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Abstract 

 

The purpose of this paper is to experimentally validate a 1D probabilistic model of damage 

evolution in unidirectional SiC/SiC composites. The key point of this approach lies in the 

identification and validation at both local and macroscopic scales. Thus, in addition to 

macroscopic tensile tests, the evolution of microscopic damage mechanisms - in the form of 

matrix cracks and fiber breaks - is experimentally analyzed and quantified through in-situ 

scanning electron microscope and computed tomography tensile tests. A complete model, 

including both matrix cracking and fiber breaking, is proposed on the basis of existing 

modeling tools separately addressing these mechanisms. It is based on matrix and fiber failure 

probability laws and a stress redistribution assumption in the vicinity of matrix cracks or fiber 

breaks. The identification of interfacial parameters is conducted to fit the experimental 

characterization, and shows that conventional assumptions of 1D probabilistic models can 

adequately describe matrix cracking at both macro- and microscopic scales. However, it is 

necessary to enrich them to get a proper prediction of ultimate failure and fiber break density 

for Hi-Nicalon type S fiber-reinforced SiC/SiC minicomposites. 

 

Keywords : A. Fracture mechanisms ; B. Ceramic material ; B. Fiber-reinforced composite 

material ; C. In-situ mechanical testing ; C. Numerical algorithms 
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Nomenclature 

 

       Young moduli of fibers and matrix 

       cross-sectional area of fibers and matrix 

   fiber volume fraction 

   number of fibers 

   total length 

    fiber radius 

 ̅  average axial stress 

   overall load 

       axial stresses in fibers and matrix 

  
   axial stress in intact fibers 

    number of intact fibers 

       strains in fibers and matrix 

  ̅ macroscopic strain 

  
 
   

   Weibull scale parameters of fibers and matrix 

       Weibull moduli of fibers and matrix 

  
 
   

   strengths of segment unit of fibers and matrix 

    Reference volume (1mm
3
) 

  
    

   axial stresses in fibers and matrix in the undamaged composite 

   interfacial shear stress 

    interfacial shear stress related to fiber breaking 

   fiber stress jump at the debond tip 

       damaged lengths in fibers and matrix 

    interfacial energy release rate 

      macroscopic debond stress 

     axial thermal stresses 

   matrix crack opening 

    mean fiber pull-out length 
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1. Introduction  

 

Because of their favorable mechanical properties at high temperatures and under irradiation, 

SiC/SiC composites are prospective candidates for functional uses in future nuclear reactors. 

The composites under investigation are made from the new near-stoechiometric SiC fibers, 

because of their favorable mechanical properties at high temperatures and after irradiation, 

using the Chemical Vapor Infiltration (CVI) process. 

In addition to a complex and multi-scale microstructure, such materials exhibit a nonlinear 

behavior due to the accumulated damages occurring between and inside the woven tows, such 

as through matrix cracking, fiber/matrix debonding as well as fiber breaking. Thus, a multi-

scale approach is under development to build a predictive model of their complex and 

damageable mechanical behavior taking into account their heterogeneous microstructure 

[Gélébart et al. (2010)]. In this context, this paper focuses on the study of damage process at 

the scale of the tow under a uniaxial tensile loading. Due to their simple geometry, so-called 

minicomposites, i.e. unidirectional composites containing a single bundle of fibers, are well 

suited to study damage mechanisms. They are also frequently used to optimize the 

fiber/matrix interphase which dictates the matrix crack deflection along the fibers and 

consequently the nonlinear behavior of the composite (e.g. [Morscher (1997), Bertrand et al. 

(2001)]).  

 

In this multi-scale framework, one goal of the modeling efforts is to get a better understanding 

of interactions between the various microscopic damage mechanisms as well as their impact 

on the macroscopic behavior of the minicomposite. Thus, micromechanical approaches are 

appropriate to provide information about both the macroscopic response and the damage state 

of the minicomposite from basic characteristics of the constituents and their interfaces. In the 

case of Ceramic Matrix Composites (CMC), unidirectional probabilistic approaches have 

been mainly developed. 

 

Damage modeling in CMC requires describing fiber sliding along the damaged fiber/matrix 

interface resulting from a crack deviation. This issue was addressed in many cases using 

shear-lag analysis, based on analytical description of stress profiles. Interface behavior in 

CMC is generally characterized through two parameters [Evans and Zok (1994)]: the interface 

fracture is supposed to involve a debond energy    [He and Hutchinson (1989), Hutchinson 

and Jensen (1990)] and the sliding along the damaged interface is controlled through an 

interfacial shear stress   that can be described at various degrees of approximation. For 

instance, some extended modeling, as proposed by [Shetty (1988)] and [Weihs and Nix 

(1991)], take into account effects of the fiber radial expansion using Coulomb friction laws. 

Though, the simplest model that assumes a constant shear stress τ is widely used to describe 

sliding along the debonded interface in CMC and in particular in SiC/SiC composites [Lissart 

and Lamon (1997), Curtin et al. (1998), Sauder et al. (2010), Castelier et al. (2010)]. 

Moreover, most 1D probabilistic models usually neglect the interfacial debond energy [Curtin 

(1993b), Guillaumat and Lamon (1996), Ahn and Curtin (1997), Morscher and Martinez-

Fernandez (1999)].  

 

Given damage chronology in CMC, involving most of matrix cracking at low stresses and 

fiber breaking at high stresses, most existing models separately consider these two 

fundamental damage regimes. Multiple cracking process is usually described by successive 

matrix breaks producing matrix fragments (delimited by two successive cracks) that become 

smaller and smaller as the matrix stress is rising. As usual in brittle material fracture, matrix 

breaks are based on a spatial distribution of flaws following a Weibull model [Weibull 
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(1951)]. Cracks population is also directly related to the damaged interface behavior through 

debond lengths. As recently analyzed by [Castelier et al. (2010)], models proposed in 

literature can be categorized within three approaches : continuous approaches (e.g. [Hui et al. 

(1995)]) which provide analytical results on infinitely long composites; and numerical random 

approaches that considers a fully discretized composite (e.g. [Baxevanakis et al. (1995)]), or a 

population of matrix fragments that become shorter and shorter (e.g. [Lissart and Lamon 

(1997)]). [Castelier et al. (2010)] showed that the three families of models tend to provide 

identical results as the composite become very long. All these modeling principles have been 

defined for the case of a microcomposite (containing a single fiber) and they are directly 

extended to minicomposites, neglecting the propagation of the matrix crack through the 

section of the minicomposite (despite experimentally observed [Chateau et al. (2011)]). 

 

 

However, fiber breaking modeling is an issue specific to minicomposites because they contain 

a lot of fibers. So these breaks have consequences on the ultimate failure but also on the 

composite behavior. Similarly to matrix cracks, fiber breaks are driven by a distribution of 

flaws provided by Weibull’s model [Curtin (1991a), Neumeister (1993), Hui et al. (1995)]. 

Two main theories have been developed to model the mechanism of the stress redistribution 

from the broken fiber to others. First, some 1D models [Lissart and Lamon (1997), Lamon 

(2001)] used the classical fiber bundle assumptions (developed by [Daniels (1945)]) 

according to which once broken, a fiber does not participate anymore to the load transfer 

throughout the whole composite, and as a consequence breaks only once. 

However, a fiber break characterization in SiC/SiC minicomposites (detailed in [Chateau 

et al. (2011)]) recently showed that a fiber can break several times. So observations are rather 

in line with other family of approaches taking into account a sliding length around a break 

necessary for the fiber to recover back its previously carried stress. Like multiple cracking 

process, those assumptions have been used both in random numerical models [Curtin (1993a), 

Baxevanakis et al. (1995), Ibnabdeljalil and Phoenix (1995), DiBenedetto and Gurvich 

(1997), Phoenix et al. (1997)] and analytical models [Curtin (1991b), Phoenix and Raj (1992), 

Phoenix (1993), Hild et al. (1994), Curtin et al. (1998)]. In such approaches, the main goal is, 

in general, to evaluate tensile strength of the composite, without describing the complete 

stress-strain response. So, simplifying assumptions are used, such as neglecting matrix stress, 

as cracking is supposed to be at saturation, and fiber stress oscillations due to the matrix 

cracks load sharing. Finally, [Curtin et al. (1998)] developed an analytical model to deal with 

interactions between matrix cracking and fiber breaking. While it gives access to a complete 

macroscopic behavior, this model does not provide data on distribution of damage 

mechanisms at local scale. 

 

Therefore, to our knowledge, a complete model that provides both macroscopic behavior and 

statistical characterization of damage mechanisms at local scale, including both multiple 

cracking and fiber breaking, is not available. Here is developed such a 1D probabilistic 

modeling based on most classical assumptions detailed above. To do so, an improvement 

consists in establishing load transfer assumptions if matrix cracks and fiber breaks coexist. 

This stochastic numerical model is successfully compared to the analytical model proposed by 

[Curtin et al. (1998)] (section 4.3). However, the numerical model provides a more complete 

description of damage to be compared to experimental results. In addition, it is more flexible 

and allows an easy testing of some hypothesis modifications in order to improve the 

comparison at both macroscopic and local scales. 

 

Furthermore, most probabilistic models are mainly validated on the macroscopic response and 
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on average crack spacing at saturation, because of the lack of experimental characterization of 

damage phenomena. In fact, even if the qualitative damage evolution is accepted, 

observations reported in literature were limited to the sample surface and are mostly collected 

after the ultimate failure [Morscher (1997), Lissart and Lamon (1997), Bertrand et al. (1999), 

Martinez-Fernandez and Morscher (2000)]. Nevertheless, because it provides a microscopic 

description of damage (such as matrix cracks and fiber breaks spatial distributions or matrix 

crack opening), a characterization of damage mechanisms within the tow is essential to build 

and fully validate such a model, even at local scale. This is why two specific in-situ tensile 

tests, on Hi-Nicalon type S fiber-reinforced minicomposites, have been developed and used in 

this study, in addition to classical tensile tests on a macroscopic device. Scanning electron 

microscope (SEM) observations have been performed at several load levels in order to link 

cracking characteristics - such as initiation, opening and spacing of matrix cracks - to the 

macroscopic behavior. This test leads to statistical data about the cracking on a representative 

tow segment as a function of the applied load but it is not sufficient to fully characterize 

damage, in particular fiber breaking and matrix crack propagation. So it was complemented 

by an X-ray computed microtomography investigation to observe the propagation of matrix 

cracks [Chateau et al. (2011)]. In addition, radiographs observation provides statistical data on 

fiber breaking. 

 

Thereby, this paper describes the whole approach from the experimental data collection 

(section 2) to the multi-scale identification and validation of the modeling (section 4), through 

the main features of the new complete model (section 3). 

 

2. Experimental characterization 

2.1. Minicomposites 

 

All tested minicomposites came from the same batch. They were made out of a fibrous yarn 

composed of 500 Hi-Nicalon type S fibers [Sauder et al. (2010)], with an average diameter of 

13 μm. The 100 nm pyrocarbon interphase and the SiC matrix were successively deposited on 

the fibers using the CVI process. Sections and fiber fraction were estimated for each tested 

minicomposite from polished cross-section SEM micrographs and are reported in Table 1. 

Because the effective section may vary from a specimen to another and even along one 

minicomposite (about 10% fluctuations), the macroscopic behavior of minicomposites will be 

characterized from force-strain measurements. Stress will be estimated from the mean section 

as an indication. There is also a residual porosity due to the CVI process within the 

minicomposite. Its mean volume fraction is estimated at 0.12. However, as shown by 3D 

images [Chateau et al. (2011)], the shape of porosity does not evolve that much along the 

fiber direction. So it does not significantly affect local strain in the composite under axial 

loading. Therefore porosity will not be taken into consideration in this study.  

 

 

 

 

 

 

 

 

 

Table 1 : Microstructural and mechanical properties of studied SiC/SiC minicomposites 

 Mean Standard deviation 
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Section
a
 (mm²) 0.097 0.007 

Fiber volume fraction
a
 0.66 0.06 

Young modulus
b
 (GPa) 350 34 

Strain to failure
b
 (%) 0.7 0.07 

Failure force
b
 (N) 115 6 

Crack spacing
c
 (µm) 315 70 

Mean fiber pull-out
d
 (µm) 560 100 

a
 Without porosity. 

b 
Estimated from four macroscopic tensile tests. 

c
 At saturation, estimated 

from four macroscopic, four SEM and one tomography tensile tests. 
d
 Estimated from 

macroscopic and tomography tensile tests. 

 

 

2.2. Macroscopic tensile test 

 

2.2.1. Procedure 

 

Minicomposites have an elastic damageable behavior. The macroscopic response of the 

studied batch was characterized from uniaxial tensile tests, similar to tests detailed by [Sauder 

et al. (2010)]. Four tests were performed at room temperature under a constant displacement 

rate (0.03 mm/min). The load was measured using a 500 N load cell. Minicomposites global 

strain was calculated from grip displacement taking into account the system compliance. Both 

minicomposites ends were glued into metallic tubes – themselves gripped into the testing 

machine – so as to have a 25 mm gauge length. 

 

2.2.2. Main results 

 

As observed on the force-strain curve given in Figure 1 obtained with one of the tested 

samples, the macroscopic behavior of minicomposites follows typical successive steps, which 

are consistent with former macroscopic observations [Bertrand et al. (1999), Sauder et al. 

(2010)]. They are usually associated with damage mechanisms. The first step is an elastic 

domain of the minicomposite behavior: no cracking occurs. A second nonlinear step is 

associated with the matrix cracking. Because of the debonding at the matrix/fiber interface, it 

is generally assumed that matrix cracks do not propagate to fibers. Once saturation of crack 

number density is reached (for a total strain of about 0.3%), a second linear domain associated 

with the additional elastic deformation of fibers is observed. The final step is characterized by 

a slight nonlinearity usually associated with fiber breaking just before the ultimate failure. 

Main mechanical characteristics measured on the studied batch are reported in Table 1. 
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Figure 1 : Macroscopic tensile behavior obtained with the macroscopic device and the SEM 

in-situ device (load levels at which the tensile tests were interrupted for the SEM observations 

are reported) 

 

Because most matrix cracks are closed after failure, a chemical attack using Murakami’s 

reagent was necessary to detect and locate them. Thus, matrix fragment lengths at saturation 

have been characterized (Table 1). 

 

 

2.3. In-situ SEM tensile test 

 

2.3.1. Procedure 

 

In-situ tensile tests were carried out on minicomposites using a specific tensile testing 

machine available at the Solid Mechanics Laboratory (Ecole Polytechnique, France) and 

designed to load samples inside a Field Emission Gun Scanning Electron Microscope (FEG-

SEM). Both sides of the sample were glued into aluminum tabs. Unlike macroscopic tests, the 

sample is loaded horizontally. So, the specimen was loaded through pins mounted in the grip 

regions and a guidance piece was added to the device in order to ensure a good alignment and 

make the mounting easier (Figure 2a). Specimens had a 25 mm gauge length and applied load 

was measured using a 100 N load cell. 

 

The tensile test was interrupted at various loads until the ultimate failure. As shown in Figure 

3a, cracks appear straight in the transverse direction and are easy to locate as the 

minicomposite is under tension. Thus, at each step, the location of each new crack was 

reported alongside the observed length. The study was focused on the central part, 16 mm in 

length, of the sample (Figure 2b), which allowed the observation of a significant number of 

matrix cracks. Matrix cracks opening was measured from high magnification FEG-SEM 

images using an automatic procedure. It is based on the detection of the crack width for each 

row of pixels of the image by thresholding the grey levels (see Figure 3b). The threshold is 

adjusted for each row of the image. The crack opening is defined as the average of the twenty 

highest measured widths. The only relevant errors using this procedure were a few 

overestimates of the opening in case of dark artifacts in the picture. These overestimates were 

so large that they could be easily identified and were manually corrected. 
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Figure 2 : (a) Picture of a sample in the SEM device (b) SEM image of the loaded 

minicomposite with the reference tube. 

 

 

 
Figure 3 : (a) SEM micrograph of a cracked minicomposite under tension (75 N) (b) high 

magnification FEG-SEM image used to measure crack opening. 

 

Global strain of the sample was estimated using SEM observations by measuring distance 

from minicomposite surface details to the ends of a rigid reference tube, at each side of the 

gauge length (Figure 3b). Note that, because of very small values of strain, measurements are 

very sensitive to displacement of the sample that self-aligned at lower loads. So strain 

measurements are only used indicatively to validate these in-situ tests at the macroscopic 

level. 

 

2.3.2. Main results 
 

In-situ tensile tests were conducted on four minicomposites. While macroscopic behaviors, 

reported in Figure 1, are in good agreement with the response obtained using the macroscopic 

device, they revealed slight premature failures (from 70 N to 100 N). This phenomenon has 

not been fully explained yet. It was already observed by [Michaux (2003)] during similar tests 

on C/SiC minicomposites and attributed to fibers fatigue during observation steps. 

Nevertheless, these tests are representative of the major part of SiC/SiC minicomposites 

behavior, especially the matrix cracking we are interested in.  

 

Thus, as illustrated in Figure 4, matrix cracking could have been characterized both in terms 

of its chronology and its spatial distribution. In fact, even if most cracks appear during the 

non-linear part of the macroscopic response (between 40 N and 75 N), a few of them are 

observed at lower or higher loads. Note also that, mainly at the cracking first stages, cracks 

appear in groups located in various healthy parts of the minicomposite. Beyond these 

qualitative observations, statistical data such as distribution of matrix fragment length at 

saturation could directly be measured. 
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Figure 4 : Matrix cracking chronology and spatial distribution (test #4). Each line stands for 

a crack associated to the load level at which it was observed for the first time (markers differ 

regarding load levels). 

 

Finally, cracks opening evolution has been quantified using the automatic procedure detailed 

above. Openings of cracks distributed into three regions about 2 mm in length each, for the 

first three tests, were measured. The evolution of all cracks has been observed during test #4. 

Global evolutions of opening, with respect to the applied load, were consistent between all 

tests. In particular, openings ranged from about 0.1 µm to a few micrometers. These results 

are presented with more details in section 4 together with the comparison to modeling results.    

 

2.4. In-situ microtomography 

 

Because SEM tensile tests are not sufficient to fully characterize damage evolution – in 

particular matrix crack propagation through the minicomposite section and fiber breaking 

cannot be characterized from surface observation – they were complemented by an X-ray 

microtomography investigation performed on a minicomposite submitted to a tensile load. 

The experiment was conducted at the ESRF (European Synchrotron Radiation Facility, 

Grenoble, France). In order to observe both cracks and the microstructure of the tow, the 

highest resolution available on the ID19 beamline (voxel size of 0.28 μm, identical in all three 

directions) was used. All procedures and experimental results are detailed in [Chateau et al. 

(2011)]. A description of the tomography technique applied to the mechanics of materials 

may also be found in [Buffière et al. (2010)] for instance. 

 

The main results that are relevant to the building and validation of the damage model are 

summarized here. 3D images of a minicomposite under several tensile loads were used to 

study the matrix crack kinetic through the section and showed a slow discontinuous 

propagation. These results are not reported here and can be found in [Chateau et al. (2011)]. 

In addition, observations using simple absorption radiography lead to statistically 

representative data on fiber breaking both in terms of break density and axial location. Indeed, 

it is an efficient way to locate fiber breaks along the entire sample (about 12 mm), thanks to a 

much faster acquisition time than tomography. Moreover, the resolution was sufficient to 

estimate fiber break openings.  

 

Such observations were performed on a minicomposite under a 92 N tensile load (i.e. 950 

MPa, about 80 % of the stress to failure) and another one after failure. They revealed that 

fibers homogeneously fail at first (see local break density in Figure 5) at loads pretty lower 

than the ultimate failure one, and are typically located in the vicinity of matrix cracks. As also 

shown in Figure 5, the fiber break density observed at 92 N - around 5 fiber failures per mm -

barely evolves until the macroscopic failure, except in a restricted zone (a few millimeters in 

length) surrounding the failure location where the break number density is much greater. 

Fiber openings are also much larger in this area [Chateau et al. (2011)]. Additionally, note 
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that the first fiber breaks observed with 3D tomography appeared at 80 N, which matches the 

final stage of matrix crack propagation inside the minicomposite. 

 

Finally, radiograph observation of the entire sample at 92 N provides additional data to 

estimate the mean distribution of matrix fragment length at saturation, together with the 

distribution of fiber break openings, which range from 1 µm to 8 µm approximately. 

 

 

 
Figure 5 : Fiber break local density as a function of the location along the minicomposite. 

For sample #2, the location is given from the ultimate failure zone. The local density was 

computed over a 1 mm moving window. 

 

3. Unidirectional damage modeling 

 

This section describes the main features of the model proposed to predict the evolution of 

damage within a minicomposite, i.e. at local scale, and its effect at the macroscopic scale. A 

1D probabilistic approach is derived from existing modeling tools that are extended to 

describe both matrix cracking and fiber breaking in a single model. It is based on a random 

strength approach (following [Castelier et al. (2010)]) using a uniaxial discretization of the 

composite. Albeit numerically involved, this method seems to be appropriate to minimize 

approximations. 

 

3.1. Framework 

 

The model considers (N+1) 1D phases in parallel representing N identical fibers and the 

matrix. Each phase of length L is divided into a large number of short segments of length ΔX. 

Cross-sectional areas (   for the matrix and    for the fibers, i.e.        
 , where    is 

the fiber radius) and Young moduli (   and   ) are supposed to be invariant along the 

minicomposite axis. 

 

The model describes the local state of the minicomposite under an overall load  , 

corresponding to the overall stress   ̅    (     ). The local state is described by stress 

profiles in the matrix    and in each fiber   
 
 (where   stands for the fiber indice). They are 

calculated in each segment using specific hypothesis if it is located in the vicinity of a matrix 

crack or of a fiber break. A matrix crack (resp. a fiber break) is represented by a matrix 

segment (resp. fiber segment) that is assumed to be broken. As illustrated in Figure 6, 
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damaged lengths are defined in the vicinity of each broken segment to indicate areas where 

the interface is sliding because of the matrix crack (or the fiber break). The set of damaged 

lengths in the matrix (resp. in a fiber   ) is denoted    (resp.   
  ). Matrix segments (resp. 

fiber segments) located in damaged lengths are called damaged matrix (resp. damaged fiber). 

Elsewhere, matrix and fibers are called intact matrix and intact fibers. 

In the following,       stands for the number of intact fiber and       stands for the set of 

damaged fibers at the location  . Because all fibers have the same radius, the stress is 

identical in all intact fibers and is denoted   
 . 

 

 
Figure 6 : Diagram of damaged lengths (hatched areas) in the matrix (in white) or in a fiber 

(in grey), around a matrix crack or a fiber break. 

 

Thus, we describe in this section 3 how stress profiles are determined along the whole length 

L. In damaged lengths, the model uses the characteristics of the sliding interface and the 

global static equilibrium. Elsewhere, the perfect interface coupling lead to the strain 

continuity       (where    and    stands for the local strain in the matrix and fibers). So 

stress can be fully determined using the static equilibrium. 

 

Note that both coefficients of thermal expansion of the third generation Hi-Nicalon S fibers 

and of the CVI SiC matrix are very close. Therefore, residual stresses induced by the thermal 

expansion difference are really low especially compared to stress levels that may be reached 

in the minicomposite. Indeed, the thermal residual stress parameter     defined below [Curtin 

et al. (1998)] has been estimated at less than 10 MPa. 

 

 

              (1) 

  is the fiber volume fraction and      ∫          
 

  
 stands for the mismatch strain  

between matrix and fibers due to temperature decrease from the stress-free temperature    

(≈1000°C) to the operating temperature   (≈20°C). The evolution with temperature of the 

coefficients of thermal expansion    and    have been taken from [Sauder et al. (2010)]. As 

section 4.3 will show, the effect of such thermal stresses on the macroscopic behavior is very 

slight, so it will be neglected in the presented model.  

 

3.2. Strength distributions 

 

A strength   
  is randomly assigned to each segment of volume      (where subscript i refers 

to a single fiber or to the matrix) following the usual Weibull distribution given by 
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 (  
 )        [ 

    

  
(
  

 

  
 
)

  

] (2) 

where    is the Weibull modulus,   
  is the scale factor and    the reference volume taken to 

be 1mm
3
 all along this paper. 

 

The statistical nature of this approach is based on this initial assignment of random strength. 

The further evolution of the model is strictly deterministic. In fact, a matrix crack (resp. fiber 

break) appears in a matrix segment (resp. fiber segment) once its stress reaches its initially 

defined strength.  

 

3.3. Stress distribution 

 

Stress profiles in matrix and fibers are related to the global load applied to the composite and 

to its damage state. 

 

3.3.1. Stress profiles in damaged lengths 

 

At each matrix crack (resp. fiber break) location, the matrix stress (resp. the stress of the 

broken fiber   ) drops to zero. Following the assumption of a constant interfacial shear stress 

  for the damaged interface, the matrix stress    (resp. the fiber stress   
  ) linearly rises 

either side of the break to recover its previously carried stress far away from the break. The 

slopes of the stress profiles along with the sliding interface are defined from the static 

equilibrium of an infinitesimal slice    that leads to the following differential equations 

[Hutchinson and Jensen (1990)] : 

 

 

{
 
 

 
 |

   

  
      |  

   

       
           around a matrix crack at   

 |
   

  

  
      |  

  

  
     

         around a fiber break at                      

 (3) 

 

The damaged length is defined as the length necessary to recover the so-called intact matrix 

(resp. fiber) stress (i.e. where the interface is undamaged). As commonly recognized by 

several authors [Curtin (1991a), Hui et al. (1996), Castelier et al. (2010)], the matrix (resp. 

broken fiber) stress profile cannot increase anymore along the damaged length, so no new 

crack can appear in this zone. 

If two matrix cracks are close, damaged length may overlap. Then the matrix stress is defined 

as the minimum stress of independent profiles, i.e. stress profiles that would be established if 

both cracks were supposed to be isolated (see Figure 7). Stress profiles of broken fibers are 

determined the same way if two breaks overlap. 

 

As established by [Hutchinson and Jensen (1990)], in the case of matrix cracks only, a jump   

in the fiber stress at the debond tip is defined to account for the interface mode II fracture 

energy    (see Figure 7), according to 

 

  
   

 

 

    
(
    
  

)

 
 

 (4) 

Coefficients    and    are combinations of elastic constants given by [Hutchinson and Jensen 
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(1990)]. The corresponding jump    in the matrix stress profile is given in equation (5) from 

the global equilibrium. 

 

   
  

   
 (5) 

Thus the damaged length does not progress before the overall stress reaches the stress level 

     defined below [Hutchinson and Jensen (1990)], i.e. a crack does not have any 

consequence on stress profiles (and the macroscopic response) before the overall stress 

reaches     . 

 

     
    
   

 (6) 

 

 
Figure 7 : Example of stress profiles around three matrix cracks, taking into account the 

interface fracture energy through the stress jump   (defined by [Hutchinson and Jensen 

(1990)] 

 

Finally, note that here the interphase is supposed to be globally fractured while deviating 

matrix cracks. Thus, fiber breaks are supposed not to involve interface fracture energy. If the 

damage chronology was reversed, i.e. if fibers had broken before the matrix cracked, a jump 

in broken fiber profiles should have been used.  

 

3.3.2. Load transfer 

 

When moving away from a crack, the decrease in the matrix stress is fully transferred to all 

intact fibers. Likewise, the decrease in the fiber stress around a break is fully transferred to all 

other intact fibers, as well as on the intact matrix. 

 

Note that this work is focused on the framework of the Global Load Sharing (GLS) according 

to which the stress is equally redistributed over all intact fibers in the cross section of the 

minicomposite. In fact, even though other models could be used because fibers are connected 

together through the matrix, GLS has proved to be good enough in CMC [Evans and Zok 

(1994), Lissart and Lamon (1997)], in particular for low interfacial shear stress [Curtin 

(1993c)]. 

 

Once damaged lengths have been defined along the matrix and along each broken fiber, stress 
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profiles in the matrix and for each of the   fibers are calculated at all locations   by solving 

the static equilibrium of the considered cross section: 

 

 ̅  
 

 
[       

     ∑   
 
   

       

]                  (7) 

with 

(a) if     
 
,   

 
    is given by equation (3) 

(b) if     ,       is given by equation (3) 

(c) if     ,       and   
     are linked by the compatibility equation: 

 

     
  

    

  
 

     

  
 (8) 

 

In other words, the model is based on stress profiles (defined by equation (3)) in the vicinity 

of a matrix crack or fiber break. Other profiles are deduced from equation (7) whose unknown 

stresses are different whether the matrix is damaged, or the matrix is intact implying the use 

of equation (8). However, boundaries of damaged length directly depend on stress profiles in 

intact matrix and fibers, which also depend on the load transfer around a matrix crack or a 

fiber break. Consequently, a specific framework has been established to define damaged 

lengths when matrix cracks coexist with fiber breaks. This technical aspect is detailed in 

Appendix A.  

 

3.4. Inputs-outputs 

 

The unidirectional model has been implemented to describe the evolution of damage during a 

loading history split into constant load increment   . In addition to material parameters (such 

as sections, Young modulus, interfacial parameters), random strengths are initially assigned to 

all matrix and fibers segments as described above in section 3.2. Stress profiles are 

determined at each load increment following strength distribution assumption presented 

above, leading to the detection and location of new matrix cracks and/or fiber breaks. A 

description of the algorithm is given in Appendix B, together with details about its accuracy.  

 

As a post-treatment, at each load iteration, the global strain of the composite    ̅ is calculated 

as the mean strain of intact fibers: 

 
 ̅  

 

 
∑

  
    

  
 

       (9) 

At the local scale, matrix crack openings    (where   stands for the crack index) are computed 

by deducting the matrix strain from the intact fiber strain along their damaged length   
  : 

 

     ∑ (
  

    

  
  

     

  
)

    
 

   (10) 

The mean pull-out length    on the fracture surface is also estimated by calculating the mean 

distance between the fatal matrix crack and the nearest fiber breaks. 
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4.  Experimental identification and validation of the model 

 

This section presents the identification of interfacial parameters and the model validation by 

comparing numerical results to experimental data at both local and global scales. Given that 

these observations showed that most of matrix cracks appear before the fibers fail, the 

identification method will be divided in two steps. Parameters relative to the matrix cracking 

will be defined before studying fiber breaking. Moreover, model results will be compared to 

those from the analytic model proposed by [Curtin et al. (1998)], validating its 

implementation. 

 

4.1.Input parameters 

 

Chosen geometrical parameters are the average measurements presented in section 2.1 and 

reported in Table 2. The fiber radius is supposed to be constant and is defined from the total 

fiber section and the number of fibers with    √       . 

 

Fiber properties, as the Young modulus, are derived from several tensile tests on a single fiber 

[Sauder and Lamon (2007), Colin and Gélébart (2008)]. Weibull parameters (Table 2) have 

been identified from fracture data of about fifty tensile tests. Failure probabilities have been 

evaluated using the classical estimator        
     

  
, where    stands for the samples 

number and   is the rank of the i-th strength, sorted in ascending order. Matrix Young 

modulus has been evaluated from tensile test on microcomposites [Michaux et al. (2007), 

Colin and Gélébart (2008)]. Concerning matrix failure probabilities, experimental results 

obtained by [Michaux et al. (2007)] on matrix-dominated microcomposites which exhibit a 

brittle behavior (a single carbon fiber with a thick SiC matrix deposited by CVI) are used.  

 

Table 2 : Fixed input parameters for the SiC/SiC minicomposite  

Parameter Matrix Fibers 

Volume fraction     0.34   0.66 

Section (mm²)    0.033    0.064 

Number - -   500 

Young modulus (GPa)    404    354 

Weibull modulus    4.6    6.3 

Scale factor
a
 (MPa)   

  278   
 
 1217 

               a
   =1 mm

3
 

 

Different approaches are proposed in the literature to evaluate interfacial parameters   and   . 
They are based on the interpretation of cyclic tensile tests performed on minicomposites 

[Lamon et al. (1995), Sauder et al. (2010)] or on indentation procedures [Marshall (1984), 

Chandra and Ghonem (2001)]. However, few results are available for the studied SiC/SiC 

composites and uncertainty is too high to consider such data as known input parameters. For 

information purposes, the interfacial shear stress magnitude was estimated this way at 10 MPa 

by [Sauder et al. (2010)] for similar minicomposites. Moreover, because these composites 

may be classified as Small Debond Energy composites [Evans and Zok (1994)], the interfacial 

debond energy is usually neglected in unidirectional modeling. Consequently, interfacial 

parameters are here identified to fit experimental data. 
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4.2.Interfacial parameters related to matrix cracking 

 

The identification approach of interfacial parameters   and   is developed into two steps. 

Initial ranges are determined for both parameters from openings of isolated cracks, i.e. 

without overlapping damaged lengths of neighboring cracks. Then a set of parameters, 

included in these ranges, is proposed to fit experimental macroscopic response, as well as 

distribution of matrix fragment lengths and crack openings. 

 

4.2.1. Identification based on opening measurements of isolated cracks 

 

The model of interface debonding with constant friction established by [Hutchinson and 

Jensen (1990)] gives the pullout displacement   of a fiber embedded in a brittle matrix. It has 

been expressed by [Marshall (1992)] as a function of interfacial parameters   and   and the 

overall stress  ̅ applied on the fiber end: 
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 ̅
  ̅                                            

 (11) 

where    and    are non-dimensional constants given in [Hutchinson and Jensen (1990)] as 

combinations of elastic coefficients (using type II boundary conditions having zero shear 

traction with constrained normal displacement), and   ̅             . 

 

This displacement corresponds to the half-opening of an isolated crack in the minicomposite 

under an overall stress  ̅. Thus, this crack opening   is linked to the applied load   by a 

polynomial of degree 2, whose coefficients depend on   and  : 
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 (12) 

 

SEM observations showed a few cracks that are relatively far from their neighboring cracks 

(between 370 and 650 µm) compared to the mean crack spacing at saturation (315 µm). These 

cracks, which exhibit the widest openings, are considered to behave like isolated cracks. 

Polynomial regressions of the openings of nine of such cracks (among which five are reported 

in Figure 8) give an estimate of consistent set of parameters, where   ranges between 2 and 3 

MPa and   ranges between 150 and 300 MPa.  
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Figure 8 : Polynomial regressions on openings of almost isolated cracks (for the sake of 

clarity, four crack openings, which nearly superimpose the five reported cracks, are not 

presented) 

  

4.2.2. Multi-scale validation 

 

Numerical simulations were run with several pairs of interfacial parameters ( , ) and stopped 

once the cracking saturation was reached. The fiber strengths were arbitrary raised to avoid 

fiber breaks. The stabilized mean result of 10 simulations, with  =25 mm,   =5 µm and 

  =1 N, was compared to experimental data. 

 

To simplify the identification process, the   parameter was fixed to 250 MPa, in agreement 

with the identification from isolated crack openings (see section 4.2.1) and with the 

macroscopic limit of linearity experimentally observed around 450 MPa (see equation (6)). 

Thus, the best fit between numerical and experimental results was obtained with  =2.5 MPa. 

Indeed, as presented in Figure 9 to Figure 11a, the model predicts the curvature of the 

macroscopic response as well as the matrix fragment lengths distribution at saturation and 

crack openings. The cracking chronology is also in consistency with SEM observations: it 

mainly occurs between 40 and 75 N, with the appearance of a few cracks from 20 N to 100 N. 

However, the model, that takes the interfacial debond energy into account, makes it 

impossible to open cracks at low loads. This small discrepancy is not important because these 

openings are measured to be very small. Note that other pairs of interfacial parameters, in the 

same order of magnitude (like  =3 MPa and  =220 MPa), may lead to a similar agreement 

with experimental data.  

 

The best agreement using the usual assumption  =0 is reported in figures 9, 10 and 11b with 

 =5 MPa. Rising   to 7 MPa would lead to a better match regarding the mean crack spacing at 

the expense of a stiffer behavior and lower crack openings. Nevertheless, results assuming 

 =0 are less satisfactory than assuming    , regarding both the macroscopic behavior and 

the distribution of cracks openings. 

 

Finally, as presented in section 2.3.2, locations of all cracks during a tensile test, for each 

stress level, are available after the SEM characterization. This information can be enforced in 

the numerical model for matrix fracture instead of the statistical evolution based on the 

Weibull law. This approach allows us to study effects of interfacial parameters regardless 

matrix strength. Doing so, the results based on experimental data from test#4 and using  =5 
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MPa and  =0 showed that 30% of crack locations are inconsistent with resulting debond 

length: in other words, 30% of cracks were located in the debond length surrounding of a 

crack that appeared previously. On the contrary, this number of inconsistent crack locations 

falls down to 6% using  =2.5 MPa and  =250 MPa. This set of parameters lead also to a 

better agreement regarding the distribution of cracks openings. These results are independent 

of matrix strength distribution and confirm the use of a nonzero interface debond energy. 

Moreover, although it could seem high and it has an significant effect, a stress jump   of 250 

MPa corresponds in this case to a quite small interface energy release rate   , which is 

estimated at 0.74 J.m
-2

 using equation (4). 

 

 
Figure 9: Predictions of macroscopic behavior for two pairs of interfacial parameters (mean 

result of 10 simulations with  =25 mm). Only the beginning of the curve is considered (until 

saturation) and fiber breaking is arbitrarily avoided. 

 
Figure 10: Predictions of matrix fragment length distributions at saturation, for two pairs of 

interfacial parameters (mean result of 10 simulations with  =25 mm).  
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Figure 11: Predictions of matrix crack opening for two pairs of interfacial parameters: an 

interface debond energy is taken into account (a) or not (b).Openings of cracks from one 

simulation (with  =25 mm) are reported. 

 

4.3.Comparison to analytical model and discussion on fiber strengths 

 

4.3.1. Initial parameters 

 

Once interfacial parameters have been identified on matrix cracking, the modeling was 

computed until the composite collapsed using experimental probabilities of fiber failure. The 

results of this numerical model are also compared to those obtained from the analytical model 

proposed by Curtin et al. [Curtin et al. (1998)]. The comparison of macroscopic behaviors is 

presented in Figure 12 for the two sets of interfacial parameters P0 and P1 identified above 

(matrix Weibull parameters remain the same as in Table 2). Those parameters are listed in 

Table 3, including specific parameters used in the analytical model. In fact, Curtin et al. 

defined specific parameters    and    related to Weibull parameters of matrix and fibers and 

to interfacial parameters in equations (13) and (14). The minimum cracking stress    was 

assumed zero, like in the numerical model. 
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with             ̅,      linked to   through equation (6). 

 

It is noted that the application of this analytical model is doing using equations (15) and (16) 

to compute the macroscopic strain due to matrix cracking where   stands the debond length 

and  ̅ for the average crack spacing at the applied stress  ̅ (see [Curtin et al. (1998)]). These 

equations were obtained from the works of [Ahn and Curtin (1997)], that were extended to 

take      into account, and were used instead of equations No.6 and No.7 proposed in [Curtin 

et al. (1998)].  
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  ̅             ̅     (15) 
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Table 3 : Sets of parameters used to compare the numerical model to the analytical model 

from [Curtin et al. (1998)] and results. Final crack spacing   ̅  and mean pull-out length    

are estimated from both models. 

 Parameters            Results 

         a
      

 
      ̅     

 (MPa) (MPa) (MPa) - - (MPa) (MPa)  (µm) (mm) 

         Curtin Num Curtin Num 

P0 5 0 680 1.8 6.3 1217 3911  410 396 1.2 0.5 

P1 2.5 250 636 1.96 6.3 1217 3557  329 330 2.1 0.9 

P2 2.5 250 680 1.96 3 250 2630  329 332 1.6 0.8 
a
 The crack spacing parameter   is defined in [Curtin et al. (1998)] and derives here from final 

crack spacing estimated with the numerical model (without any fiber break). Its value for 

parameters P0 is in agreement with the one given in [Curtin et al. (1998)]. 

 

First, it should be noticed that the numerical model is in good agreement with the analytical 

model in average. However, Figure 12 shows that loads to failure predicted by the analytical 

model are a bit lower than those predicted by the numerical model. This difference is due to 

the residual matrix strain after matrix crack saturation that is neglected in the analytical model 

but not in the numerical model. Average crack spacing at saturation is also consistent between 

the two models. Although trends of mean pull-out lengths are similar, lengths predicted by the 

numerical model are smaller than those by the analytical model. This discrepancy is for now 

attributed to the strain localization [Curtin (1993a)] that is evidenced by the numerical model 

around the fracture surface (it will be illustrated in section 4.4.2). 

  

Furthermore, the analytical model allows the inclusion of residual thermal stresses. Then, 

Figure 12 shows that assuming a nonzero thermal stress (   =20 MPa, defined in equation 

(1)) has no noticeable effect on the macroscopic behavior. So the previous hypothesis to 

neglect thermal stresses, developed in section 3.1, can be considered to be valid for these 

SiC/SiC minicomposites (with Hi-Nicalon type S fibers). 

 

Even so, Figure 12 shows that both models predict an ultimate failure load far too high with 

initial parameters (P1). Actually, the experimental response deviates from the expected 

evolution, based on the assumption that the tangent modulus    should tend to    , once 

fibers only carry the load after cracking saturation and before fibers start to break [Aveston 

et al. (1971), Evans et al. (1994)]. On the contrary, as presented in Figure 13, the simulated 

tangent modulus tends to the theoretical value and drops only after 125 N when fibers break. 

Underestimates of the simulated modulus reduction have already been reported in literature 

[Beyerle et al. (1992), Spearing and Zok (1993), He et al. (1994)] about other SiC fibers based 

composites and have been attributed to the lack of fiber breaks. Our experimental results are 

in agreement with this interpretation, following Figure 14 that shows that the predicted fiber 

break density (at 92 N) is far too low compared to the observed one. Finally, note that 

predicted pull-out lengths for  =2.5 MPa (Table 3) slightly over-estimates experimental 

observations (Table 1), especially the analytical model. 

 

 

 

 ̅  
 ̅
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  ̅                     ̅     (16) 
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So, one main conclusion of this work is that modifications of fiber parameters or of some 

model hypothesis are necessary to introduce fiber break earlier in order to match experimental 

observations. 

 

 

 
Figure 12 : Comparison of macroscopic behavior from the numerical model and the 

analytical model (as defined by [Curtin et al. (1998)] with and without neglecting thermal 

stresses) to the experimental data.  

 
Figure 13 : Evolution of macroscopic tangent modulus from numerical simulations for two 

fiber strength distributions and comparison to experimental data. 
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Figure 14 : Prediction of mean fiber break density by the numerical model, for two fiber 

strength distributions, and comparison to the experimental measurement. 

 

4.3.2. Degradation of fiber strengths 

 

Modifying fiber strengths is the usual solution to have a lower composite strength, assuming 

that fibers could be weakened during processing (at ≈1000°C). A good macroscopic match is 

presented in Figure 12 with much lower fiber strengths (parameters P2 in Table 3). The 

corresponding probability density function of strengths is given in Figure 15. Although load 

to failure and tangent modulus are better reproduced, fiber break density is twice as high as 

experimental expectations, as illustrated in Figure 14. Above all, a so important degradation is 

not expected for Hi-Nicalon type S fibers. In fact, these near-stoichiometric and highly 

crystalline fibers exhibit a far better thermal stability than first generation fibers (Nicalon and 

Hi-Nicalon fibers). Initial strength has been observed to be retained up to 1200°C at least 

[Takeda et al. (1998), Sha et al. (2004)]. Additional tests have been performed after heat 

treatment corresponding to CVI conditions (2 hours at 1000°C) and confirmed the thermal 

stability (Sauder and Buet, unpublished communication). Moreover, fiber surface is quickly 

protected by PyC, which minimizes chemical degradation. So, in addition to failing to match 

experimental results at local scale, fiber strength degradation necessary to have a correct 

composite strength is too strong to be reliable. Additionally, introducing initial damage 

following analytical model proposed by [Curtin and Zhou (1995)] would also fail to fully 

predict the macroscopic behavior. Too much damage would be needed to sufficiently reduce 

the ultimate tensile strength, which would generate a too low tangent modulus. Furthermore, 

tomographic characterization did not show any fiber break from 50 N to 74 N along the 

observed field of view [Chateau et al. (2011)]. 
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Figure 15 : Probability density functions of tested Weibull distributions for fiber strengths. 

Probability densities are represented for the fiber volume     
 , with L=25 mm. 

 

Thus, other modifications of the model need to be considered, such as change on the 

interfacial shear stress, use of bimodal strength distribution or introduction of unpredictable 

features. The model developed by Curtin et al. cannot address these ones unlike the numerical 

simulations presented here. 

 

4.4.Modifications related to fiber breaking 

 

In order to improve the comparison to experimental observations, modifications of some of 

the model features are considered. As mentioned in section 3.3.1, the interface behavior 

related to fiber breaking is only characterized by the interfacial shear stress. At first, this 

parameter is supposed to be identical for both matrix cracking and fiber breaking. Then, a 

dissymmetry is introduced as the only way to reproduce experimental results. Finally, the 

model is complemented by the addition of early fiber breaks, assumed to come from matrix 

cracks propagation, and validated at both macroscopic and microscopic scales. The results of 

each identification steps are compared to the experimental macroscopic response (force-strain 

curve in Figure 16) and to the measured fiber break density (Figure 17). 
 

 

4.4.1. Identification of a specific interfacial shear stress 

 

The first change consists in modeling a matrix crack deviation along multiple matrix/fiber 

interfaces differently from modeling a fiber break along a single interface. In fact, as 

illustrated in Figure 12, a decrease in   lead to a lower composite strength. To do so, the 

interfacial shear stress related to fiber break deviation    is distinguished from the one 

associated to matrix cracks  . The latter was previously identified and remains unchanged. 

 

Before identifying   , edge effects should be mentioned. In fact, a decrease in the interfacial 

shear stress produces an increase in the damaged lengths that may be not negligible compared 

to the composite length  , in particular at high load levels. Because both ends are subjected to 

the consequences of a damaged vicinity from one side only, they tend to be less damaged and 

the local strain is smaller than in the center of the composite. Thus, the total length   has been 

chosen for the macroscopic response to be independent of the gauge length, in the range of 
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tested    ( =75 mm). Note that this boundary effect has already been highlighted by Curtin 

[Curtin (1991a), Curtin et al. (1998)], who predicted a tensile strength with no dependence on 

gauge length as soon as it is longer than a minimum length. In addition, because of a longer 

gauge length, variability between simulations is very low, so from now on, one simulation 

only is sufficient to obtain a stabilized result to compare to experimental data (in order to 

decrease computer time without loss of accuracy,   =10 µm is used). 

  

As presented in section 2.4, experimental observations showed a fiber break density estimated 

at 5 breaks/mm for an applied load of 92 N, corresponding to  ̅   0.43%. So numerical 

simulations were computed with an artificial random insertion of the expected number of fiber 

breaks at 92 N (a less artificial and sharp way to introduce fiber breaks is discussed in section 

4.4.2). Thus, fiber break density is in agreement with experimental results and the only free 

parameter available to fit the macroscopic behavior is   . Several values were tested this way. 

The best one,   =0.4 MPa, provided the expected global strain. Thus, any other value of    

turned out to make impossible the agreement between experimental and modeling results on 

both macroscopic behavior and break density at 92 N, regardless fiber strengths. 

 

Furthermore, the complete model using   =0.4 MPa, associated with the random insertion of 

fiber breaks at 92 N, predicts correctly the end of the force-strain curve (see Figure 16).  

Thereby, the decrease in the tangent modulus and the composite strength are well predicted 

thanks to the fiber breaks generated from the initial population added at 92 N. 

 

4.4.2. Insertion of additional fiber breaks 

 

Two main hypotheses have been challenged at first to explain the existence of the premature 

fiber breaks. First, fiber strength distribution was modified similarly to section 4.3.2. As 

presented in Figure 16, a good macroscopic result was obtained decreasing   
 
 to 300 MPa 

with   =2.5. Nevertheless, this Weibull distribution once again seemed not realistic with 

experimental expectations (see probability density function in Figure 15), in addition to lower 

prediction of fiber breaks at 92 N (Figure 17). The numerical simulations also allowed the use 

of bimodal probability laws [Chateau (2011)]. Although the ultimate tensile strength could be 

reduced enough with a small population of low strengths, the tangent modulus remains too 

high and strains too small (0.52% at failure instead of 0.65%). This macroscopic behavior is 

due to the local fiber break density which is too low. Increasing lowest strength weight would 

lead to a better agreement concerning the tangent modulus, but it would also lead to a far too 

low ultimate failure. Second, the Global Load Sharing hypothesis was changed into a 

simplified Local Load Sharing assumption. Following Calard’s works [Calard and Lamon 

(2004)], load was only transferred to the nearest intact fibers supposed to be arranged into a 

hexagonal array. But, this change only advanced the avalanche effect leading to the fatal 

failure of the composite.  

 

Tomography observations suggested that first fiber breaks were observed in the vicinity of 

fiber breaks [Chateau et al. (2011)]. Moreover, their appearance matched matrix cracks 

propagation through the cross-section. So an additional hypothesis of dynamic effects due to 

crack propagation is finally considered. 

The chosen approach to introduce fiber breaks due to the propagation of matrix cracks is 

assumed to be independent of local fiber failure probabilities. It involves three random aspects 

to model when, where and how many fiber breaks will appear, which are added to the initial 

steps of algorithm (Appendix B): 
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 Overall load levels (called “propagation load”), which are aimed at modeling crack 

propagation, are randomly assigned to each matrix crack when it appears (step (3a) of the 

algorithm). They are normally distributed with a mean value of 76 N and a standard 

deviation of 3 N. In the case of a late crack that appears from 70 N, the propagation load 

is set to the current load, i.e. the matrix crack appearance load. 

 Just before the classical damage detection (step (3)), if one “propagation load” is reached, 

a fiber break is randomly added in the propagating crack vicinity (bounded at ±50 µm 

around the crack following tomography observations).  

 Each break generated from dynamic effects is supposed to have a 50% chance to generate 

another one, in the same crack vicinity. This way, one or more fiber breaks are added in 

cracks vicinity. Then, the load redistribution is computed as usual, taking these breaks 

into account, before running the damage detection (step (3)). 

 

This approach allows for a smooth introduction of additional fiber breaks. Although its 

parameters are based on experimental observations, this arbitrary method should be improve 

by introducing more physical phenomena.  

 

The 1D model thus modified provides a good prediction on the macroscopic behavior (Figure 

16). In addition to reproducing the fiber break density at 92 N, the model predicts that the 

density remains almost stable between 92 N, and the avalanche effect leading to the ultimate 

failure (see Figure 17), which is in agreement with tomography observations (Figure 5). As 

presented in Figure 18, a localization of fiber breaks in a weaker area is also observed during 

the load increment leading to the ultimate failure, as observed experimentally. 

 

 

 

 
Figure 16: Macroscopic behavior simulated with arbitrary addition of fiber breaks at 92 N, 

degraded fiber strengths (  
 
=300 MPa,   =2.5) and dynamic effects, comparison to 

experimental data. All numerical results assume   =0.4 MPa. 
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Figure 17 : Prediction of mean fiber break density with arbitrary addition of fiber breaks at 

92 N, degraded fiber strengths (  
 
=300 MPa,   =2.5) and dynamic effects. All numerical 

results assume   =0.4 MPa. 

 
Figure 18 : Prediction of the local fiber break density as a function of the location along the 

minicomposite, for the identified interfacial parameters ( =2.5 MPa,  =250 MPa,   =0.4 

MPa) and dynamic effects, at three increasing load levels: 90 N, the last load increment 

before the ultimate failure (     ) and the load leading the ultimate failure (  ). 

 

 

4.4.3. Limitations and additional directions to be explored 

 

While no specific issue appears in validating matrix cracking modeling at the local scale, 

some shortcomings remain concerning fiber breaking. Because of the necessary low 

interfacial shear stress   , some discrepancies reveal an overestimate of lengths over which 

the load is transferred around a fiber break. 

Indeed, in addition to important gauge length effects, most of fiber break openings were 

evaluated (similarly to matrix cracks) between 20 µm and 50 µm at 92 N, although 

experimental observation did not show any opening wider than 10 µm [Chateau et al. (2011)]. 

The model predicts also mean pull-out lengths around 3.6 mm in average, which are well 

above observations (a few hundred micrometers, see Table 1). A higher    (like the one 

estimated by unloading/reloading tests) would have led to smaller pull-out lengths but the 
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ultimate stress would have been too high, together with too low strains. 

 

Therefore, further developments are needed to explain experimental observations, concerning 

both fiber strengths and stress recovery around fiber breaks. A complete characterization of 

fiber breaking chronology could be obtained from real-time radiography during in-situ tests, 

in order to describe premature failure and to check for initial damage. Additionally, fracture 

mirrors investigation of broken fibers [Stawovy et al. (1997), Sha et al. (2006)] should be 

performed to estimate in-situ fiber strengths and to confirm anomalous damage mechanisms. 

If break density under middle tensile load (after matrix crack saturation) are confirmed, stress 

recovery mechanisms for fiber breaking should be reconsidered to explain macroscopic strain, 

break density and fiber pull-out.  

  

 

5. Conclusion 

 

Original in-situ tensile tests were developed to study damage processes in SiC/SiC 

minicomposites, including matrix cracking and fiber breaking, to complement classical 

macroscopic and post-mortem techniques. Experimental results were used to build and 

validate a 1D probabilistic damage model. The approach is based on existing modeling tools, 

as Weibull failure probability laws and a stress redistribution assumption in the vicinity of 

matrix cracks and fiber breaks, which are extended to describe combined matrix cracking and 

fiber breaking in a single model. Besides, the benefit of this numerical model is to describe 

local damage mechanisms in terms of their distribution and not only in average. Moreover, 

fundamental hypotheses can easily be modified if necessary. 

 

An identification method was proposed to fit interfacial parameters to get, besides the 

macroscopic behavior, matrix crack openings, distribution of matrix fragment lengths and 

fiber break density in agreement with experimental observations. It has been possible to 

identify parameters   and   to describe correctly matrix cracking using classical assumptions, 

from failure probability distribution and elastic properties experimentally evaluated.  

Regarding fiber breaking, the model could not reproduce the end of the experimental force-

strain curve without additional hypothesis. An asymmetry in the interfacial shear stress has 

been proposed, complemented by the addition of early fiber breaks. Thus, the identification 

approach evidenced that a proper description of damage mechanisms at the local scale, as the 

fiber break density experimentally observed, was essential to correctly predict the 

macroscopic behavior. Neither important degradation of fiber strengths, albeit unlikely, nor 

local load sharing assumption could lead to satisfying results at both scales. Thus an attempt 

to smoothly add random fiber breaks was proposed, based on the assumptions of dynamical 

effects of the discontinuous matrix crack propagation experimentally observed. 

 

The final modeling provides good results on both macroscopic and microscopic scales, 

although debond length associated to fiber breaks seems to be overestimated. Yet, this is the 

only way to describe damage process with such a simple model. A better understanding of the 

composite behavior related to local parameters would probably need a more advanced model. 

Before any improvement, fiber breaking chronology needs to be characterized more precisely 

(real-time radiography, fiber fracture mirrors) to confirm premature failures and their 

potential link to the propagation of matrix cracks. 
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Appendix A. Definition of damaged lengths 

 

As presented in the main text (section 3.3), a specific framework is needed to define damaged 

lengths around matrix cracks and fiber breaks which can coexist. For the sake of clarity, this 

framework is illustrated in Figure A.1with a simple example of a short composite damaged by 

a matrix crack (located at   ) and the    fiber broken at the location    (where parameters 

were chosen to emphasize load transfers). 

 

 First, matrix cracks and fiber breaks are considered separately to determine reference 

stresses in intact matrix (    
 ) and fibers (    

 
) (see Figure A.1a). 

To do so, on the one hand, only matrix cracks are taken into account. Matrix damaged 

lengths are defined from the slope given in equation (3), the jump discontinuity 

  (equation (5)) and the undamaged matrix stress   
  resulting from the basic 

equilibrium applied to an undamaged composite: 

 

{

   
         

   ̅

      
  

 

  
 

  
 

  

 
(A.1) 

 

The reference stress     
 

 in fibers that are supposed to be intact, resulting from the load 

transfer, comes from equation (7). 

 

On the other hand, only fiber breaks are taken into account. Fiber damaged lengths are 

defined from the slope given in equation (3), and the undamaged fiber stress   
  (equation 

(A.1)). The reference stress     
  in the matrix that is supposed to be intact, resulting from 

the load transfer, comes from equation (7). 

 

 Second, as presented in Figure A.1b, “real” damaged lengths for both matrix cracks (  ) 

and fiber breaks (  
 
) can be defined relatively to the reference stresses     

  and     
 

. 

 Finally, stress profiles in intact matrix and fibers are calculated according to equations (7) 

and (8) (see Figure A.1c). 

 

Note that interactions between matrix cracks and fiber breaks are taken into account to define 

damaged length, but fiber breaks interactions between one fiber and another are neglected. 

Indeed, the high number of fibers should minimize this effect. Moreover, this approximation 

is necessary to have an efficient algorithm based on a single iteration. 
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Figure A.1: Diagram of load transfers around a matrix crack (  ) and a fiber break (  ) in 

the fiber   : (a) calculation of reference stresses in intact matrix and fibers (b) definition of 

damaged lengths around the matrix crack and the fiber break (c) calculation of stresses in 

undamaged zones.  
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Appendix B. Implementation 

 

This appendix describes the algorithm used to implement the numerical model. Sensitivity to 

force increment and spatial discretization are also discussed. 

 

B.1. Algorithm 

 

Material parameters (such as sections, Young modulus, interfacial parameters) and random 

strengths are initially assigned to all matrix and fibers segments. Then, for each load 

increment, the successive steps of the algorithm are: 

 

(1) Stress profiles in the matrix and in each fiber are computed from the overall stress  ̅ and 

the pre-existing matrix cracks and fiber breaks as explained in section 3.3.2 (we assume the 

composite is undamaged for    ) 

(2) The number of intact fiber    is calculated at each location  . A drop of    to zero in at 

least one location   , meaning that no fiber can hold stress redistribution anymore, is the sign 

of the composite collapse. 

(3) The next matrix or fiber break is detected by comparing matrix and fiber strengths of their 

respective intact segments to the current stress profiles determined in step (1). Assuming that 

segments break sequentially and that the most overloaded one breaks first ([Ibnabdeljalil and 

Phoenix (1995)], three cases may happen: 

 (3a) The most overloaded segment is a matrix one. A new matrix crack appears at this 

location and generates a new damaged length. Load redistribution on intact fibers is computed 

using equilibrium equation (7) and the algorithm goes to step (2). 

(3b) The most overloaded segment is a fiber one. A new fiber break appears at this 

location and generates a new damaged length. Load redistribution on intact fibers and the 

matrix (if it is intact) is computed using equilibrium equation (7) and the algorithm goes to 

step (2). 

(3c) There is no overloaded segment. No damage occurs, the composite is at a stable 

state and the load is incremented. 

 

 

B.2. Accuracy 

 

When the interface fracture energy is neglected (   ), using a fixed load increment has no 

effect on the damage chronology and location, because breaks are added one at a time and the 

load is transferred after each break. As noticed by [Ibnabdeljalil and Phoenix (1995)], the only 

drawback may be an overestimate of the composite strength if the increment is too high. 

Otherwise (   ), some cracks may be missed if the load increment is too high, because of 

the stress jump at the debond tip. Therefore, the load increment needs to be small enough to 

reduce the number of missed cracks without overly penalizing computer processing time. In 

the following, missed cracks will be checked to be less than 2% of all cracks for the 

considered set of parameters. Note that the total number of cracks can be determined by 

decreasing   , until it remains stable. 

 

The model is also sensitive to the spatial discretization of the minicomposite. Indeed damage 

evolution will be poorly described if matrix (or fiber) fragments are undersampled. More 

precisely, in the present case of fibers stronger than the matrix, matrix fragments are shorter 

than fiber fragments, because stress levels at which matrix cracks appear are clearly lower 

than levels at which fibers break. So, segment width    is chosen with respect to the matrix 
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fragment length distribution, evaluated from experimental results. Discretization using 

segments five times shorter than the shortest matrix fragment is observed to be sufficient to 

limit spatial discretization effects. 
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