 
language features and expressiveness, but does not 
address the implementations proposed by their authors 
or the way queries are rewritten. 
Also to be mentioned, Sequeda [9] proposed a short 
high-level review of major RDB-to-RDF mapping 
products, along with a brief description of each of them. 
Unlike the two previous reviews that almost exclusively 
focus on academic works, this paper reviews products 
either from the academic world or from the industry. As 
a result, although very succinct, this work is an 
interesting entry point to broaden the scope towards the 
industrial approaches. 
Sequeda et al [10] also surveyed methods that apply 
Direct Mapping principles to automatically translate a 
relational database into RDF. They studied methods 
proposed in the literature to extract ontological 
knowledge as RDFS or OWL from SQL DDL (Data 
Description Language) representations. This ranges 
from simple approaches (table to class, column to 
property) to more advanced ones that try to discover 
relations such as many-to-many, subsumption, has-
part/is-a-part-of, symmetric and transitive relations, and 
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SQL features such as integrity constraints, checks and 
triggers. Finally, authors propose a consolidated 
approach, based on the work of Tirmizi et al [11], that 
exploits all the possible combinations of primary and 
foreign keys in relational tables, in which they try to 
gather the best of all studied approaches. As a 
conclusion, authors acknowledge that the quality of an 
ontology resulting of a direct mapping highly depends 
on the richness of the SQL schema with respect to its 
encoding of domain semantics. 

1.3 Goal of this work 

In this paper, we propose a detailed review of state of 
the art RDB-to-RDF tools, either academic or industrial. 
We make a specific focus on the specificities of each 
technique, and we describe, as much as possible, the 
capabilities of the different tools studied. Taking into 
account practical concerns, we only consider end-to-end 
projects that delivered operational tools to implement 
the RDB-to-RDF process, excluding proofs of concepts 
and early prototypes. A classification is proposed to 
identify the different approaches along four major axes 
that span from the motivations to the mapping 
description and service deployment concerns: (i) 
motivation of the approach; (ii) type of mapping, 
mapping description and expressiveness; (iii) mapping 
implementation (how and when the data is converted 
into RDF), and (iv) data retrieval method (query-based, 
linked-data, graph dump). Also, when available, we 
provide information regarding the project maturity and 
sustainability. 

2 Classification of RDB-TO-RDF Approaches 

2.1 Motivation of the approach 

In the literature, the many projects, prototypes or 
articles dealing with the RDF access to relational 
databases consider the subject from somewhat varying 
perspectives, depending on their initial motivations. We 
can roughly sort them out into three categories that we 
describe below. Any approach may fall in one or 
several, or even all of the three categories. 
 
Ontology learning 

Ontology learning approaches are focused on the 
engineering of ontologies, their goal is generally to 
extract ontological concepts and relations from 
relational schemas and data. The scope may vary from 
simple approaches reflecting the relational schema 
(using a simple direct mapping method to build an ad-
hoc ontology), to more complex methods looking for 
specific database design patterns such as many-to-many 
relations and concept subsumption relations. Some 
methods propose to analyse both the relational schema 
and data using data mining techniques in order to figure 
out new ontological concepts and properties. For 
instance, data redundancy may evidence categorization 
patterns indicating subsumption relations. Some semi-
automatic approaches iteratively create the ontology, 

suggesting probable matches between the database and 
an existing ontology, or extending an existing ontology 
with additional concepts and properties learnt from the 
database schema. 
Ontology learning approaches are often accompanied 
by the definition of a mapping language, and optionally 
the implementation of a proof-of-concept or prototype. 
 
Definition of a generic-purpose mapping language 

The goal of such approaches is basically to define a 
mapping language able to describe different situations 
of mapping between a relational database and an RDF 
representation. Unlike the ontology learning domain, 
the ability to describe a mapping to an existing ontology 
will be a key concern here. More generally, the primary 
goal is to ensure that the expressiveness of the mapping 
language spans a large scope of situations, from a 
simple direct mapping to complex cases where the 
similarity between the database and the target ontology 
is low. Some approaches even address the mapping of 
databases lightly structured or not in first normal form. 
Some mapping languages provide the ability to define 
complex transformations making use of different 
methods such as regular expression matching, keyword 
search or natural language processing. 
 
Implementation of an RDB-to-RDF transformation 

engine 

Most approaches, either focused on ontology learning 
or on the definition of a mapping language, propose the 
implementation of a transformation engine to validate 
and showcase the results of the approach. This may be 
implemented as either a query processing engine 
typically able to process SPARQL queries, or the 
transformation of the whole relational data into an RDF 
representation at once. Anyway, some RDB-to-RDF 
approaches more specifically target the development of 
a production-class query engine, that is, a query engine 
able to handle a large number of concurrent requests 
while ensuring acceptable performances, and handle 
complex queries with acceptable response time. Those 
approaches are concerned with the way a (SPARQL) 
query to the target data model will be translated into the 
source database query language (SQL query rewriting), 
and by the efficient execution of the translated query 
(query optimization and query planning). 

2.2 Mapping description 

The mapping description refers to the way the mapping 
between the relational database and an RDF 
representation is described. It is generally driven by the 
fact that the resulting mapping should either (i) come up 
with an ad-hoc ontology that reflects the relational 
schema, or (ii) comply with existing well-defined 
domain-specific semantics, by reusing domain 
ontologies and possibly entailing more complex 
mappings. The first is referred to as the Direct 

Mapping, while the latter is called Domain Semantics-

Driven Mapping. 



 

 

In the literature, Direct Mapping is frequently used as a 
synonym of Automatic Mapping, and Manual Mapping 
as a synonym of Domain Semantics-Driven Mapping, 

although this happens to be misleading: a direct 
mapping is generally created automatically and later 
customized manually. Yet, despite the manual edition, it 
can remain nothing more than a direct mapping. 
Conversely, the domain semantics-driven mapping is 
often called manual mapping, although an automatically 
generated direct mapping is frequently used as a starting 
point to more complex domain-specific mappings. In 
addition, some approaches attempt to automatically 
discover mappings far beyond the definition of direct 
mappings. The latter could be called "automatic 
discovery of domain-semantics mapping". 
Consequently, hereafter we shall use the terms Direct 

Mapping or Domain Semantics-Driven Mapping. The 
terms manual and automatic will be used for exactly 
what they mean: the manual edition of a mapping by a 
human agent, vs. the automatic generation of a mapping 
by a program. 
 
Direct mapping (also known as automatic mapping, 
local ontology mapping, table-to-class) 
The direct mapping approach intends to convert 
relational data into RDF in a straightforward manner, 
making the process simple. It consists in the automatic 
creation of URIs following simple rules defined by Tim 
Berners-Lee [12]: 
‐ table-to-class: a table is an ontological concept with 

URI "namespace/database/table"; 
‐ column-to-property: each column of a table is an 

ontological property with URI "namespace 
/database/table/column"; 

‐ row-to-resource: each row of a table is a resource, 
i.e. an individual which class is represented by the 
table. The resource URI is formed using the 
primary key: 
"namespace/database/table/primaryKey" or 
"namespace/database/table#primaryKey"; 

‐ cell-to-literal-value: each cell with a literal value is 
the object of a data property; 

‐ cell-to-resource-URI: each cell with a foreign key 
constraint is turned into the object of an object 
property. 

Applying this set of rules automatically creates an ad-
hoc RDF vocabulary reflecting exactly the structure of 

the relational schema. In ontology learning approaches, 
the term local ontology mapping is sometimes used to 
refer to ad-hoc ontologies created by the direct mapping 
process. To avoid exposing unnecessary or sensitive 
data such as passwords, most approaches automatically 
generate a first mapping that can be manually 
customized to some extent. Some specific cases such as 
multi-column primary keys and tables with no primary 
key are also generally addressed. Optionally, the direct 
mapping can be improved by the automatic detection of 
common database design patterns: many-to-many 
relations suggested by join tables (tables which all 

columns are foreign keys to other tables), and implicit 
subclass relationships suggested by a primary key used 
as a foreign key [13]. In the latter case, the literature 
argues that, in the context of databases not in the third 
normal form, this pattern may reveal a vertical 
partitioning (that consists in splitting a table into several 
smaller tables for performance concerns) rather than a 
subsumption relationship [11][10]. Yet, open research 
questions remain with regards to the possibility of 
translating relational database triggers into additional 
knowledge in the form of semantic rules. 
The Direct Mapping method typically applies when no 
domain ontology exists to which the relational schema 
could be mapped, or when the goal is to rapidly make 
data sources available in a machine-readable format, 
with few concerns for semantic interoperability. Direct 
Mapping can also address versatile environments in 
which databases may appear and disappear frequently 
with no time for manual alignment [14]. When semantic 
interoperability is required, ontology alignment 
methods are used later on to align the local ontology 
with existing domain ontologies. 
The W3C has proposed a specification "A Direct 
Mapping of Relational Data to RDF" that specifies good 
practices of the direct mapping approach [15]. It is a 
very simple version of the direct mapping, essentially 
the formalization of the rules enounced by Tim Berners-
Lee. 
 
Domain Semantics-Driven mapping (also known as 
manual mapping, transformative mapping) 
Although the direct mapping approach transforms the 
content of a relational database into RDF, it is unable to 
capture the true semantics of the data. At best, this 
semantics is implicitly suggested by the relational 
schema metadata. At worse it consists of domain-
specific rules encoded in the application that exploits 
the database. This is outlined in a short but enlighten 
feedback from the Ordnance Survey of Great Britain: 
"existing tools designed to generate ontologies based on 

database schemas are missing the point: databases are 

rarely good descriptions of a domain, being the result 

of both performance optimisation processes and 

contingent maintenance history. And, in any case, the 

schema itself will not support a full description of the 

domain, other relevant relationships often being buried 

in code or in the encoding of various attributes." [16]. 
To overcome these limitations, the domain semantics-

driven mapping approach applies when the relational 
database must be translated using concepts and 
properties of existing ontologies. The database and the 
ontology may have been designed separately, hence the 
similarity level between them may be low. A typical use 
case is the alignment of a legacy database with an 
existing ontology that refers to or describes the same 
domain of interest. 
The functionalities of domain semantics-driven systems 
allow to describe highly expressive mappings, able to 
bridge the conceptual gap between RDB and RDF. 
Table 1 lists the features that may be supported. 



 

 

Feature name Feature description 

generation of user defined 
unique Ids 

Ability to generate URIs of resources beyond the simple use of primary key values: 
reusing and combining column values, allowing for conversion tables, etc. 

logical table Ability to read tuples not only from tables but also from SQL views or from the result 
of an SQL query. 

column selection (also called 
projection) 

Ability to select only a subset of the columns of a table to translate. This is a very 
basic feature, almost a minimum pre-requisite of any RDB-to-RDF tool. 

column renaming Ability to map a column to an RDF property with a different name. This is not always 
possible in a direct mapping but quite obvious in a domain semantics-driven mapping. 

select conditions Ability to translate only a subset of the tuples of a table using a select-where 
condition 

vocabulary reuse Ability to map relational entities to instances of existing vocabularies and ontologies. 
This is the main difference between domain semantics-driven mapping and direct 
mapping approaches. 

1 table to n classes Ability to use the values of a column as a categorization pattern: tuples of the table 
will be translated into instances of different ontological classes based on the value of 
this attribute. This feature can be seen as an extension of the "select conditions" 
feature as it results in not only filtering out rows, but the filter helps selecting rows to 
be converted into instance of one class or another. 

many-to-many relation to 
simple triples 

Many-to-many relations are usually implemented in relational databases as a join 
table which columns are all foreign keys to other tables (n-ary relations). This feature 
consists in the ability to translate many-to-many join tables into simple triples. This 
opposes to a basic direct mapping in which the join table will be translated into a 
distinct class. 

blank nodes Ability to generate blank nodes and refer to them within the graph produced during 
the translation process. Blank nodes can be used for instance to translate a table 
without a primary key. 

data types Ability to handle relational data types consistently with RDF data types per SQL-
XSD mapping. 

data transformation Ability to apply transformation functions to the values before generating the RDF 
triples. This can be used to perform complex type conversion, compute a value using 
several columns, and applying methods such as string manipulation functions, 
decimals type conversions, etc. 

named graphs Ability to create not only a default RDF graph but also multiple named graphs within 
a single mapping definition. 

user-defined namespaces Ability to declare and use namespace prefixes. 

static metadata Ability to attach static metadata (such as licensing or provenance information) to the 
produced graphs, and possibly to all RDF entities or instances of a certain class. 

Table 1: Possible features of mapping languages 

To support domain semantics-driven mappings, 
mapping description languages generally implement 
two different strategies: 
(i) The mapping description essentially relies on SQL 
queries to present the data as expected. The 
expressiveness is therefore constrained by that of SQL 
and complex cases that outreach the expressiveness of 
SQL cannot be addressed (unless supported by 
extensions of a specific RDBMS). On the other hand, 
the rewriting of a query on the target RDF data 
(generally a SPARQL query [17]) into SQL is almost 
straightforward. This allows developers to tune queries 
and rely on the database system performance. Besides, 
the fact that SQL is widely known facilitates the 
adoption of the mapping language by data providers 
who hardly need to learn a new mapping language. 

(ii) The mapping description uses a specific dedicated 
language. A query on the target RDF data will be 
rewritten into SQL queries. This approach is not 
constrained by the expressiveness of SQL. As a result it 
can be extended in order to meet specific complex 
needs such as keyword search, regular expression 
matching, natural language processing, data mining, etc. 
Nevertheless, it must be noticed that most existing 
projects hardly reach the expressiveness of SQL (for 
instance, aggregation or groupings are not always 
possible although they are natively supported by SQL).  
Some mapping languages such as R2RML and D2RQ 
use both strategies simultaneously: they are able to 
complement SQL snippets with specific mapping 
descriptors. 



 

 

2.3 Mapping implementation 

Given a mapping description, that is the set of rules that 
map a relational model to a target ontology, the 
mapping implementation refers to the way database 
tuples are translated into ontological instances 
(individuals). Two methods can be applied: the data 

materialisation, or the on-demand mapping. 
 
Data materialisation 

The data materialisation approach is the static 
transformation of the source database into an RDF 
representation, in the manner of the data warehouse 
approaches. It consists in the application of the mapping 
rules to the whole content of the database to create an 
equivalent RDF graph. For this reason, the literature 
also refers to it as "graph dump", "graph extraction" or 
"RDF dump". When the materialisation process 
completes, the resulting RDF graph can be loaded into a 
triple store and accessed for instance through a 
SPARQL query engine. This whole process is often 
referred to as the Extract-Transform-Load (ETL) 
approach, that conveys the idea of data materialisation 
and loading into a triple store. 
With this approach, a large number of data sources can 
be integrated, in the limit of the triple store and query 
engine capacity. Besides, a major advantage of the 
materialisation is to facilitate further processing, 
analysis or reasoning over the RDF data, including the 
execution of heavy inference rules. Indeed, as the RDF 
data is made available at once by the materialisation 
process, third party reasoning tools can be used to apply 
complex entailments. Later on, complex queries can be 
answered without compromising run-time performances 
since the complex reasoning tasks have been performed 
at an earlier stage. 
Several limitations are to be noticed though. This 
solution hardly supports very large data sets, as the size 
of the graph produced may exceed memory capacity. 
Another limitation concerns the way to deal with 
outdated data: in the context of an application that 
updates the relational data frequently, the materialized 
RDF graph may be rapidly outdated. To address this 
issue, the extraction process may be run periodically. In 
this case however, a compromise should be found 
between the cost of materializing and reloading the 
graph, and the degree of tolerance of the application to 
outdated data. 
 
On-demand mapping 

Conversely to the data materialisation method, the on-

demand mapping approach consists in the run time 
evaluation of queries against the relational data. In this 
model, the data remains located in the legacy database. 
Whatever the way the converted data is accessed, 
queries to the target RDF data must be rewritten into 
SQL at query evaluation time. 
The advantages and drawbacks of this approach are the 
opposite of the materialisation approach. It is well 
suited in the context of very large data sets that would 
hardly support centralization due to resource 

limitations. It guarantees that the data returned is always 
up to date since no copy of the data is done. Besides, it 
easily allows for the enforcement of access control 
policies implied by privacy or confidentiality 
constraints such as in the case of medical data.  
On the other hand, query performances can be severely 
penalised if entailment regimes must be implemented 
[6], or if many data sources are to be integrated 
together. It is suggested that in some cases, the 
expressiveness of SPARQL queries should be limited to 
be processed by on-demand mapping systems: in 
particular, a variable in predicate position (resourceA ?r 
resourceB) or a variable in object position representing 
a class (resourceA rdf:type ?c) lead to "union bomb" 
issues [18][19]. 

2.4 Data retrieval (query implementation) 

Independently of the way a mapping is implemented, 
the RDF data can be retrieved using several methods: 
by sending a query to a query processing engine, using 
the linked data paradigm, or in a bulk manner by a 
graph dump operation. The choice of the method 
depends largely on how the data should be exploited. 
Below we briefly describe those methods. 
 
Query-based access 

The RDF data is retrieved by means of a query, 
generally expressed in SPARQL, the standard language 
to express queries over RDF data. It must be mentioned 
that, although marginal, a few tools implement their 
own query language. A SPARQL query processor can 
be used to run a SPARQL query against an RDF 
repository (in the data materialisation approach), or 
against a relational database (in the on-demand mapping 
approach). In the former case, a SPARQL query 
processor can be accessed through an HTTP server 
using the SPARQL protocol [20]: this results in a 
SPARQL endpoint. In the latter case, the SPARQL 
query must be rewritten into SQL and, conversely, SQL 
results must be translated into equivalent SPARQL 
results according to the mapping.  
Besides SPARQL, early approaches proposed other 
query languages, nevertheless the standardization of 
SPARQL has deprecated those initiatives. Additionally, 
some RDBS providers have proposed alternative 
solutions by integrating a query evaluation engine 
within the native RDBS evaluation engine. This is the 
case of SPASQL that allows for the execution of 
SPARQL queries within SQL statements. 
 
Entity-level access (Linked data) 

Each logical relational entity translated into RDF is 
assigned a unique URI that identifies it in the data 
graph. According to the principles of the Linked Data 
[2], it should be possible to dereference any such URI 
by performing an HTTP GET method on this URI, as if 
it was a URL. The result of this operation will be a 
representation of the entity identified by the URI. The 
output format of the data description is generally agreed 



 

 

during a usual HTTP content type negotiation procedure 
between the client and the web server. 
Two access methods are advised in [21], in relation 
with good practices to define URIs: 
‐ For an informational resource, a simple web lookup 

with HTTP content negotiation will return a 
representation of the entity (in XHTML, 
RDF/XML, N3, JSON, etc.). 

‐ If the URI refers to a non-informational resource, 
i.e. an abstract concept or a physical object, it 
should not be dereferenced directly (if one 
dereferences a URI to a person, the physical person 
itself is not retrieved, instead a document that 
relates to the person is expected). An HTTP GET to 
such a URI should return HTTP status 303 See 

other, providing the URI of an informational 
resource that relates to or is a representation of the 
non-informational resource: e.g. an HTML 
document describing a person. 

This recommendation can somehow be relaxed due to 
technical concerns like the network traffic, time 
consuming definition of multiple URIs, etc. 
The term Linked Data also sometimes refers to the 
ability to dereference not only a resource URI, but also 
a URI to a logical entity of the source database. For 
instance, dereferencing the URI of a database will 
return a human-readable list of classes corresponding to 
the tables, dereferencing the URI of a class will return 
URIs of instances of the class. Closer to the spirit of the 
Linked Data, D2RQ will dereference a class URI by 
providing a few triples stating that it is a database or a 
class, including rdfs:seeAlso statements when relevant. 
Such methods can be exploited by crawlers of external 
search engines to index the content of the database. 
 
Graph dump access 

In the graph dump access method, the client performs 
an HTTP GET request to the database URI and retrieves 
the entire RDF graph at once. This method is most 
likely available with data materialisation approaches, in 
which the graph has been materialized beforehand. It is 
generally not available in on-demand mapping 
approaches as building large graphs on demand (at run 
time) may induce significant performance issues. 
The "SPARQL 1.1 Graph Store HTTP Protocol" [22] 
can be seen as an attempt to standardize the graph dump 
access mode, while extending it to a larger scope of 
graph management methods. 

3 R2RML 

R2RML [23] is a generic-purpose language targeted to 
describe a set of mappings that translate data from a 
relational database into an RDF representation. It is the 
result of a long process and preliminary works held by 
the W3C. During the W3C Workshop on RDF Access 
to Relational Databases6 in 2007, Dean [24] suggested a 
set of features that a standard mapping language should 
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support. The outcome of this workshop was the 
formation of the W3C RDB2RDF Incubator Group7 
(abbreviated XG). The Incubator Group ran a 
comprehensive survey of existing projects and 
approaches [6], and described high level 
recommendations of what aspects a recommendation to 
map relational databases to RDF should cover [25]. It 
concluded with the recommendation to create the 
RDB2RDF Work Group to standardize a mapping 
language. Here we present the results of the group. 

3.1 Features 

The W3C RDB2RDF Work Group proposed a list of 11 
requirements, expressed as features that MUST 
(mandatory) or SHOULD (optional) be provided by 
R2RML [8]. Refer to Table 1 for a detailed description 
of each feature below. 
Mandatory features state that R2RML must (i) support 
both the direct mapping and domain semantics-driven 
mapping (called transformative mapping); (ii) provide 
sufficient information for a processor to support both 
the on-demand mapping (rewrite SPARQL queries into 
SQL), and the data materialisation. Other mandatory 
features are: generation of globally unique identifiers, 
support data types, SQL column renaming, many-to-
many relation to simple triples, 1 table to n classes. 
Optional features are: data transformation, named 
graphs, namespace declaration, static metadata. Auer et 
al [8] also describe an "update logs" "nice-to-have 
feature": the mapping should provide extension points 
to support the creation of update logs of relational data. 
It is nevertheless mentioned that this is out of the scope 
of R2RML. 
The final R2RML recommendation includes all 
mandatory features listed above, and all optional 
features with the exception of the data transformation: 
data transformation is left to the (limited) capabilities of 
SQL in terms of string or number manipulations, but no 
complex data transformation method is specified. 
Furthermore, Table 1 describes three features that were 
not explicitly addressed by Auer et al, but that are part 
of R2RML: select conditions, column selection and 
blank nodes. The "select conditions" feature is implicit 
in R2RML as it is a pre-requisite of the "1 table to n 
classes" feature. Similarly, the "column selection" 
feature is implied by the more global support of the 
transformative mapping. Lastly, blank nodes are 
implemented in the definition of R2RML RDF terms, 
making them natively supported in R2RML. 
Finally, here is a summary of the features supported by 
R2RML: user-defined URIs, logical table, column 
selection, column renaming, select conditions, 
vocabulary reuse, 1 table to n classes, many-to-many 
relation to simple triples, blank nodes, data types, 
vendor specific data types, named graphs, user-defined 
namespaces, static metadata. No support of data 
transformation is specified in R2RML, instead it relies 
on SQL capabilities to perform transformations. 
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3.2 Mapping description 

The recommendation specifies that an R2RML 
processor MAY include an R2RML default mapping 
generator that generates an R2RML mapping, possibly 
in the form of an R2RML mapping document, intended 
for further customization by a mapping author. The 
default mapping must comply with direct mapping rules 
specified in the R2RML companion document: "A 
Direct Mapping of Relational Data to RDF" [15]. 
The mapping definition language is RDF with Turtle 
syntax. An R2RML mapping document is called an 
R2RML mapping graph. The language also embeds 
SQL requests making use of any SQL construct (select 
tables or views, aggregation). A mapping consists of 
several triples map, each triple map specifying how to 
map each row in a logical table of the input relational 
database to a number of RDF triples. The logical table 
may be a table, an existing SQL view, or the result of a 
valid SQL query to be executed over the input relational 
database. 
A triple map has two main parts: (i) a subject map that 
generates the subject of all RDF triples that will be 
generated from a logical table row. The subjects often 
are IRIs generated from the primary key column(s) of 
the table; (ii) multiple predicate-object maps that in turn 
consist of predicate maps and object maps. Triples are 
produced by combining the subject map with a 
predicate map and object map, and applying these three 
to each logical table row. By default, all RDF triples are 
in the default graph of the output dataset. A triple map 
can contain graph maps that place some or all of the 
triples into named graphs instead. 

3.3 Implementations 

The first R2RML recommendation was issued Sept. 
27th 2012. Several candidate implementations have 
been evaluated against compliance tests described in the 
R2RML and Direct Mapping Test Cases8, which results 
are reported in the RDB2RDF Implementation Report9. 
The test cases address both the W3C Direct Mapping 
recommendation and R2RML. The W3C Direct 
Mapping recommendation describes very basic direct 
mapping rules, with somehow limited interest. As a 
result, in the following, we have not considered 
implementations which support is limited to the W3C 
Direct Mapping. 
The R2RML implementations considered are: 
DB2Triples (passed all R2RML tests but one); 
OpenLink Virtuoso (29 R2RML tests out of 62 in 
status "cannotTell", i.e. test cannot be run. no reason is 
given); Morph (failed on a few R2RML tests but fair 
support anyway); RDF-RDB2RDF (11 failed tests out 
of 62); Ultrawrap (passed all R2RML tests); 
XSPARQL (passed all R2RML tests). 
In addition, Oracle Spatial and Graph 12c, released in 
July 2013, supports R2RML. At the time of writing, it 
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has not been officially tested against the R2RML test 
cases and thus is not yet mentioned in the RDB2RDF 
Implementation Report. 

4 RDB-to-RDF tools 

This section describes the tools studied in the context of 
this paper. An explanation of how the classification 
introduced in section 2 applies to each tool is given. 
Section 4.1 gathers the tools that comply with R2RML 
section 4.2 the tools that propose their own mapping 
language. In each section, the tools are listed by 
alphabetical order. Table 2 (section 4.3) provides a 
synthetic summary of the information provided here 
after. 

4.1 R2RML-compliant tools 

4.1.1 DB2Triples 

DB2Triples10,11 is an implementation of the W3C 
R2RML and Direct Mapping recommendations. It is 
developed by the company Antidot12 as part of a larger 
software suite. DB2Triples is delivered as a java library, 
available under the terms of the LGPL open source 
licence, and validated with MySQL and PostgreSQL 
back-ends. It takes as input an R2RML document, a 
database connection and a SPARQL query, and returns 
the results in RDF/XML, N3, N-Triples or Turtle. 
Therefore, it is able to process SPARQL queries, but it 
is not a SPARQL endpoint able to receive requests over 
HTTP. 
Main scope: RDB-to-RDF query-based transformation 
engine using the R2RML mapping description. 
Mapping description: see R2RML. 
Mapping implementation: on-demand. 
Mapping language features: see R2RML. Passed all 
R2RML test cases but one. 
Data retrieval: SPARQL query-based. 
Sustainability: DB2triples version 0.9.9 is compatible 
with the R2RML13, and the Direct Mapping14 Working 
Drafts, and successfully passed the R2RML and Direct 

Mapping Test Cases. 

4.1.2 Morph 

Morph15 is an R2RML mapping processor, developed in 
Scala, by the developers of R2O and ODEMapster. The 
development is ongoing, and only few documentation is 
available so far. 
Main scope: RDB-to-RDF transformation engine using 
the R2RML mapping description. 
Mapping description: domain semantics-driven 
mapping (R2RML). 
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Mapping implementation: on-demand, data 
materialisation (called batch-upgrade mode). 
Mapping language features: see R2RML. Morph does 
not pass 8 of the 62 R2RML test cases. Not supported 

features: blank nodes, named graphs in on-demand 
mapping (but supported in data materialisation), static 
metadata. 
Data retrieval: SPARQL query-based. The data 
materialisation also allows for the ETL approach.  
Sustainability: developers argue that they intend to 
continue the support and evolution of Morph in the 
middle-term, possibly extending it further than the 
official R2RML specification like supporting Google 
Fusion Tables. 

4.1.3 Oracle Database 12c 

Oracle Spatial and Graph16 (formerly Oracle Semantic 
Technologies) [26][27] is an option of Oracle Database 

Enterprise Edition (EE). Version 12c, released in July 
2013, comes with the RDF Semantic Graph data 
management and analysis features, that support RDB-
to-RDF conversion. 
RDF Semantic Graph mainly focuses on the storage, 
simultaneous querying and reasoning on relational and 
RDF data. The RDF graph store can scale up to billions 
of triples, supports bulk and incremental load, graph 
versioning, and the semantic indexing of documents. 
RDF querying is possible using SPARQL 1.1. SPARQL 
graph patterns can be included within an SQL query in 
order to join RDF and relational data. RDFS/OWL2 
(RL/EL profiles) reasoning is supported (OWLSIF, 
OWLPRIME, RDFS++) simultaneously on RDF and 
relational data, along with inference proofs and 
explanations, parallel inferencing, user-defined rules. 
The architecture allows for using the native reasoner or 
a 3rd party one like PelletDB. The security model 
allows to enforce restrictions at different levels, from 
the graph to the triple.  
RDB-to-RDF conversion is supported since version 12c 
by providing RDF views on relational tables, SQL 
views, and SQL query results. W3C Direct Mapping 
and R2RML are supported. The RDF view can be 
queried through SPARQL 1.1. 
Oracle Spatial and Graph exploits several enterprise 
features such as the table compression (optimize disk 
space and memory usage), the partitioning option 
(performance, scalability), and the Real Applications 

Clusters (availability, scalability). As a result, using 
Oracle Spatial and Graph requires to acquire licenses 
for Oracle Database EE and Partitioning option. 
Main scope: RDB-to-RDF query-based transformation 
engine, using the R2RML mapping description. 
Mapping description: domain semantics-driven 
mapping, support of R2RML, automatic generation of a 
direct mapping compliant with the W3C 
recommendation. 
Mapping implementation: on-demand mapping. 
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Mapping language features: support of W3C's Direct 
Mapping and R2RML. However, no result is available 
so far as to the conformance tests. Consequently, Table 
2 shows interrogation marks for all the features, 
although we can assume that at least most common 
features are supported. 
Data retrieval: SPARQL query-based. 
Sustainability: RDB-to-RDF is newly supported in 
release 12c. No information is available on its support 
by Oracle in the future. 

4.1.4 RDF-RDB2RDF 

RDF-RDB2RDF is a Perl open source software based 
on the Perl RDF library, delivered under the GPL 
license. Perl RDF is a very complete library including 
the following features: RDF store in memory, support 
for relational databases (MySQL, PostgreSQL) and 
SQLite, SPARQL 1.1 query processor and endpoint, 
Linked Data server, RDFa parser, WebID (FOAF+SSL) 
+ ACLs, GRDDL, Microformats, HTML5. 
Main scope: RDB-to-RDF materialisation-based 
transformation engine, using the R2RML mapping 
description. 
Mapping description: domain semantics-driven 
mapping (R2RML). 
Mapping implementation: data materialisation. 
Mapping language features: R2RML. RDF-RDB2RDF 
does not pass 7 of the 62 R2RML test cases with 
PostgreSQL. 
Data retrieval: the materialized data cannot be retrieved 
immediately. However it must be noted that Perl RDF 
provides a SPARQL endpoint in which the RDF data 
can be loaded, thus falling in the ETL approach. 
Sustainability: last update Sep. 2013. 

4.1.5 Ultrawrap 

Initially developed by the University of Texas in 
Austin, Ultrawrap17 is now a commercial product 
produced by company Capsenta, founded in 2011 as a 
spin out of the University of Texas. It is based on the 
use of SQL views to present the relational data as 
triples, thus making the query rewriting process almost 
straightforward, while relying on the native SQL 
optimization engine. 
Ultrawrap automatically generates a local ontology 
following the direct mapping W3C's recommendation. 
The triple representation of the relational data is 
implemented as a three-column SQL view (subject, 
predicate, object), that consists in the union of all the 
queries that define all the triples as defined by the local 
ontology [28]. Consequently, a SPARQL query can be 
naively rewritten into an SQL query on the SQL view, 
benefitting from the native query optimizer of the 
relational database. Advantage: SPARQL execution as 
fast as SQL. 
Recently, support for R2RML and D2RQ mapping 
languages has been added. There is no description, 
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however, of the way the mapping description is derived 
into the SQL view. We can assume that an 
R2RML/D2RQ document is "compiled" into an SQL 
view that will reflect each triple map. To be mentioned 
that the support of R2RML named graphs does not 
seem easy using only the SQL triple view. A GUI that 
is part of the tool suite helps align the local ontology 
onto a domain ontology. 
Ultrawrap was released to first beta customers in May 
2012. Prices are available on demand only. 
Main scope: RDB-to-RDF query-based transformation 
engine using the R2RML mapping description. 
Mapping description: domain semantics-driven 
mapping, support of R2RML and D2RQ mapping 
documents. Automatic generation of a direct mapping. 
Mapping implementation: on-demand, execution of 
SQL views. 
Mapping language features: see R2RML. Passed all 
R2RML test cases. 
Data retrieval: SPARQL query-based, Linked Data. 
Sustainability: first beta release delivered in May 2012, 
no new public release since then according the 
company's web site. 

4.1.6 Virtuoso Universal Server & Virtuoso's RDF 

Views 

Virtuoso Universal Server
18

 is a commercial and open-
source object-relational database system developed by 
OpenLink. It is targeted to meet enterprise needs 
regarding data management, access and integration. 
This is a very comprehensive tool suite, that comes with 
production-class features like a relational database, 
clustering, data replication, miscellaneous security 
options, RDF triple store, reasoning capabilities (OWL 
subset), multiple data sources integration (SQL, RDF, 
XML, free text, CMS, aggregation feeds...), Web 

Application Server. The RDF Views of SQL data
19

 
functionality is part of the RDF and SPARQL tool suite, 
and makes it possible to expose relational data as RDF. 
The Virtuoso Open-Source Edition20 is a sub-set of the 
Universal Server. Limitations of the open source edition 
concern production-class features such as the clustering 
and data replication functions. The RDF Views open 
source edition only supports the Virtuoso-based 
relational database whereas the commercial edition 
supports most well known relational database systems. 
The open source edition provides the following 
features: Object-Relational Database for SQL, XML, 
RDF, and Free Text; RDF store and SPARQL end-point 
(including RDF Views); WebDAV Server; Web 
Services Platform for SOA; Web Application Server 
(see the full feature list21). 
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Main scope: enterprise data integration, RDB-to-RDF 
query-based transformation engine using the R2RML 
mapping description. 
Mapping description:  
- Manual domain semantics-driven mapping using the 
declarative Meta Schema Language22 (MSL). The 
language is an extension of the SPARQL query 
language, meshed with Virtuoso's SPASQL (SPARQL-
inside-SQL) functionality. The mapping does not only 
consist in an MSL document, but it is itself a repository 
in which mapping patterns can be grouped in named 
sets, named sets can then be managed using operations 
such as create, drop, alter, etc. The rich web interface 
provides a wizard to automatically generate a direct 
mapping (limited to locally-stored Virtuoso-based 
relational database in the open source version). 
- R2RML support is achieved by the inclusion of a 
simple adaptor which basically translates R2RML 
syntax to Virtuoso's own Linked Data Views syntax, 
which can then be executed to create the Linked Data 
Views themselves. 
Mapping implementation: on-demand. The data 
materialisation is possible but not that easy, and this is 
definitely not the intended goal as Virtuoso comes with 
its own SPARQL endpoint. 
Mapping language features: see R2RML. 29 R2RML 
test cases (out of 62) are in status "cannotTell", i.e. test 
cannot be run. No explanation why. 
Data retrieval: 
- Query-based through a SPARQL 1.1 endpoint, support 
for OpenID, OAuth and WebID authentication options. 
SPASQL is also supported, that is, the ability to include 
SPARQL statements into SQL requests. 
- Linked Data: expose any Virtuoso-housed data (only 
solution provided in the open source version), HTTP-, 
ODBC-, JDBC-, and otherwise-accessible SQL and 
XML data sources as URI dereferenceable linked RDF 
data (Linked data browser). Data retrieved as 
RDF/XML, JSON, N3. 
Sustainability: actively maintained by the company 
OpenLink. Note that the DBpedia project is operated 
using a Virtuoso triple store. 

4.1.7 XSPARQL 

XSPARQL23 is a query language combining XQuery 
and SPARQL for transformations between RDF and 
XML in either direction. RDF/XML provides a lot of 
flexibility in how one and the same RDF graph can be 
serialized, thus abstracting away from a fixed tree-like 
structure. This results in potentially lots of different 
XML serializations of the same graph, bearing the same 
semantics. This makes complicated and tedious the use 
of XSLT+XPath processors that treat RDF/XML as 
XML data and not as a set of triples. To address this 
difficulty, XSPARQL merges SPARQL components 
into XQuery FLWOR expressions. It is typically 
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designed to address issues such as extracting RDF data 
out of existing (X)HTML Web pages, allowing an 
RDF-based client software to communicate with XML-
based Web services, or even enriching an RDF graph 
with deduction rules described as RDF-to-RDF 
mapping. 
More recently, Lopes et al. [29] have defined an RDB-
to-RDF extension to XSPARQL that integrates a subset 
of SQL (select-from-where) within XSPARQL. This 
language extension provides the ability to add SQL 
snippets embedded in XQuery FLWOR expressions to 
query the relational data, and transform it into XML or 
RDF. The RDF data is generated by means of a specific 
"construct" expression with nested XQuery FLWOR 
expressions. On top of this, an R2RML mapping 
document can be interpreted to produce appropriate 
"construct" expressions that in turn materialize the RDF 
data. The originality of this approach is that it did not 
require the development of a specific module in the 
XSPARQL engine. Instead, the whole process is totally 
described using only the XSPARQL language: the 
R2RML mapping document is read as input RDF data, 
XQuery FLWOR expressions are used to parse it and 
query the database accordingly, and ultimately the RDF 
data is generated using "construct" expressions.  
R2RML is supported with the exception of named 
graphs, and the fact that a TriplesMap cannot be 
expressed as the result of an SQL query (only relational 
tables and views are supported).The RDF representation 
of the database is produced in the manner of a data 
materialisation. Supporting R2RML using the on-
demand mapping implementation should be possible 
but not straightforward: it would first require to design a 
query rewriter to convert a SPARQL query into an 
XSPARQL query that would in turn make the 
appropriate SQL queries. 
XSPARQL comes with a prototype implementation of 
the XSPARQL language developed in Java. It is 
distributed under the Apache 2 open source license. 
Main scope: generic-purpose mapping language, RDB-
to-RDF materialisation-based transformation engine. 
Mapping description: domain semantics-driven 
mapping (R2RML). 
Mapping implementation: data materialisation. 
Mapping language features: see R2RML. Passed all 
R2RML test cases, however logical tables and named 
graphs are not supported. 
Data retrieval: SPARQL-query based. 
Sustainability: version 0.5 released in November 2012, 
supporting both Direct Mapping and R2RML. 
XSPARQL passed all R2RML and DM test cases. 

4.2 Non-R2RML tools 

4.2.1 Asio Semantic Bridge for Relational Databases 

and Automapper: 

Asio Tool Suite24 is a commercial product developed by 
BBN Technologies. It provides the following tools: 
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Asio Semantic Query Decomposition (SQD), Asio 

Semantic Bridge for Relational Databases25 (SBRD), 
Asio Semantic Bridge for Web Services, and two open 
source tools: Parliament and Snoggle. 
Asio SBRD is the component that performs RDB-to-
RDF conversion: it translates SPARQL queries into 
SQL and returns the results in RDF, by applying query 
planning and optimization techniques. The BBN's 
Automapper tool applies D2RQ-based direct mapping 
rules to create the local ontology that describes the 
relational schema. 
The Asio SQD module addresses the federation of 
multiple data sources: it breaks down SPARQL queries 
expressed using a domain ontology into sub-queries 
using the local ontology of each data source, and 
distributes these optimized sub-queries to the applicable 
data source: relational database, web service, triple 
store. Mapping rules from the local ontology to the 
defined domain ontology are described as a set of 
SWRL26 rules. 
Main scope: enterprise data integration, RDB-to-RDF 
query-based transformation engine. 
Mapping description: domain semantics-driven. A 
direct mapping is initially created based on D2RQ tools, 
and augmented with OWL property restrictions to 
model data types and nullable/not nullable properties. 
Additional mapping rules between the domain ontology 
and the local ontology are created in SWRL. 
Mapping implementation: on-demand mapping. 
Mapping language features: n.a. 
Data retrieval: SPARQL query-based. 

4.2.2 D2R Server and the D2RQ language 

The D2R Server27 [30] [31] is an open source academic 
project. It provides an integrated environment with 
multiple options to access relational data using different 
methods such as the SPARQL endpoint, Linked Data 
(content negotiation, HTTP 303 dereferencing), RDF 
dump, and Jena API based access (API calls are 
rewritten to SQL). 
Main scope: generic-purpose mapping language, RDB-
to-RDF query-based transformation engine. 
Mapping description: D2RQ supports both the direct 
and domain semantics-driven mappings. The DR2Q 
declarative mapping language [32] is formally defined 
by an RDFS schema. It is the successor to the XML-
based D2R MAP language [33]. The mappings are 
expressed in RDF, but also largely rely on SQL 
fragments to express select conditions or to use 
aggregate functions. Existing ontologies (RDFS/OWL) 
can be reused in order to incorporate domain semantics 
in the mapping process. The automatic mapping 
generates a D2RQ direct mapping that reflects the 
database schema, thus creating a local ontology. This 
direct mapping can be customized manually. 
Optionally, the direct mapping generated can follow the 
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rules proposed in the W3C's Direct Mapping 
specification [15]. 
Mapping implementation: on-demand mapping, data 
materialisation. 
Mapping language features: user-defined URIs, logical 
table, column selection, column renaming, select 
condition, vocabulary reuse, 1 table to n classes, many-
to-many relation to simple triples, blank nodes, data 
types, data transformation, user-defined namespaces, 
static metadata. NOT supported: named graphs. 
Data retrieval:  
- Query-based (SPARQL endpoint). 
- Linked Data: allows for dereferencing URIs by 
providing a representation based on content negotiation: 
RDF or XHTML. Supports the HTTP 303 
dereferencing. Linked Data features: automatically 
includes rdfs:seeAlso when relevant, XHTML 
hyperlinks lead to navigation pages containing lists of 
other resources of the same class, and to an overview 
page that lists all of these navigation pages. This 
overview page provides an entry point for external Web 
search engines to index the content of the database. 
The performance varies depending on the access 
method and is reported to perform reasonably well for 
basic triple patterns, but there are limitations when 
SPARQL features such as FILTER, LIMIT are used. 
Sustainability: very active project. The last version 
released in June 2012 supports the W3C's Direct 
Mapping specification. The first release of DBpedia in 
2007 was done using D2R Server, which since then 
migrated to Virtuoso RDF Views. 

4.2.3 Datalift 

Datalift28 is an experimental research project which goal 
is to help users publish and interlink their data sets on 
the web as Linked Data. Datalift consists in an 
integrated set of tools that ease the publication process 
of raw structured data coming from various formats 
(relational databases, CSV, XML, ...). The tools cover 
the following functions: selecting ontologies for 
publishing data, converting data to RDF using the 
selected ontology, publishing the linked data, 
interlinking data with other data sets. 
Main scope: RDB-to-RDF materialisation-based 
transformation engine. 
Mapping description: The process is done interactively 
though a web-based GUI: a user selects a data source 
that is translated following the direct mapping method. 
Then, a set of modules helps align the RDF data 
produced on chosen ontologies: RDF-to-RDF 
transformation (SPARQL CONSTRUCT), renaming of 
URI (using regular expressions), conversion of strings 
into URIs, the SILK29 tool can be used to automatically 
discover links with other data sets. As a result, although 
it starts with a Direct Mapping, the different modules 
provide enough flexibility to perform an a posteriori 
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alignment with capabilities comparable to domain 
semantics-driven mapping approaches. 
Mapping implementation: data materialisation. 
Mapping language features: user-defined URIs, column 
renaming (using the renaming of URIs), data types. 
Features available through the SPARQL CONSTRUCT 
module: vocabulary reuse, 1 table to n classes, many-to-
many relation to simple triples, blank nodes, named 
graphs, user-defined namespaces, static metadata. NOT 

supported: logical table, column selection, select 
conditions, data transformation. 
Data retrieval:  
- Query-based (SPARQL endpoint). 
- Linked Data: allows for dereferencing URIs by 
providing a representation based on content negotiation: 
RDF, CSV or XHTML. XHTML hyperlinks lead to 
navigation pages containing lists of other resources of 
the same class. Such pages provide an entry point for 
external Web search engines to index the content of the 
data sets. 
Sustainability: the project will complete in March 2014. 
A maintenance task force is under discussion. 

4.2.4 DB2OWL  

DB2OWL is a proof of concept that was proposed by 
Cullot et al. [13]. In the domain of the ontology 
learning, its goal is to automatically generate a direct 
mapping describing a relational database, then refine 
this mapping by exploiting relational schema 
characteristics: detect many-to-many join tables 
translated (as simple triples) and concept subsumptions 
(when a primary key is also a foreign key in another 
table). The created ontology is expressed in the OWL-
DL language, while the mapping description is stored in 
an R2O document (see section 4.2.6).  
DB2OWL is exclusively focused on the automatic 
creation of ontology classes and properties that reflect 
the relational schema; it does not tackle the conversion 
of the relational data. It must be noticed that most direct 
mapping implementations now handle the many-to-
many relation, whereas this is hardly the case of 
subsumption relations. 
Main scope: ontology learning. 
Mapping description: direct mapping augmented with 
detected many-to-many relations and class 
subsumption. The mapping description follows the R2O 
mapping syntax. 
Mapping implementation: n.a. However, in [34], the 
authors of DB2OWL apply the on-demand mapping 
implementation to perform the integration of several 
relational databases using two different levels of 
ontologies: DB2OWL creates a local ontology for each 
database and a wrapper converts queries to a local 
ontology into SQL queries. At the top, user queries 
expressed on a domain ontology are mapped to queries 
on local ontologies. 
Mapping language features: many-to-many relation to 
simple triples, column selection. NOT supported: user-
defined URIs, logical table, select condition, vocabulary 
reuse, 1 table to n classes, blank nodes, data 



 

 

transformation. Unknown: column renaming, data types, 
static metadata, named graphs. 
Data retrieval: n.a. 
Sustainability: prototype, development inactive since 
2007. Source code not available. 

4.2.5 METAmorphoses 

The METAmorphoses processor30 transforms relational 
data into RDF instances using existing target 
ontologies. The mappings are specified using a 
declarative XML-based mapping language [35], and the 
RDF graph is produced at once (data materialisation) in 
an RDF/XML output document. METAmorphoses 
consists in a java library provided under the terms of the 
LGPL open source license.  
Although quite simple, METAmorphoses is an effective 
tool. It consists in a standalone application that does not 
require any complex deployment. Mappings can be 
implemented and tested easily and quickly. 
Main scope: generic-purpose mapping language, RDB-
to-RDF materialisation-based transformation engine. 
Mapping description: domain semantics-driven using a 
specific declarative XML-based language. The mapping 
is organised as a two-layer data transformation model. 
The mapping layer describes how to map database 
tuples, selected by embedded SQL snippets, to RDF 
individuals using existing ontological concepts and 
properties. The template layer describes how to serialize 
the mapped entities into RDF/XML. 
Mapping implementation: data materialisation. 
Mapping language features: user-defined URIs, logical 
tables, column selection, column renaming, select 
conditions, vocabulary reuse, many-to-many relation to 
simple triples, 1 table to n classes, user-defined 
namespaces. NOT supported: blank nodes, data types, 
static metadata, data transformation, named graphs, data 
transformation. 
Data retrieval: none, but the ETL approach can be 
considered by loading the RDF data materialised into a 
third party triple store. 
Sustainability: no update since 2007. 

4.2.6 R2O and ODEMapster 

R2O is a declarative XML-based language [36] that 
allows the description of complex mappings between 
existing ontologies and relational elements (relations 
and attributes). It was initially designed to overcome 
weaknesses of D2R MAP [33], the predecessor of the 
current D2RQ mapping language, for cases when the 
similarity between the relational database and the 
ontology is low. It provides an extensible set of 
condition and transformation primitives to address 
situations such as: 1 table to n classes, joined tables to 1 
class, or data transformation. Condition and 
transformation primitives address features such as string 
manipulations, arithmetic calculations, definition of 
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order relations, expression of restriction on range of 
values, etc. Since it was designed, most specific 
mapping cases addressed by R2O have been addressed 
by other projects such as D2RQ, Virtuoso. Besides, 
when the expressiveness of SQL is not sufficient to deal 
with those cases, they may be addressed by common 
database back-end extensions. 
R2O is an evolution of eD2R [37], which addressed 
mapping situations involving databases that are lightly 
structured or not in first normal form. eD2R proposed to 
define complex and conditional transformations on field 
values based on techniques such as keyword search, 
regular expression matching, natural language 
processing and others. 
The ODEMapster31 query engine uses an R2O document 
to either execute the transformation in response to a 
query expressed in the ODEMQL query language, or in 
a batch mode following the data materialisation 
approach. 
Main scope: generic-purpose mapping language, RDB-
to-RDF query-based transformation engine. 
Mapping description: domain semantics-driven using a 
specific declarative XML-based language. 
Mapping implementation: ODEMapster supports both 
on-demand and data materialisation (called massive 
upgrade) implementations. 
Mapping language features: user-defined URIs, logical 
tables, column selection, column renaming, select 
conditions, vocabulary reuse, many-to-many relation to 
simple triples, 1 table to n classes, blank nodes, data 
types, data transformation. NOT supported: named 
graphs, user-defined namespaces, static metadata. 
Data retrieval: query-based. Queries are written in 
ODEMQL language and stored in an XML file. Query 
results are retrieved in RDF, as instances of OWL 
classes. There is no SPARQL result format nor Linked 
Data. But the ETL approach can be considered by 
loading the RDF data materialised into a third party 
triple store. 
Sustainability: ODEMapster has been integrated as a 
plug-in into the NeOn32 toolkit, an open source 
ontology engineering environment (ODEMapster plug-
in still maintained in last toolkit version Dec. 2011). 
The EU ADMIRE project reused the NeOn toolkit and 
provided a distributed access to ODEMapster by using 
OGSA-DAI [38]. ODEMapster seems to be used only 
for test purpose within NeOn toolkit. R2O and 
ODEMapster will not be maintained in the future as 
authors are now working on an implementation of 
R2RML called Morph (see section 4.1.2). 

4.2.7 RDBToOnto 

The RDBToOnto33 tool was designed in the context of 
the TAO project34 (ended beginning of 2009) which 
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goal was to allow a fast and effective transition of 
existing legacy applications to ontologies. 
RDBToOnto is a GUI-based extensible tool that enables 
learning ontologies from relational databases, and it is a 
framework to ease the development and 
experimentation of "transitioning methods", i.e. 
ontology learning from relational databases. To go 
beyond the automatic generation of a local ontology 
using the direct mapping method, RDBToOnto 
proposes a semi-automated method, based not only on 
the relational database schema but also on the data [39]. 
The objective is to refine classes derived from the 
relational schema with subclasses found in the content: 
find lexical clues in the column names (matched against 
a predefined list of keywords e.g. "Type"), use data 
redundancy to discover categorization patterns. Another 
step allows for database optimization, also known as 
inclusion dependencies (removal of redundancies using 
the third party tool LATINO). The whole process is 
interactive (user defined rules) and iterative. It is a user-
oriented tool that also supports the complete 
transitioning process (ontology learning from a 
relational database), from the access to the input 
databases, to the generation of populated ontologies. 
RDBToOnto can be extended by means of connectors 
and converters to implement new learning methods. 
Main scope: ontology learning. 
Mapping description: basically a direct mapping 
approach, augmented with semi-automatic iterative 
process, driven by the database schema and data: lexical 
clues in the column names, data redundancy suggesting 
categorization patterns. No mapping language is 
specified: constraint rules are stored in application 
specific project files and edited through the GUI only. 
Mapping implementation: data materialisation. 
RDBToOnto generates an ontology optionally 
populated with instances. 
Mapping language features: user-defined URIs, column 
selection, column renaming, select condition, 1 table to 
n classes, many-to-many relation to simple triples, data 
types, user-defined namespaces. NOT supported: 
vocabulary reuse. Unknown: logical tables, blank nodes, 
data transformation, named graphs, static metadata 
Data retrieval: none, but the ETL approach can be 
considered by loading the RDF data materialised into a 
third party triple store. 
Sustainability: RDBToOnto has been used in a large 
real-world case study in aircraft maintenance35, 
including mixing with existing ontologies, maintenance 
documentation annotation and WSDL annotation. No 
indication of use and maintenance outside of this 
context is found. 

4.2.8 Relational.OWL 

The goal of Relational.OWL36 is to improve the data 
sharing ability within the community of peer-to-peer 
databases. Peer-to-peer databases are volatile peers, 
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distributed, their data and schema may evolve 
frequently. Hence the need for an exchange format that 
can be understood instantly, that is, without requiring 
content negotiation nor ontology alignment. 
Relational.OWL is an application independent 
representation technique expressed as an OWL-full 
ontology, dedicated to the representation of relational 
schema components by means of a local ontology (e.g. 
complying with direct mapping rules), as well as the 
relational data itself. The OWL-full variant of OWL 
languages is required in order to allow the creation of 
an ontology which classes are instances of the 
Relational.OWL ontology classes. The ontology defines 
classes for tables, columns, primary and foreign keys, 
data types, and relations (properties) between those 
classes. 
The use of OWL-full to represent the Relational.OWL 
ontology may be considered as a hurdle to the adoption 
of the tool, as it is non decidable. Nevertheless authors 
are "confident of most OWL reasoning tools being able 
to handle data and schema representations created using 
Relational.OWL". 
Main scope: ontology learning, fully automatic direct 
mapping. 
Mapping description: direct mapping, automatic 
creation of a local ontology as an instance of the 
Relational.OWL ontology. 
Mapping implementation: data materialisation. The 
Relational.OWL application is a GUI that automates the 
process of converting a database into its equivalent 
OWL full expression. 
Data retrieval: none, but the ETL approach can be 
considered by loading the RDF data materialised into a 
third party triple store. De Laborda and Conrad [40] 
propose a method to perform domain-semantics 
mapping using Relational.OWL: in a nutshell, it 
consists in applying the ETL approach, then use the 
SPARQL CONSTRUCT query to perform alignment on 
a target ontology. 
Mapping language features: logical tables, column 
selection, blank nodes. NOT supported: user-defined 
URIs, column renaming, select conditions, many-to-
many relation to simple triples, vocabulary reuse, data 
transformation, 1 table to n classes, named graphs, static 
metadata. Unknown: data types, user-defined 
namespaces. 
Sustainability: No update since 2006. 
Discussion: the point of expressing the schema of a 
relational database by building an ontology based on the 
Relational.OWL ontology is interoperability. The fact 
that two database schemas are described using the same 
base ontology helps compare classes with classes and 
properties with properties. However it does not solve 
alignment issues: for instance, it cannot help figure out 
that two columns from two databases bear the same 
semantics. Besides, the same interoperability could be 
achieved as soon as all mappings use a common method 
to perform direct mapping like the W3C proposal [15]. 
De Laborda and Conrad [14] remark that, in other 
approaches, "the data represented (...) loses its 



 

 

relationship to the original database. Tracing the data to 
its original storage position is thus hardly possible". 
This is true, but it remains unclear what would be the 
point of tracing such information. We can think of 
applications of tracing this information in topics such as 
the tracing of data provenance, the explanation of query 
results, or the assessment of confidence in query results. 

4.2.9 SPASQL 

SPASQL37 is an open-source modified MySQL server, 
able to parse both SQL and SPARQL queries. The goal 
of providing MySQL with native support for SPARQL 
is to allow the same performance as for well-tailored 
SQL queries, by avoiding the complex rewriting phase 
[41]: SPARQL and SQL queries are compiled into the 
same data structures, and are then equally processed by 
the MySQL query processing engine. SPASQL is an 
extension of the SQL standard allowing the execution 
of SPARQL queries within SQL statements, typically 
by treating them as sub-queries or function clauses. 
Variables in a SPARQL query are treated like any 
variable in an SQL query, making the two languages 
interchangeable to query the same database. 
Main scope: RDB-to-RDF query-based transformation 
engine. 
Mapping description: automatic, very basic direct 
mapping. 
Mapping implementation: on-demand. No query 
rewriting process is needed, the SQL interpreter is 
extended to support both SQL and SPARQL. 
Mapping language features: very limited as only the 
basic direct mapping applies. NOT supported: user-
defined URIs, logical tables, column selection, column 
renaming, select conditions, vocabulary reuse, 1 table to 
n classes, many-to-many relation to simple triples, 
blank nodes, data transformation. Unknown: user-
defined namespaces, named graphs, static metadata, 
data types. 
Data retrieval: SPARQL query-based. Limited support 
for SPARQL: ASK, CONSTRUCT and DESCRIBE are 
not supported. SELECT is supported with no variable in 
predicate position in graph pattern. Results are returned 
like a usual MySQL result set. 
Sustainability: SPASQL has remained in an early 
prototype status along the project FeDeRate for Drug 
Research38. No update since 2008. 

4.2.10 SquirrelRDF 

With SquirrelRDF39, Seaborne et al. [42] propose a tool 
able to apply basic direct mapping rules to an input 
database or an LDAP directory, and to answer SPARQL 
queries through an on-demand query rewriting process. 
Mapping principles roughly follow [12]. The mapping 
description file (in RDF/Turtle) can be generated 
automatically from the database, and somewhat 
customized in order to use an existing target 
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vocabulary. Nevertheless the customization is rather 
limited, and the mapping essentially remains driven by 
direct mapping rules. An originality of SquirrelRDF is 
that is can query multiple databases simultaneously (n 
tables from m databases). 
SquirrelRDF was delivered as part of the Jena 
framework distribution in 2006, however it is no longer 
part of it since Jena40 moved to Apache. A succinct help 
page is available, but the Javadoc is provided in the 
SquirrelRDF archive41.  
Main scope: RDB-to-RDF query-based transformation 
engine using direct mapping. 
Mapping description: very simple direct mapping, with 
no attempt to reveal implicit relations suggested by 
foreign keys. The mapping description is generated 
automatically as a Turtle document following a 
dedicated vocabulary. Nevertheless we could not find a 
definition of this vocabulary on the internet nor in the 
downloaded archives. 
Besides the basic direct mapping supported, Jena Rules 
may be used to produce additional knowledge in the 
perspective of doing more domain-driven mapping. 
Mapping implementation: on-demand, SPARQL query-
based. 
Mapping language features: very limited as only the 
basic direct mapping applies: column selection, column 
renaming, vocabulary reuse, blank nodes, static 
metadata (limited to global metadata, i.e. not attached to 
each produced RDF triples). NOT supported: user-
defined URIs, logical tables, select conditions, 1 table to 
n classes, many-to-many relation to simple triples, data 
transformation, named graphs. Unknown: data types, 
user-defined namespaces. 
Data retrieval: SPARQL query-based. The preferred 
query mode is the Jena SPARQL API. It can be used to 
issue SPARQL requests to SquirrelRDF, including 
SELECT, ASK and CONSTRUCT. A CLI tool is 
available to test that the configuration is properly set. A 
limited demo SPARQL endpoint over HTTP supports 
SELECT. Whatever the access method used, no query 
triple pattern is allowed with a variable as the property. 
Sustainability: no update since 2006. 

4.2.11 Triplify 

The goal of Triplify42 is to enable popular Web 
applications (like CMS or blog applications) to publish 
the content of their relational database in RDF, JSON or 
Linked Data. Given that many instances of such web 
applications are deployed over the internet, helping 
them to quickly expose their database is expected to 
result in a boost of Semantic Web adoption [43]. 
Triplify is a simple but nice approach, to be used as a 
lightweight, easy-to-learn, plug-in for existing web 
applications. It is based on the mapping of HTTP URI 
requests onto queries to the relational database. 
Compared to the direct mapping approach, Triplify 
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takes the problem the other way round: it first focuses 
on the relational data that actually matters, instead of 
translating the relational schema into an ad-hoc 
ontology and then populates this ontology. Mappings 
are implemented as SQL statements embedded in PHP 
scripts, therefore any SQL construct or aggregation 
function may be used. Authors argue that "Triplify 
facilitates the creation of custom-tailored search engines 
targeted at certain niches, e.g. searching for specific 
content in various blogs, wikis, or forums".  
It must also be mentioned that some Triplify modules 
specifically address the provenance metadata generation 
(using the Provenance Vocabulary43) as well as the 
publication of update logs. 
Main scope: generic-purpose mapping language, RDB-
to-RDF transformation engine (query-based and 
transformation-based). 
Mapping description: domain semantics-driven manual 
mapping by means of SQL queries embedded in PHP 
scripts, in addition to transformation functions written 
in PHP. May use any SQL construct and aggregation 
function. 
Mapping implementation: on demand (Linked Data), 
data materialisation. 
Mapping language features: user-defined URIs, logical 
tables, column selection, column renaming, select 
conditions, vocabulary reuse, 1 table to n classes, many-
to-many relation to simple triples, blank nodes, data 
types, data transformation, user-defined namespaces, 
static metadata. NOT supported: named graphs. 
Triplify also naturally supports the Link Data Update 

Logs, by interpreting URIs that contain the update 
keyword, and mapping them to appropriate queries for 
changes in the database. 
Data retrieval: SPARQL is not supported. Data is 
retrieved by URI as Linked Data (RDF, JSON). Authors 
state that Triplify is aimed at small to medium Web 
applications (i.e. less than 100MB database content). 
However, it supports the caching of the triplification 
results and can hence be used with large Web 
applications (160BG data for OpenStreetMap). It has 
been adapted to several popular web applications 
(WordPress, Joomla, osCommerce, etc.). 
Sustainability: Provided under the terms of the LGPL 
licence. The last version dates back to March 2010. 

4.3 Summary 

Table 2 summarizes the characteristics of all the tools 
studied in this section. 
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D2RQ  X X  X X X X X  X X X X X X X X X X X  X X 
Datalift   X X X X  X X  X   X  X X X X X  X X X 

DB2OWL X   X  n.a. n.a.   X ?    X  ?   ? ? 
METAmorphoses  X X  X X  n.a.  X X X X X X X  X   X X 
R2O/ODEMapster  X X  X X X X   X X X X X X X X X X X  X  

RDBToOnto X   X  X  n.a. X ? X X X  X X ? X ? ? X ? 
Relational.OWL X   X  X  n.a.  X X      X ?   ?  

SPASQL   X X   X X            ?  ? ? ? 
SquirrelRDF   X X   X X     X X  X   X ?   ? ? 

Triplify  X X  X X X  X  X X X X X X X X X ? X  X X 
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DB2Triples   X  X  X X   X X X X X X X X X X  X X X 
Morph   X  X X X X   X X X X X X X X  X ? X X  

Oracle 12c   X  X  X X   ? ? ? ? ? ? ? ? ? ? ? ? ? ? 
RDF-RDB2RDF   X  X X  n.a. X X X X X X X ? X ?  X X X 

Virtuoso RDF Views  X X  X  X X X  X X X X X X X X X ? ? ? X ? 
Ultrawrap   X  X  X X X  X X X X X X X X X X ? X X X 

XSPARQL  X X  X X  X   X  X X X X X X X X X  X X 

Table 2 - Synthetic view of tools features 

Commercial product Asio SBRD is not listed as too few technical information is available publicly. 

The "X" cross means supported, an empty cell means unsupported. Interrogation marks mean that available information did  

not permit to figure out if the feature is supported or not. In such cases, experimentations would be required to conclude.

  



 

 

5 SYNTHESIS 

The previous section shows a large diversity of 
approaches among the tools designed to translate 
relational databases into RDF. Overall, the various 
approaches are driven by different initial motivations 
that fall in one or several of: ontology learning from a 
relational database, definition of a generic-purpose 
mapping language and implementation of an RDB-to-
RDF transformation engine. This has been presented in 
section 2.1. Whatever the motivation though, three 
major steps cannot be circumvented: the mapping 
description (direct vs. domain semantics-driven), the 
mapping implementation (RDF data materialisation or 
on-demand) and the data retrieval (query-based access, 
linked data or graph dump). These steps have been 
described in sections 2.2, 2.3 and 2.4.  
In this section, we analyse the studied tools with regards 
to the criteria identified in section 2. We first provide 
some conclusions regarding the motivations of the tools 
studied, then we examine how the tools orchestrate the 
three mapping steps. 

5.1 Motivations 

Table 2 evidences several patterns with regards to the 
motivation of the tools studied, that we describe below. 
 
Ontology learning uses direct mapping 

The three ontology learning approaches studied in this 
paper (DB2OWL, RDBToOnto, Relational.OWL) apply 
the direct mapping description (Table 2, columns 
Ontology learning and Direct Mapping). This indeed 
appears as a natural choice of ontology learning tools, 
since the goal is not to align the database on existing 
ontologies (that would require a domain semantics-
driven mapping) but to discover ontological knowledge 
from the database. Sequeda et al. [10] clearly illustrate 
this close connection between ontology learning and 
direct mapping in their review of Direct Mapping 
approaches: all of the seven papers reviewed mainly 
address the automatic ontology learning through the use 
of direct mapping principles. Nevertheless not all 
ontology learning approaches are based on the 
automatic direct mapping, as illustrated by RDBToOnto 
in which the direct mapping is used to produce raw 
RDF data from which more elaborated concepts and 
properties are deducted along an interactive and 
iterative process. 
 
Ontology learning uses data materialisation 

Two of the ontology learning approaches studied 
(RDBToOnto and Relational.OWL) apply the data 
materialisation implementation, while DB2OWL does 
not provide any implementation. By contrast with the 
direct mapping, the data materialisation implementation 
does not appear as an obvious choice. It is most likely 
the result of a pragmatic choice, that is, such approaches 
need to demonstrate the method without implementing a 
complex on-demand translation engine. Hence, they 

make the choice of the data materialisation method, 
which implementation is more straight-forward. Again, 
Sequeda et al. [10] confirm this observation as all of the 
seven papers that they reviewed apply the data 
materialisation implementation method. 
 
Generic-purpose mapping language vs. 

transformation engine 

When the motivation is the definition of a generic-
purpose mapping language, it is accompanied by a 
transformation engine. The engine implements the 
mapping language defined, at least to demonstrate the 
capabilities of the language, and possibly to be a 
production-class solution integrating the mapping 
language and the transformation engine. Obviously, 
R2RML is the only exception to this rule (it does not go 
along with an implementation), since its goal is, on the 
contrary, to serve as a standard for the implementation 
of transformation engines. 
The definition of a generic-purpose mapping language 
always goes along with a domain semantics-driven 
mapping description. The reason is quite simple: since 
the direct mapping can be automated, there is no point 
to defining a mapping language which expressiveness 
would solely support the direct mapping. Therefore the 
definition of a mapping language always targets a 
domain semantics-driven mapping. 

5.2 A constellation of RDB-to-RDF approaches 

Figure 1 presents the whole RDB-to-RDF process 
which results of the sequential combination of the three 
mapping steps: the mapping description, the mapping 
implementation and the data retrieval. It also depicts the 
different options applicable at each step, and the way 
those options can be chained to achieve the whole 
process. The figure reads from top to bottom, following 
the chronological order involved when setting up the 
translation process. Conversely, read from bottom to 
top, the figure illustrates the way the RDF data is 
retrieved, how this retrieval method is handled based on 
the mappings implementation, up to the source 
relational data. Arrows denote possible transitions. Blue 
arrows denote paths starting with a direct mapping 
description, while red arrows denote paths starting with 
a domain semantics-driven mapping description. Dotted 
arrows denote transitions that are technically possible 
but not common in practice. 

5.2.1 Composition of mapping descriptions and 

mapping implementations 

With the insight gained from the different approaches 
studied in this paper, it turns out that the mapping 
description method (top layer in Figure 1) discriminates 
approaches into two families with regards to the overall 
RDB-to-RDF process. 
(i) The Direct Mapping family gathers either light 
approaches which goal is to quickly and simply expose 
relational data to the world (SquirrelRDF, SPASQL), 
and ontology learning approaches which aim at making 



 

 

explicit the semantics of relational databases 
(DB2OWL, RDBToOnto, Relational.OWL). In the first 
case, an RDB-to-RDF transformation engine is needed 
to make the data available; SquirrelRDF and SPASQL 
both use the on-demand mapping implementation. 
Conversely, in the case of ontology learning 
approaches, the transformation engine is optional but 
generally comes from the need to implement a proof of 
concept. RDBToOnto and Relational.OWL apply the 
data materialisation principle, whereas DB2OWL does 
not provide any transformation engine at all. 
(ii) In the Domain Semantics-Driven Mapping family, 
tools are more generally focused on the definition of an 
expressive generic-purpose mapping language (D2RQ, 
METAmorphoses, R2O/ODEMapster, Triplify, Virtuoso 
RDF Views). To some varying extend, mapping 
languages rely on a mix of specific constructors and 
embedded SQL snippets. Triplify even solely relies on 
SQL. Recent tools do not define a new mapping 
language but comply with R2RML (DB2Triples, 
Morph, Oracle 12c, RDF-RDB2RDF, Ultrawrap), or 
complement an existing mapping language with the 
support of R2RML (XSPARQL, Virtuoso RDF Views). 
In addition, tools of the Domain Semantics-Driven 
Mapping family generally entail the implementation of 
an efficient RDB-to-RDF transformation engine. This is 
even a major motivation of R2RML-compliant tools, as 
attested by Table 2 (R2RML tools, column 
"Transformation engine"). Virtuoso and XSPARQL are 
a specific case as they come with their own mapping 
description language in addition to supporting R2RML. 
The mapping implementation can be either on-demand 
(Asio SBRD, D2R Server, R2O/ODEMapster, Triplify, 
DB2Triples, Oracle 12c, Virtuoso RDF Views, 

Ultrawrap) or based on the data materialisation 
principle (DataLift, METAmorphoses, Morph, RDF-
RDB2RDF, XSPARQL).  
 
Direct Mapping and Data Materialization 

The direct mapping approach is generally implemented 
using the data materialisation technique. Indeed, given 
that the direct mapping produces semantically poor 
RDF data, exposing this data as is with an on-demand 
implementation (rewriting of queries at run time) may 
not be of much interest. Instead, materialising this data 
offers the opportunity to align it on existing ontologies, 
or to infer new knowledge using a rule engine or a 
reasoner, and then to load it into a query engine to 
expose the semantically enriched data. This is in 
particular the case of ontology-learning approaches.  
The direct mapping method may also be implemented 
with the on-demand method, denoted by the blue dotted 
arrow in the upper half of Figure 1. This is hardly the 
case in the tools we have studied: only SquirrelRDF and 
SPASQL do so, but both remained in a prototype stage 
and are now deprecated (note that we consider here only 
strictly direct mapping tools, as opposed to the domain 
semantics-driven tools that provide a direct mapping 
tool for convenience). Nevertheless, this may only be a 
bias of the set of tools studies, and there is no reason 
why this combination (direct mapping and on-demand 
implementation) should not be used in other tools. As 
an illustration, here is a hypothetical scenario: let us 
assume a versatile environment where databases are 
volatile and may appear only once, or where their 
schema may evolve frequently (situation addressed by 
Relational.OWL). Those databases are exposed 
automatically using the direct mapping method and the 

Figure 1: Steps of the RDB-to-RDF process  

From top to bottom, the figure depicts the steps needed to set up the translation process.  

Blue paths start with a direct mapping description, red paths start with a domain semantics-

driven mapping description. Dotted arrows denote unusual sequences. 
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on-demand implementation through a SPARQL 
endpoint. Provided with a way to discover such 
databases, a federation system may query the local 
ontology of each database and use automatic ontology 
alignment methods (e.g. natural language processing or 
syntactical coincidences such as those investigated by 
RDBToOnto) to perform a best-effort alignment of the 
different databases on each other or on a global 
ontology. 

5.2.2 Data Retrieval methods 

The Query-based retrieval method is the most 
implemented within the tools we have studied, as 
evidenced by the "Query-based access" column in Table 
2. Triplify supports exclusively the Linked Data 
method, whereas all other tools supporting Linked Data 
also support the Query-based method. 
By contrast, the red dotted arrows, in the lower half of 
Figure 1, show that the graph dump data access (get a 
representation of the full graph using an HTTP GET 
request) is very unusual, for several reasons. Firstly, the 
data materialisation process produces a graph 
serialization, generally in the form of an RDF file. 
Hence, using the graph dump access method would be 
just another way of getting an alternative representation 
of the same graph from an HTTP endpoint. Secondly, in 
conjunction with the on-demand mapping 
implementation, the dump of large graphs may induce 
significant performance issues. Thus, so far, the graph 
dump seems not to have been a priority for RDB-to-
RDF tools developers (none of the studied tools 
supports it, as evidenced by the empty column in Table 
2). Nevertheless, this may become more common in the 
future, as more tools will implement full SPARQL 1.1 
compliant endpoints, i.e. including the SPARQL 1.1 
Graph Store Protocol. 

5.2.3 Extract-Transform-Load (ETL) 

The Extract-Transform-Load (ETL) expression is used 
in the literature to denote the approach that consists in 
defining a mapping, materialising the RDF data based 
on that mapping, and loading the RDF data into a triple 
store to query it, typically through a SPARQL endpoint. 
The green dotted line in Figure 1 denotes this whole 
approach. It shows that any of the direct or domain 
semantics-driven mappings can apply. Strictly speaking, 
and as there is no formal definition of the ETL 
approach, the Linked Data and Graph Dump data 
retrieval methods could also be included. In practice 
though, ETL generally refers to the query-based 
retrieval method, and more precisely the usage of a 
SPARQL endpoint. 

5.2.4 A posteriori production of rich semantic data 

Producing RDF data with sufficient semantics, in order 
to make it usable, interoperable and linkable, is a 
critical concern in most RDB-to-RDF tools. 
Experimentations that use direct mapping-based tools 

often underline the weaknesses of this method: the reuse 
of the RDF data produced is not easy due to the 
poorness of the semantic reference, its interoperability 
with other data sets requires complex techniques. 
Finally, lifting the data to a higher level of semantic 
formalisation, in other words, aligning the RDF data 
with existing ontologies has to be done at some point 
anyway. Furthermore, even in the case of a domain 
semantics-driven mapping, the production of 
sufficiently rich semantic data cannot always be 
achieved by the expressiveness of existing mapping 
languages. Consequently, various strategies are 
investigated in the literature to produce additional 
semantic data, a posteriori. Below we briefly present 
some of them. 
 

Aligning multiple levels of ontology 

Several RDB-to-RDF projects propose to enhance the 
direct mapping by aligning the local ontology with 
higher levels of abstraction formalized by domain and 
application ontologies. In this case, the domain 
semantics-mapping is not performed beforehand as in 
domain semantics-driven mapping tools, but consists in 
the later alignment of ontologies. 
Asio SBRD, DataLift, as well as a DB2OWL-based 
approach [34], propose comparable methods using two 
distinct levels of ontology. In a first step, the direct 
mapping method is applied to create a local ontology 
that reflects the structure of the relational database. In a 
second step, the local ontology is manually aligned onto 
a domain ontology that models some part of the domain 
which the relational database refers to. A query engine 
translates a query to the domain ontology into a query 
to the local ontology. In turn, the query to the local 
ontology is translated into an SQL query to the 
relational database. 
Alternatively, the alignment of the local ontology with a 
domain ontology may be achieved using the SPARQL 
CONSTRUCT clause: given a certain graph pattern 
using local ontology concepts and properties, the 
CONSTRUCT clause produces new RDF data using 
concepts and properties of the domain ontology. De 
Laborda and Conrad [40] describe a use case in which 
they have applied this method with Relational.OWL. 
Technically, the SPARQL CONSTRUCT clause returns 
a graph instance, it does not insert triples into an 
existing graph. Consequently, the alignment has to be 
done unitarily in a single CONSTRUCT clause. 
Anyway, it would be simple to apply the same idea by 
running several SPARQL INSERT clauses to 
incrementally enrich a graph. Ultimately, this method 
turns out to be equivalent to executing rules in a rule 
engine (see below). The only difference, here, is that the 
rules description language would be SPARQL. 
Hu and Qu [44] propose to apply data mining 
techniques to automatically discover simple mappings 
between the relational entities (tables, columns, 
integrity constraints) and the classes and properties of 
an existing ontology. Relational and ontological entities 
are compared using distance measures such as the TF-



 

 

IDF (Term Frequency-Inverse Document Frequency), in 
addition to the computation of the confidence in a 
mapping and a validation phase. In this sense, it can be 
seen as an automatic domain semantics-driven 
approach. However, for this method to perform 
efficiently, the similarity between the relational schema 
and the ontology should be high, unless human users 
provide initial reference mappings. 
Besides generic methods such as presented above, some 
domain-specific projects propose alternative methods. 
Green et al. [45] describe a demonstrator that relies on 
existing tools to allow for the "spatial attribution" of 
data sources, for the predictive modelling of diffuse 
water pollution. The federation of different data sources 
lies on a 3-layers ontology stack. The ontologies at the 
first level (called data ontologies) are used to map each 
data source to concepts of the ontologies at the next 
level (called domain ontologies). Domain ontologies are 
written by domain experts, each data ontology has a 
single corresponding domain ontology. At the top, the 
application ontology links the domain ontologies 
together with the addition of application-specific 
information. Much of the application ontology is 
created manually, as it requires domain knowledge of 
the scenario being modelled. D2RQ is used to map data 
sources to the data ontologies, and is extended to 
include spatial operators provided by the Oracle Spatial 
database. In particular, this extension helps decide on 
which domain concept to map data based on the result 
of specific functions such as the calculation of a 
perimeter. The virtual RDF graph thus generated from 
the data sources can be searched by means of SPARQL 
queries, those queries can use concepts and properties 
of the application and domain ontologies. Additionally, 

the Pellet reasoner is used to enrich results by 
benefitting of the full semantics of OWL. 
 
Using rules to create additional knowledge 

Rule engines or reasoners are an alternative way to 
enrich the semantics of RDF data. This option is 
depicted on Figure 2 by the green layer inserted 
between the mapping implementation and the data 
retrieval layers. 
Techniques proposed in this layer can easily be used in 
conjunction with the data materialisation in which the 
whole graph is available at once. This is the case of the 
NeuroLOG project [46] that uses METAmorphoses to 
create an RDF materialisation of federated neuro-
imaging relational databases. The values of some 
columns help deduce the belonging to classes of the 
application ontology. As the METAmorphes mapping 
language is not capable of describing such 
categorization patterns, these patterns are described as 
SWRL44 rules executed by the CORESE [47] semantic 
search engine. By raising the quality of the semantic 
data, the process improves the possibilities of further 
application specific reasoning. 
Rule engines or reasoners can also apply on RDF data 
translated on-demand, although the execution of 
complex deduction rules, or the application of complex 
entailments, may generate a high volume of queries to 
the database. In the worst case, the process may require 
to translate the whole relational data before being able 
to complete. Among the tools studied in this paper, 
several propose the support of rules: SWRL rules for 
Asio, Silk module in DataLift, Jena Rules in 
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Figure 2: Production of additional knowledge 

The green layer depicts strategies aimed at a posteriori production of additional semantic data 
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SquirrelRDF, and proprietary RDF-to-RDF deduction 
rules in XSPARQL. 

6 Open Questions 

The RDB-to-RDF methods that we have described in 
this document are one of the keys to populate the web 
of data, by publishing in RDF the immense amount of 
data currently locked in relational databases. More 
generally, many initiatives target the publication of non-
RDF data sources in RDF, ranging from wrappers of 
popular web site APIs, such as the flickrdf45 library, to 
miscellaneous format-specific converters46 and 
"RDFizers"47. Whatever the method though, all of this 
results in a read-only web of data. And similarly to the 
tremendous change of paradigm that lead to the Web 
2.0 where the user contribution plays a major role, the 
web of data will necessarily have to shift to a write-
enabled model. In the case of relational databases, 
although the expressiveness of RDB-to-RDF mappings 
is a key to rich semantic alignment, it also often results 
in one-way transformation mappings (one-way 
mappings cannot be used to revert RDF data to the 
original relational data). Consequently, there will 
necessarily be a compromise to be made between the 
expressiveness of RDB-to-RDF mapping languages and 
the need for updating relational data using the protocols 
of the semantic web. The R3M mapping language is an 
example of the search for such a compromise [48]. 
Berners-Lee et al. [49] investigate some of the issues 
and challenges with regards to a read-write web of data. 
They underline that the need to create, update and delete 
RDF data should be made possible in a secure, reliable, 
trustworthy and scalable way. This questions the way to 
authenticate people and programs in the web of data, 
how to securely assign them authorizations, how to 
track the changes made, etc. As to the trustworthiness 
question, in a global data space made of heterogeneous 
data sources integrated together, it will become critical 
to be able to explain query results, or to assess the 
confidence a user can have in query results. To this end, 
applications exposing non-RDF data sources into RDF 
will have to ensure the preservation of provenance 
information, allowing to track a piece of data back to its 
original data source. 

7 Conclusion 

Many techniques and tools have been proposed over the 
last years to enable the publication of relational data on 
the web in RDF. In this paper, we have described four 
main axes along which it is possible to categorize such 
RDB-to-RDF approaches. Based on these axes, we have 
proposed a detailed review of seventeen RDB-to-RDF 
tools, either supporting the R2RML W3C 
recommendation or providing their own mapping 
language. The categorization proposed helped us 
                                                           
45 http://librdf.org/flickcurl/ 
46 http://www.w3.org/wiki/ConverterToRdf 
47 http://simile.mit.edu/wiki/RDFizers 

identify commonalities and differences between 
existing approaches, as well as the correlations between 
the solutions applicable to each step of the RDB-to-
RDF translation process. We observed that producing 
RDF data with sufficiently rich semantics is a critical 
concern of most approaches studied, in order to make 
the data usable, interoperable and linkable. Therefore, 
we have briefly presented various strategies investigated 
in the literature to produce richer semantic data. 
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