
HAL Id: hal-00903568
https://hal.science/hal-00903568v1

Submitted on 12 Nov 2013 (v1), last revised 3 May 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of RDB to RDF translation approaches and
tools

Franck Michel, Johan Montagnat, Catherine Faron Zucker

To cite this version:
Franck Michel, Johan Montagnat, Catherine Faron Zucker. A survey of RDB to RDF translation
approaches and tools. 2013. �hal-00903568v1�

https://hal.science/hal-00903568v1
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR7271

A survey of RDB to RDF translation approaches and tools

Franck Michel, Johan Montagnat, Catherine Faron-Zucker

Equipes Modalis/Wimmics

Rapport de Recherche
ISRN I3S/RR 2013-04-FR

Novembre 2013 - 24 pages

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS
2000, route des Lucioles - Les Algorithmes - bât. Euclide B 06900 Sophia Antipolis - France

http://www.i3s.unice.fr

A survey of RDB to RDF translation approaches and tools

Franck MICHEL, Johan MONTAGNAT and Catherine FARON-ZUCKER

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract. Relational databases scattered over the web are generally opaque to regular web crawling tools. To address
this concern, many RDB-to-RDF approaches have been proposed over the last years. In this paper, we propose a detailed
review of RDB-to-RDF methods and tools, considering end-to-end projects that delivered operational tools. The different
approaches are classified along four major axes: motivation of the approach; mapping description language and
expressiveness; mapping implementation; and data retrieval method. Then, we analyse commonalities and differences
between existing approaches, and we underline common patterns in the orchestration of solutions applicable to each step
of the translation process. Finally, we underline that the expressiveness of existing mapping languages is not always
sufficient to produce rich semantic data and make it usable, interoperable and linkable. We therefore briefly present
various strategies investigated in the literature to produce additional semantic data.

1 Introduction

Making data hosted in relational databases (RDB)
accessible to the semantic web has been an active field
of research during the last decade. Converting relational
data into RDF or exposing relational data so that it can
be queried through SPARQL1, the query language of
the semantic web, is often referred to as the "RDB-to-
RDF" process. Yet, data providers willing to publish
their data in a machine-readable format may be
somewhat discouraged by the difficulty of choosing
between the existing tools and associated mapping
languages. In September 2012, the publication by the
W3C of the first R2RML2 recommendation, a standard
language to describe mappings between a relational
database and an equivalent RDF representation, has
marked a new step towards the actualization of the web
of data. R2RML encourages RDB-to-RDF tool
developers to comply with a standard mapping
language. On the other side, data providers should
benefit of the adoption of this common language,
allowing them to decouple relational data integration
problems from specific tools or approaches, and
ensuring sustainability. However, the choices made in
the R2RML specification imply some limitations on the
kinds of mappings that can be expressed. Furthermore,
an implementation-independent mapping language such
as R2RML does not address some of the common
questions that occur when translating existing relational
data into RDF, such as the choice of reusing existing
vocabularies, or the way the data is accessed or queried.
Many RDB-to-RDF techniques and corresponding tools
have been proposed over the last years. In spite of the
observed convergence of several of them towards an
R2RML implementation, the choice of an RDB-to-RDF
technique and a technical implementation is not an easy
task. Firstly, different techniques convey different
philosophical approaches (e.g. focus on ontology
learning, mapping language design, query engine

1 http://www.w3.org/TR/sparql11-overview/
2 http://www.w3.org/TR/r2rml/

design…) which have implications on the way the
relational data exposed can be manipulated. Secondly,
existing reviews of RDB-to-RDF approaches often
provide very brief descriptions of the tools developed,
making them difficult to compare. Operational
questions such as the conversion of relational data into
RDF repositories versus the real-time use of the native
relational databases, the exposed data access and
querying means, tools sustainability, etc., are hardly
addressed.

1.1 Motivations for RDB-to-RDF translation

In order to grasp the diversity of RDB-to-RDF
approaches, it is useful to understand the motivations of
the RDB-to-RDF studies and projects, which led to the
emergence of R2RML. Three common needs, that we
describe below, are generally targeted: accessing data
from the deep web, linking open data, and integrating
multiple heterogeneous data sources.
The "deep web", as opposed to the "surface web", is a
part of the web content that is hardly indexed by
standard search engines. It refers to the data hidden in
unstructured documents (images, scans), semi-
structured documents (csv, pdf...), or structured data
sources (relational databases, xml databases, NoSQL
databases, LDAP directories...) only accessible through
query forms but which content cannot be browsed by
standard tools. As an illustration, in 2007, 70% of web
sites were backed up by RDBs, which contained 500
times more data than directly available [1]. Making this
huge amount of data available in a machine-readable
format is expected to create opportunities for novel
applications and services. In this regards, RDF is as a
powerful pivot format. Yet, in order to ensure the
sustainability of the applications that were developed
along with the data they exploit, and to leverage the
properties engineered into RDB systems over decades
(scalability, ACID3 properties, security and
performance optimizations), it is preferable that the data
remains hosted and delivered by the legacy RDBs,

3 atomicity, consistency, isolation, durability

hence the need for RDB-to-RDF techniques that can
access relational data and convert it into RDF triples.
Linking open data to other related pieces of data
increases its value. From this simple statement, the
Linked Data principles, proposed by Tim Berners-Lee
[2], recommend best practices for exposing, sharing,
and connecting pieces of data, information, and
knowledge on the Semantic Web using URIs and RDF.
Driven by these recommendations, the Linking Open
Data4 community project aims at extending today's web
by publishing various open data sets as RDF, and
setting RDF links between data items from different
data sources. In other words, it intends to solve the
semantic web chicken-and-egg dilemma, stating that a
critical mass of machine-readable data must be
available for novel mash-up applications to arise. Such
applications should create added-value by repurposing
data sets, using the data in some new way, possibly
beyond what data providers may have initially
expected. In this regard, the success of the Linking
Open Data project largely depends on the accessibility
of the "deep web" data, and the availability of RDB-to-
RDF tools to help publish the existing relational data
into RDF.
Integrating heterogeneous data has become a major
challenge in several domains. In the bio-medical
domain in particular, translational science refers to the
continuous information exchange between research and
clinics [3][4]. For instance, neurosciences have to
connect, make sense of, and search across
heterogeneous data and knowledge describing different
organization scales (molecule, proteins, genes, cells,
physiology, behaviours...) [5]. The first major step to
integrating heterogeneous relational data sources is to
make their semantics explicit. Relational schemas
commonly provide no or poor semantics. To some
limited extent, implicit semantics can be figured out
from integrity constraints or usual database design
patterns such as n-ary relations and inheritance. But
additional semantics is frequently encoded in the
application exploiting a relational database, for instance
by means of domain specific rules. Moreover, relational
schemas are often fine-tuned and customized for
performance reasons. This results in mixing data
semantics with technical concerns, making it even more
difficult to figure out the original data semantics. As a
result, in order to tackle the challenges of data
integration in translational science, data integration
techniques have to "lift" the data, that is to capture and
expose its semantics in an explicit and machine-
readable manner. Using RDF as a format for
representing relational data appears as a powerful and
promising method to achieve such data integration, in
which RDB-to-RDF methods will play a key role.

4http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/Li
nkingOpenData

1.2 Previous works

Facing the large variety of initiatives in the domain of
relational database to RDF mapping, several studies
have been conducted to compare approaches and
techniques.
In 2007, the W3C decided the creation of the
RDB2RDF Working Group5 to standardize languages
for mapping relational database schemas into RDF and
OWL. As members of the RDB2RDF Incubator Group,
Sahoo et al [6] conducted a review with a wide scope,
addressing theoretical articles, proofs of concept,
domain-specific projects as well as generic mapping
tools. The goal of this survey was not to get into the
details of each approach. Instead, it aimed at providing
members of the RDB2RDF Working Group with a
comprehensive overview of the different approaches
that had been investigated so far, in order to serve as a
basis for the definition of R2RML. Consequently, the
classification they proposed is not specifically focused
on mapping languages but rather explores the
approaches along diverse axes: mapping creation
(description language), mapping implementation (how
the data is translated into RDF), query implementation
(how queries are (re)written). Three additional axes are
simply mentioned: mapping representation and
accessibility (meta-language to express mappings),
application domain, and data integration.
Hert et al [7] proposed a feature-based comparison
framework that they have applied to state of the art
mapping languages. The framework is derived from the
use cases and requirements described by the W3C
RDB2RDF working group [8]. The mapping languages
are sorted into four categories: direct mapping, read-
only general-purpose mapping, read-write general-
purpose mapping, special-purpose mapping. This paper
focuses specifically on the comparison of the mapping
language features and expressiveness, but does not
address the implementations proposed by their authors
or the way queries are rewritten.
Also to be mentioned, Sequeda [9] proposed a short
high-level review of major RDB-to-RDF mapping
products, along with a brief description of each of them.
Unlike the two previous reviews that almost exclusively
focus on academic works, this paper reviews products
either from the academic world or from the industry. As
a result, although very succinct, this work is an
interesting entry point to broaden the scope towards the
industrial approaches.
Sequeda et al [10] also surveyed methods that apply
Direct Mapping principles to automatically translate a
relational database into RDF. They studied methods
proposed in the literature to extract ontological
knowledge as RDFS or OWL from SQL DDL (Data
Description Language) representations. This ranges
from simple approaches (table to class, column to
property) to more advanced ones that try to discover
relations such as many-to-many, subsumption, has-
part/is-a-part-of, symmetric and transitive relations, and

5 http://www.w3.org/2001/sw/rdb2rdf/

SQL features such as integrity constraints, checks and
triggers. Finally, authors propose a consolidated
approach, based on the work of Tirmizi et al [11], that
exploits all the possible combinations of primary and
foreign keys in relational tables, in which they try to
gather the best of all studied approaches. As a
conclusion, authors acknowledge that the quality of an
ontology resulting of a direct mapping highly depends
on the richness of the SQL schema with respect to its
encoding of domain semantics.

1.3 Goal of this work

In this paper, we propose a detailed review of state of
the art RDB-to-RDF tools, either academic or industrial.
We make a specific focus on the specificities of each
technique, and we describe, as much as possible, the
capabilities of the different tools studied. Taking into
account practical concerns, we only consider end-to-end
projects that delivered operational tools to implement
the RDB-to-RDF process, excluding proofs of concepts
and early prototypes. A classification is proposed to
identify the different approaches along four major axes
that span from the motivations to the mapping
description and service deployment concerns: (i)
motivation of the approach; (ii) type of mapping,
mapping description and expressiveness; (iii) mapping
implementation (how and when the data is converted
into RDF), and (iv) data retrieval method (query-based,
linked-data, graph dump). Also, when available, we
provide information regarding the project maturity and
sustainability.

2 Classification of RDB-TO-RDF Approaches

2.1 Motivation of the approach

In the literature, the many projects, prototypes or
articles dealing with the RDF access to relational
databases consider the subject from somewhat varying
perspectives, depending on their initial motivations. We
can roughly sort them out into three categories that we
describe below. Any approach may fall in one or
several, or even all of the three categories.

Ontology learning

Ontology learning approaches are focused on the
engineering of ontologies, their goal is generally to
extract ontological concepts and relations from
relational schemas and data. The scope may vary from
simple approaches reflecting the relational schema
(using a simple direct mapping method to build an ad-
hoc ontology), to more complex methods looking for
specific database design patterns such as many-to-many
relations and concept subsumption relations. Some
methods propose to analyse both the relational schema
and data using data mining techniques in order to figure
out new ontological concepts and properties. For
instance, data redundancy may evidence categorization
patterns indicating subsumption relations. Some semi-
automatic approaches iteratively create the ontology,

suggesting probable matches between the database and
an existing ontology, or extending an existing ontology
with additional concepts and properties learnt from the
database schema.
Ontology learning approaches are often accompanied
by the definition of a mapping language, and optionally
the implementation of a proof-of-concept or prototype.

Definition of a generic-purpose mapping language

The goal of such approaches is basically to define a
mapping language able to describe different situations
of mapping between a relational database and an RDF
representation. Unlike the ontology learning domain,
the ability to describe a mapping to an existing ontology
will be a key concern here. More generally, the primary
goal is to ensure that the expressiveness of the mapping
language spans a large scope of situations, from a
simple direct mapping to complex cases where the
similarity between the database and the target ontology
is low. Some approaches even address the mapping of
databases lightly structured or not in first normal form.
Some mapping languages provide the ability to define
complex transformations making use of different
methods such as regular expression matching, keyword
search or natural language processing.

Implementation of an RDB-to-RDF transformation

engine

Most approaches, either focused on ontology learning
or on the definition of a mapping language, propose the
implementation of a transformation engine to validate
and showcase the results of the approach. This may be
implemented as either a query processing engine
typically able to process SPARQL queries, or the
transformation of the whole relational data into an RDF
representation at once. Anyway, some RDB-to-RDF
approaches more specifically target the development of
a production-class query engine, that is, a query engine
able to handle a large number of concurrent requests
while ensuring acceptable performances, and handle
complex queries with acceptable response time. Those
approaches are concerned with the way a (SPARQL)
query to the target data model will be translated into the
source database query language (SQL query rewriting),
and by the efficient execution of the translated query
(query optimization and query planning).

2.2 Mapping description

The mapping description refers to the way the mapping
between the relational database and an RDF
representation is described. It is generally driven by the
fact that the resulting mapping should either (i) come up
with an ad-hoc ontology that reflects the relational
schema, or (ii) comply with existing well-defined
domain-specific semantics, by reusing domain
ontologies and possibly entailing more complex
mappings. The first is referred to as the Direct

Mapping, while the latter is called Domain Semantics-

Driven Mapping.

In the literature, Direct Mapping is frequently used as a
synonym of Automatic Mapping, and Manual Mapping
as a synonym of Domain Semantics-Driven Mapping,

although this happens to be misleading: a direct
mapping is generally created automatically and later
customized manually. Yet, despite the manual edition, it
can remain nothing more than a direct mapping.
Conversely, the domain semantics-driven mapping is
often called manual mapping, although an automatically
generated direct mapping is frequently used as a starting
point to more complex domain-specific mappings. In
addition, some approaches attempt to automatically
discover mappings far beyond the definition of direct
mappings. The latter could be called "automatic
discovery of domain-semantics mapping".
Consequently, hereafter we shall use the terms Direct

Mapping or Domain Semantics-Driven Mapping. The
terms manual and automatic will be used for exactly
what they mean: the manual edition of a mapping by a
human agent, vs. the automatic generation of a mapping
by a program.

Direct mapping (also known as automatic mapping,
local ontology mapping, table-to-class)
The direct mapping approach intends to convert
relational data into RDF in a straightforward manner,
making the process simple. It consists in the automatic
creation of URIs following simple rules defined by Tim
Berners-Lee [12]:
‐ table-to-class: a table is an ontological concept with

URI "namespace/database/table";
‐ column-to-property: each column of a table is an

ontological property with URI "namespace
/database/table/column";

‐ row-to-resource: each row of a table is a resource,
i.e. an individual which class is represented by the
table. The resource URI is formed using the
primary key:
"namespace/database/table/primaryKey" or
"namespace/database/table#primaryKey";

‐ cell-to-literal-value: each cell with a literal value is
the object of a data property;

‐ cell-to-resource-URI: each cell with a foreign key
constraint is turned into the object of an object
property.

Applying this set of rules automatically creates an ad-
hoc RDF vocabulary reflecting exactly the structure of

the relational schema. In ontology learning approaches,
the term local ontology mapping is sometimes used to
refer to ad-hoc ontologies created by the direct mapping
process. To avoid exposing unnecessary or sensitive
data such as passwords, most approaches automatically
generate a first mapping that can be manually
customized to some extent. Some specific cases such as
multi-column primary keys and tables with no primary
key are also generally addressed. Optionally, the direct
mapping can be improved by the automatic detection of
common database design patterns: many-to-many
relations suggested by join tables (tables which all

columns are foreign keys to other tables), and implicit
subclass relationships suggested by a primary key used
as a foreign key [13]. In the latter case, the literature
argues that, in the context of databases not in the third
normal form, this pattern may reveal a vertical
partitioning (that consists in splitting a table into several
smaller tables for performance concerns) rather than a
subsumption relationship [11][10]. Yet, open research
questions remain with regards to the possibility of
translating relational database triggers into additional
knowledge in the form of semantic rules.
The Direct Mapping method typically applies when no
domain ontology exists to which the relational schema
could be mapped, or when the goal is to rapidly make
data sources available in a machine-readable format,
with few concerns for semantic interoperability. Direct
Mapping can also address versatile environments in
which databases may appear and disappear frequently
with no time for manual alignment [14]. When semantic
interoperability is required, ontology alignment
methods are used later on to align the local ontology
with existing domain ontologies.
The W3C has proposed a specification "A Direct
Mapping of Relational Data to RDF" that specifies good
practices of the direct mapping approach [15]. It is a
very simple version of the direct mapping, essentially
the formalization of the rules enounced by Tim Berners-
Lee.

Domain Semantics-Driven mapping (also known as
manual mapping, transformative mapping)
Although the direct mapping approach transforms the
content of a relational database into RDF, it is unable to
capture the true semantics of the data. At best, this
semantics is implicitly suggested by the relational
schema metadata. At worse it consists of domain-
specific rules encoded in the application that exploits
the database. This is outlined in a short but enlighten
feedback from the Ordnance Survey of Great Britain:
"existing tools designed to generate ontologies based on

database schemas are missing the point: databases are

rarely good descriptions of a domain, being the result

of both performance optimisation processes and

contingent maintenance history. And, in any case, the

schema itself will not support a full description of the

domain, other relevant relationships often being buried

in code or in the encoding of various attributes." [16].
To overcome these limitations, the domain semantics-

driven mapping approach applies when the relational
database must be translated using concepts and
properties of existing ontologies. The database and the
ontology may have been designed separately, hence the
similarity level between them may be low. A typical use
case is the alignment of a legacy database with an
existing ontology that refers to or describes the same
domain of interest.
The functionalities of domain semantics-driven systems
allow to describe highly expressive mappings, able to
bridge the conceptual gap between RDB and RDF.
Table 1 lists the features that may be supported.

Feature name Feature description

generation of user defined
unique Ids

Ability to generate URIs of resources beyond the simple use of primary key values:
reusing and combining column values, allowing for conversion tables, etc.

logical table Ability to read tuples not only from tables but also from SQL views or from the result
of an SQL query.

column selection (also called
projection)

Ability to select only a subset of the columns of a table to translate. This is a very
basic feature, almost a minimum pre-requisite of any RDB-to-RDF tool.

column renaming Ability to map a column to an RDF property with a different name. This is not always
possible in a direct mapping but quite obvious in a domain semantics-driven mapping.

select conditions Ability to translate only a subset of the tuples of a table using a select-where
condition

vocabulary reuse Ability to map relational entities to instances of existing vocabularies and ontologies.
This is the main difference between domain semantics-driven mapping and direct
mapping approaches.

1 table to n classes Ability to use the values of a column as a categorization pattern: tuples of the table
will be translated into instances of different ontological classes based on the value of
this attribute. This feature can be seen as an extension of the "select conditions"
feature as it results in not only filtering out rows, but the filter helps selecting rows to
be converted into instance of one class or another.

many-to-many relation to
simple triples

Many-to-many relations are usually implemented in relational databases as a join
table which columns are all foreign keys to other tables (n-ary relations). This feature
consists in the ability to translate many-to-many join tables into simple triples. This
opposes to a basic direct mapping in which the join table will be translated into a
distinct class.

blank nodes Ability to generate blank nodes and refer to them within the graph produced during
the translation process. Blank nodes can be used for instance to translate a table
without a primary key.

data types Ability to handle relational data types consistently with RDF data types per SQL-
XSD mapping.

data transformation Ability to apply transformation functions to the values before generating the RDF
triples. This can be used to perform complex type conversion, compute a value using
several columns, and applying methods such as string manipulation functions,
decimals type conversions, etc.

named graphs Ability to create not only a default RDF graph but also multiple named graphs within
a single mapping definition.

user-defined namespaces Ability to declare and use namespace prefixes.

static metadata Ability to attach static metadata (such as licensing or provenance information) to the
produced graphs, and possibly to all RDF entities or instances of a certain class.

Table 1: Possible features of mapping languages

To support domain semantics-driven mappings,
mapping description languages generally implement
two different strategies:
(i) The mapping description essentially relies on SQL
queries to present the data as expected. The
expressiveness is therefore constrained by that of SQL
and complex cases that outreach the expressiveness of
SQL cannot be addressed (unless supported by
extensions of a specific RDBMS). On the other hand,
the rewriting of a query on the target RDF data
(generally a SPARQL query [17]) into SQL is almost
straightforward. This allows developers to tune queries
and rely on the database system performance. Besides,
the fact that SQL is widely known facilitates the
adoption of the mapping language by data providers
who hardly need to learn a new mapping language.

(ii) The mapping description uses a specific dedicated
language. A query on the target RDF data will be
rewritten into SQL queries. This approach is not
constrained by the expressiveness of SQL. As a result it
can be extended in order to meet specific complex
needs such as keyword search, regular expression
matching, natural language processing, data mining, etc.
Nevertheless, it must be noticed that most existing
projects hardly reach the expressiveness of SQL (for
instance, aggregation or groupings are not always
possible although they are natively supported by SQL).
Some mapping languages such as R2RML and D2RQ
use both strategies simultaneously: they are able to
complement SQL snippets with specific mapping
descriptors.

2.3 Mapping implementation

Given a mapping description, that is the set of rules that
map a relational model to a target ontology, the
mapping implementation refers to the way database
tuples are translated into ontological instances
(individuals). Two methods can be applied: the data

materialisation, or the on-demand mapping.

Data materialisation

The data materialisation approach is the static
transformation of the source database into an RDF
representation, in the manner of the data warehouse
approaches. It consists in the application of the mapping
rules to the whole content of the database to create an
equivalent RDF graph. For this reason, the literature
also refers to it as "graph dump", "graph extraction" or
"RDF dump". When the materialisation process
completes, the resulting RDF graph can be loaded into a
triple store and accessed for instance through a
SPARQL query engine. This whole process is often
referred to as the Extract-Transform-Load (ETL)
approach, that conveys the idea of data materialisation
and loading into a triple store.
With this approach, a large number of data sources can
be integrated, in the limit of the triple store and query
engine capacity. Besides, a major advantage of the
materialisation is to facilitate further processing,
analysis or reasoning over the RDF data, including the
execution of heavy inference rules. Indeed, as the RDF
data is made available at once by the materialisation
process, third party reasoning tools can be used to apply
complex entailments. Later on, complex queries can be
answered without compromising run-time performances
since the complex reasoning tasks have been performed
at an earlier stage.
Several limitations are to be noticed though. This
solution hardly supports very large data sets, as the size
of the graph produced may exceed memory capacity.
Another limitation concerns the way to deal with
outdated data: in the context of an application that
updates the relational data frequently, the materialized
RDF graph may be rapidly outdated. To address this
issue, the extraction process may be run periodically. In
this case however, a compromise should be found
between the cost of materializing and reloading the
graph, and the degree of tolerance of the application to
outdated data.

On-demand mapping

Conversely to the data materialisation method, the on-

demand mapping approach consists in the run time
evaluation of queries against the relational data. In this
model, the data remains located in the legacy database.
Whatever the way the converted data is accessed,
queries to the target RDF data must be rewritten into
SQL at query evaluation time.
The advantages and drawbacks of this approach are the
opposite of the materialisation approach. It is well
suited in the context of very large data sets that would
hardly support centralization due to resource

limitations. It guarantees that the data returned is always
up to date since no copy of the data is done. Besides, it
easily allows for the enforcement of access control
policies implied by privacy or confidentiality
constraints such as in the case of medical data.
On the other hand, query performances can be severely
penalised if entailment regimes must be implemented
[6], or if many data sources are to be integrated
together. It is suggested that in some cases, the
expressiveness of SPARQL queries should be limited to
be processed by on-demand mapping systems: in
particular, a variable in predicate position (resourceA ?r
resourceB) or a variable in object position representing
a class (resourceA rdf:type ?c) lead to "union bomb"
issues [18][19].

2.4 Data retrieval (query implementation)

Independently of the way a mapping is implemented,
the RDF data can be retrieved using several methods:
by sending a query to a query processing engine, using
the linked data paradigm, or in a bulk manner by a
graph dump operation. The choice of the method
depends largely on how the data should be exploited.
Below we briefly describe those methods.

Query-based access

The RDF data is retrieved by means of a query,
generally expressed in SPARQL, the standard language
to express queries over RDF data. It must be mentioned
that, although marginal, a few tools implement their
own query language. A SPARQL query processor can
be used to run a SPARQL query against an RDF
repository (in the data materialisation approach), or
against a relational database (in the on-demand mapping
approach). In the former case, a SPARQL query
processor can be accessed through an HTTP server
using the SPARQL protocol [20]: this results in a
SPARQL endpoint. In the latter case, the SPARQL
query must be rewritten into SQL and, conversely, SQL
results must be translated into equivalent SPARQL
results according to the mapping.
Besides SPARQL, early approaches proposed other
query languages, nevertheless the standardization of
SPARQL has deprecated those initiatives. Additionally,
some RDBS providers have proposed alternative
solutions by integrating a query evaluation engine
within the native RDBS evaluation engine. This is the
case of SPASQL that allows for the execution of
SPARQL queries within SQL statements.

Entity-level access (Linked data)

Each logical relational entity translated into RDF is
assigned a unique URI that identifies it in the data
graph. According to the principles of the Linked Data
[2], it should be possible to dereference any such URI
by performing an HTTP GET method on this URI, as if
it was a URL. The result of this operation will be a
representation of the entity identified by the URI. The
output format of the data description is generally agreed

during a usual HTTP content type negotiation procedure
between the client and the web server.
Two access methods are advised in [21], in relation
with good practices to define URIs:
‐ For an informational resource, a simple web lookup

with HTTP content negotiation will return a
representation of the entity (in XHTML,
RDF/XML, N3, JSON, etc.).

‐ If the URI refers to a non-informational resource,
i.e. an abstract concept or a physical object, it
should not be dereferenced directly (if one
dereferences a URI to a person, the physical person
itself is not retrieved, instead a document that
relates to the person is expected). An HTTP GET to
such a URI should return HTTP status 303 See

other, providing the URI of an informational
resource that relates to or is a representation of the
non-informational resource: e.g. an HTML
document describing a person.

This recommendation can somehow be relaxed due to
technical concerns like the network traffic, time
consuming definition of multiple URIs, etc.
The term Linked Data also sometimes refers to the
ability to dereference not only a resource URI, but also
a URI to a logical entity of the source database. For
instance, dereferencing the URI of a database will
return a human-readable list of classes corresponding to
the tables, dereferencing the URI of a class will return
URIs of instances of the class. Closer to the spirit of the
Linked Data, D2RQ will dereference a class URI by
providing a few triples stating that it is a database or a
class, including rdfs:seeAlso statements when relevant.
Such methods can be exploited by crawlers of external
search engines to index the content of the database.

Graph dump access

In the graph dump access method, the client performs
an HTTP GET request to the database URI and retrieves
the entire RDF graph at once. This method is most
likely available with data materialisation approaches, in
which the graph has been materialized beforehand. It is
generally not available in on-demand mapping
approaches as building large graphs on demand (at run
time) may induce significant performance issues.
The "SPARQL 1.1 Graph Store HTTP Protocol" [22]
can be seen as an attempt to standardize the graph dump
access mode, while extending it to a larger scope of
graph management methods.

3 R2RML

R2RML [23] is a generic-purpose language targeted to
describe a set of mappings that translate data from a
relational database into an RDF representation. It is the
result of a long process and preliminary works held by
the W3C. During the W3C Workshop on RDF Access
to Relational Databases6 in 2007, Dean [24] suggested a
set of features that a standard mapping language should

6 http://www.w3.org/2007/03/RdfRDB/

support. The outcome of this workshop was the
formation of the W3C RDB2RDF Incubator Group7
(abbreviated XG). The Incubator Group ran a
comprehensive survey of existing projects and
approaches [6], and described high level
recommendations of what aspects a recommendation to
map relational databases to RDF should cover [25]. It
concluded with the recommendation to create the
RDB2RDF Work Group to standardize a mapping
language. Here we present the results of the group.

3.1 Features

The W3C RDB2RDF Work Group proposed a list of 11
requirements, expressed as features that MUST
(mandatory) or SHOULD (optional) be provided by
R2RML [8]. Refer to Table 1 for a detailed description
of each feature below.
Mandatory features state that R2RML must (i) support
both the direct mapping and domain semantics-driven
mapping (called transformative mapping); (ii) provide
sufficient information for a processor to support both
the on-demand mapping (rewrite SPARQL queries into
SQL), and the data materialisation. Other mandatory
features are: generation of globally unique identifiers,
support data types, SQL column renaming, many-to-
many relation to simple triples, 1 table to n classes.
Optional features are: data transformation, named
graphs, namespace declaration, static metadata. Auer et
al [8] also describe an "update logs" "nice-to-have
feature": the mapping should provide extension points
to support the creation of update logs of relational data.
It is nevertheless mentioned that this is out of the scope
of R2RML.
The final R2RML recommendation includes all
mandatory features listed above, and all optional
features with the exception of the data transformation:
data transformation is left to the (limited) capabilities of
SQL in terms of string or number manipulations, but no
complex data transformation method is specified.
Furthermore, Table 1 describes three features that were
not explicitly addressed by Auer et al, but that are part
of R2RML: select conditions, column selection and
blank nodes. The "select conditions" feature is implicit
in R2RML as it is a pre-requisite of the "1 table to n
classes" feature. Similarly, the "column selection"
feature is implied by the more global support of the
transformative mapping. Lastly, blank nodes are
implemented in the definition of R2RML RDF terms,
making them natively supported in R2RML.
Finally, here is a summary of the features supported by
R2RML: user-defined URIs, logical table, column
selection, column renaming, select conditions,
vocabulary reuse, 1 table to n classes, many-to-many
relation to simple triples, blank nodes, data types,
vendor specific data types, named graphs, user-defined
namespaces, static metadata. No support of data
transformation is specified in R2RML, instead it relies
on SQL capabilities to perform transformations.

7 http://www.w3.org/2005/Incubator/rdb2rdf/

3.2 Mapping description

The recommendation specifies that an R2RML
processor MAY include an R2RML default mapping
generator that generates an R2RML mapping, possibly
in the form of an R2RML mapping document, intended
for further customization by a mapping author. The
default mapping must comply with direct mapping rules
specified in the R2RML companion document: "A
Direct Mapping of Relational Data to RDF" [15].
The mapping definition language is RDF with Turtle
syntax. An R2RML mapping document is called an
R2RML mapping graph. The language also embeds
SQL requests making use of any SQL construct (select
tables or views, aggregation). A mapping consists of
several triples map, each triple map specifying how to
map each row in a logical table of the input relational
database to a number of RDF triples. The logical table
may be a table, an existing SQL view, or the result of a
valid SQL query to be executed over the input relational
database.
A triple map has two main parts: (i) a subject map that
generates the subject of all RDF triples that will be
generated from a logical table row. The subjects often
are IRIs generated from the primary key column(s) of
the table; (ii) multiple predicate-object maps that in turn
consist of predicate maps and object maps. Triples are
produced by combining the subject map with a
predicate map and object map, and applying these three
to each logical table row. By default, all RDF triples are
in the default graph of the output dataset. A triple map
can contain graph maps that place some or all of the
triples into named graphs instead.

3.3 Implementations

The first R2RML recommendation was issued Sept.
27th 2012. Several candidate implementations have
been evaluated against compliance tests described in the
R2RML and Direct Mapping Test Cases8, which results
are reported in the RDB2RDF Implementation Report9.
The test cases address both the W3C Direct Mapping
recommendation and R2RML. The W3C Direct
Mapping recommendation describes very basic direct
mapping rules, with somehow limited interest. As a
result, in the following, we have not considered
implementations which support is limited to the W3C
Direct Mapping.
The R2RML implementations considered are:
DB2Triples (passed all R2RML tests but one);
OpenLink Virtuoso (29 R2RML tests out of 62 in
status "cannotTell", i.e. test cannot be run. no reason is
given); Morph (failed on a few R2RML tests but fair
support anyway); RDF-RDB2RDF (11 failed tests out
of 62); Ultrawrap (passed all R2RML tests);
XSPARQL (passed all R2RML tests).
In addition, Oracle Spatial and Graph 12c, released in
July 2013, supports R2RML. At the time of writing, it

8 http://www.w3.org/TR/2012/NOTE-rdb2rdf-test-cases-20120814/
9 http://www.w3.org/TR/2012/NOTE-rdb2rdf-implementations-
20120814/

has not been officially tested against the R2RML test
cases and thus is not yet mentioned in the RDB2RDF
Implementation Report.

4 RDB-to-RDF tools

This section describes the tools studied in the context of
this paper. An explanation of how the classification
introduced in section 2 applies to each tool is given.
Section 4.1 gathers the tools that comply with R2RML
section 4.2 the tools that propose their own mapping
language. In each section, the tools are listed by
alphabetical order. Table 2 (section 4.3) provides a
synthetic summary of the information provided here
after.

4.1 R2RML-compliant tools

4.1.1 DB2Triples

DB2Triples10,11 is an implementation of the W3C
R2RML and Direct Mapping recommendations. It is
developed by the company Antidot12 as part of a larger
software suite. DB2Triples is delivered as a java library,
available under the terms of the LGPL open source
licence, and validated with MySQL and PostgreSQL
back-ends. It takes as input an R2RML document, a
database connection and a SPARQL query, and returns
the results in RDF/XML, N3, N-Triples or Turtle.
Therefore, it is able to process SPARQL queries, but it
is not a SPARQL endpoint able to receive requests over
HTTP.
Main scope: RDB-to-RDF query-based transformation
engine using the R2RML mapping description.
Mapping description: see R2RML.
Mapping implementation: on-demand.
Mapping language features: see R2RML. Passed all
R2RML test cases but one.
Data retrieval: SPARQL query-based.
Sustainability: DB2triples version 0.9.9 is compatible
with the R2RML13, and the Direct Mapping14 Working
Drafts, and successfully passed the R2RML and Direct

Mapping Test Cases.

4.1.2 Morph

Morph15 is an R2RML mapping processor, developed in
Scala, by the developers of R2O and ODEMapster. The
development is ongoing, and only few documentation is
available so far.
Main scope: RDB-to-RDF transformation engine using
the R2RML mapping description.
Mapping description: domain semantics-driven
mapping (R2RML).

10 http://www.antidot.net/fr/Actualites/Produit/Antidot-fournit-
db2triples-en-Open-Source
11 https://github.com/antidot/db2triples
12 http://www.antidot.net/
13 http://www.w3.org/TR/2012/WD-r2rml-20120529/
14 http://www.w3.org/TR/2012/PR-rdb-direct-mapping-20120814/
15 https://github.com/jpcik/morph

Mapping implementation: on-demand, data
materialisation (called batch-upgrade mode).
Mapping language features: see R2RML. Morph does
not pass 8 of the 62 R2RML test cases. Not supported

features: blank nodes, named graphs in on-demand
mapping (but supported in data materialisation), static
metadata.
Data retrieval: SPARQL query-based. The data
materialisation also allows for the ETL approach.
Sustainability: developers argue that they intend to
continue the support and evolution of Morph in the
middle-term, possibly extending it further than the
official R2RML specification like supporting Google
Fusion Tables.

4.1.3 Oracle Database 12c

Oracle Spatial and Graph16 (formerly Oracle Semantic
Technologies) [26][27] is an option of Oracle Database

Enterprise Edition (EE). Version 12c, released in July
2013, comes with the RDF Semantic Graph data
management and analysis features, that support RDB-
to-RDF conversion.
RDF Semantic Graph mainly focuses on the storage,
simultaneous querying and reasoning on relational and
RDF data. The RDF graph store can scale up to billions
of triples, supports bulk and incremental load, graph
versioning, and the semantic indexing of documents.
RDF querying is possible using SPARQL 1.1. SPARQL
graph patterns can be included within an SQL query in
order to join RDF and relational data. RDFS/OWL2
(RL/EL profiles) reasoning is supported (OWLSIF,
OWLPRIME, RDFS++) simultaneously on RDF and
relational data, along with inference proofs and
explanations, parallel inferencing, user-defined rules.
The architecture allows for using the native reasoner or
a 3rd party one like PelletDB. The security model
allows to enforce restrictions at different levels, from
the graph to the triple.
RDB-to-RDF conversion is supported since version 12c
by providing RDF views on relational tables, SQL
views, and SQL query results. W3C Direct Mapping
and R2RML are supported. The RDF view can be
queried through SPARQL 1.1.
Oracle Spatial and Graph exploits several enterprise
features such as the table compression (optimize disk
space and memory usage), the partitioning option
(performance, scalability), and the Real Applications

Clusters (availability, scalability). As a result, using
Oracle Spatial and Graph requires to acquire licenses
for Oracle Database EE and Partitioning option.
Main scope: RDB-to-RDF query-based transformation
engine, using the R2RML mapping description.
Mapping description: domain semantics-driven
mapping, support of R2RML, automatic generation of a
direct mapping compliant with the W3C
recommendation.
Mapping implementation: on-demand mapping.

16 http://www.oracle.com/technetwork/database-
options/spatialandgraph/overview/rdfsemantic-graph-1902016.html

Mapping language features: support of W3C's Direct
Mapping and R2RML. However, no result is available
so far as to the conformance tests. Consequently, Table
2 shows interrogation marks for all the features,
although we can assume that at least most common
features are supported.
Data retrieval: SPARQL query-based.
Sustainability: RDB-to-RDF is newly supported in
release 12c. No information is available on its support
by Oracle in the future.

4.1.4 RDF-RDB2RDF

RDF-RDB2RDF is a Perl open source software based
on the Perl RDF library, delivered under the GPL
license. Perl RDF is a very complete library including
the following features: RDF store in memory, support
for relational databases (MySQL, PostgreSQL) and
SQLite, SPARQL 1.1 query processor and endpoint,
Linked Data server, RDFa parser, WebID (FOAF+SSL)
+ ACLs, GRDDL, Microformats, HTML5.
Main scope: RDB-to-RDF materialisation-based
transformation engine, using the R2RML mapping
description.
Mapping description: domain semantics-driven
mapping (R2RML).
Mapping implementation: data materialisation.
Mapping language features: R2RML. RDF-RDB2RDF
does not pass 7 of the 62 R2RML test cases with
PostgreSQL.
Data retrieval: the materialized data cannot be retrieved
immediately. However it must be noted that Perl RDF
provides a SPARQL endpoint in which the RDF data
can be loaded, thus falling in the ETL approach.
Sustainability: last update Sep. 2013.

4.1.5 Ultrawrap

Initially developed by the University of Texas in
Austin, Ultrawrap17 is now a commercial product
produced by company Capsenta, founded in 2011 as a
spin out of the University of Texas. It is based on the
use of SQL views to present the relational data as
triples, thus making the query rewriting process almost
straightforward, while relying on the native SQL
optimization engine.
Ultrawrap automatically generates a local ontology
following the direct mapping W3C's recommendation.
The triple representation of the relational data is
implemented as a three-column SQL view (subject,
predicate, object), that consists in the union of all the
queries that define all the triples as defined by the local
ontology [28]. Consequently, a SPARQL query can be
naively rewritten into an SQL query on the SQL view,
benefitting from the native query optimizer of the
relational database. Advantage: SPARQL execution as
fast as SQL.
Recently, support for R2RML and D2RQ mapping
languages has been added. There is no description,

17 http://capsenta.com/ultrawrap

however, of the way the mapping description is derived
into the SQL view. We can assume that an
R2RML/D2RQ document is "compiled" into an SQL
view that will reflect each triple map. To be mentioned
that the support of R2RML named graphs does not
seem easy using only the SQL triple view. A GUI that
is part of the tool suite helps align the local ontology
onto a domain ontology.
Ultrawrap was released to first beta customers in May
2012. Prices are available on demand only.
Main scope: RDB-to-RDF query-based transformation
engine using the R2RML mapping description.
Mapping description: domain semantics-driven
mapping, support of R2RML and D2RQ mapping
documents. Automatic generation of a direct mapping.
Mapping implementation: on-demand, execution of
SQL views.
Mapping language features: see R2RML. Passed all
R2RML test cases.
Data retrieval: SPARQL query-based, Linked Data.
Sustainability: first beta release delivered in May 2012,
no new public release since then according the
company's web site.

4.1.6 Virtuoso Universal Server & Virtuoso's RDF

Views

Virtuoso Universal Server
18

 is a commercial and open-
source object-relational database system developed by
OpenLink. It is targeted to meet enterprise needs
regarding data management, access and integration.
This is a very comprehensive tool suite, that comes with
production-class features like a relational database,
clustering, data replication, miscellaneous security
options, RDF triple store, reasoning capabilities (OWL
subset), multiple data sources integration (SQL, RDF,
XML, free text, CMS, aggregation feeds...), Web

Application Server. The RDF Views of SQL data
19

functionality is part of the RDF and SPARQL tool suite,
and makes it possible to expose relational data as RDF.
The Virtuoso Open-Source Edition20 is a sub-set of the
Universal Server. Limitations of the open source edition
concern production-class features such as the clustering
and data replication functions. The RDF Views open
source edition only supports the Virtuoso-based
relational database whereas the commercial edition
supports most well known relational database systems.
The open source edition provides the following
features: Object-Relational Database for SQL, XML,
RDF, and Free Text; RDF store and SPARQL end-point
(including RDF Views); WebDAV Server; Web
Services Platform for SOA; Web Application Server
(see the full feature list21).

18 http://www.w3.org/wiki/VirtuosoUniversalServer
19http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20vi
ews%20mapping.html
20http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIndex
21 http://virtuoso.openlinksw.com/features-comparison-matrix/

Main scope: enterprise data integration, RDB-to-RDF
query-based transformation engine using the R2RML
mapping description.
Mapping description:
- Manual domain semantics-driven mapping using the
declarative Meta Schema Language22 (MSL). The
language is an extension of the SPARQL query
language, meshed with Virtuoso's SPASQL (SPARQL-
inside-SQL) functionality. The mapping does not only
consist in an MSL document, but it is itself a repository
in which mapping patterns can be grouped in named
sets, named sets can then be managed using operations
such as create, drop, alter, etc. The rich web interface
provides a wizard to automatically generate a direct
mapping (limited to locally-stored Virtuoso-based
relational database in the open source version).
- R2RML support is achieved by the inclusion of a
simple adaptor which basically translates R2RML
syntax to Virtuoso's own Linked Data Views syntax,
which can then be executed to create the Linked Data
Views themselves.
Mapping implementation: on-demand. The data
materialisation is possible but not that easy, and this is
definitely not the intended goal as Virtuoso comes with
its own SPARQL endpoint.
Mapping language features: see R2RML. 29 R2RML
test cases (out of 62) are in status "cannotTell", i.e. test
cannot be run. No explanation why.
Data retrieval:
- Query-based through a SPARQL 1.1 endpoint, support
for OpenID, OAuth and WebID authentication options.
SPASQL is also supported, that is, the ability to include
SPARQL statements into SQL requests.
- Linked Data: expose any Virtuoso-housed data (only
solution provided in the open source version), HTTP-,
ODBC-, JDBC-, and otherwise-accessible SQL and
XML data sources as URI dereferenceable linked RDF
data (Linked data browser). Data retrieved as
RDF/XML, JSON, N3.
Sustainability: actively maintained by the company
OpenLink. Note that the DBpedia project is operated
using a Virtuoso triple store.

4.1.7 XSPARQL

XSPARQL23 is a query language combining XQuery
and SPARQL for transformations between RDF and
XML in either direction. RDF/XML provides a lot of
flexibility in how one and the same RDF graph can be
serialized, thus abstracting away from a fixed tree-like
structure. This results in potentially lots of different
XML serializations of the same graph, bearing the same
semantics. This makes complicated and tedious the use
of XSLT+XPath processors that treat RDF/XML as
XML data and not as a set of triples. To address this
difficulty, XSPARQL merges SPARQL components
into XQuery FLWOR expressions. It is typically

22http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSQL2
RDF
23 http://xsparql.deri.org/

designed to address issues such as extracting RDF data
out of existing (X)HTML Web pages, allowing an
RDF-based client software to communicate with XML-
based Web services, or even enriching an RDF graph
with deduction rules described as RDF-to-RDF
mapping.
More recently, Lopes et al. [29] have defined an RDB-
to-RDF extension to XSPARQL that integrates a subset
of SQL (select-from-where) within XSPARQL. This
language extension provides the ability to add SQL
snippets embedded in XQuery FLWOR expressions to
query the relational data, and transform it into XML or
RDF. The RDF data is generated by means of a specific
"construct" expression with nested XQuery FLWOR
expressions. On top of this, an R2RML mapping
document can be interpreted to produce appropriate
"construct" expressions that in turn materialize the RDF
data. The originality of this approach is that it did not
require the development of a specific module in the
XSPARQL engine. Instead, the whole process is totally
described using only the XSPARQL language: the
R2RML mapping document is read as input RDF data,
XQuery FLWOR expressions are used to parse it and
query the database accordingly, and ultimately the RDF
data is generated using "construct" expressions.
R2RML is supported with the exception of named
graphs, and the fact that a TriplesMap cannot be
expressed as the result of an SQL query (only relational
tables and views are supported).The RDF representation
of the database is produced in the manner of a data
materialisation. Supporting R2RML using the on-
demand mapping implementation should be possible
but not straightforward: it would first require to design a
query rewriter to convert a SPARQL query into an
XSPARQL query that would in turn make the
appropriate SQL queries.
XSPARQL comes with a prototype implementation of
the XSPARQL language developed in Java. It is
distributed under the Apache 2 open source license.
Main scope: generic-purpose mapping language, RDB-
to-RDF materialisation-based transformation engine.
Mapping description: domain semantics-driven
mapping (R2RML).
Mapping implementation: data materialisation.
Mapping language features: see R2RML. Passed all
R2RML test cases, however logical tables and named
graphs are not supported.
Data retrieval: SPARQL-query based.
Sustainability: version 0.5 released in November 2012,
supporting both Direct Mapping and R2RML.
XSPARQL passed all R2RML and DM test cases.

4.2 Non-R2RML tools

4.2.1 Asio Semantic Bridge for Relational Databases

and Automapper:

Asio Tool Suite24 is a commercial product developed by
BBN Technologies. It provides the following tools:

24 http://bbn.com/technology/knowledge/asio_tool_suite

Asio Semantic Query Decomposition (SQD), Asio

Semantic Bridge for Relational Databases25 (SBRD),
Asio Semantic Bridge for Web Services, and two open
source tools: Parliament and Snoggle.
Asio SBRD is the component that performs RDB-to-
RDF conversion: it translates SPARQL queries into
SQL and returns the results in RDF, by applying query
planning and optimization techniques. The BBN's
Automapper tool applies D2RQ-based direct mapping
rules to create the local ontology that describes the
relational schema.
The Asio SQD module addresses the federation of
multiple data sources: it breaks down SPARQL queries
expressed using a domain ontology into sub-queries
using the local ontology of each data source, and
distributes these optimized sub-queries to the applicable
data source: relational database, web service, triple
store. Mapping rules from the local ontology to the
defined domain ontology are described as a set of
SWRL26 rules.
Main scope: enterprise data integration, RDB-to-RDF
query-based transformation engine.
Mapping description: domain semantics-driven. A
direct mapping is initially created based on D2RQ tools,
and augmented with OWL property restrictions to
model data types and nullable/not nullable properties.
Additional mapping rules between the domain ontology
and the local ontology are created in SWRL.
Mapping implementation: on-demand mapping.
Mapping language features: n.a.
Data retrieval: SPARQL query-based.

4.2.2 D2R Server and the D2RQ language

The D2R Server27 [30] [31] is an open source academic
project. It provides an integrated environment with
multiple options to access relational data using different
methods such as the SPARQL endpoint, Linked Data
(content negotiation, HTTP 303 dereferencing), RDF
dump, and Jena API based access (API calls are
rewritten to SQL).
Main scope: generic-purpose mapping language, RDB-
to-RDF query-based transformation engine.
Mapping description: D2RQ supports both the direct
and domain semantics-driven mappings. The DR2Q
declarative mapping language [32] is formally defined
by an RDFS schema. It is the successor to the XML-
based D2R MAP language [33]. The mappings are
expressed in RDF, but also largely rely on SQL
fragments to express select conditions or to use
aggregate functions. Existing ontologies (RDFS/OWL)
can be reused in order to incorporate domain semantics
in the mapping process. The automatic mapping
generates a D2RQ direct mapping that reflects the
database schema, thus creating a local ontology. This
direct mapping can be customized manually.
Optionally, the direct mapping generated can follow the

25 http://bbn.com/technology/knowledge/asio_sbrd
26 http://www.w3.org/Submission/SWRL/
27 http://d2rq.org/

rules proposed in the W3C's Direct Mapping
specification [15].
Mapping implementation: on-demand mapping, data
materialisation.
Mapping language features: user-defined URIs, logical
table, column selection, column renaming, select
condition, vocabulary reuse, 1 table to n classes, many-
to-many relation to simple triples, blank nodes, data
types, data transformation, user-defined namespaces,
static metadata. NOT supported: named graphs.
Data retrieval:
- Query-based (SPARQL endpoint).
- Linked Data: allows for dereferencing URIs by
providing a representation based on content negotiation:
RDF or XHTML. Supports the HTTP 303
dereferencing. Linked Data features: automatically
includes rdfs:seeAlso when relevant, XHTML
hyperlinks lead to navigation pages containing lists of
other resources of the same class, and to an overview
page that lists all of these navigation pages. This
overview page provides an entry point for external Web
search engines to index the content of the database.
The performance varies depending on the access
method and is reported to perform reasonably well for
basic triple patterns, but there are limitations when
SPARQL features such as FILTER, LIMIT are used.
Sustainability: very active project. The last version
released in June 2012 supports the W3C's Direct
Mapping specification. The first release of DBpedia in
2007 was done using D2R Server, which since then
migrated to Virtuoso RDF Views.

4.2.3 Datalift

Datalift28 is an experimental research project which goal
is to help users publish and interlink their data sets on
the web as Linked Data. Datalift consists in an
integrated set of tools that ease the publication process
of raw structured data coming from various formats
(relational databases, CSV, XML, ...). The tools cover
the following functions: selecting ontologies for
publishing data, converting data to RDF using the
selected ontology, publishing the linked data,
interlinking data with other data sets.
Main scope: RDB-to-RDF materialisation-based
transformation engine.
Mapping description: The process is done interactively
though a web-based GUI: a user selects a data source
that is translated following the direct mapping method.
Then, a set of modules helps align the RDF data
produced on chosen ontologies: RDF-to-RDF
transformation (SPARQL CONSTRUCT), renaming of
URI (using regular expressions), conversion of strings
into URIs, the SILK29 tool can be used to automatically
discover links with other data sets. As a result, although
it starts with a Direct Mapping, the different modules
provide enough flexibility to perform an a posteriori

28 http://datalift.org/en
29 http://silk.semwebcentral.org/

alignment with capabilities comparable to domain
semantics-driven mapping approaches.
Mapping implementation: data materialisation.
Mapping language features: user-defined URIs, column
renaming (using the renaming of URIs), data types.
Features available through the SPARQL CONSTRUCT
module: vocabulary reuse, 1 table to n classes, many-to-
many relation to simple triples, blank nodes, named
graphs, user-defined namespaces, static metadata. NOT

supported: logical table, column selection, select
conditions, data transformation.
Data retrieval:
- Query-based (SPARQL endpoint).
- Linked Data: allows for dereferencing URIs by
providing a representation based on content negotiation:
RDF, CSV or XHTML. XHTML hyperlinks lead to
navigation pages containing lists of other resources of
the same class. Such pages provide an entry point for
external Web search engines to index the content of the
data sets.
Sustainability: the project will complete in March 2014.
A maintenance task force is under discussion.

4.2.4 DB2OWL

DB2OWL is a proof of concept that was proposed by
Cullot et al. [13]. In the domain of the ontology
learning, its goal is to automatically generate a direct
mapping describing a relational database, then refine
this mapping by exploiting relational schema
characteristics: detect many-to-many join tables
translated (as simple triples) and concept subsumptions
(when a primary key is also a foreign key in another
table). The created ontology is expressed in the OWL-
DL language, while the mapping description is stored in
an R2O document (see section 4.2.6).
DB2OWL is exclusively focused on the automatic
creation of ontology classes and properties that reflect
the relational schema; it does not tackle the conversion
of the relational data. It must be noticed that most direct
mapping implementations now handle the many-to-
many relation, whereas this is hardly the case of
subsumption relations.
Main scope: ontology learning.
Mapping description: direct mapping augmented with
detected many-to-many relations and class
subsumption. The mapping description follows the R2O
mapping syntax.
Mapping implementation: n.a. However, in [34], the
authors of DB2OWL apply the on-demand mapping
implementation to perform the integration of several
relational databases using two different levels of
ontologies: DB2OWL creates a local ontology for each
database and a wrapper converts queries to a local
ontology into SQL queries. At the top, user queries
expressed on a domain ontology are mapped to queries
on local ontologies.
Mapping language features: many-to-many relation to
simple triples, column selection. NOT supported: user-
defined URIs, logical table, select condition, vocabulary
reuse, 1 table to n classes, blank nodes, data

transformation. Unknown: column renaming, data types,
static metadata, named graphs.
Data retrieval: n.a.
Sustainability: prototype, development inactive since
2007. Source code not available.

4.2.5 METAmorphoses

The METAmorphoses processor30 transforms relational
data into RDF instances using existing target
ontologies. The mappings are specified using a
declarative XML-based mapping language [35], and the
RDF graph is produced at once (data materialisation) in
an RDF/XML output document. METAmorphoses
consists in a java library provided under the terms of the
LGPL open source license.
Although quite simple, METAmorphoses is an effective
tool. It consists in a standalone application that does not
require any complex deployment. Mappings can be
implemented and tested easily and quickly.
Main scope: generic-purpose mapping language, RDB-
to-RDF materialisation-based transformation engine.
Mapping description: domain semantics-driven using a
specific declarative XML-based language. The mapping
is organised as a two-layer data transformation model.
The mapping layer describes how to map database
tuples, selected by embedded SQL snippets, to RDF
individuals using existing ontological concepts and
properties. The template layer describes how to serialize
the mapped entities into RDF/XML.
Mapping implementation: data materialisation.
Mapping language features: user-defined URIs, logical
tables, column selection, column renaming, select
conditions, vocabulary reuse, many-to-many relation to
simple triples, 1 table to n classes, user-defined
namespaces. NOT supported: blank nodes, data types,
static metadata, data transformation, named graphs, data
transformation.
Data retrieval: none, but the ETL approach can be
considered by loading the RDF data materialised into a
third party triple store.
Sustainability: no update since 2007.

4.2.6 R2O and ODEMapster

R2O is a declarative XML-based language [36] that
allows the description of complex mappings between
existing ontologies and relational elements (relations
and attributes). It was initially designed to overcome
weaknesses of D2R MAP [33], the predecessor of the
current D2RQ mapping language, for cases when the
similarity between the relational database and the
ontology is low. It provides an extensible set of
condition and transformation primitives to address
situations such as: 1 table to n classes, joined tables to 1
class, or data transformation. Condition and
transformation primitives address features such as string
manipulations, arithmetic calculations, definition of

30http://www.svihla.net/metamorphoses/METAmorphoses_processor/
#documentation

order relations, expression of restriction on range of
values, etc. Since it was designed, most specific
mapping cases addressed by R2O have been addressed
by other projects such as D2RQ, Virtuoso. Besides,
when the expressiveness of SQL is not sufficient to deal
with those cases, they may be addressed by common
database back-end extensions.
R2O is an evolution of eD2R [37], which addressed
mapping situations involving databases that are lightly
structured or not in first normal form. eD2R proposed to
define complex and conditional transformations on field
values based on techniques such as keyword search,
regular expression matching, natural language
processing and others.
The ODEMapster31 query engine uses an R2O document
to either execute the transformation in response to a
query expressed in the ODEMQL query language, or in
a batch mode following the data materialisation
approach.
Main scope: generic-purpose mapping language, RDB-
to-RDF query-based transformation engine.
Mapping description: domain semantics-driven using a
specific declarative XML-based language.
Mapping implementation: ODEMapster supports both
on-demand and data materialisation (called massive
upgrade) implementations.
Mapping language features: user-defined URIs, logical
tables, column selection, column renaming, select
conditions, vocabulary reuse, many-to-many relation to
simple triples, 1 table to n classes, blank nodes, data
types, data transformation. NOT supported: named
graphs, user-defined namespaces, static metadata.
Data retrieval: query-based. Queries are written in
ODEMQL language and stored in an XML file. Query
results are retrieved in RDF, as instances of OWL
classes. There is no SPARQL result format nor Linked
Data. But the ETL approach can be considered by
loading the RDF data materialised into a third party
triple store.
Sustainability: ODEMapster has been integrated as a
plug-in into the NeOn32 toolkit, an open source
ontology engineering environment (ODEMapster plug-
in still maintained in last toolkit version Dec. 2011).
The EU ADMIRE project reused the NeOn toolkit and
provided a distributed access to ODEMapster by using
OGSA-DAI [38]. ODEMapster seems to be used only
for test purpose within NeOn toolkit. R2O and
ODEMapster will not be maintained in the future as
authors are now working on an implementation of
R2RML called Morph (see section 4.1.2).

4.2.7 RDBToOnto

The RDBToOnto33 tool was designed in the context of
the TAO project34 (ended beginning of 2009) which

31 http://neon-toolkit.org/wiki/ODEMapster
32 http://www.neon-project.org/nw/Welcome_to_the_NeOn_Project
33 http://www.tao-
project.eu/researchanddevelopment/demosanddownloads/RDBToOnt
o.html
34 http://www.tao-project.eu/index.html

goal was to allow a fast and effective transition of
existing legacy applications to ontologies.
RDBToOnto is a GUI-based extensible tool that enables
learning ontologies from relational databases, and it is a
framework to ease the development and
experimentation of "transitioning methods", i.e.
ontology learning from relational databases. To go
beyond the automatic generation of a local ontology
using the direct mapping method, RDBToOnto
proposes a semi-automated method, based not only on
the relational database schema but also on the data [39].
The objective is to refine classes derived from the
relational schema with subclasses found in the content:
find lexical clues in the column names (matched against
a predefined list of keywords e.g. "Type"), use data
redundancy to discover categorization patterns. Another
step allows for database optimization, also known as
inclusion dependencies (removal of redundancies using
the third party tool LATINO). The whole process is
interactive (user defined rules) and iterative. It is a user-
oriented tool that also supports the complete
transitioning process (ontology learning from a
relational database), from the access to the input
databases, to the generation of populated ontologies.
RDBToOnto can be extended by means of connectors
and converters to implement new learning methods.
Main scope: ontology learning.
Mapping description: basically a direct mapping
approach, augmented with semi-automatic iterative
process, driven by the database schema and data: lexical
clues in the column names, data redundancy suggesting
categorization patterns. No mapping language is
specified: constraint rules are stored in application
specific project files and edited through the GUI only.
Mapping implementation: data materialisation.
RDBToOnto generates an ontology optionally
populated with instances.
Mapping language features: user-defined URIs, column
selection, column renaming, select condition, 1 table to
n classes, many-to-many relation to simple triples, data
types, user-defined namespaces. NOT supported:
vocabulary reuse. Unknown: logical tables, blank nodes,
data transformation, named graphs, static metadata
Data retrieval: none, but the ETL approach can be
considered by loading the RDF data materialised into a
third party triple store.
Sustainability: RDBToOnto has been used in a large
real-world case study in aircraft maintenance35,
including mixing with existing ontologies, maintenance
documentation annotation and WSDL annotation. No
indication of use and maintenance outside of this
context is found.

4.2.8 Relational.OWL

The goal of Relational.OWL36 is to improve the data
sharing ability within the community of peer-to-peer
databases. Peer-to-peer databases are volatile peers,

35 http://videolectures.net/eswc08_cebrah_tla/
36 http://sourceforge.net/projects/relational-owl/

distributed, their data and schema may evolve
frequently. Hence the need for an exchange format that
can be understood instantly, that is, without requiring
content negotiation nor ontology alignment.
Relational.OWL is an application independent
representation technique expressed as an OWL-full
ontology, dedicated to the representation of relational
schema components by means of a local ontology (e.g.
complying with direct mapping rules), as well as the
relational data itself. The OWL-full variant of OWL
languages is required in order to allow the creation of
an ontology which classes are instances of the
Relational.OWL ontology classes. The ontology defines
classes for tables, columns, primary and foreign keys,
data types, and relations (properties) between those
classes.
The use of OWL-full to represent the Relational.OWL
ontology may be considered as a hurdle to the adoption
of the tool, as it is non decidable. Nevertheless authors
are "confident of most OWL reasoning tools being able
to handle data and schema representations created using
Relational.OWL".
Main scope: ontology learning, fully automatic direct
mapping.
Mapping description: direct mapping, automatic
creation of a local ontology as an instance of the
Relational.OWL ontology.
Mapping implementation: data materialisation. The
Relational.OWL application is a GUI that automates the
process of converting a database into its equivalent
OWL full expression.
Data retrieval: none, but the ETL approach can be
considered by loading the RDF data materialised into a
third party triple store. De Laborda and Conrad [40]
propose a method to perform domain-semantics
mapping using Relational.OWL: in a nutshell, it
consists in applying the ETL approach, then use the
SPARQL CONSTRUCT query to perform alignment on
a target ontology.
Mapping language features: logical tables, column
selection, blank nodes. NOT supported: user-defined
URIs, column renaming, select conditions, many-to-
many relation to simple triples, vocabulary reuse, data
transformation, 1 table to n classes, named graphs, static
metadata. Unknown: data types, user-defined
namespaces.
Sustainability: No update since 2006.
Discussion: the point of expressing the schema of a
relational database by building an ontology based on the
Relational.OWL ontology is interoperability. The fact
that two database schemas are described using the same
base ontology helps compare classes with classes and
properties with properties. However it does not solve
alignment issues: for instance, it cannot help figure out
that two columns from two databases bear the same
semantics. Besides, the same interoperability could be
achieved as soon as all mappings use a common method
to perform direct mapping like the W3C proposal [15].
De Laborda and Conrad [14] remark that, in other
approaches, "the data represented (...) loses its

relationship to the original database. Tracing the data to
its original storage position is thus hardly possible".
This is true, but it remains unclear what would be the
point of tracing such information. We can think of
applications of tracing this information in topics such as
the tracing of data provenance, the explanation of query
results, or the assessment of confidence in query results.

4.2.9 SPASQL

SPASQL37 is an open-source modified MySQL server,
able to parse both SQL and SPARQL queries. The goal
of providing MySQL with native support for SPARQL
is to allow the same performance as for well-tailored
SQL queries, by avoiding the complex rewriting phase
[41]: SPARQL and SQL queries are compiled into the
same data structures, and are then equally processed by
the MySQL query processing engine. SPASQL is an
extension of the SQL standard allowing the execution
of SPARQL queries within SQL statements, typically
by treating them as sub-queries or function clauses.
Variables in a SPARQL query are treated like any
variable in an SQL query, making the two languages
interchangeable to query the same database.
Main scope: RDB-to-RDF query-based transformation
engine.
Mapping description: automatic, very basic direct
mapping.
Mapping implementation: on-demand. No query
rewriting process is needed, the SQL interpreter is
extended to support both SQL and SPARQL.
Mapping language features: very limited as only the
basic direct mapping applies. NOT supported: user-
defined URIs, logical tables, column selection, column
renaming, select conditions, vocabulary reuse, 1 table to
n classes, many-to-many relation to simple triples,
blank nodes, data transformation. Unknown: user-
defined namespaces, named graphs, static metadata,
data types.
Data retrieval: SPARQL query-based. Limited support
for SPARQL: ASK, CONSTRUCT and DESCRIBE are
not supported. SELECT is supported with no variable in
predicate position in graph pattern. Results are returned
like a usual MySQL result set.
Sustainability: SPASQL has remained in an early
prototype status along the project FeDeRate for Drug
Research38. No update since 2008.

4.2.10 SquirrelRDF

With SquirrelRDF39, Seaborne et al. [42] propose a tool
able to apply basic direct mapping rules to an input
database or an LDAP directory, and to answer SPARQL
queries through an on-demand query rewriting process.
Mapping principles roughly follow [12]. The mapping
description file (in RDF/Turtle) can be generated
automatically from the database, and somewhat
customized in order to use an existing target

37 http://www.w3.org/wiki/SPASQL
38 http://www.w3.org/2004/10/04-pharmaFederate/
39 http://jena.sourceforge.net/SquirrelRDF/

vocabulary. Nevertheless the customization is rather
limited, and the mapping essentially remains driven by
direct mapping rules. An originality of SquirrelRDF is
that is can query multiple databases simultaneously (n
tables from m databases).
SquirrelRDF was delivered as part of the Jena
framework distribution in 2006, however it is no longer
part of it since Jena40 moved to Apache. A succinct help
page is available, but the Javadoc is provided in the
SquirrelRDF archive41.
Main scope: RDB-to-RDF query-based transformation
engine using direct mapping.
Mapping description: very simple direct mapping, with
no attempt to reveal implicit relations suggested by
foreign keys. The mapping description is generated
automatically as a Turtle document following a
dedicated vocabulary. Nevertheless we could not find a
definition of this vocabulary on the internet nor in the
downloaded archives.
Besides the basic direct mapping supported, Jena Rules
may be used to produce additional knowledge in the
perspective of doing more domain-driven mapping.
Mapping implementation: on-demand, SPARQL query-
based.
Mapping language features: very limited as only the
basic direct mapping applies: column selection, column
renaming, vocabulary reuse, blank nodes, static
metadata (limited to global metadata, i.e. not attached to
each produced RDF triples). NOT supported: user-
defined URIs, logical tables, select conditions, 1 table to
n classes, many-to-many relation to simple triples, data
transformation, named graphs. Unknown: data types,
user-defined namespaces.
Data retrieval: SPARQL query-based. The preferred
query mode is the Jena SPARQL API. It can be used to
issue SPARQL requests to SquirrelRDF, including
SELECT, ASK and CONSTRUCT. A CLI tool is
available to test that the configuration is properly set. A
limited demo SPARQL endpoint over HTTP supports
SELECT. Whatever the access method used, no query
triple pattern is allowed with a variable as the property.
Sustainability: no update since 2006.

4.2.11 Triplify

The goal of Triplify42 is to enable popular Web
applications (like CMS or blog applications) to publish
the content of their relational database in RDF, JSON or
Linked Data. Given that many instances of such web
applications are deployed over the internet, helping
them to quickly expose their database is expected to
result in a boost of Semantic Web adoption [43].
Triplify is a simple but nice approach, to be used as a
lightweight, easy-to-learn, plug-in for existing web
applications. It is based on the mapping of HTTP URI
requests onto queries to the relational database.
Compared to the direct mapping approach, Triplify

40 http://jena.apache.org/download/index.html
41 http://sourceforge.net/projects/jena/files/SquirrelRDF/
42 http://triplify.org/

takes the problem the other way round: it first focuses
on the relational data that actually matters, instead of
translating the relational schema into an ad-hoc
ontology and then populates this ontology. Mappings
are implemented as SQL statements embedded in PHP
scripts, therefore any SQL construct or aggregation
function may be used. Authors argue that "Triplify
facilitates the creation of custom-tailored search engines
targeted at certain niches, e.g. searching for specific
content in various blogs, wikis, or forums".
It must also be mentioned that some Triplify modules
specifically address the provenance metadata generation
(using the Provenance Vocabulary43) as well as the
publication of update logs.
Main scope: generic-purpose mapping language, RDB-
to-RDF transformation engine (query-based and
transformation-based).
Mapping description: domain semantics-driven manual
mapping by means of SQL queries embedded in PHP
scripts, in addition to transformation functions written
in PHP. May use any SQL construct and aggregation
function.
Mapping implementation: on demand (Linked Data),
data materialisation.
Mapping language features: user-defined URIs, logical
tables, column selection, column renaming, select
conditions, vocabulary reuse, 1 table to n classes, many-
to-many relation to simple triples, blank nodes, data
types, data transformation, user-defined namespaces,
static metadata. NOT supported: named graphs.
Triplify also naturally supports the Link Data Update

Logs, by interpreting URIs that contain the update
keyword, and mapping them to appropriate queries for
changes in the database.
Data retrieval: SPARQL is not supported. Data is
retrieved by URI as Linked Data (RDF, JSON). Authors
state that Triplify is aimed at small to medium Web
applications (i.e. less than 100MB database content).
However, it supports the caching of the triplification
results and can hence be used with large Web
applications (160BG data for OpenStreetMap). It has
been adapted to several popular web applications
(WordPress, Joomla, osCommerce, etc.).
Sustainability: Provided under the terms of the LGPL
licence. The last version dates back to March 2010.

4.3 Summary

Table 2 summarizes the characteristics of all the tools
studied in this section.

43http://sourceforge.net/apps/mediawiki/trdf/index.php?title=Provenan
ce_Vocabulary

 Motivation

Mapping
description

Mapping
implemen-

tation
Data retrieval Features of mapping description languages

T
oo

l

O
nt

ol
og

y
le

ar
ni

ng

G
en

er
ic

-p
ur

po
se

 m
ap

pi
ng

 la
ng

ua
ge

T
ra

ns
fo

rm
at

io
n

en
gi

ne

D
ir

ec
t m

ap
pi

ng

D
om

ai
n

S
em

an
ti

cs
-D

ri
ve

n
m

ap
pi

ng

D
at

a
m

at
er

ia
li

sa
ti

on

O
n-

de
m

an
d

m
ap

pi
ng

Q
ue

ry
-b

as
ed

 a
cc

es
s

L
in

ke
d

da
ta

G
ra

ph
 d

um
p

U
se

r
de

fi
ne

d
un

iq
ue

 I
ds

L
og

ic
al

 ta
bl

e

C
ol

um
n

se
le

ct
io

n

C
ol

um
n

re
na

m
in

g

S
el

ec
t c

on
di

ti
on

s

V
oc

ab
ul

ar
y

re
us

e

1
ta

bl
e

to
 n

 c
la

ss
es

m
an

y-
to

-m
an

y
to

 s
im

pl
e

tr
ip

le
s

B
la

nk
 n

od
es

D
at

a
ty

pe
s

D
at

a
tr

an
sf

or
m

at
io

n

N
am

ed
 g

ra
ph

s

U
se

r-
de

fi
ne

d
na

m
es

pa
ce

s

S
ta

ti
c

m
et

ad
at

a

N
on

 R
2R

M
L

D2RQ X X X X X X X X X X X X X X X X X X X X
Datalift X X X X X X X X X X X X X X X X

DB2OWL X X n.a. n.a. X ? X ? ? ?
METAmorphoses X X X X n.a. X X X X X X X X X X
R2O/ODEMapster X X X X X X X X X X X X X X X X X X

RDBToOnto X X X n.a. X ? X X X X X ? X ? ? X ?
Relational.OWL X X X n.a. X X X ? ?

SPASQL X X X X ? ? ? ?
SquirrelRDF X X X X X X X X ? ? ?

Triplify X X X X X X X X X X X X X X X ? X X X

R
2R

M
L

DB2Triples X X X X X X X X X X X X X X X X X
Morph X X X X X X X X X X X X X X ? X X

Oracle 12c X X X X ? ? ? ? ? ? ? ? ? ? ? ? ? ?
RDF-RDB2RDF X X X n.a. X X X X X X X ? X ? X X X

Virtuoso RDF Views X X X X X X X X X X X X X X X ? ? ? X ?
Ultrawrap X X X X X X X X X X X X X X X ? X X X

XSPARQL X X X X X X X X X X X X X X X X X

Table 2 - Synthetic view of tools features

Commercial product Asio SBRD is not listed as too few technical information is available publicly.

The "X" cross means supported, an empty cell means unsupported. Interrogation marks mean that available information did

not permit to figure out if the feature is supported or not. In such cases, experimentations would be required to conclude.

5 SYNTHESIS

The previous section shows a large diversity of
approaches among the tools designed to translate
relational databases into RDF. Overall, the various
approaches are driven by different initial motivations
that fall in one or several of: ontology learning from a
relational database, definition of a generic-purpose
mapping language and implementation of an RDB-to-
RDF transformation engine. This has been presented in
section 2.1. Whatever the motivation though, three
major steps cannot be circumvented: the mapping
description (direct vs. domain semantics-driven), the
mapping implementation (RDF data materialisation or
on-demand) and the data retrieval (query-based access,
linked data or graph dump). These steps have been
described in sections 2.2, 2.3 and 2.4.
In this section, we analyse the studied tools with regards
to the criteria identified in section 2. We first provide
some conclusions regarding the motivations of the tools
studied, then we examine how the tools orchestrate the
three mapping steps.

5.1 Motivations

Table 2 evidences several patterns with regards to the
motivation of the tools studied, that we describe below.

Ontology learning uses direct mapping

The three ontology learning approaches studied in this
paper (DB2OWL, RDBToOnto, Relational.OWL) apply
the direct mapping description (Table 2, columns
Ontology learning and Direct Mapping). This indeed
appears as a natural choice of ontology learning tools,
since the goal is not to align the database on existing
ontologies (that would require a domain semantics-
driven mapping) but to discover ontological knowledge
from the database. Sequeda et al. [10] clearly illustrate
this close connection between ontology learning and
direct mapping in their review of Direct Mapping
approaches: all of the seven papers reviewed mainly
address the automatic ontology learning through the use
of direct mapping principles. Nevertheless not all
ontology learning approaches are based on the
automatic direct mapping, as illustrated by RDBToOnto
in which the direct mapping is used to produce raw
RDF data from which more elaborated concepts and
properties are deducted along an interactive and
iterative process.

Ontology learning uses data materialisation

Two of the ontology learning approaches studied
(RDBToOnto and Relational.OWL) apply the data
materialisation implementation, while DB2OWL does
not provide any implementation. By contrast with the
direct mapping, the data materialisation implementation
does not appear as an obvious choice. It is most likely
the result of a pragmatic choice, that is, such approaches
need to demonstrate the method without implementing a
complex on-demand translation engine. Hence, they

make the choice of the data materialisation method,
which implementation is more straight-forward. Again,
Sequeda et al. [10] confirm this observation as all of the
seven papers that they reviewed apply the data
materialisation implementation method.

Generic-purpose mapping language vs.

transformation engine

When the motivation is the definition of a generic-
purpose mapping language, it is accompanied by a
transformation engine. The engine implements the
mapping language defined, at least to demonstrate the
capabilities of the language, and possibly to be a
production-class solution integrating the mapping
language and the transformation engine. Obviously,
R2RML is the only exception to this rule (it does not go
along with an implementation), since its goal is, on the
contrary, to serve as a standard for the implementation
of transformation engines.
The definition of a generic-purpose mapping language
always goes along with a domain semantics-driven
mapping description. The reason is quite simple: since
the direct mapping can be automated, there is no point
to defining a mapping language which expressiveness
would solely support the direct mapping. Therefore the
definition of a mapping language always targets a
domain semantics-driven mapping.

5.2 A constellation of RDB-to-RDF approaches

Figure 1 presents the whole RDB-to-RDF process
which results of the sequential combination of the three
mapping steps: the mapping description, the mapping
implementation and the data retrieval. It also depicts the
different options applicable at each step, and the way
those options can be chained to achieve the whole
process. The figure reads from top to bottom, following
the chronological order involved when setting up the
translation process. Conversely, read from bottom to
top, the figure illustrates the way the RDF data is
retrieved, how this retrieval method is handled based on
the mappings implementation, up to the source
relational data. Arrows denote possible transitions. Blue
arrows denote paths starting with a direct mapping
description, while red arrows denote paths starting with
a domain semantics-driven mapping description. Dotted
arrows denote transitions that are technically possible
but not common in practice.

5.2.1 Composition of mapping descriptions and

mapping implementations

With the insight gained from the different approaches
studied in this paper, it turns out that the mapping
description method (top layer in Figure 1) discriminates
approaches into two families with regards to the overall
RDB-to-RDF process.
(i) The Direct Mapping family gathers either light
approaches which goal is to quickly and simply expose
relational data to the world (SquirrelRDF, SPASQL),
and ontology learning approaches which aim at making

explicit the semantics of relational databases
(DB2OWL, RDBToOnto, Relational.OWL). In the first
case, an RDB-to-RDF transformation engine is needed
to make the data available; SquirrelRDF and SPASQL
both use the on-demand mapping implementation.
Conversely, in the case of ontology learning
approaches, the transformation engine is optional but
generally comes from the need to implement a proof of
concept. RDBToOnto and Relational.OWL apply the
data materialisation principle, whereas DB2OWL does
not provide any transformation engine at all.
(ii) In the Domain Semantics-Driven Mapping family,
tools are more generally focused on the definition of an
expressive generic-purpose mapping language (D2RQ,
METAmorphoses, R2O/ODEMapster, Triplify, Virtuoso
RDF Views). To some varying extend, mapping
languages rely on a mix of specific constructors and
embedded SQL snippets. Triplify even solely relies on
SQL. Recent tools do not define a new mapping
language but comply with R2RML (DB2Triples,
Morph, Oracle 12c, RDF-RDB2RDF, Ultrawrap), or
complement an existing mapping language with the
support of R2RML (XSPARQL, Virtuoso RDF Views).
In addition, tools of the Domain Semantics-Driven
Mapping family generally entail the implementation of
an efficient RDB-to-RDF transformation engine. This is
even a major motivation of R2RML-compliant tools, as
attested by Table 2 (R2RML tools, column
"Transformation engine"). Virtuoso and XSPARQL are
a specific case as they come with their own mapping
description language in addition to supporting R2RML.
The mapping implementation can be either on-demand
(Asio SBRD, D2R Server, R2O/ODEMapster, Triplify,
DB2Triples, Oracle 12c, Virtuoso RDF Views,

Ultrawrap) or based on the data materialisation
principle (DataLift, METAmorphoses, Morph, RDF-
RDB2RDF, XSPARQL).

Direct Mapping and Data Materialization

The direct mapping approach is generally implemented
using the data materialisation technique. Indeed, given
that the direct mapping produces semantically poor
RDF data, exposing this data as is with an on-demand
implementation (rewriting of queries at run time) may
not be of much interest. Instead, materialising this data
offers the opportunity to align it on existing ontologies,
or to infer new knowledge using a rule engine or a
reasoner, and then to load it into a query engine to
expose the semantically enriched data. This is in
particular the case of ontology-learning approaches.
The direct mapping method may also be implemented
with the on-demand method, denoted by the blue dotted
arrow in the upper half of Figure 1. This is hardly the
case in the tools we have studied: only SquirrelRDF and
SPASQL do so, but both remained in a prototype stage
and are now deprecated (note that we consider here only
strictly direct mapping tools, as opposed to the domain
semantics-driven tools that provide a direct mapping
tool for convenience). Nevertheless, this may only be a
bias of the set of tools studies, and there is no reason
why this combination (direct mapping and on-demand
implementation) should not be used in other tools. As
an illustration, here is a hypothetical scenario: let us
assume a versatile environment where databases are
volatile and may appear only once, or where their
schema may evolve frequently (situation addressed by
Relational.OWL). Those databases are exposed
automatically using the direct mapping method and the

Figure 1: Steps of the RDB-to-RDF process

From top to bottom, the figure depicts the steps needed to set up the translation process.

Blue paths start with a direct mapping description, red paths start with a domain semantics-

driven mapping description. Dotted arrows denote unusual sequences.

Mapping
Description

Mapping
Implementation

Data
Retrieval

Direct
Mapping

Domain‐Semantics
Driven Mapping

On‐demand
Data

Materialisation

Query‐basedLinked Data Graph Dump

ETL

on-demand implementation through a SPARQL
endpoint. Provided with a way to discover such
databases, a federation system may query the local
ontology of each database and use automatic ontology
alignment methods (e.g. natural language processing or
syntactical coincidences such as those investigated by
RDBToOnto) to perform a best-effort alignment of the
different databases on each other or on a global
ontology.

5.2.2 Data Retrieval methods

The Query-based retrieval method is the most
implemented within the tools we have studied, as
evidenced by the "Query-based access" column in Table
2. Triplify supports exclusively the Linked Data
method, whereas all other tools supporting Linked Data
also support the Query-based method.
By contrast, the red dotted arrows, in the lower half of
Figure 1, show that the graph dump data access (get a
representation of the full graph using an HTTP GET
request) is very unusual, for several reasons. Firstly, the
data materialisation process produces a graph
serialization, generally in the form of an RDF file.
Hence, using the graph dump access method would be
just another way of getting an alternative representation
of the same graph from an HTTP endpoint. Secondly, in
conjunction with the on-demand mapping
implementation, the dump of large graphs may induce
significant performance issues. Thus, so far, the graph
dump seems not to have been a priority for RDB-to-
RDF tools developers (none of the studied tools
supports it, as evidenced by the empty column in Table
2). Nevertheless, this may become more common in the
future, as more tools will implement full SPARQL 1.1
compliant endpoints, i.e. including the SPARQL 1.1
Graph Store Protocol.

5.2.3 Extract-Transform-Load (ETL)

The Extract-Transform-Load (ETL) expression is used
in the literature to denote the approach that consists in
defining a mapping, materialising the RDF data based
on that mapping, and loading the RDF data into a triple
store to query it, typically through a SPARQL endpoint.
The green dotted line in Figure 1 denotes this whole
approach. It shows that any of the direct or domain
semantics-driven mappings can apply. Strictly speaking,
and as there is no formal definition of the ETL
approach, the Linked Data and Graph Dump data
retrieval methods could also be included. In practice
though, ETL generally refers to the query-based
retrieval method, and more precisely the usage of a
SPARQL endpoint.

5.2.4 A posteriori production of rich semantic data

Producing RDF data with sufficient semantics, in order
to make it usable, interoperable and linkable, is a
critical concern in most RDB-to-RDF tools.
Experimentations that use direct mapping-based tools

often underline the weaknesses of this method: the reuse
of the RDF data produced is not easy due to the
poorness of the semantic reference, its interoperability
with other data sets requires complex techniques.
Finally, lifting the data to a higher level of semantic
formalisation, in other words, aligning the RDF data
with existing ontologies has to be done at some point
anyway. Furthermore, even in the case of a domain
semantics-driven mapping, the production of
sufficiently rich semantic data cannot always be
achieved by the expressiveness of existing mapping
languages. Consequently, various strategies are
investigated in the literature to produce additional
semantic data, a posteriori. Below we briefly present
some of them.

Aligning multiple levels of ontology

Several RDB-to-RDF projects propose to enhance the
direct mapping by aligning the local ontology with
higher levels of abstraction formalized by domain and
application ontologies. In this case, the domain
semantics-mapping is not performed beforehand as in
domain semantics-driven mapping tools, but consists in
the later alignment of ontologies.
Asio SBRD, DataLift, as well as a DB2OWL-based
approach [34], propose comparable methods using two
distinct levels of ontology. In a first step, the direct
mapping method is applied to create a local ontology
that reflects the structure of the relational database. In a
second step, the local ontology is manually aligned onto
a domain ontology that models some part of the domain
which the relational database refers to. A query engine
translates a query to the domain ontology into a query
to the local ontology. In turn, the query to the local
ontology is translated into an SQL query to the
relational database.
Alternatively, the alignment of the local ontology with a
domain ontology may be achieved using the SPARQL
CONSTRUCT clause: given a certain graph pattern
using local ontology concepts and properties, the
CONSTRUCT clause produces new RDF data using
concepts and properties of the domain ontology. De
Laborda and Conrad [40] describe a use case in which
they have applied this method with Relational.OWL.
Technically, the SPARQL CONSTRUCT clause returns
a graph instance, it does not insert triples into an
existing graph. Consequently, the alignment has to be
done unitarily in a single CONSTRUCT clause.
Anyway, it would be simple to apply the same idea by
running several SPARQL INSERT clauses to
incrementally enrich a graph. Ultimately, this method
turns out to be equivalent to executing rules in a rule
engine (see below). The only difference, here, is that the
rules description language would be SPARQL.
Hu and Qu [44] propose to apply data mining
techniques to automatically discover simple mappings
between the relational entities (tables, columns,
integrity constraints) and the classes and properties of
an existing ontology. Relational and ontological entities
are compared using distance measures such as the TF-

IDF (Term Frequency-Inverse Document Frequency), in
addition to the computation of the confidence in a
mapping and a validation phase. In this sense, it can be
seen as an automatic domain semantics-driven
approach. However, for this method to perform
efficiently, the similarity between the relational schema
and the ontology should be high, unless human users
provide initial reference mappings.
Besides generic methods such as presented above, some
domain-specific projects propose alternative methods.
Green et al. [45] describe a demonstrator that relies on
existing tools to allow for the "spatial attribution" of
data sources, for the predictive modelling of diffuse
water pollution. The federation of different data sources
lies on a 3-layers ontology stack. The ontologies at the
first level (called data ontologies) are used to map each
data source to concepts of the ontologies at the next
level (called domain ontologies). Domain ontologies are
written by domain experts, each data ontology has a
single corresponding domain ontology. At the top, the
application ontology links the domain ontologies
together with the addition of application-specific
information. Much of the application ontology is
created manually, as it requires domain knowledge of
the scenario being modelled. D2RQ is used to map data
sources to the data ontologies, and is extended to
include spatial operators provided by the Oracle Spatial
database. In particular, this extension helps decide on
which domain concept to map data based on the result
of specific functions such as the calculation of a
perimeter. The virtual RDF graph thus generated from
the data sources can be searched by means of SPARQL
queries, those queries can use concepts and properties
of the application and domain ontologies. Additionally,

the Pellet reasoner is used to enrich results by
benefitting of the full semantics of OWL.

Using rules to create additional knowledge

Rule engines or reasoners are an alternative way to
enrich the semantics of RDF data. This option is
depicted on Figure 2 by the green layer inserted
between the mapping implementation and the data
retrieval layers.
Techniques proposed in this layer can easily be used in
conjunction with the data materialisation in which the
whole graph is available at once. This is the case of the
NeuroLOG project [46] that uses METAmorphoses to
create an RDF materialisation of federated neuro-
imaging relational databases. The values of some
columns help deduce the belonging to classes of the
application ontology. As the METAmorphes mapping
language is not capable of describing such
categorization patterns, these patterns are described as
SWRL44 rules executed by the CORESE [47] semantic
search engine. By raising the quality of the semantic
data, the process improves the possibilities of further
application specific reasoning.
Rule engines or reasoners can also apply on RDF data
translated on-demand, although the execution of
complex deduction rules, or the application of complex
entailments, may generate a high volume of queries to
the database. In the worst case, the process may require
to translate the whole relational data before being able
to complete. Among the tools studied in this paper,
several propose the support of rules: SWRL rules for
Asio, Silk module in DataLift, Jena Rules in

44 http://www.w3.org/Submission/SWRL/

Figure 2: Production of additional knowledge

The green layer depicts strategies aimed at a posteriori production of additional semantic data

Mapping
Description

Mapping
Implementation

Data
Retrieval

On‐demand
Data

Materialisation

SPARQL

end pointLinked Data Graph Dump

Rule
engine

Reasoner

Production of additional
knowledge, ontology

alignment

Direct
Mapping

Domain Semantics‐
Driven Mapping

SPARQL
construct/insert

SquirrelRDF, and proprietary RDF-to-RDF deduction
rules in XSPARQL.

6 Open Questions

The RDB-to-RDF methods that we have described in
this document are one of the keys to populate the web
of data, by publishing in RDF the immense amount of
data currently locked in relational databases. More
generally, many initiatives target the publication of non-
RDF data sources in RDF, ranging from wrappers of
popular web site APIs, such as the flickrdf45 library, to
miscellaneous format-specific converters46 and
"RDFizers"47. Whatever the method though, all of this
results in a read-only web of data. And similarly to the
tremendous change of paradigm that lead to the Web
2.0 where the user contribution plays a major role, the
web of data will necessarily have to shift to a write-
enabled model. In the case of relational databases,
although the expressiveness of RDB-to-RDF mappings
is a key to rich semantic alignment, it also often results
in one-way transformation mappings (one-way
mappings cannot be used to revert RDF data to the
original relational data). Consequently, there will
necessarily be a compromise to be made between the
expressiveness of RDB-to-RDF mapping languages and
the need for updating relational data using the protocols
of the semantic web. The R3M mapping language is an
example of the search for such a compromise [48].
Berners-Lee et al. [49] investigate some of the issues
and challenges with regards to a read-write web of data.
They underline that the need to create, update and delete
RDF data should be made possible in a secure, reliable,
trustworthy and scalable way. This questions the way to
authenticate people and programs in the web of data,
how to securely assign them authorizations, how to
track the changes made, etc. As to the trustworthiness
question, in a global data space made of heterogeneous
data sources integrated together, it will become critical
to be able to explain query results, or to assess the
confidence a user can have in query results. To this end,
applications exposing non-RDF data sources into RDF
will have to ensure the preservation of provenance
information, allowing to track a piece of data back to its
original data source.

7 Conclusion

Many techniques and tools have been proposed over the
last years to enable the publication of relational data on
the web in RDF. In this paper, we have described four
main axes along which it is possible to categorize such
RDB-to-RDF approaches. Based on these axes, we have
proposed a detailed review of seventeen RDB-to-RDF
tools, either supporting the R2RML W3C
recommendation or providing their own mapping
language. The categorization proposed helped us

45 http://librdf.org/flickcurl/
46 http://www.w3.org/wiki/ConverterToRdf
47 http://simile.mit.edu/wiki/RDFizers

identify commonalities and differences between
existing approaches, as well as the correlations between
the solutions applicable to each step of the RDB-to-
RDF translation process. We observed that producing
RDF data with sufficiently rich semantics is a critical
concern of most approaches studied, in order to make
the data usable, interoperable and linkable. Therefore,
we have briefly presented various strategies investigated
in the literature to produce richer semantic data.

8 References

[1] B. He, M. Patel, Z. Zhang, K.C.-C. Chang,
Accessing the deep web, Communications of the
ACM. 50 (2007) 94–101.

[2] T. Berners-Lee, Linked Data, in Design Issues of
the WWW, (2006).

[3] A. Ruttenberg, T. Clark, W. Bug, M. Samwald,
O. Bodenreider, H. Chen, et al., Advancing
translational research with the Semantic Web,
BMC Bioinformatics. 8 (2007) S2.

[4] A. Burgun, O. Bodenreider, others, Accessing
and integrating data and knowledge for
biomedical research, Yearb Med Inform. 47
Suppl. 1 (2008) 91–101.

[5] H. Akil, M.E. Martone, D.C. Van Essen,
Challenges and Opportunities in Mining
Neuroscience Data, Science. 331 (2011) 708–
712.

[6] S. Sahoo, W. Halb, S. Hellman, K. Idehen, T.
Thibodeau, S. Auer, et al., A Survey of Current
Approaches for Mapping of Relational Databases
to RDF, (2009).

[7] M. Hert, G. Reif, H.C. Gall, A comparison of
RDB-to-RDF mapping languages, in:
Proceedings of the 7th International Conference
on Semantic Systems, ACM, Graz, Austria, 2011:
pp. 25–32.

[8] S. Auer, L. Feigenbaum, D. Miranker, A.
Fogarolli, J. Sequeda, Use Cases and
Requirements for Mapping Relational Databases
to RDF, (2010).

[9] J. Sequeda, Relational Database and the
Semantic Web, (2010).

[10] J. Sequeda, S.H. Tirmizi, Ó. Corcho, D.P.
Miranker, Survey of directly mapping SQL
databases to the Semantic Web., Knowledge Eng.
Review. 26 (2011) 445–486.

[11] S. Tirmizi, J. Sequeda, D. Miranker, Translating
sql applications to the semantic web, in:
Proceedings of the 19th International Conference
on Database and Expert Systems Applications
(DEXA’08), 2008: pp. 450–464.

[12] T. Berners-Lee, Relational Databases and the
Semantic Web, in Design Issues of the WWW,
(1998).

[13] N. Cullot, R. Ghawi, K. Yetongnon, DB2OWL :
A Tool for Automatic Database-to-Ontology
Mapping, in: Proceedings of the 15th Italian
Symposium on Advanced Database Systems

(SEBD 2007), Torre Canne, Fasano, BR, Italy,
2007: pp. 491–494.

[14] C.P. De Laborda, S. Conrad, Relational.OWL: a
data and schema representation format based on
OWL, in: Proceedings of the 2nd Asia-Pacific
Conference on Conceptual Modelling, Newcastle,
Australia, 2005: pp. 89–96.

[15] W3C RDB2RDF WG, A Direct Mapping of
Relational Data to RDF, (2012).

[16] C. Dolbear, J. Goodwin, Position paper on
Expressing Relational Data as RDF, in: Proc. of
W3C Workshop on RDF Access to Relational
Databases, 2007: pp. 25–26.

[17] W3C, SPARQL 1.1 Query Language, (2013).
[18] O. Erling, Requirements for Relational to RDF

Mapping, (2008).
[19] O. Erling, Requirements for Relational-to-RDF

Mapping, blog additional, Orri Erling’s Weblog.
(2008).

[20] W3C, SPARQL 1.1 Protocol, (2013).
[21] W3C TAG, Dereferencing HTTP URIs - Draft

Tag Finding 31 August 2007, (2007).
[22] W3C, SPARQL 1.1 Graph Store HTTP Protocol,

(2013).
[23] W3C RDB2RDF WG, R2RML: RDB to RDF

Mapping Language, (2012).
[24] M. Dean, Suggestions for Semantic Web

Interfaces to Relational Databases, in: W3C
Workshop on RDF Access to Relational
Databases, Cambridge, MA, USA, 2007.

[25] W3C RDB2RDF XG, W3C RDB2RDF
Incubator Group Report, (2009).

[26] Oracle, Oracle Spatial and Graph 12c, RDF
Semantic Graph, (2013).

[27] Oracle, Semantic Technologies in Oracle
Database 11g Release 2: Capabilities, Interfaces,
Performance, (2010).

[28] J.F. Sequeda, R. Depena, D.P. Miranker,
Ultrawrap: Using sql views for rdb2rdf, in:
Proceedings of the 8th International Semantic
Web Conference (ISWC2009), 2009.

[29] N. Lopes, S. Bischof, S. Decker, A. Polleres, On
the Semantics of Heterogeneous Querying of
Relational, XML and RDF Data with XSPARQL,
in: Proceedings of the 15th Portuguese
Conference on Artificial Intelligence
(EPIA2011), Lisbon, Portugal, 2011.

[30] C. Bizer, R. Cyganiak, D2R server - Publishing
relational databases on the semantic web, in: 5th
International Semantic Web Conference, 2006: p.
26.

[31] C. Bizer, A. Seaborne, D2RQ-treating non-RDF
databases as virtual RDF graphs, in: Proceedings
of the 3rd International Semantic Web
Conference (ISWC2004), 2004: p. 26.

[32] R. Cyganiak, C. Bizer, O. Maresch, C. Becker,
The D2RQ Mapping Language v0.8, (2012).

[33] C. Bizer, D2R MAP - A Database to RDF
Mapping Language, in: Proceedings of the 12th

International World Wide Web Conference,
Budapest, Hungary, 2003.

[34] R. Ghawi, N. Cullot, Database-to-ontology
mapping generation for semantic interoperability,
in: Third International Workshop on Database
Interoperability (InterDB 2007), Held in
Conjunction with VLDB 2007, Vienna, Austria,
2007.

[35] M. Svihla, I. Jelinek, Two layer mapping from
database to RDF, in: Proceedings of Electronic
Computers and Informatics (ECI), 2004.

[36] J. Barrasa, Ó. Corcho, A. Gómez-Pérez, R2O, an
extensible and semantically based database-to-
ontology mapping language, in: Proceedings of
the Second Workshop on Semantic Web and
Databases (SWDB 2004), Springer-Verlag,
Toronto, Canada, 2004.

[37] J. Barrasa, O. Corcho, A. Gómez-Pérez, Fund
Finder: A case study of database-to-ontology
mapping, in: Semantic Integration Workshop, in
Proceedings of the 2nd International Semantic
Web Conference (ISWC-2003), Sanibel Island
(FL, US), 2003.

[38] F. Priyatna, RDF-based access to multiple
relational data sources, Universidad Politécnica
de Madrid, 2009.

[39] F. Cerbah, Learning highly structured semantic
repositories from relational databases: The
RDBToOnto tool, in: Proceedings of the 5th
European Semantic Web Conference on The
Semantic Web (ESWC 2008), Athens, GA, USA,
2008: pp. 777–781.

[40] C.P. De Laborda, S. Conrad, Database to
Semantic Web Mapping using RDF query
languages, Conceptual Modeling-ER 2006.
(2006) 241–254.

[41] E. Prud’hommeaux, SPASQL: SPARQL Support
In MySQL, (2007).

[42] A. Seaborne, D. Steer, S. Williams, RDF-SQL
(SquirrelRDF), (2007).

[43] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann,
D. Aumueller, Triplify: light-weight linked data
publication from relational databases, in:
Proceedings of the 18th International Conference
on World Wide Web, Madrid, Spain, 2009: pp.
621–630.

[44] W. Hu, Y. Qu, Discovering simple mappings
between relational database schemas and
ontologies, The Semantic Web. (2007) 225–238.

[45] J. Green, C. Dolbear, G. Hart, J. Goodwin, P.
Engelbrecht, Creating a semantic integration
system using spatial data, in: Proceedings of the
7th International Semantic Web Conference
(ISWC2008), Karlshue, Germany, 2008: pp. 26–
30.

[46] B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt,
F. Michel, A. Gaignard, et al., NeuroLOG:
sharing neuroimaging data using an ontology-
based federated approach, in: AMIA Annual
Symposium Proceedings, 2011: p. 472.

[47] O. Corby, R. Dieng-Kuntz, C. Faron-Zucker,
Querying the semantic web with corese search
engine, in: Proceedings of 16th European
Conference on Artificial Intelligence, Valencia,
Spain, 2004: p. 705.

[48] M. Hert, G. Reif, H.C. Gall, Updating relational
data via SPARQL/update, in: Proceedings of the
2010 EDBT/ICDT Workshops, 2010: p. 24.

[49] T. Berners-Lee, R. Cyganiak, M. Hausenblas, J.
Presbrey, O. Seneviratne, O.-E. Ureche, Realising
A Read-Write Web of Data, 2009.

