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Experiment and analytical calculations show that the demagnetizing field of a superconductor is a sensitive
probe of quantities otherwise difficult to measure, such as the sample-probe distance in flux-density imaging
experiments, and the field of first flux penetration Hp. In particular, the ratio of the maximum field measured
above the superconductor edge and the applied field can be determined unambiguously so as to define a
linear “geometric” susceptibility. The evolution of this susceptibility with field depends on the regime of flux
penetration, and can be used as a means to determine Hp and the effect of a parallel field component in
magneto-optical imaging experiments.

PACS numbers: 74.25.Ha;74.25.N-;74.25.Op

I. INTRODUCTION

Magnetic imaging of superconductors1 is widely used
to extract parameters such as the superfluid density,2–4

the field of first flux penetrationHp,
5,6 vortex phase tran-

sition fields,7 and spatially resolved critical currents.8

Present-day techniques generally measure the mag-
netic induction component B⊥ perpendicular to the
sample surface, and include magneto-optical imaging
(MOI),8–12 Hall array5–8,13 and scanning Hall-probe
magnetometry,14 scanning Superconducting Quantum
Interference Device magnetometry (scanning SQUID),15

and Magnetic Force Microscopy (MFM).2 While efficient
schemes have been devised to extract information con-
cerning the distribution of current flow in the supercon-
ducting bulk from such experiments,10,16 important limi-
tations remain. Among these is the neglect of end-effects
in thick samples, and a general lack of knowledge of the
sample-probe distance, in many cases resulting from the
manual positioning of the specimen. The sample-probe
distance, which has an immediate bearing on the abso-
lute values of current densities deduced from the exper-
iment, is usually guessed, or inferred from a fitting pro-
cedure of the measured flux profile. Related is the prob-
lem of accurately measuring Hp in type-II superconduc-
tors. Since, in the Meissner state, magnetic flux wraps
around the sample edge due to the demagnetizing effect,
a measurement at a given probe height will yield consid-
erable ambiguity when it comes to determining whether
vortex lines have penetrated the material or not, espe-
cially in the presence of strong flux pinning. Moreover,
the measuredHp and Meissner slope dB⊥/dµ0Ha depend
on the placement of the probe and on sample geometry
(Ha is the applied magnetic field and µ0 = 4π × 10−7

Hm−1). The observation distance above the surface re-
sults in measured flux profiles that are rarely in agree-
ment with model calculations,19,20 particularly when it
comes to the field distribution near the sample edge, a
situation that complicates the reliable extraction of su-

perconducting parameters.

Here, we show that the situation can also be put to
one’s advantage. Namely, when imaging the flux distri-
bution around a superconductor in the Meissner state,
the London penetration depth λL(T ) can generally be
neglected. Thus, the demagnetizing field, and, specifi-

cally, the maximum value Bpeak
⊥

at the sample edge, de-
pends on the sample geometry, its aspect ratio, and on
the distance from the surface, but not on any parame-
ters characterizing the superconducting state. Since the
sample geometry is known, measurement of the demag-
netizing field peak grants access to the distance of the
probe above the sample surface. Below, the dependence

of Bpeak
⊥

on Ha is used to define a linear “geometric sus-
ceptibility” χg. A plot is provided that allows one to
simply read off the probe-to-sample distance using the
experimentally determined χg for a specimen of given
aspect ratio. Also, the field dependence of χg reflects
whether vortices have penetrated the material or not.
One can thus determine Hp by a measurement of the
flux density at a point above the superconductor perime-
ter. Finally, χg can also be used to estimate the effect of
the in–plane magnetic-field component on the measured
luminous intensity in MOI experiments.

In what follows, we first recapitulate on the typical
experimental procedure for the imaging of flux density
distributions. Even if, in the present case, the exper-
iment concerns MOI of the iron-based superconductor
Ba(Fe0.925Co0.075)2As2, basic results are independent of
the method and the material. A theoretical framework
for calculating flux distributions around superconductors
of realistic shape is introduced. Basically relying on an-
alytical techniques, it presents less computational diffi-
culties than previous work. The comparison of measure-
ments with calculations focuses on the relation between
Bpeak

⊥
and Ha, which turns out to be a good alternative

indicator of Hp.
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FIG. 1. (a) MOI of screening by Ba(Fe0.925Co0.075)2As2 crys-
tal # 2, at µ0Ha = 10 mT, after zero-field cooling to 10 K.
The rectangular outline of the crystal is clearly seen. The gar-
net has been purposely placed obliquely, so that the sample-
to-garnet distance is smaller along the top edge than along the
bottom edge. (b) Profiles of the perpendicular flux density at
successive applied fields, averaged over the strip between the
two red lines in (a), after calibration of the luminous intensity.
The heavy line indicates the first profile after flux penetration.
The abscissa runs from the upper to the lower part of panel
(a).

II. EXPERIMENTAL DETAILS

Optimally–doped Ba(Fe0.925Co0.075)2As2 single crys-
tals, with a critical temperature Tc = 24.5 K, were grown
using the self-flux method.17 Rectangular samples were
cut from different crystals using a W wire saw (wire di-
ameter 20 µm) and 1 µm SiC grit suspended in mineral
oil. Sample # 1 has length 994 µm, width 2a = 571 µm,
and thickness 2b = 32 µm, while sample # 2 has length
2200 µm, width 2a = 770 µm and thickness 2b = 75 µm.
Magnetic flux penetration into the selected samples was
visualized by the MOI method9,12 by placing a ferrimag-
netic garnet indicator film with in-plane anisotropy di-
rectly on top of the sample. The garnet, of thickness
6 µm, was deposited by liquid-phase epitaxy on a 500
µm thick substrate, and is covered by a 100 nm-thick Al
mirror layer. A non-zero B⊥ induces an out-of-plane ro-

tation of the garnet magnetization, and, thereby, a Fara-
day rotation of the polarization of the light traversing
the garnet. The mirror layer reflects the impinging light,
which is then observed using a polarized light microscope.
Regions with non-zero induction show up as bright when
observed through an analyzer, nearly crossed with re-
spect to the polarization direction of the incoming light.
Measurements of flux penetration were performed at dif-
ferent temperatures between 8 and 24 K.
Fig. 1(a) shows an example of the magnetic flux distri-

bution around the Ba(Fe0.925Co0.075)2As2 crystal in the
Meissner phase. The polarizer-analyzer pair was slightly
uncrossed in order to obtain unambiguous results down
to the lowest fields. Calibration of the luminous intensity
with respect to Ha allows one to convert the MO images
into maps of B⊥(r).

12 Flux density profiles were deter-
mined parallel to the shorter sample dimension, close the
center of the longer side. Previous measurements con-
firm that end effects induced by a finite sample length
are irrelevant,18 as long as this exceeds the width by a
factor two.

III. PHYSICAL MODELING

We proceed by modeling the magnetic flux distribution
around a rectangular superconducting parallelepiped,
with the intent of achieving the least mathematical com-
plication and the widest possible applicability. The sit-
uation is considered in which a uniform magnetic field
is applied perpendicularly to a long, ideally supercon-
ducting beam of rectangular cross section, considered
infinite along the z-axis. The magnetic flux density
B(x, y) is evaluated at a small distance above the sur-
face. For very thin samples, the problem is quasi-one di-
mensional (quasi 1D); in this case, the inversion schemes
of Refs. 10, 11, and 16 are satisfactory. However, for
samples of arbitrary thickness 2b ‖ y and length 2c ‖ z,
sufficiently large with respect to the width 2a ‖ x (i.e.
double the width), it is two-dimensional (2D). This situa-
tion was previously considered by Brandt and Mikitik.19

The main findings of Ref. 19 generalize Brandt’s previous
work for thin samples.20

In the case of a thin strip, the cross-section of which
corresponds to a line segment −a ≤ x ≤ a, the Meissner
surface current density is J(x) = 2Hax/

√
a2 − x2. In-

serting this into Biot-Savart’s law, and integrating in the
complex plane (x+ iy ≡ reiϕ), one gets the flux density
map around the sample. In particular, we obtain

[Bx(x, y), By(x, y)] =
µ0Ha√

c
[sin(α/2), cos(α/2)] . (1)

Here, we have defined α ≡ tan−1[sin 2ϕ/(r2 − cos 2ϕ)]

and c ≡
√

1− 2r2 cos 2ϕ+ r4/r, and give the distances
in units of a.
A similar approach may be applied to long samples

of rectangular cross section (−a ≤ u ≤ a ,−b ≤ v ≤ b)
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FIG. 2. (Color online) Theoretical magnetic field lines sur-
rounding ideal superconducting beams of rectangular cross
section, in the Meissner state. Results are shown for aspect
ratios b/a = 0.001, 1 and 10 and are obtained from Eqs.(2)
and (3).

based on the following expressions for the surface current
density19

J(u, v = ±b) =
Hasu
√

1− s2u
(2)

J(u = ±a, v) =
±Ha

√

1−ms2v
√

m(1− s2v)
. (3)

su(u,m) and sv(v,m) are geometry dependent functions
that may be calculated in terms of a parameter, m,21 that
solely depends on the sample’s aspect ratio b/a. The
magnetic field around the beam can be obtained from
Biot-Savart’s law, by numerical integration over the four
beam surfaces.22

Fig. 2 displays the field lines calculated for such su-
perconducting beams, in the Meissner state, with differ-
ent values of the aspect ratio b/a. The simulated flux
density distribution at different heights above the sam-
ple such as this would be imaged, e.g., with MOI, is
shown in Fig. 3. Note that the sharp bending of the
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FIG. 3. (Color online) The distribution of B⊥ across the
width of the superconducting beam, at three different heights
y above the surface, such as calculated for an aspect ratio
b/a = 0.1. Different lines correspond to y/a = 0.01 (dashed),
0.05 (continuous) and 0.1 (dotted-dashed). In all cases, a
uniform applied magnetic field (0, Ha, 0) is assumed.

field lines around the sample ridges produces the well-
known B⊥(x)–distribution, with sharp maxima due to
the demagnetizing effect over each edge. The peak be-
comes progressively sharper as the observation height
and/or sample thickness diminish. Physically, the condi-
tion ∇×B = 0 above the sample imposes ∂yBx = ∂xBy;
thus, a more pronounced bending of the field lines (in-
creasing ∂yBx) is accompanied by a growing value of the
profile’s slope ∂xBy. Also, whereas the sharpest peaks,
measured in intimate contact with the superconductor,
appear right above the edges, the maxima of the flatter
peaks measured at larger height are located outwards.
Finally, asymmetric profiles are found when the imaging
device is oblique with respect to the superconductor sur-
face, as in Fig. 4 – note that in this case B⊥ 6= By. The
plot shows our experimental data together with a least
squares fit profile obtained by minimizing the difference
between data and theory. The heights of the garnet above
the left and right edges are used as optimization param-
eters.

A. The peak susceptibility.

To quantify the response of a given sample in a given
experiment, one should consider the dependence of the

peak value Bpeak
⊥

of the magnetic flux density profile
on the distance above the sample edge. Fig. 3 shows
the behavior of the field contributed by the supercon-
ductor, in units of the applied field, i.e. Bs

y/µ0Ha ≡
(By − µ0Ha)/µ0Ha. With the superconductor in the
Meissner state, this quantity depends only on the ge-
ometry of the sample and of the experimental arrange-
ment, and is therefore independent of magnetic field.
Thus, one can define a linear geometric susceptibility

3



χg ≡ (dBpeak
⊥

/dµ0Ha)− 1. The fact that this is a purely
geometrical quantity is clear from Eqs. (1–3). The choice
of the field peak for the definition of χg is preferable over
that of more ambiguous features.
Fig. 5 shows the relation between χg, the aspect ratio

b/a, and the observation height y. Indeed, the plot dis-
plays the more interesting inverse function y(χg), since
this allows one to obtain the observation height y in terms
of χg. A useful fit of ln(y/a) as a function of χg, with a
relative quadratic error of 10−5, is given by

ln(y/a) ≈ t χ1/2
g + v χ3/2

g + uχg + w. (4)

The aspect ratio-dependent parameters t, u, v and w are
given in the inset of Fig. 5.
To determine the sample-to-probe distance, one should

proceed in the following manner: (i) determine the aspect
ratio of the sample (ii) perform the measurement of the
flux density distribution, ensuring a good accuracy, es-
pecially at low fields (Ha < Hp); in MOI, this entails
uncrossing the polarizer and analyzer by a small angle
α during the measurement. (iii) compute χg from a lin-
ear fit of the low-field dependence of the maximum of
B⊥(x) − µ0Ha (ideally, this coincides with the value of
the peak itself), and (iv) use Eq.(4) and the graphical
determination of the aspect-ratio dependent parameters
(Fig. 5) in order to determine y. Note that the above
analysis relies on the linearity of the response of the su-
perconductor as function of the applied magnetic field
Ha, and therefore can be applied only for Ha < Hp.
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FIG. 4. (Color online) Measured and calculated flux density
profiles when the MO garnet is placed obliquely over sample
# 2. The crosses are the experimental points, while the drawn
line denotes the calculation. The latter was carried out using
the optimized distances y = 0.038a (14 µm) and y = 0.15a
(58 µm) above the left and right edges, respectively. In this
case, the crystal of aspect ratio b/a = 0.10 was used. After
correction for the in-plane field effect on the garnet magneti-
zation (section III C) these distances become 10 and 41 µm,
respectively.
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B. The field of first flux penetration

On the contrary, a deviation from linearity can be used
as a criterion for determining Hp. The determination
of Hp by means of magnetic imaging is usually a some-
what time-consuming task, typically based on the detec-
tion of the minimum field that produces flux trapping
in cyclic measurements.23 Also, the detection of the first
vortices to enter the superconductor is clearly position-
dependent. Our results suggest an alternative method.
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FIG. 6. Renormalized flux profiles over
Ba(Fe0.0925Co0.075)2As2 crystal # 2, for 4.14 < µ0Ha <
30.95 mT, at T = 11 K.
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Below Hp, the magnetic flux is fully expelled from the
sample, and the behavior of χg is determined by the ge-
ometry of the experiment only. On the other hand, the

evolution of Bpeak
⊥

beyond Hp will not be linear in Ha

anymore, because it will reflect the flux pinning proper-
ties of the superconductor. This is explicitly shown in
Fig. 6. For fields lower than Hp, the demagnetization
peak above the sample edge can be superposed by a sim-
ple rescaling by the value of the applied field. Beyond
Hp, this scaling property is lost.

C. Effect of an in–plane field component in
MOI

The use of garnet indicators with in-plane anisotropy
for the imaging of field distributions9–11 has the drawback
that a magnetic-field component Bx parallel to the indi-
cator plane diminishes the Faraday rotation of the garnet
magnetization. The magnitude of the effect increases as
the screening current in the underlying superconductor
increases, leading to a downward deviation from linear-

ity of the Bpeak
⊥

(Ha)–relation even in the Meissner phase,
thereby complicating the determination of χg and Hp.

However, the linearity of the electromagnetic response
in the Meissner state allows one to correct for the in–
plane field effect in a relatively simple manner. The mea-
sured luminous intensity depends on the perpendicular

field component B⊥ as10

I = I0 sin
2

(

VMs
B⊥

√

(Bx +BK)2 +B2
⊥

+ α

)

, (5)

where I0 is the impinging intensity, Ms and BK

are, respectively, the saturation magnetization and the
anisotropy field of the garnet, and V is a constant. Ne-
glecting the influence of Bx leads to the determination of
an experimental

BMOI
⊥

=
BKB⊥

Bx +BK
(6)

rather than the real perpendicular field component B⊥.
24

Writing B⊥ = Bs
⊥
+ µ0Ha = µ0Ha(χg + 1) as the sum

of the magnetic induction contributions coming from the
superconductor and from the applied field, respectively,
we can solve for Bs

⊥
. Namely, not only is the non-zero in-

plane field component determined solely by the presence
of the superconductor, the linear response in the Meissner
state implies that for a given value of x it can be written
as Bx = g(b/a, y/a)Bs

⊥
. Here, we have calculated the

proportionality constant g(b/a, y/a) relating the in–plane
and perpendicular field components above the position
x at which Bs

⊥
is maximum. Apparently, this quantity

depends on aspect ratio and sample-probe distance, but,
as long as Ha < Hp, not on the magnetic field. Solving
Eq. 6, we obtain

χg =
χMOI
g

1− g(1 + χMOI
g )Ba/BK

. (7)

χMOI
g is the apparent geometrical susceptibility such as

determined from the MOI experiment. The function
g(b/a, y/a) has been evaluated as the ratio of the super-
conductor’s contribution to the in–plane and perpendicu-
lar field components such as calculated in subsection III,
and is shown in Fig. 7 for the readers’ reference. Once the
sample aspect ratio and the anisotropy field of the gar-
net indicator are known, the effect of the in-plane field
can be determined by estimating g(b/a, y/a) from Fig. 7
using ln(y/a) read from Fig. 5, and calculating a refined
geometric susceptibility from Eq. (7).

D. Application to Ba(Fe0.925Co0.075)2As2

Fig. 8 summarizes the application of the above ideas
to the Ba(Fe0.925Co0.075)2As2 crystal. Panel (a) shows

the evolution of the demagnetizing field maximum Bpeak
⊥

for several temperatures; these curves allow for the ex-
traction of the geometrical susceptibility in (c), which in
turn indicates the effective probe-to-sample distance to
be 12 µm – rather larger than what is expected from the
sole MO garnet thickness. However, applying the above
mentioned correction for the in-plane field yields a more
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FIG. 8. Magnitude of the demagnetizing field peak at the
edge of the Ba(Fe0.925Co0.075)2As2 crystal, measured with an
aligned (a) and an oblique MO indicator (at 10 K, b). The
upper and lower curves in (b) correspond to the right-hand
and left-hand peak in Fig. 4. Panel (c) shows the geometrical
susceptibility extracted from (a), and (d) shows the temper-
ature dependence of the extracted penetration field Hp.

realistic distance of 9 µm, implying a gap of approxi-
mately 3 µm between the sample edge and the garnet sur-
face. The temperature–dependent penetration field, ex-
tracted from the deviation from linearity, is shown in (d).
Applying the aspect-ratio dependent relation betweenHp

and Hc1 = Φ0/4πµ0λ
2 ln(λ/ξ) measured on samples of

similar shape,18 one obtains the indicated Hc1–values,
consistent with λ(5 K) = 245 nm3 and a coherence length
ξ = 3.5 nm (the flux quantum Φ0 = h/2e).

Drawbacks of the method include the need for a strictly
rigorous calibration of the magnetic induction in order
to obtain the correct curvature of the curves in Fig. 8(a)
and (c), and a high density of points in order to reli-
ably extract χg. Nevertheless, the measurement at dif-
ferent locations on the sample boundary, or using an in-
clined MO indicator (Fig. 8b) gives different slopes of the

Bpeak
⊥

(Ha)–curve and different χg, but the same penetra-
tion field Hp.

IV. CONCLUSION

In conclusion, the measurement of the applied field de-
pendence of the demagnetizing field, and its expression in
terms of a geometrical susceptibility, can be used to de-
termine the sample-to-probe distance in magnetic imag-
ing experiments on superconductors of finite thickness.
The measurement also offers an alternative means to de-
termine the field of first flux penetration.
A mathematical treatment of full flux expulsion by the

superconductor yields analytical expressions that allow
one to describe the Meissner response of rectangular thick
samples. Although not shown here, validation of the the-
ory against finite element calculations was performed in
the complete range of aspect ratios.
Anomalously low demagnetizing field peaks measured

near the sample rims, and improbably large sample-to-
probe distances such as these are obtained from magneto-
optical imaging experiments can be explained through
the effect of the in-plane field component induced by the
superconductor on the indicator garnet magnetization.
Based on our calculations, we propose a straightforward
method to correct for the in-plane field effect.
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