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Abstract:

We present a new interpretation of anisotropy ofymetic susceptibility (AMS) fabrics in
basaltic lava flows based on the detailed studynwgnetic mineralogy and silicate
crystallographic fabric of a Quaternary lava flawrh the French Massif Central (La Palisse).
We consider the model of AMS fabric imbrication weeén magnetic foliation and flow
surface, as initially proposed for dikes. At theoteaampling sites, the concordance between
the flow direction deduced from the AMS foliationdathat deduced from field observations
indicates that the imbrication model could applyie lava flows. However, the flow senses
inferred from AMS are systematically opposed betwdee two sampling sites suggesting
permutations betweel; and K3 AMS axes, a configuration referred to as inversrit.
Electron backscatter diffraction (EBSD) measuremeshow strong lattice-preferred
orientations (LPO) for plagioclase, especially {f&0)-plagioclase plane, which tends to be
parallel to the flow. Clinopyroxene LPO remainssl@sarked than plagioclase LPO, whereas
titanomagnetite does not display a significant LRCamparison between magnetic and
crystallographic fabrics suggests that the AMS italmf the lava flow results from the
distribution of titanomagnetite grains, which isturn controlled by the fabric of the silicate
framework. Magnetic hysteresis parameters and @oEp of remanent magnetization
(ARM) measurements exclude a significant contrinutfrom single-domain grains, often
called upon to explain inverse magnetic fabricse ©hgin of the observed inverse magnetic
fabric may relate to the dip of the paleosurfacéjctv is the only remarkable difference

between the two sampling sites. AMS appears asod gml to determine the direction of
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basaltic lava flows and coupling with local cry&igraphic fabric data provides a valuable
control of relationships between magnetic fabriosl low and thus contributes to better
constrain the AMS signature of lava flows.

1. Introduction

The internal structure of basaltic lava flows magovide key information on flow
mechanisms and on lava rheology (e.g., Ventural.et1896; Smith, 2002). In general,
macroscopic markers such as vesicles (e.g., Awdied, 1988) and measurement of lattice-
preferred orientation (LPO) allow to investigate fimternal structure of a flow (e.g., Long
and Wood, 1986; Smith, 2002). However, the scamitynarkers in these rocks which are
weakly anisotropic and the time-intensive nature L&fO measurements are significant

hindrances to systematic studies of a flow frontdiotto top.

The main goal of this study is to investigate i€ thnisotropy of magnetic susceptibility

(AMS) technique can provide reliable information ioternal structures and flow direction.

The AMS technique has already been successfully elsewhere to track both magmatic and
deformation fabrics on a wide variety of rocks (gearling and Hrouda, 1993; Borradaile

and Henry, 1997; Bouchez et al., 2000; Ferré et2803; Borradaile and Jackson, 2004),
including volcanic rocks (e.g., Knight and Walk&®88; Cafndn-Tapia et al., 2004; Plenier et
al., 2005; Loock et al., 2008; Petronis and Geisgn2808). The significance of magnetic

fabrics in volcanic rocks has been questioned lsecdhese rocks tend to show a weak
magnetic anisotropy, near the detection limit af WMS technique (Tarling and Hrouda,

1993).

Despite the weak anisotropy of the volcanic rodk8lS measurements show relationships
between magnetic fabric and flow: maximum suscdjtiitaxis K; tend to be parallel to the
flow direction and minimum susceptibility axig tend to be perpendicular to the flow plane
(Candn-Tapia et al., 1996; Cafdon-Tapia et al., 18##frero-Bervera et al., 2001; Zhu et al.,
2003; Cafnodn-Tapia et al., 2004; Raposo and Berg008). However complications have
arisen regarding the significance of AMS fabricd aheir relationship to magma flow
directions (e.g., Rochette et al., 1999; Henryl.e2803; Plenier et al., 2005).

In dike the imbrication model proposed by Knightdaialker (1988) considers thEt and
K3 should be oblique and symmetrical with respedhtflow direction and flow plane. In

this case, the obliquity further indicates the fleanse. This model often usiég-angle to
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determine the flow direction (Staudigel et al., 29Blerrero-Bervera et al., 2001). When the
magnitudes oK; andK; axes are too close (oblate magnetic fabrics),igclswccurs between
these two axes. The flow direction can be deterchireng the distribution df; axes (Callot
et al., 2001; Geoffroy et al., 2002). Callot andichet (2003) also proposed an analytical
model in dikes and concluded that the determinatiotime flow direction with the maximum

susceptibility axis is a misuse, and recommend rgdimeng the magnetic foliation use.

Complications could also occur when single-dom&D)( magnetite grains are significant
contributors to AMS (Potter and Stephenson, 19Bf}eed, in contrast to MD graink; is
parallel to the short axis ar€k is parallel to the long axis of SD grains. Thisgeates an
“inverse” magnetic fabric (Rochette et al., 1998yrE, 2002). Other difficulties to interpret
the AMS signature could also appear due to magmatiezactions when the ferromagnetic
(s.l.) grains are at close distance from each di@egégoire et al., 1995; Fanjat et al., 2012),
the effects of multiple mineral-preferred orieras (Hrouda, 1992), viscous strain variations
in magma (Dragoni et al., 1997), post-flow altevat(Park et al., 1988) or thermal contraction
(Gil-Imaz et al., 2006).

In basaltic lava flows, AMS is also used to infiee flow direction (e.g., Cafidn-Tapia et al.,
1996, 1997; Bascou et al., 2005; Loock et al., 2008e imbrication model is used to
determine the flow direction with eithéf; or Ks. In lava flows, inverse fabrics are also
observed (Rochette et al., 1999). Other parameisrshemical composition related to
viscosity or paleosurface topography could inflleetite AMS fabrics (Cafion-Tapia et al.,
1995; Merle 1998; Henry et al., 2003). In addititre identification of relationships between
AMS and the flow direction may depend on heighthe flow. In their AMS study from

basaltic lava flow, Bascou et al. (2005) observstranger correlation between AMS and
flow-related plagioclase preferred orientation hie tower part of the lava flow than at other
levels. Thus, the relationships between AMS and ftirection in a flow that could present
variations from the base to the top in magneticamdtogy, crystallographic and magnetic

fabrics is still unclear.

In this study, AMS measurements were carried ot Quaternary lava flow from the French
Massif Central (La Palisse basaltic flow), whicheisposed at different levels. A detailed
study of the magnetic mineralogy has been carrigdaad relationships between AMS and

the flow related silicate framework were investaghthrough 3-D crystallographic fabrics
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characterization of main minerals (plagioclasenapiyroxene and titanomagnetite) using

electron backscatter diffraction (EBSD).

2. Geological settings and petrology

The La Palisse basaltic lava flow is located in Blaes-Vivarais volcanic province, in the East
part of the French Massif Central (Fig.1a). Thecaaic activity of the Bas-Vivarais province
is characterized by alternated phreatomagmatictieng and strombolian activity and is
spread over a large time interval, from 166 + 15kd45.4 + 3.2 ka (Guérin and Gillot 2007).
The La Palisse lava flow belongs to an eruptives@ge occurring around 78.8 £ 5.3 ka
(Guérin and Gillot 2007). Its emission source ithat Suc de Bauzon scoria cone, from which
the flow went NW into the Loire paleo-valley whigtas incised in the granitic substratum

(Fig. 1b). The thickness of the flow4s40 meters at the sampling sites.

Two sampling sites were selected to address disttnactural levels of the flow. In sampling
site 1, the colonnade and the entablature arelglebserved. The apparent thickness of the
colonnade ranges from less than 1 m to about 3 olun@hs are vertical, oriented
perpendicularly to the horizontal substratum swfand have a mean width of 0.4 m. In the
entablature level, in which thickness ranges from t 12 m, columns are randomly oriented
and only a few centimeters in width. In sampling &, three zones can be distinguished from
base to top of (Fig. 2): the colonnade (from 1 tm 3hick), an intermediate zone presenting
planar layering and hereafter referred to as layeome (from 1 to 2 m thick) and the pseudo-
colonnade (From 2 to 4 m thick). The intermediaieezdiffers from the entablature level of
site 1 by its planar structure. The strike of vaicaayers is NE-SW with a 50° dip to NW
(Fig. 2). Because the La Palisse basalt flow isnnkked by a paleo-valley, the underlying
paleosurface, currently not outcropping, is assusudhorizontal at site 1 and parallel to the

layered zone at site 2.

Regardless of the structural level, the lava flamples contain phenocrysts and xenocrysts
of olivine, phenocrysts of clinopyroxene, micropberysts (50 to 500 pum in size) of
plagioclase and a groundmass mainly composed abhtés of plagioclase, clinopyroxene
and iron oxides within partially devitrified glasehe fluidal texture displayed by plagioclase
microphenocrysts is observed in the different Ieva the two sampling sites, whereas the

pseudo-colonnade level exhibits a more vesicudute.
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The La Palisse lava is basanite (from TAS diagrambas et al 1986), The mean
composition of phenocrysts are An50 for plagioclase78 for olivine and diopside for
clinopyroxene Boiron, 2011). The oxide grains are mainly Ti-rich titemagnetite (Fe

xT1xO4With x mean value of 0.@oiron, 2011).

3. Methods
3.1. Magnetic methods

The anisotropy of magnetic susceptibility (AMS) wasasured with a KLY-3 instrument at
the University of Montpellier (France). Thermomatinexperiments were mainly conducted
under argon atmosphere, with a CS4 furnace coupledMFK1 Kappabridge instrument at
the University of Saint Etienne (France). AMS inwlomagnetic field (< 1mT) is
mathematically described as a symmetric second tan&or, which can be geometrically
expressed as an ellipsoid with three principal spshbility axes Ki, K, andKz with K; > Ky>
Ks). For magnetite, AMS is controlled by the shapefgnred orientation (SPO) of individual
grains or aggregates (Rochette et al., 1992). Maamameters are usually employed to

describe the AMS fabric of rocks. In this paper, uged the bulk magnetic susceptibility

K, = (Kl +K, + K3)/3, the corrected degree of anisotropy (Jelinek 1981)

P' = expV2[(n1 = 1m)* + (12 — nm)? + (13 — nm)?1 Y where 7, =InK,, 7, =InK,,
n,=InK, and n,, = (1, .12 .13), and the shape parameter (Jelinek 1981) defined as

T=@n,-n,-n;)I(n,—n,). TheP’ parameter is used to quantify the degree of magnet

anisotropy and characterizes the AMS ellipsoid shape. T ranges frl (prolate shape) to
+1 (oblate shape). Magnetic hysteresis and firdeoreversal curve (FORC) were measured
on a Vibrating Sample Magnetometer Princeton Meaments 3900-04 at the University of
South lllinois, Carbondale (USA). The anisotropyaahysteretic remanent magnetization (A-
ARM) measurements were carried out by three steps uwsiRc cryogenic SQUID
magnetometer with an alternating field (AF) demaigiee at the University of Montpellier
(France). The sample was first AF demagnetized galibmee perpendicular axes with a
maximum magnetic field of 170 mT. In a second tisr@ ARM is acquired along a direction
perpendicular to the last demagnetized axis wikhaa direct field of 3T and AF of 120
mT. In the third step, the induced ARM was measufdgese three steps are repeated for 6

positions following the sequence, +X, +Y, +Z, -X, and -Z
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3.2. Lattice-preferred orientation (LPO) and shape-preferred orientation (SPO)
methods

The LPO of plagioclase, clinopyroxene and titanonedide was measured by indexation of
electron-backscattered diffraction patterns (EBSGth a Zeiss Supra 55 VP SEM at the
Ecole nationale supérieure des mines of Saint-B¢i¢Rrance). EBSD patterns are generated
by interaction of a vertical incident electron beaith a carefully polished thin section tilted
at 70°. The diffraction patterns are processediagexed in terms of crystal orientation using
the CHANNELD5 software from HKL, Oxford InstrumentGrystallographic orientations were
measured grain-per-grain using an acceleratingageliof 20 kV, a working distance of 15
mm, a current intensity of 26 pA and a pressuréSoPa. The diffraction images indexation
was based on crystallographic data of respectiWigchsler et al. (1984) for titanomagnetite,

Wenk et al. (1980) for plagioclase and Bertolole(1094) for clinopyroxene.

Image analysis was performed from sets of 6 digitaitos on thin sections in polarized light
with different angles (from 0° to 150°) using a dxnlar microscope equipped with color
CCD in order to obtain images displaying a reldyiweide surface of analysis. The sets of
digitized images were then processed and the SR aleulated using the Intercept software
developed by Launeau and Robin (1996). The 2-D 3®Q@epresented by an ellipse
characterized by the shape ratio (SR = ratio ofellipse long/short axes) and the angi¢ (
between the ellipse long axis and the referencepkardirection (X). The 3-D SPO
corresponds to the best ellipsoid calculated froerdombination of ellipses taken on three
perpendicular sections following the procedure aftiheau and Robin (2005) modified by
Launeau et al. (2010); see also http://www.scienc@snantes.fr/Ipgnantes/SPO.

4. Magnetic mineralogy

The mode of titanomagnetite grains, determined impage analysis and reflected-light
microscopy, is about 3% in volume for each levethia flow (Fig. 3). Grains are subhedral in
shape and exhibit a mean size around 15 pm. Thmsgrabserved through optical

microscopy and SEM, appear free of exsolutions.

Thermomagnetic curves were performed on basaltwdpo coming from sampling at
different levels of the flow (Fig. 4). Curves arengrally reversible and show a Curie

temperature (d) ranging from 100°C to 140°C. These low @ttest of the high titanium
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content of titanomagnetite, with an average comjawsdf Fe 4Tip¢O4 (Dunlop and Ozdemir
1997; Lattard et al.,, 2006). This composition is agreement with microprobe data.
Thermomagnetic analyses further suggest that thenotinagnetite grains are rather

homogeneous in composition

The hysteresis parameters were measured on 26 esmwipthe different levels from sites 1
and 2. Hysteresis curves clearly indicate the danmue of ferromagnetic (s.l.) minerals. The
hysteresis curves are simple, no wasp-waisted sbeipg observed (Fig. 5a). The data in a
plot of (M/Mg) versus (B/Hc) lies in the PSD domain in agreement to data father
natural basaltic lava of similar composition witirich titanomagnetite (Fig. 5b; Hartstra
1982; O'Donovan et al., 1986). According to Dunl@002), the PSD grain size range is
narrower for Ti-rich titanomagnetite than for maggeeand could extend from approximately
2 to 25 um. The observed hysteresis propertiearateguous and could result from either an
intermediate and homogeneous grain size betweean@8DMD grains, or from a mixture of
various SD and MD grain sizes. In order to pretigepotential contribution of single-domain
grains, First Order Reveal Curves (FORC) diagraresevearried out on samples from site 1
and 2. FORCs are expressed by contour plots obadtmensional distribution function and
they provide an accurate mean to reveal informatiorthe different components in a mixed
magnetic mineral assemblage (Pike et al., 1999;eRshet al., 2000). FORC diagrams
obtained from 4 samples from the colonnade (08tiR08tb18, site 1) and from the layered
zone (08tb59 and 08tb68, site 2) are provided gn &:iThe outer contours diverge from the
Hu = 0 axis and intersect the Hc = 0 axis wherbasriner contours are less divergent. The
absence of any central peak in the four FORC dmgreonfirms a very small contribution of
SD particles (Roberts et al., 2000) and suggedisrainating PSD + MD mixing in the

samples.

5. Anisotropy of Magnetic Susceptibility (AMYS)
5.1. AMSscalar parameters

For site 1, the anisotropy degree P’ is highehim éntablature level (P’ mainly ranges from
1.03 to 1.11) than in the colonnade level (P’ mamanges from 1.01 to 1.08) whereas the
mean susceptibilit, is lower in the entablatur&g mainly ranges from 4.1 . T8I to0 5.3 .
102 SI) than in the colonnad& mainly ranges from 4.9 . T(8Ito 5.8 . 16 SI; Fig. 7a). In
the entablature level, the distribution of the shaprameter ranges around a value of T =0
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(triaxial shape). On the other hand, the shapenpetexr is more scattered in the colonnade
(Fig. 7b). For site 2, the range of P’ values @ piseudo-colonnade is narrower (around 1.03)
than for colonnade and layered zone, from 1.02@6 &nd from 1.01 and 1.08, respectively.
The mean susceptibilitg is similar for the colonnade and the layered z@he . 10° SI <

Km < 6.1 . 10 SI) whereas it is lower in the pseudo-colonnad® (40° SI <K, < 5.0 . 10

Sl; Fig. 7c). The shape parameter T for the laya@te and the colonnade is scattered in
oblate and prolate domains with a larger numbedat for the oblate shape. Pseudo-

colonnade mainly spans the oblate domain (0.2 <0IT7<Fig.7d).

5.2. AMSfabrics

AMS fabrics measured in the different flow levels sites 1 and 2 are presented on
stereograms in the geographic referential (Figlr8gll stereograms, the AMS eigenvectors
(K1 > K3 > Kj3) are well grouped with narrow confidence ellipsel dherefore the mean of
principal susceptibility axes is statistically siggant. TheKs axes for site 1 are particularly
well grouped and the medd displays close strike and dip. Maximum and intediae axes
are also well grouped but seem to be inverted batwiee colonnade and the entablature. For
site 2, the minimum susceptibility axes remainrti@st grouped for all levels. The orientation
of the mean principal susceptibility axds;,(K,, Ks) is similar in the colonnade and the

layered zone but different for the pseudo-colonnade

The determination of flow direction and flow serisam AMS fabrics is obtained by means
of the imbrication of the magnetic foliation withsab-horizontal paleosurface for site 1. For
site 2, the paleosurface is assumed to be patalltie layered zone (NE-SW striking and
50°NW dipping; Fig. 8). The flow direction is givéay the pole of the paleosurface plane and
the pole of magnetic foliation (i.e., the minimumingipal axisK3z). The angle betweédg; and
the paleosurface defines the imbrication angle #iws determining the flow sense
(Geoffroy et al., 2002). For site 1, flow directiamd flow sense deduced from AMS are
consistent with field observations, both for thdoomade and the entablature. Similarly, for
site 2 a good correlation between flow directioduted from AMS for the colonnade and the
layered zone and from field observations is obthirdeor the pseudo-colonnade, the K3
direction at high angle (> 50°) perpendicularlyth@ layered plane, in comparison to the
lower levels suggests an opposite imbrication kdain the top of the flow. However, the
magnetic foliation for pseudo-colonnade is stronijlgd and the imbrication angle is less
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clear for this level. In addition, it must be notit the flow sense deduced from AMS for
the colonnade and the layered zone is opposeceld dbservations. The expected AMS
diagram for site 2 with respect to the field geatay evidences and the coherent AMS
measurements for site 1, suggest an inversion eetWee maximum and the minimum axis

for the colonnade and the layered zone of site 2.

6. Magnetic and crystallographic fabrics
6.1. Lattice preferred orientation

The LPO of plagioclase, clinopyroxene and titanonedige are presented on equal area and
lower hemisphere projections in the specimen rafexdramework for the colonnade and the
entablature of site 1 (Fig. 9a) and for the cola®athe layered zone and the pseudo-
colonnade of site 2 (Fig. 9b, c). Density contoare expressed in multiple uniform
distribution (MUD) using the software PFch5 develdp by David Mainprice
(ftp://www.gm.univmontp2.fr/mainprice//CareWare_Oei_Programs/, University of
Montpellier, France). The fabric strength is expegsby the texture index J (Bunge 1982),
which ranges from 1 in the case of random oriemtatd « in the case of an ideal single

crystal.

Plagioclase presents the highest fabric strength €<4) < 5.8). The plagioclase (010)-plane
systematically shows the strongest maximum of dgngior site 1, (010)-maximum of
density values of plagioclase from the colonnadd #re entablature are 4.40 and 5.37,
respectively. Lower maximum of density values dvsavved for (100)-plagioclase (3.68 and
4.38) and (001)-plagioclase (2.24 and 2.81). Rer 2i maximum of density values of (010)-
plagioclase for the colonnade, the layered zonetla@gseudo-colonnade are 4.91, 5.23 and
4.81, respectively, while lowest value are obsergedhe (100) and (001)-plagioclase. The
highest (010)-plagioclase maximum of density valalesreached for the entablature of site 1
and for the layered zone of site 2. The highestasbf the plagioclase fabric strengtare
also reached in these zones (5.5 in the site blantae and 5.8 in the site 2 layered zone).
However, the site 2 colonnade and pseudo-colonpeasent high fabric strengths as wdll (
> b5).

Clinopyroxene LPO is not as strong as plagioclaB® lwith a fabric strengti that ranges

from 3.35 to 3.70. Maximum of density values ar@egally lower than 3 except for the
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entablature and the layered zone for which the )(Q@lane is higher (3.73 and 3.63,

respectively).

Close relationships are observed between crystalbbgc planes of plagioclase and
clinopyroxene: (100)-plagioclase tends to be pakrad (001)-clinopyroxene and (010)-

plagioclase tends to be parallel to (100)-clinopgree for the two sites and at all levels.

Finally, no clear preferred orientation can be aedufrom the LPO of titanomagnetite, even
considering maximum of density values higher tharl@wever, it can be noticed that [100]-
titanomagnetite has the highest maximum of densiynpared to [111] and [110]-
titanomagnetite, especially for the colonnade & lsge 1 and 2 (maximum of density values
of 2.30 and 2.49 respectively).

6.2. Comparison between magnetic and crystallographic fabrics

In order to precise the relationships between tlagipclase crystallographic preferred
orientations and the AMS, we compared the oriemtadf K;, K, and K3 axes with the
plagioclase crystallographic fabrics on samplesasgntative of the different flow levels. The
principal susceptibility axes, as well as the bests (eigenvectors) and the maximum of
density of (100), (010) and (001)-plagioclase wermjected on lower hemisphere
stereograms in the specimen referential (Fig. BE@).site 1, in both colonnade and entablature
levels, a clear correlation appears between thermax susceptibility<; and the “Best Axis”

of (100)-plagioclase, between the minimum suscéyibk; and the “Best Axis” of (010)-
plagioclase and between the intermediate susckiytitki, and the “Best Axis” of (001)-
plagioclase. For site 2, relationships are lessoatsv (100)-plagioclase is relatedKag in the
pseudo-colonnade, but relatedkipin the layered zone and (001)-plagioclase presentsar
correlation withK; in the pseudo-colonnade and also with K3 (DM Rijhe colonnade. The
(010)-plagioclase “Best Axis” shows high orientatiocorrelations withK; in the three flow

levels.

7. Discussion

7.1. Relation between AMS and flow
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The results of the present study show that theofigeMS to determine the flow direction,
which is largely employed in dikes (e.g., Knightdawalker, 1988, Geoffroy et al., 2002;
Hastie et al., 2011), is also efficient in lavaniky We can notice that neither the maximum of
magnetic susceptibility axis itself nor the imbtioa of the magnetic lineation allow to find a
flow direction that fit with the flow direction deded from field evidences. In accord with
previous AMS studies of lava flows (Saint-Thibé®ascou et al., 2005), the magnetic
foliation imbrication appears as the best mean Itaio an accurate flow direction. .
Concerning the flow sense, our results are comtlastor site 1, the flow sense deduced from
AMS coincides with the field observations, wherdas site 2, they are systematically
opposed. The flow sense deduced from AMS for sapfars to coincide with a permutation
between the minimum and the maximum axes comparede 1. The origin of the inversion

of AMS axes is discussed in a following part.

7.2. Origin of AMS

Magnetic anisotropy of volcanic rocks can resulinfr different intrinsic properties of
minerals such as: magnetocrystalline anisotropygpshanisotropy and a non-intrinsic
property as the distribution anisotropy that corddult from clustering of small and equant
ferromagnetic grains (Hargraves et al., 1991). d@eaphical observations indicate that the
titanomagnetite grains, which are the main cawfethe AMS in the La Palisse basalt flow,
are subhedral. As a consequence, shape anisotfapglisdual grains can be neglected. In
addition, titanomagnetite LPO is randomly orientddt excludes a magnetocrystalline
anisotropy, in particular a preferred orientatidn100]-titanomagnetite that corresponds to
the best magnetization axis (Dunlop and Ozdemi71L9or lava flow, experimental studies
of Hargraves et al. (1991) indicate that AMS carplmuced from an anisotropy distribution
of ferromagnetic particles constrained by a siecaemplate”.

Image analysis based on 2-D and 3-D images wasrpetl in order to precise the
relationships between crystallographic and magrfaticics. The shape ellipse from image
analysis is shown for site 1 (colonnade) where Asighature is coherent with field flow
direction and sense and for site 2 (pseudo-colagnatiere an inversion betwe&h andKs

is observed relative to their plagioclase relatpsn site 1 (Fig. 11).
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For site 1, magnetic fabric, SPO and LPO of pldg®e show close relationships. The
“magnetic lineation(K,) is parallel to plagioclase-(100) “Best Axis” aatso parallel to the
lath of plagioclase alignment. The “magnetic fotiat (plane perpendicular ti3) is parallel

to plagioclase-(010) and corresponds to the floangl(Fig.11a). These relationships between
magnetic and the related flow crystallographic @nefd orientation of plagioclase are totally
coherent with the crystal habitus ‘in lath” of plagjase. The tight relationships between the
crystallographic (LPO and SPO) and magnetic falstosngly suggest that plagioclase laths
mainly control the spatial distribution of titanogmetite grains, carrier of the AMS. In
addition, EBSD analyses show that clinopyroxene plagjioclase LPO are coaxial and
therefore, both flow related. Plagioclase and giwoxene could constitute a silicate
framework that constrains the spatial distributafrtitanomagnetite grains. These results are
in accordance with the experimental studies of Haegs et al. (1991) and observations in

natural flow by Bascou et al. (2005).

For site 2, magnetic and crystallographic fabriesaso coaxial. However, contrary to site 1,
relationships between AMS and crystallographic adiéfer between the different levels,
except forK; that systematically coincide to the (010)-plagise “Best Axis” (Fig.10). In the
pseudo-colonnade (site 2), the relationship betwergstallographic and magnetic fabric
shows a permutation df; with K3 compared to those observed for site 1. The (100)-
plagioclase “Best Axis” tends to be parallelKg and to the long axis of the shape fabric
(SPO) and the (010)-plagioclase “Best Axis” temaldé¢ parallel td&; and the short axis of
the shape fabric (Fig. 11b).

7.3. Inverse AMSfabrics of La Palisse flow

Distinctive AMS fabrics from those measured foe it which are considered normal because
of their agreement with field observations and tretships with plagioclase (and
clinopyroxene) crystallographic fabrics, are obsdrin the different levels of site 2. For the
colonnade and the layered zone of site 2, a sysiemermutation olK; andK3; axes could
allow to define a flow sense conform to the fielddences. Such inversion betwepnand

Kz is defined as an inverse magnetic fabric. Suchiddias already been described in other
contexts and several explanations have been prdpmsetheir occurrence. For example,
Rochette et al. (1999), Potter and Stephenson j1&88&8Borradaile and Puumala (1989) have
proposed that inverse fabrics result from the preseof Single Domain titanomagnetite
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grains within the rocks. Crystallization of secondanagnetic oxides in residual magma or as
a result of hydrothermal alteration has also beerked to be at the origin of ferromagnetic
SD grain crystallization and therefore of inverabrics (Archanjo et al., 2002).

In the La Palisse basalt flow, the absence of 8ibgimain grains is highlighted by hysteresis
parameters and FORC diagrams, both indicating geland homogenous grain size of
ferromagnetic grains in the two sites and in alkle of the flow. Thus, the inverse magnetic
fabrics cannot be explained by the presence of Is®Bl magnetic grains. The great
homogeneity in size and shape of the titanomagngtiins also excludes crystallization of
secondary oxides during hydrothermal alteratiorcgsses. In addition, electron microprobe
and thermomagnetic curves indicate that Ti-ricAniimagnetite grains, which are the main
carrier of AMS, are relatively homogeneous in cosipon in the whole lava flow. The
magnetic mineralogy study of the La Palisse bas#ditas tends to exclude the presence of
SD ferromagnetic grains as the cause of the inveabeac. However, as underlined by
Chadima et al. (2009), several studies heh@wvn obvious inverse fabric in dikes whereas the
magnetic grain size study from hysteresis measureréid not reveal SD grains evidences
(e.g., Callot et al., 2001; DeFrates et al., 200fadima et al. (2009) proposed to measure the
anisotropy ofremanent magnetizatighRM) when the presence of SD grains is suppolsed
case of inverse AMS fabric, ARM shows a permutattdrAMS maximum and minimum
directions. In order to check the presence of tf8i3arains in the La Palisse samples, ARM
measurements were performed (Fig. 12). ARM fabrifs the studied samples are
characterized byK3 parallel to A (minimum axis of ARM) and therefore indicate no
permutation between ARM and AMS fabrics. Theseltesionfirm that inverse AMS fabric

is not a consequence of SD grain occurrence.

Petrological and chemical study of the La Palisasaliic lava flow (Boiron, 2011) don’t
show significant difference in composition betwsamples of sites 1 and 2. Thermomagnetic
data confirm that the samples are very fresh, entdtl by post-emplacement alteration
processes. Magnetic susceptibility is high buttieddy similar for both sites, in particular for
the colonnade (4.9 . F0SI <Ky, < 6.1 . 10 SI). This point is important because a higher
value of susceptibility to one of the sites coull dssociated with an increase of magnetic
interactions due to a higher clustering of ferromet grains, which could generate abnormal
magnetic fabric (Fanjat et al., 2012). Various nuoa and analogical modeling (Merle,
1998; Cafion-Tapia and Pinkerton 2000; Cafion-Tdpiaand Chavez-Alvarez, M., 2004)
show that the shear intensity could impact on magmabrics. When the shear is important,
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the foliation development promotes an orientatibthe minimum axiKs perpendicular to
the shear plane. On the contrary, in the case ake&reshear intensity, the magnetic fabric is
preferentially lineated and the maximum axist&nds to be perpendicular to the shear plane.
Elongation ration of the particles could also affée orientations. It is particularly difficult
to quantify in natural lava. However, images analysom digital photos on thin sections
does not show significant differences in grain ssfeminerals coming from similar areas
(e,g., the top of the colonnade). In addition, m=itthe crystallographic fabric strengthdJ)

of plagioclase, nor the magnetic anisotropy vali®sdo not show strong variations between
the both sites that suggests relatively comparafiieunt of shearing strain during the latest

stages of the lava flow evolution.

A synthesis of data characterizing the studieds 9fehe La Palisse lava flow is presented in
Figure 13. It clearly appears that the main diffiere between the both sites concerns the
paleosurface slope, very gently for site 1 and K{gf)f) slope for site 2. Canodn-Tapia et al.
(1995, 1996, 1997) indicate that the morphologw ddva flow is strongly controlled by the
rheology and the slope of the pre-existing terrdine maximum of susceptibility axes are
more scattered and sometimes even perpendicultdretdlow direction when the slope of
paleosurface is very weak whereas less scatterganma axes are observed with a stronger
slope. Numerical modeling of Merle (1998) showsttRawing over an inclined base
produces complex stretch and flattening plane dtajees in the vertical plane and thus,
generate significant gap between the stretchingcdon and the flow direction (and the
associated fabric development).

Finally, the viscosity of the lava during emplacemean also have a great influence on the
degree of anisotropy as shown by Hrouda et al.§R(@uch geological causes could explain

the colonnade and the layered zone inverse fabfiste 2.

8. Conclusions

In this AMS study, we show that the determinatiénhe flow direction and the sense can be
achieved through the use of the magnetic foliatmlrication, in particular at the base of the
flow. Contrary to others studies that base the AMfalysis on thé; directions (with or

without imbrication), the measurements on the LédsBa lava flow highlight the poor
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reliability of magnetic lineation. This can easihduce inversion betwee; andK; during

the flow.

EBSD data show clear correlations between plagsecland clinopyroxene LPO: (100)-
plagioclase tends to be parallel to (001)-clinopgree and (010)-plagioclase tends to be
parallel to (100)-clinopyroxene. In addition, LPQiemtations, and also shape preferred
orientations of plagioclase show tight relationsiph principal AMS directions. For site 1,
(010)-plagioclase is parallel to the magnetic todia (K1, K») and coincides to the flow plane,
and the pole of (100)-plagioclase is paralleKicand coincide the flow direction indicated by
the preferred alignment of plagioclase laths. Thedese relationships between
crystallographic and magnetic fabrics suggest d@robaf the silicate framework (plagioclase

and clinopyroxene) on AMS carried by the titanonetga grains.

For both sampling sites (sites 1 and 2), the flongation deduced from AMS is consistent
with field evidences. However, only AMS in site lloas determining the geological flow
sense. For site 2, the flow sense is systematicgdjyosed to the geological flow sense.
Relations between AMS and LPO are systematicaffgréint of those of site 1; for site 2, the
pole of (010)-plagioclase is always parallel Kg for the three levels, the pole of (100)-
plagioclase is parallel t§; for pseudo-colonnade, (001)-plagioclase tendstpdrallel to the
magnetic foliation K1, Ky) for colonnade whereas the layered zone do natatel other clear

relations.

Petrographic observation, thermomagnetic curvewelk as hysteresis parameters indicate
that magnetic minerals are mainly subhedral Ti-tittnomagnetite grains belonging to Multi
Domain and Pseudo-Single Domain. FORC diagramsudgcla grain size population
dominated by single domain grain in the samplegrdiore, the permutation betwelépand

K3 axes cannot be related to the presence of SDifaé is confirming by ARM data.

Magnetic susceptibility parameters (P’ afg) are relatively similar for the two sites, except
in the entablature of site 1 where the anisotrogyree (P’) is higher than in the other levels.
We also observe that the layered zone (site 2ptishe equivalent of the entablature (site 1),
although both are located in the middle part offtbe.. The crystallographic fabric strength

(Jngex Of plagioclase (and clinopyroxene) is also rgkdy similar in the two sites.

The main difference between site 1 and site 2 cosdbe paleosurface slope, very gently for

site 1 and high (50°) slope for site 2 as indicdigdhe layered zone inclination and the tilt of
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the columns. Inverse fabrics of site 2 may be ttiea to other factors than magnetic grain
size such as viscosity or the paleosurface slopagithe emplacement of the flow. However,
additional analyses are needed to determine pheeidech of these factors exerted the main

control on the permutation of AMS axes.

If AMS appears as an efficient tool to reveal theicture of basalt flows and to deduce the
flow direction, our study supports that inverse met@ fabrics can occur even in the absence
of Single Domain grains. Recently, Chadima et 2000) proposed to ug@eferably ARM
rather than AMS fabric to determine flow directiand tectonic interpretations of magnetic
fabric in dikes. However, this technique remairsslesual than the measurement of AMS,
which has become a common tool in rock magnetismava flows, AMS measurements
coupled withlocal analyses such as LPO obtained through EBSEntgue or SPO deduced
from image analysis could allow preventing misiptetations based on AMS fabrics alone.
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Figure Captions:

Figure 1: Location of the La Palisse basalt flow. (a) Lomatof the Bas-Vivarais volcanic region.
Black area refers to the volcanic provinces of Finench Massif Central, (b) Geological map of the
studied area. Black arrows indicate the flow dimttThe location of studied sites is also indidate
GPS data: Site 1: N 44°47.38’, E 4°05.33’, Sitdl214°46.88’, E 4°06.32".

Figure 2: Photo of the La Palisse village outcrop (sitesl2)wing the colonnade, the layered zone and
the pseudo-colonnade levels within the lava flow.

Figure 3: Reflected light photomicrograph of representathia section from the colonnade of the La
Palisse basalt flow (08tb14b sample; site 1). Thaeaspots are mainly constituted of titanomagaetit
grains (Ti-Mt). Pl = plagioclase, Px = pyroxene,=3dlivine.

Figure 4. Magnetic susceptibility (K/KQ) versus temperatiog representative samples from the
different levels of the La Palisse basalt for ditand 2. The thermomagnetic curves are commonly
reversible and the rapid change in susceptibititfidates a Curie temperature (Tc) of about 110°C
associated to the Ti-rich titanomagnetite grairserinomagnetic curves determination under argon
atmosphere at heating rate of 11°C Tin

Figure 5: a) Representative hysteresis curves (magneticanhm versus applied field, H) indicating
the presence of ferromagnetic (s.l.) grains. b)/Mssratio versus Hcr/Hc ratio diagrams of samples
from the different levels of site 1 (LP site 1) asitk 2 (LP site 2). Mrs: saturation remanence; Ms:
saturation magnetization; Hcr: remanent coercivedpHc: ordinary coercive force. The limits of the
pseudo-single domain of titanomagnetite (TM60) deéned from Dunlop (2002). Titanomagnetite
experimental data are reported from Day et al. [L9Fitanomagnetite grains belong to the pseudo-
single domain (PSD) are consistent with data, a¢gwrted, from natural Ti-rich titanomagnetites
(O’'Donovan et al., 1986; Hartstra et al., 1982)nitbers indicate the grain size in micrometers, C
(coarse grain) and F (fine grain) for experimedth.

Figure 6;: FORCs diagrams from site 1 colonnade (samplebl1@8and 08th18) and from site 2
layered zone (samples 08tb59 and 08tb68). Thesgraaies are characteristic of Pseudo-Single
Domain + Multi Domain grains mixing.

Figure 7: Diagrams representing the anisotropy parameteeBus the bulk magnetic susceptibility
(K for the different levels of site 1 (a) and sitéc?. Diagrams of P’ versus the shape parameter T
are shown in (b) and (d) for site 1 and site Zpeesvely.

Figure 8: Equal area projection in the lower hemisphere awhrpphical referential of the principal
magnetic susceptibilities axek;( K,, K3) measured in specimens from the different levéihe La
Palisse flow for sites 1 and 2. The flow directioferred from field observations is shown by the
black arrow and the flow direction determined fréfS study is shown by the white arrow. The
confidence ellipses are computed from Jelinek'stisstes (Jelinek, 1978). N = number of
measurements. For site 2, the layered flow plaradsis presented in full line for layered zone amd i
dashed line for colonnade and pseudo-colonnade.

Figure 9: Lattice Preferred Orientation (LPO) of plagioclasBnopyroxene and titanomagnetite of
samples from the different levels of the La Palfése: (a) from the colonnade and the entablatdre o
site 1, (b) from the colonnade and the layered zdrsite 2 and (c) from the pseudo-colonnade ef sit
2. Equal area, lower hemisphere projection in tpecsnen coordinates system with the field
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measured sample angles X (azimuth) and Z (dip)td@ws are in Multiples of Uniform Distribution
(MUD). DM is the maximum of density, (black squanepole figures); white triangle represents the
“Best Axis”; J is the texture index; N is the numlné measurements. (d) Representative habitus of
plagioclase, clinopyroxene and titanomagnetitelsiogystals.

Figure 10: Projection in the specimen referential (as Figo®maximum of density (DM-PI) and
"Best Axis" (eigenvector) of plagioclase LPO forgdes from the different flow levels. Maximum of
density of titanomagnetite [111]-axes and meanreigetorsK,, K, andK; are plotted.

Figure 11: (a) Projection of plagioclase LPO (maximum of sign (DM-PI) and "Best Axis") and
AMS fabrics in lower hemisphere and specimen refemeof 08tb14b sample from the colonnade site
1, compared to the Shape Preferred Orientation YSHOplagioclase deduced from 2-D image
analysis (rose of mean length intercepts); SR=8, 46 76°. (b) Projection of plagioclase LPO, AMS
and 3-D plagioclase SPO of 08tb70b sample fronpdeeido-colonnade site 2.

Figure 12: Principal directions of the AMS and ARM fabrics fesamples from colonnade, layered
zone and pseudo-colonnade, site 2 in the equal-doeeer-hemisphere projections in specimen
coordinate system. The black and white symbolsA\d48 and ARM principal directions, respectively.

Figure 13: Summarize of site 1 and 2 characteristics (paléase slope, columns shape, AMS
direction, magnetic properties, lattice preferre@mation of plagioclase and the relationship lestw
magnetic and crystallographic fabric). For plagisel SPO, S.A. indicates the Short Axis and L.A. is
the Long Axis.
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Site 2, layered zone (sample 08tb100b, X,= 332°, Z,= 8°)
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783  Figure 9c
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[a] Colonnade site 1, 08tb14b
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794  Figure 13
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