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Abstract

In this paper we exploit the method of numerical
continuation combined with orthogonal colloca-
tion to determine the steady-state oscillations of a
model of flute-like instruments that is formulated
as a nonlinear neutral delay differential equation.
The delay term in the model causes additional
complications in the analysis of the behaviour of
the model, in contrast to models of other wind in-
struments which are formulated as ordinary dif-
ferential equations. Fortunately, numerical con-
tinuation provides bifurcation diagrams that show
branches of stable and unstable static and peri-
odic solutions of the model and their connections
at bifurcations, thus enabling an in depth analysis
of the global dynamics. Furthermore, it allows us
to predict the thresholds of the different registers
of the flute-like instrument and thus to explain
the classical phenomenon of register change and
the associated hysteresis.

1 Introduction

Flute-like musical instruments present complex
behaviour, some aspects of which remain poorly
understood. For instance, one can cite the fact
that a regime change can lead either to a peri-
odic or to a quasiperiodic solution, the generation
mechanism of such quasiperiodic regimes, or the
way in which some parameters affect the regime
change thresholds (and thus the importance of the
associated hysteresis). The study of a physical
model of this instrument class provides the op-
portunity to explore the influence of different pa-
rameters and, by comparison with experimental
results, to improve the knowledge of the physical

mechanisms of sound production.

Many studies have dealt with the calculation of
self-sustained oscillations of flute models. Time-
domain simulations (see for example [1, 2, 3])
allow the computation of both transients and
steady-state periodic and non-periodic oscilla-
tions, and are thus informative about the diver-
sity of dynamical regimes. Nevertheless, these
methods are very sensitive to initial conditions,
and do not necessary provide information about
coexistence of multiple solutions. Some analyt-
ical methods were proposed by Schumacher and
Fletcher [4, 5], but require drastic simplifications
of the model. Moreover, due to both their com-
plexity and the limitation to a few number of har-
monics, these methods are not suited for a sys-
tematic study of the instrument behaviour.

Numerical methods for the calculation of pe-
riodic solutions of nonlinear dynamical systems
have been developed for decades in the field of
nonlinear differential equations: they include in
particular the harmonic balance method (HBM),
based on a frequency-domain discretisation of the
solution (see for example [6]), and the orthogonal
collocation method [7, 8], based on a time-domain
discretisation.

Since they can be combined with numerical
continuation methods [9], these techniques are
particularly interesting. Indeed, the HBM or the
orthogonal collocation considered alone compute
periodic solutions x for different values of the
model parameters λ (see figure 1-(a)), each point
being independent from the others. Numerical
continuation methods rely on the implicit func-
tion theorem (see for example [9]) to say that
these points lay on a continuous solution branch.
Therefore, they can follow the evolution of a given
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Figure 1: Schematic representation of the princi-
ple of numerical continuation. x is a given charac-
teristic of the periodic solution, as for example its
amplitude or its frequency. (a): periodic solutions
obtained through, for example, orthogonal collo-
cation, represented as a fonction of the parame-
ter λ. (b): branch of periodic solution obtained
through numerical continuation.

periodic solution in a λ − x plane, leading to a
branch of periodic solutions, as represented in fig-
ure 1-(b).

The computation of the different branches leads
to bifurcation diagrams, which represent static
and periodic solutions of the model, as functions
of a parameter of interest (the so-called contin-
uation parameter). Since bifurcation diagrams
give information about the coexistence of multiple
solutions and the presence of unstable solutions,
such diagrams provide a more global knowlegde
of the system dynamics.

For the first time in 1989, the harmonic bal-
ance method was introduced in musical acous-
tics by Gilbert et al. [10]. This technique has
then been used in various works focusing on sin-
gle reed musical instruments [11, 12, 13] and brass
instruments [14, 15]. Recent studies [16, 17] have
then demonstrated the benefits of combining this
technique with numerical continuation methods
to understand the behaviour of clarinet-like in-
struments. In parallel, software packages have
been developed (among which [8, 18, 19, 20]),
that combine computation of periodic solutions
and numerical continuation methods.

Compared to models of other wind instruments,
the state-of-the-art model for flute-like instru-
ments contains an additional delay term due to

the presence of an air jet in the excitation mech-
anism, and is moreover a neutral delayed dynam-
ical system (that is to say it includes a delay in
the highest derivative - see section 2). Such sys-
tems are mathematically more complex than or-
dinary differential equations governing, for exam-
ple, the behaviour of reed instruments. In princi-
ple, the harmonic balance method can be used to
solve this kind of systems [21]. However, the cur-
rent work does not aim to develop from scratch
a new software package specifically dedicated to
the flute model, but rather to take advantage of
existing validated numerical tools. Nevertheless,
the different numerical tools cited above do not
allow calculation and continuation of periodic so-
lutions of neutral equations, and the associated
numerical schemes must be adapted.

A first attempt to study flute-like instruments
through numerical continuation, using a toy-
model (mathematically a more simple non-neutral
delayed dynamical system), has highlighted that
such an approach provides new kind of informa-
tion, explaining behaviours which can be related
to some experimental phenomena [22]. It thus
suggests to study the state-of-the-art model of
flute-like instruments in the same way, and there-
fore to introduce numerical tools adapted to neu-
tral systems. This is done thanks to the contribu-
tion of Barton [23], whose work allows the anal-
ysis of neutral systems within the DDE-Biftool
environment.

We first recall in section 2 the equations of the
state-of-the-art physical model of flute-like instru-
ments. We then describe in section 3 the or-
thogonal collocation method and the predictor-
corrector approach, which respectively allow the
computation and the continuation of periodic so-
lutions of neutral delay dynamical systems. Fi-
nally, an application to the model of flute-like
instruments highlights in section 4 the valuable
contribution of such an approach to the under-
standing of the phenomenon of ”register change”
and its associated hysteresis, two typical features
of flute-like instruments.
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2 State-of-the-art model for

flutes

2.1 Modeling of the mechanism of

sound production

As for other wind instruments, the establishment
of auto-oscillation in flute-like instruments results
from the coupling between an exciter and a res-
onator constituted by the air column contained
in the pipe. The peculiarity of flute-like instru-
ments lies in the nature of the exciter, whose a
schematic representation is provided in figure 2.
Whereas the excitation mechanism of other wind
instruments involves the vibration of a solid ele-
ment (such as a cane reed or the musician’s lips),
it is constituted here by the nonlinear interaction
of an air jet with a sharp edge called ”labium”.

More precisely, when the musician blows in the
instrument, a jet is created at the channel exit. As
highlighted in figure 2, this channel is a part of the
instrument in the case of recorders or flue organ
pipes, and formed by the player’s lips for trans-
verse flutes. As the jet is naturally unstable, any
perturbation is amplified while convected along
the jet, from the channel exit to the labium. The
jet-labium interaction then makes the jet oscil-
late around the labium, leading to an alternative
flow injection inside and outside the instrument,
that constitutes an aeroacoustic pressure source
for the resonator. The acoustic waves created in
the resonator disrupt back the air jet at the chan-
nel exit, thus sustaining the auto-oscillation of the
instrument. A simplified representation of the jet
behaviour is provided in figure 3.

Figure 2: Recorder section and simplified repre-
sentation of its exciter, constituted by the inter-
action between an unstable air jet created at the
channel exit, and a sharp edge called labium.

Figure 3: Schematic representation of the jet be-
haviour, based on Fabre in [24]. (a) Perturbation
of the jet at the channel exit by the acoustic field
present in the resonator. (b) Convection and am-
plification of the perturbation, due to the unsta-
ble nature of the jet. (c) Jet-labium interaction:
oscillation of the jet around the labium, which
sustains the acoustic field.

As reviewed by Fabre et al. [25], this mecha-
nism of sound production can be represented by
a feedback loop system, represented in figure 4,
which involves a separate description of the main
physical phenomena. We briefly recall here the
physical mechanism related to each element and
the associated equations.

2.1.1 Receptivity of the jet

Once the auto-oscillations established, the pertur-
bation of the jet is provided by the acoustic waves
in the pipe. The reaction of the jet in terms of flow
transverse displacement η0 at the channel exit is
called ”receptivity” (see figure 3):

η0(t) =
h

Uj

vac(t), (1)

where h is the height of the channel (highlighted
in figure 2), Uj the jet velocity, and vac(t) the
acoustic velocity at the resonator inlet.
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Figure 4: Basic modeling of sound production
mechanism in flute-like instruments, as a system
with a feedback loop [24, 25].

2.1.2 Amplification and convection of the

perturbations along the jet

As the jet is naturally unstable, the initial pertur-
bation η0 is amplified during its convection from
the channel exit to the labium. Experimental
study by de la Cuadra [26] has shown that the ex-
ponential amplification of the perturbation with
the convection distance W , initially described by
Rayleigh [27] in the case of small perturbations of
an infinite jet, remains a reasonable approxima-
tion for flute-like instruments:

η(W, t) = η0(t− τ)eαiW , (2)

where W is here the distance between the chan-
nel exit and the labium (see figure 2), and αi an
amplification coefficient, for which de la Cuadra
[26] determined the following empirical expres-
sion: αi ≈ 0.4

h
. The delay τ , introduced by the

duration of convection of the initial perturbation
η0 along the jet, is related both to the distance
W and to the convection velocity cv of transver-
sal perturbations on the jet: τ = W

cv
. Both theo-

retical and experimental results [27, 28, 29] have
shown that cv is related to the jet velocity itself
through: cv ≈ 0.4Uj .

2.1.3 Aeroacoustic source: jet-labium in-

teraction

The jet-drive model, initially proposed by Colt-
man [30] and followed by Verge [31, 32], is based
on a representation of the source term as a
force. More precisely, the jet oscillates around
the labium, which splits the related air flow in a
part Qin which enters in the pipe, and a part Qout

which comes out of the pipe, as highlighted in fig-
ure 3. These two flow sources in phase opposition
are considered to be localised at points close to
the labium and separated by a distance δd evalu-
ated by Verge in [31] as: δd ≈ 4

π

√
2hW . As this

distance remains small compared to the acoustic
wavelength, the air between the two flow injec-
tion points is assumed to be incompressible [24].
This mass of air acts as a dipolar pressure source
∆psrc(t) on the air column contained in the pipe.
The second Newton’s law leads to:

∆psrc(t) = − ρδd
WH

· dQin

dt
, (3)

where H is the width of the excitation window,
and ρ the air density.

The flow Qin, related to the transversal deflec-
tion of the jet η(W, t) at the labium, can be calcu-
lated from the velocity profile of the air jet U(y):

Qin = H

∫ y0−η(W,t)

−∞

U(y)dy, (4)

where y0 is the offset between the labium position
and the jet centerline (see figure 2). Following
Segouffin [33], we assume that a Bickley profile of
half width b = 2h

5 is a correct approximation of
the jet velocity profile U(y) at the labium:

U(y) = Ujsech
2
(y
b

)
. (5)

Assuming that the centerline jet velocity Uj

varies in a quasi-static way, one finally obtains
the following modeling of the pressure source:

∆psrc(t) =
ρδdbUj

W
· d

dt

[
tanh

(
η(W, t)− y0

b

)]
.

(6)

2.1.4 Vortex shedding at the labium :

nonlinear losses

Between the channel exit and the labium of
flue instruments, the presence of an important
transversal flow induced by the acoustic field in
the pipe can cause a flow separation at the labium,
resulting in vortex shedding [34]. This phe-
nomenon corresponds to an energy dissipation,
and can be represented by an additional (non-
linear) pressure variation ∆plos near the labium:

∆plos(t) = −ρ

2

(
vac(t)

αvc

)2

sgn(vac(t)) (7)
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where αvc is a vena contracta factor, estimated at
0.6 in the case of a sharp edge, and sgn represents
the sign function.

Finally, the pressure source can be written as:

∆p(t) = ∆psrc(t) + ∆plos(t). (8)

2.1.5 Passive response of the resonator

The acoustical response of the air column con-
tained in the pipe, excited by the pressure source
described above, is represented through the input
admittance Yin(ω) = Vac(ω)/∆P (ω), where ω is
the pulsation, and Vac(ω) and ∆P (ω) are respec-
tively the acoustic velocity at the pipe inlet and
the pressure source, written in the frequency do-
main. The input admittance Yin(ω) is represented
as a sum of resonance modes, including a mode at
zero frequency (the so-called uniform mode [24]):

Yin(ω) =
a0

b0jω + c0
+

p−1∑

k=1

akjω

ω2
k − ω2 + jω ωk

Qk

. (9)

where k is an integer such as k ∈ [1; 2; ...; p−2; p−
1], with p the total number of (null and non-null)
modes. The coefficients ak, ωk and Qk are respec-
tively the modal amplitude, the resonance pulsa-
tion and the quality factor of the kth resonance
mode, and a0, b0 and c0 are the coefficients of the
uniform mode.

2.2 Mathematical nature of the model

The state-of the art model is finally constituted
by the three equations of the following system:

η(t) =
h

Uj
eαiW vac(t− τ)

∆p(t) =∆psrc(t) + ∆plos(t)

=
ρδdbUj

W

d

dt

[
tanh

(
η(t)− y0

b

)]

− ρ

2

(
vac(t)

αvc

)2

sgn(vac(t))

Vac(ω) =Yin(ω) ·∆P (ω)

=

[
a0

b0jω + c0
+

p−1∑

k=1

akjω

ω2
k − ω2 + jω ωk

Qk

]
·∆P (ω)

(10)

A reformulation of system (10) as a classical
first-order system:

ẋ(t) = f(x(t),x(t− τ), ẋ(t− τ), λ) (11)

is helpful to highlight the mathematical nature of
the model, and necessary for its implementation
in DDE-Biftool. In such a formulation, x is the
vector of state variables, λ the set of parameters,
and f a nonlinear function. In order to improve
numerical conditioning, the system under study is
made dimensionless through the definition of the
following dimensionless variables:

t̃ = ω1t

ṽ(t̃) =
heαiW

bUj

vac(t̃).
(12)

Finally, the components of vector x are here
the variables ṽk(t̃) and their first derivative with
respect to time ˙̃vk(t̃), where ṽk(t̃) is the projection
of the dimensionless acoustic velocity ṽ(t̃) on the
kth resonance mode (see equation 9).

The development is detailed in appendix A, and
finally leads to the following system of 2p−1 equa-
tions (with p the total number of acoustic modes
in the third equation of system (10)):
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˙̃v0(t̃) =
a0ρδdhe

αiW

Wb0

p−1∑

i=0

z̃i(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− a0ρbW

2b0α2
vche

αiWγτ̃

p−1∑

i=0

ṽi(t̃)

abs

(
p−1∑

i=0

ṽi(t̃)

)
− c0

b0ω1
ṽ0(t̃)

˙̃vk(t̃) = z̃k(t̃)

˙̃zk(t̃) =
akρδdhe

αiW

W

p−1∑

i=0

˙̃zi(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− 2akρδdhe
αiW

W

(
p−1∑

i=0

z̃i(t̃− τ̃)

)2

tanh

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− akρbW

2α2
vche

αiW γτ̃

{
p−1∑

i=0

z̃i(t̃)

abs

(
p−1∑

i=0

ṽi(t̃)

)
+

p−1∑

i=0

ṽi(t̃)

p−1∑

i=0

z̃i(t̃)

sgn

(
bWω1

heαiW γτ̃

p−1∑

i=0

ṽi(t̃)

)}

−
(
ωk

ω1

)2

ṽk(t̃)−
ωk

ω1Qk

z̃k(t̃)

(13)

∀k ∈ [1; 2; ...; p − 2; p − 1].

Such a formulation highlights the presence of
a delayed derivative term ˙̃z(t̃ − τ̃), and thus the
neutral nature of the system, already underlined
in [3, 35].

This feature of the model constitutes an im-
portant difference with other wind instruments
(such as reed instruments and brass instruments),
which are modeled through ordinary differential
equations.

3 Methods: orthogonal colloca-

tion and numerical continua-

tion

Since the early works of Gilbert et al. [10] about
the determination of periodic solutions of self-
sustained systems, different numerical tools have
been developed or adapted to perform such cal-
culations for musical instrument models.

Particularly, different studies have dealt with
both computation and continuation of periodic
solutions and bifurcation analysis of reed instru-
ments with the software AUTO [16], Harmbal
[11, 12] or Manlab [17, 18]. These software differ
in numerical methods they use, both for the calcu-
lation of periodic solutions (harmonic balance and
collocation for Manlab, collocation for AUTO),
and for the continuation algorithm (predictor-
corrector method for AUTO, asymptotic numeri-
cal method for Manlab).

As underlined in the previous section and in [3],
even the simplest model of flute-like instrument
includes an additional delay compared to models
of other wind instruments. As they do not deal
with delayed differential equations, the different
software mentioned above are not helpful for the
present study. Among the few distributed numer-
ical tools dealing with computation and contin-
uation of periodic solutions in delayed systems,
as Knut [36] and DDE-Biftool [19], only DDE-
Biftool has been subsequently adapted to treat
the case of neutral delayed differential equations
[23, 37]. Throughout this paper, numerical results
are thus computed using DDE-Biftool and its ex-
tension for neutral systems, both based on orthog-
onal collocation method [38, 23, 39] for compu-
tation of periodic solutions and on a predictor-
corrector approach for continuation of solution
branches. The general principles of orthogonal
collocation, and its extension to neutral delayed
equations are thus briefly recalled below.

3.1 Principles of the method

Numerical resolution of a system of ordinary, de-
layed or neutral differential equations implies a
discrete representation of the unknown solution.
Orthogonal collocation method allows to compute
periodic solutions, based on a temporal discreti-
sation of a single period. As we are interested
in self-oscillating systems, it is important to note
that the period T of the solution is an unknown
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of the problem. The principle of the method used
here consists in approximating the real solution
by a piecewise polynomial.

More precisely, a single (unknown) period of
the periodic solution is divided in N intervals,
which constitutes a mesh Π :

Π = [t0 = 0; t1; t2; ...; tN−1; tN = T ]. (14)

The number N of intervals influences on the re-
sults accuracy.

Each interval [ti; ti+1] is again discretised on a
set of m+1 representation points, distributed uni-
formly on the interval. On each interval, the solu-
tion is interpolated by Lagrange polynomials. On
an interval defined as t ∈ [ti; ti+1], the approxi-
mate solution x̂(t) of the real solution x(t) is thus
defined as:

x̂(t) =

m∑

j=0

x
i+ j

m

· Pi,j(t) (15)

where x
i+ j

m

is the value of the solution at the

representation point t
i+ j

m

= ti+
j
m
(ti+1− ti), and

Pi,j(t) the Lagrange interpolating polynomial, de-
fined as:

Pi,j(t) = Πm
r=0;r 6=j

t− ti+ r
m

t
i+ j

m

− ti+ r
m

(16)

The unknowns are thus the values of x
i+ j

m

, and

the period T . Taking into account the continuity
conditions at the mesh points ti, one obtains, for a
L-dimensional system, L(Nm+1)+1 unknowns.

For each interval, the equations are not writ-
ten at the m+1 representation points, but at the
m collocation points, defined as the zeros of the
m-order Legendre polynomial for the considered
interval. This choice of collocation points gives
an optimal rate of convergence as the number of
mesh points increases. Projection of the differen-
tial equations on these N ×m collocation points
leads to an algebraic system of NmL equations.
The L + 1 additional equations required to close
the system are provided by the periodicity condi-
tion: x(0) = x(T ) (L equations) and by a phase
condition. Indeed, as the solutions are periodic, if
x(t) is a solution, x(t+φ) is also a solution, regar-
less the value of φ. A phase condition is therefore
introduced to fix the phase origin. A very com-
mon choice, adopted here, is the integral phase

condition, initially introduced by Doedel [8]. Fi-
nally, as detailed in [38], Newton method is ap-
plied to solve the obtained algebraic system.

3.2 Adaptation of the method to neu-

tral delay systems

The extension of orthogonal collocation method
to neutral delayed differential equations imposes
to define an interpolation scheme for the approxi-
mation of both the delayed and the derivative de-
layed variables. Various schemes have been pro-
posed for the case of non-neutral delayed systems,
as for example in [38]. For the case of neutral sys-
tems, Barton [23] proposed the following approx-
imations, implemented in the extension of DDE-
Biftool for neutral equations:

x̂(t− τ) =

m∑

j=0

x
k+ j

m

· Pk,j(t)

̂̇x(t− τ) =

m∑

j=0

x
k+ j

m

· P ′
k,j(t)

(17)

where Pk,j(t) corresponds to the Lagrange in-
terpolating polynomial defined in equation (16),
and P ′

k,j(t) to its derivative. k is an integer such
that (t − τ) ∈ [tk; tk+1]. For more details, we
refer the reader to [23] and [37].

3.3 Stability of static and periodic so-

lutions

Let us consider the following system of neutral
differential equations:

ẋ(t) = f(x(t),x(t− τ), ẋ(t− τ), λ). (18)

For sake of clarity, we consider here a system with
a single delay, but the following considerations
can be generalised to multi-delay systems.
A static solution xs of sytem (18) satisfies the
following equation:

f(xs,xs, 0, λs) = 0. (19)

Stability property of such an equilibrium solution
is given by the stability of equation (18) linearised
around the considered static solution xs:

ẋ(t) =A0 [x(t)− xs] +A1 [x(t− τ)− xs]

+A2ẋ(t− τ),
(20)
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where Ai is the partial derivative of the nonlinear
function f with respect to its (i+1)th argument.
Defining a new variable y(t) = x(t)−xs, equation
(20) becomes:

ẏ(t) = A0y(t) +A1y(t− τ) +A2ẏ(t− τ). (21)

The stability of this linearised equation depends
on the value of the roots κ of its associated char-
acteristic equation:

det
(
κI −A0 −A1e

−κτ − κA2e
−κτ
)
= 0 (22)

where I is the identity matrix. This transcen-
dental equation has an infinite number of roots,
and its resolution requires specific numerical tech-
niques (see for example [40]).

If all the roots κ have negative real parts, any
disturbance of the equilibrium solution is atten-
uated with time, and the solution is locally sta-
ble. Conversely, if at least one of these eigenval-
ues have a positive real part, a small disturbance
superimposed on the solution is amplified with
time, and the solution is thus locally unstable.
We precise local stability because this calculation
involves the linearisation of the system around a
solution, and the analysis is thus only valid for
small perturbations around the considered solu-
tion. Further details and demonstrations are pro-
vided in [9, 40].

When a stable equilibrium solution becomes
unstable, the system behaviour after this bifur-
cation point depends on the real, pure imaginary
or complex feature of the eigenvalue which crosses
the imaginary axis (see for example [41]).

Throughout this paper, we particularly focus
on the case where two complex conjugate eigen-
values cross the imaginary axis. This scenario cor-
responds to a Hopf bifurcation, which gives rise
to a periodic solution, and is thus particularly in-
teresting in the case of musical instruments.

This local stability analysis can be generalised
to periodic solutions (see [41]), whose stability
properties then depend on the eigenvalues of the
monodromy operator, the so-called Floquet multi-
pliers [41, 9]. A periodic solution is stable as long
as all its Floquet multipliers lie in the unit cir-
cle. As previously, when a periodic solution loses
its stability, the resulting regime observed after
this bifurcation point depends on which way the
Floquet multipliers leave the unit circle at the bi-
furcation point.

3.4 Continuation method

Starting from a static or periodic solution x0 com-
puted for a set of parameters λ0, numerical con-
tinuation methods allow (under sufficient condi-
tions on the smoothness of the nonlinear function
f) to follow the solution when a parameter - the
continuation parameter - varies. Thus, one can
access to a solution family (x, λ), called branch
of solutions, which contains the solution (x0, λ0).
As underlined for example in [16], different nu-
merical continuation methods exist: one can cite
classical predictor-corrector methods, which rely
on a discrete representation of the branches, and
the asymptotic numerical method [18], which at-
tempts to compute continuous portions of the so-
lution branches.

The software DDE-Biftool, used for the present
study, uses a predictor-corrector continuation al-
gorithm: knowing a point (x0, λ0) of a branch,
the neighboring point (for a set of parameter
λ0 +∆λ) is first estimated through a secant pre-
dictor [9, 19], and then corrected using an iter-
ative Newton-Raphson algorithm. This process
thus allows to compute the whole solution branch.

To improve numerical conditioning, and avoid
the common but pathological case of a vertical
tangent – which corresponds to a fold (or saddle-
node) bifurcation [41] – the solution branch is pa-
rameterised through the Keller pseudo-arclength
equation, which can be seen as a kind of curvilin-
ear abscissa. For more details, we refer the reader
to [42].

Numerical continuation algorithm, coupled to
the orthogonal collocation method, can be used
to calculate bifurcation diagrams of the system of
interest. In an ideal case, such diagrams show all
the static and periodic solutions as a function of
the continuation parameter. Through knowledge
of unstable solutions, coexistence of solutions, and
bifurcations of periodic solutions, it provides a
more global vision of the system dynamics than
time-domain simulations alone. However, com-
putation of a solution branch through numerical
continuation requires the knowledge of at least
two points of this branch (i.e. two starting points)
to enable the secant prediction of an other point,
which raises the question of initialisation.

For the model studied here, the static solution
xs = 0 being known analytically, the initialisation
of the corresponding branch is not problematic.
The interest of numerical continuation then lies in
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the computation of the eigenvalues κ (see section
3.3) along this branch, and thus in the detection
of the Hopf bifurcations.

At each bifurcation point, one can follow the
emerging periodic solution branch. One of the
two required starting points is constituted by
the degenerate periodic solution of zero ampli-
tude, which corresponds to the Hopf point itself.
The second starting point is first predicted as a
monochromatic periodic solution of small ampli-
tude, whose frequency corresponds to that given
by the imaginary part of the critical eigenvalue
at the Hopf point. This solution is then corrected
through the Newton-Raphson algorithm. How-
ever, this method does not ensure the convergence
of the correction process. A possible improvement
should rely on a new way of prediction of the
starting solution, using the eigenvector related to
the critical eigenvalue, as done in DDE-Biftool for
non neutral systems [39].

Due especially to the fact that we have only
access to an approximation of the eigenvalues κ
(and thus to the different Hopf bifurcations), and
to the possible existence of isolated periodic so-
lutions (i.e. not connected to the static solution
branch), it remains impossible to be sure that a
complete bifurcation diagram has been obtained.

4 Application to flute-like in-

struments

4.1 Comparison of the results of collo-

cation and continuation with time-

domain simulations

In order to validate the continuation approach,
we first focus on the comparison, in terms of am-
plitude, frequency and waveforms, between the
results of a classical time-domain solver based on
a Runge-Kutta method on the one hand and the
bifurcation diagram on the other hand.

As it is directly related to the pressure in
the musician’s mouth (and thus to the choice of
whether that he blows hard or not), the dimen-
sionless delay τ̃ is a particularly interesting pa-
rameter, and is chosen as bifurcation parameter.

Paramater values used for the different calcula-
tions are summarised in table 1. We consider here
the ideal case of a cylindrical resonator without
side holes, 400 mm in length and 16 mm diame-
ter, which is close to the typical dimensions of an
alto recorder. The contribution of the excitation

window is taken into account through a correc-
tion term in the analytical formula of the input
admittance (see [24] for more details). From the
input admittance calculated analytically, a fitting
algorithm allows the extraction of the modal co-
efficients of the six first resonance modes (a uni-
form mode at zero frequency, and 5 non uniform
modes). The comparison, in terms of modulus
and phase, between the original and the fitted ad-
mittances, is provided in figure 5. Between these
two admittances, the relative deviations in terms
of amplitude of the resonance peaks are 12, 2% for
the fifth non uniform mode, 2, 1% for the fourth
non uniform mode, and lower than 1% for the
three first non uniform modes. In terms of reso-
nance frequencies, the relative deviations between
the original and the fitted admittances are lower
than 0, 1% for all the five non uniform modes.

One can note that an increase of the number of
modes taken into account allows a better model-
ing of the input admittance. However, the size of
the system being directly related to the number
of modes, adding modes considerabily increases
the computation cost. Moreover, on such instru-
ments, most of the notes are played on the two
first registers, which corresponds to oscillations
on the two first resonance modes. Since the two
first (non uniform) modes are correctly fitted by
taking into account six resonance modes (see fig-
ure 5), this number seems to be a reasonable com-
promise.

For sake of clarity, we first consider a single pe-
riodic solution branch, corresponding to the sec-
ond register, that is to say to oscillations at a fre-
quency close to the second resonance frequency of
the input admittance.

Figure 6 represents the amplitude of the acous-
tic velocity vac as a function of the dimension-
less delay τ̃ , for both the results obtained through
time-domain integration for three fixed τ̃ values
(τ̃ = 0.6, τ̃ = 0.846 and τ̃ = 1.2) and the branch
computed thanks to numerical continuation algo-
rithm. Since it leads to convergence of the solver
and permits an easy resampling of the signals at a
sampling frequency suitable for audio production
systems, a sampling frequency fs = 10 × 44100
Hz is used for time-domain simulations. Orthog-
onal collocation is achieved using 75 mesh points
per period, and an interpolation polynomial of
degree 5. This comparison shows good agreement
between the results of the two methods, with a
maximum relative deviation of the amplitude of
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Figure 5: Analytically calculated and fitted in-
put admittances of a cylindrical resonator of flute-
like instrument, 400 mm in length and 16mm di-
ameter. Relative deviations between the curves
in terms of amplitude of the resonance peaks:
12.2% for the fifth non uniformmode, 2.1% for the
fourth, and lower than 1% for the other modes.
In terms of resonance frequencies, the relative de-
viations between the two curves are lower than
0.1 % for all the modes taken into account.

0.36 % at τ̃ = 1.2.

Figure 7 provides, for the same data, the com-
parison in terms of oscillation frequency. As for
the amplitude, this comparison shows good agree-
ment, with a maximum relative deviation of 0.1
% at τ̃ = 0.6, which corresponds to 1.7 cent.

In the same way, figure 8 provides the compar-
ison between the two methods, for both the cal-
culated waveforms and amplitude of the 15 first
harmonics of the spectrum, at the three different
points of the branch already represented in figure
6. As the fitted input admittance used here takes
into account six resonance modes, one can wonder
about the physical meaning of the higher harmon-
ics represented in this figure. However, the aim
of this comparison is here to check that the two
methods converge to a same solution. In the case
of a study focusing on the sound spectrum, one
should probably consider a larger number of res-
onance modes. Although the sampling frequency
used for simulations and the number of discreti-
sation points retained for orthogonal collocation
are not ”equivalent” (and thus the two methods
do not resolve the same number of harmonics),
the comparisons provided in figure 8 show again
good agreement. Especially, the calculation of the
L2-norm of the different waveforms highlights rel-
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Figure 6: Oscillation amplitude as a function of
the dimensionless delay τ̃ for a single periodic so-
lution branch : comparison between the results of
numerical continuation and time-domain integra-
tion. The maximum relative deviation between
the two methods is 0.36% at τ̃ = 1.2.
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Figure 7: Oscillation frequency as a function of
the dimensionless delay τ̃ for a single periodic so-
lution branch : comparison between the results
of numerical continuation and time-domain in-
tegration. The maximum relative deviation be-
tween the two methods is 0.1% at τ̃ = 0.6. The
dark dot-dashed line indicates the second reso-
nance frequency (f2 =

ω2
2π ) of the resonator.
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Parameter Numerical value

a0 (m2· kg−1) 642

b0 83

c0 (s−1) 294

a1 (m2· kg−1) 15

ω1 (rad · s−1) 2480

Q1 50

a2 (m2· kg−1) 14

ω2 (rad · s−1) 4982

Q2 64

a3 (m2· kg−1) 12

ω3 (rad · s−1) 7501

Q3 72

a4 (m2· kg−1) 10

ω4 (rad · s−1) 10040

Q4 77

a5 (m2· kg−1) 9

ω5 (rad · s−1) 12595

Q5 77

αi (m
−1) 0.4/h = 400

δd (m) 4
π

√
(2hW ) = 0.0036

b (m) 2h/5 = 0.0004

y0 (m) 0.0001

h (m) 0.001

W (m) 0.00425

ρ (kg · m−3) 1.2

cp (m · s−1) 0.4Uj

αvc 0.6

Table 1: Parameter values used for numerical res-
olutions of the model.

ative deviations between the results of orthogonal
collocation and time-domain simulation of 0.78%
at τ̃ = 0.6, 0.46% at τ̃ = 0.846 and 0.04% at
τ̃ = 1.2.

Although these results focus on a single solution
branch, and thus lead to a very partial knowl-
edge of the model behaviour, they nevertheless
provide, compared to more classical analysis and
resolution methods (such as linear analysis and
time-domain simulations), new information about
the functioning of the instrument. For sake of
consistency with the literature, oscillation ampli-
tude and frequency (already represented respec-
tively in figures 6 and 7) are represented in figures
9 and 10 as functions of the reduced jet velocity
θ:

θ =
Uj · 2π
Wω1

. (23)
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Figure 8: Comparison between the results of or-
thogonal collocation and time-domain integration
in terms of waveform (left) and spectrum magni-
tude (right) represented in dB (reference ampli-
tude: Vref = 1). Each line corresponds to a value
of τ̃ (τ̃ = 0.6 for the first line, τ̃ = 0.846 for the
second line, τ̃ = 1.2 for the third line). In terms of
L2-norm of the different waveforms, relative de-
viations between the results of the two methods
are of 0.78% at τ̃ = 0.6, 0.46% at τ̃ = 0.846 and
0.04% at τ̃ = 1.2.

Such representations shed some light on dif-
ferent known behaviours of the instrument. Es-
pecially, it highlights that the methods used
here predict precisely the saturation of the os-
cillation amplitude (figure 9), a commonly ob-
served behaviour in experiments and simulations
[1, 3, 5, 43], which is not explained or predicted
by the often-used linear analysis of the model
[3]. In the same way, if the strong dependance
of the frequency on the jet velocity Uj, high-
lighted in figure 10, is a well-known behaviour of
both models and real instruments (see for exam-
ple [1, 3, 22, 43, 44, 45]), a linear analysis of the
model only gives a rough estimation of the fre-
quency evolution, and does not distinguinsh be-
tween stable and unstable parts of the branch. As
highlighted in figure 10, the bifurcation diagram
not only predicts precisely the frequency evolu-
tion along the branch, but also the stabilisation
of the frequency slightly above the resonance fre-
quency (observed experimentally for example in
[3]). Through the computation of stability prop-
erties of the branch of periodic solutions, it fi-
nally gives information about the minimum and
maximum frequencies that can be observed for a
given periodic regime. Thereby, figure 10 high-
lights that the oscillation frequency of the second
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Figure 9: Oscillation amplitude as a function of
the reduced jet velocity θ for a single periodic so-
lution branch. Superimposition of the results of
numerical continuation and time-domain integra-
tion.

register can evolve between 776 Hz (at θ = 12)
and 804 Hz (at θ = 34). By contrast, as a linear
analysis only provides information about the in-
stability of the static solution, which corresponds
to the the birth of the periodic solution branch, it
would merely gives an estimation of the frequency
at the branch extremities (here at θ = 10.5 and
θ = 152).

To conclude, this first study of a single branch
of periodic solutions allows to validate, for the
state-of-the art model of flute-like instruments,
the approach through orthogonal collocation and
numerical continuation, and to begin to appreci-
ate the benefits of such an approach. Hereafter,
we extend the study to a more complete bifurca-
tion diagram, in order to provide a better under-
standing of the instrument behaviour.

4.2 Analysis of the transition between

registers

The phenomenon of ”register change” is well-
known by flute players: occuring while the mu-
sician blows harder in the instrument, it corre-
sponds to a ”jump” from a given note on the
first register to another one on the second reg-
ister whose frequency is approximately twice the
first (that is to say, a jump of approximately one
octave).

As highlighted in figure 11, representing the os-
cillation frequency of the acoustic velocity vac(t)
as a function of the dimensionless delay τ̃ , this
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Figure 10: Oscillation frequency as a function of
the reduced jet velocity θ for a single periodic
solution branch. Superimposition of the results
of numerical continuation and time-domain inte-
gration. The dark dot-dashed line indicates the
second resonance frequency (f2 = ω2

2π ) of the res-
onator.

phenomenon is also observed with time-domain
simulations of the model, where the parameter τ̃
now varies linearly. Starting from a frequency of
400 Hz at τ̃ = 1.2, a decrease of the delay (cor-
responding to an increase of the jet velocity Uj)
leads to successive jumps to notes with higher fre-
quencies. As observed experimentally (see for ex-
ample [3]), the register changes are accompanied
by hysteresis: starting from the arrival point of
the decreasing ramp of delay (at τ̃ = 0.1) and
performing an increasing ramp of the delay also
leads to jumps, but they occur at different delay
values from those observed previously.

However, if this approach highlights the pres-
ence of register changes with hysteresis, it does
not provide information about the cause of these
jumps and of the associated hysteresis phe-
nomenon. Moreover, as can be seen in figure 12,
representing for the same simulations as in figure
11 the oscillation amplitude as a function of the
dimensionless delay, the simulation results can be
difficult to understand and interpret, due to the
large number of observed regimes and ”amplitude
jumps”.

The sensitivity to initial conditions make such
an interpretation even more complicated: for the
same parameters, a small change in the initial
conditions of the state variables can result in a
very different behaviour (periodic solution with
different amplitude and frequency, but also non-
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Figure 11: Oscillation frequency obtained
through time-domain integration of the flute
model for both a decreasing and an increasing
ramp of the delay τ̃ . The lines of blue dots in-
dicate the resonance frequencies of the resonator
(f1 =

ω1
2π , f2 =

ω2
2π , f3 =

ω3
2π , f4 =

ω4
2π , f5 =

ω5
2π ).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

5

10

15

20

25

30

35

dimensionless delay τ ⋅ ω
1

am
pl

itu
de

 o
f t

he
 li

m
it 

cy
cl

e
 o

f V
ac

 (
pe

ak
 to

 p
ea

k)

 

 

simulation − decreasing ramp of τ

simulation − increasing ramp of τ

Figure 12: Oscillation amplitude obtained
through time-domain integration of the flute
model for both a decreasing and an increasing
ramp of the delay τ̃ .

periodic solutions).
The superimposition, in figures 13 and 14 of

the bifurcation diagram and the results of simu-
lations already presented above, provides a global
overview of the different existing periodic regimes,
and thus allows a better understanding of the
observed phenomena. The bifurcation diagram
highlights, for the range of the delay τ̃ under in-
vestigation, the existence of five periodic solution
branches, corresponding to the five different regis-
ters, that is to say to oscillations on each (non uni-
form) mode of the resonator (see the third equa-
tion of system (10)). Stable and unstable parts of
the branches are respectively represented by solid
lines and dashed lines.
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Figure 13: Oscillation frequency obtained
through time-domain integration of the flute
model for both a decreasing and an increasing
ramp of the delay τ̃ , superimposed with the bifur-
cation diagram obtained through numerical con-
tinuation.

This comparison between the bifurcation dia-
gram and simulations shows that the ”jump” from
a given register A to another register B is caused
by the loss of stability (through a Neimark-Sacker
bifurcation) of the branch of periodic solution cor-
responding to the register A. Such a bifurcation
can lead to the birth of a quasiperiodic regime,
which would be called a multiphonic sound in
a musical context, and whose generation mech-
anism in flute-like instruments is described more
precisely in [22].
The confrontation between the bifurcation di-

agram and simulations also allows to explain the
hysteresis phenomenon by the coexistence of sev-
eral stable periodic solutions for a same value of
the delay τ̃ . Let us consider the case of transition
between registers 4 and 5 (corresponding respec-
tively to oscillations at about ω4/(2π) = 1600Hz

13
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Figure 14: Oscillation amplitude obtained
through time-domain simulation of the flute
model for both a decreasing and an increasing
ramp of the delay τ̃ , superimposed with the bifur-
cation diagram obtained through numerical con-
tinuation.

and ω5/(2π) = 2000Hz): starting from the 4th
register, at τ̃ = 0.44, a decrease of τ̃ leads to a
jump on the five register at τ̃ = 0.19. Starting an
increasing ramp of the delay from this point, one
observe that the system remains on the branch
corresponding to the 5th register, until it becomes
unstable, at τ̃ = 0.45. In the same way, it can
explain the fact that some regimes (for example
the third register) are only observed, using time-
domain integration, in the case of an increasing
ramp of the delay, and not in the case of a de-
creasing ramp (see figures 11 and 13).

Thereby, the bifurcation diagram allows us to
predict, in the case of a quasi-static variation of
the delay, both oscillation threshold and thresh-
olds of register change. As such a prediction is
impossible with the classical approach involving
a linear analysis of the model (see for example
[3]), it highlights the valuable contribution of the
method.

As an illustration, figures 15 and 16 respec-
tively represent, as functions of the reduced jet
velocity θ, the same bifurcation diagrams as in fig-
ures 13 and 14, superimposed with the thresholds
of the different periodic solution branches pre-
dicted through an analysis of the model linearised
around its equilibrium solution. These thresholds
correspond to the Hopf bifurcation points, whose
detection is described in section 3.3. As high-
lighted in figures 15 and 16, such a linear analysis
allows to predict the thresholds corresponding to
instabilities of the equilibrium solution (that is to
say the birth of the periodic solution branches),

but it does not provide any information about sta-
bility of the emerging periodic solution. As a pe-
riodic solution is not necessary stable at the birth
of the branch, the threshold predicted through a
linear analysis does not necessary correspond to
the ”observable” threshold of a given oscillation
regime. As a consequence of thresholds prediction
and stability analysis, a bifurcation diagram also
predicts and explains hysteresis ranges, which is
impossible through a linear analysis, and not al-
ways possible using time-domain simulations, due
to the sensitivity to initial conditions, as under-
lined above. This is however a relevant informa-
tion in the context of musical acoustics since it
is related with how confortable a musician feels
when playing the instrument [3]. Indeed, an im-
portant hysteresis allows him to play both forte
on the first register and piano on the second reg-
ister.
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Figure 15: Oscillation frequency obtained
through numerical continuation, represented as a
function of the reduced jet velocity θ =

Uj ·2π
Wω1

,
and superimposed with the thresholds predicted
through a linear analysis of the model. The ad-
ditional window (a) represents a zoom on the
branch related to the second register: it high-
lights the difference between the thresholds pre-
dicted through linear analysis, and the ”observ-
able” thresholds, corresponding to the beginning
of the stable part of the branch (in solid line).

Thus, the bifurcation diagram, giving access to
new kind of information (especially existence of
unstable solutions, co-existence of multiple sta-
ble solutions, and oscillation amplitude and fre-
quency of different periodic solutions of the non-
linear model), enables an easier interpretation of
the simulation results (see especially figures 12
and 14), a more precise prediction of some char-
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Figure 16: Oscillation amplitude obtained
through numerical continuation, represented as a
function of the reduced jet velocity θ =

Uj ·2π
Wω1

,
and superimposed with the thresholds predicted
through a linear analysis of the model. The ad-
ditional window (a) represents a zoom on the
branch related to the second register: it high-
lights the difference between the thresholds pre-
dicted through linear analysis, and the ”observ-
able” thresholds, corresponding to the beginning
of the stable part of the branch (in solid line).

acteristics of the different periodic regimes (espe-
cially their thresholds), and explains some aspects
of the model behaviour observed in simulations,
such as hysteresis associated to register changes.

5 Conclusion

Widely used in many scientific fields, methods
dedicated to computation of periodic solutions of
nonlinear dynamical systems have demonstrated,
in several previous works [10, 11, 12, 16, 17], their
benefits for the study of musical instruments.
However, no available software (such as AUTO
[8], Manlab [18], or DDE-Biftool [19]) is suitable
for neutral delayed systems, involved in the mod-
eling of flute-like instruments. The orthogonal
collocation method has recently been adapted to
such systems [23], allowing us to consider a study
of the state-of-the-art model of flutes through nu-
merical continuation.

The comparison between the results of orthog-
onal collocation coupled with numerical contin-
uation algorithm and time-domain integration
shows very good agreement in terms of oscillation
amplitude and frequency, thresholds of the differ-
ent periodic regimes, and waveforms. It thus al-
lows the validation of this new approach to study

flute-like instruments. Giving access to bifurca-
tion diagram of the model, this method provides
a more global knowledge of the model dynamics,
and permits to explore more broadly the influ-
ence of the variation of a parameter. Thereby, it
allows to explain and predict more precisely dif-
ferent aspects of the model behaviour, which can
be related to some phenomena observed experi-
mentally in flute-like instruments, such as regis-
ter changes and associated hysteresis. Thus, the
access to this more global knowledge of the model
behaviour should allow to envisage an easier qual-
itative confrontation between numerical and ex-
perimental results.

Nevertheless, this method presents a number
of restrictions, and is thus not capable of re-
placing time-domain simulations entirely, but is
a useful complement. Especially, one can only
compute steady-state solutions, and there is no
calculation of the transients, which are partic-
ularly important in the musician’s playing. In
the same way, this method only provides infor-
mation about the behaviour of the model in the
case of a quasi-static variation of the continua-
tion parameter. Since recent studies [46] have
highlighted the strong influence of the variation
rate of a control parameter on the behaviour of
a dynamical system, one can wonder about the
validity of the bifurcation diagram in a musical
context, where many control parameters vary con-
tinuously. Moreover, while orthogonal collocation
can be extented to compute non-periodic solu-
tions (such as for example quasiperiodic, inter-
mittent or chaotic regimes), the software package
used here is not currently suitable for such calcu-
lations.

A Reformulation of the model

Both to highlight its mathematical nature and to
allow its implementation in DDE-Biftool and its
extension for neutral systems, the model needs
to be written as a first-order system: ẋ(t) =
f(x(t),x(t − τ), ẋ(t − τ), λ), with x the vector
of state variables, and λ the set of parameters.

Starting from system (10), and writting the
third equation in the time-domain leads to:
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η(t) =
h

Uj
eαiW vac(t− τ)

∆p(t) =
ρδdbUj

W

d

dt

[
tanh

(
η(t)− y0

b

)]

− ρ

2

(
vac(t)

αvc

)2

sgn(vac(t))

Vac(ω) =

(
a0

b0jω + c0
+

p−1∑

k=1

akjω

ω2
k − ω2 + jω ωk

Qk

)
·∆P (ω)

(24)

For each non uniform mode k, we define Vack(ω)
such as Vack(ω) =

akjω

ω2
k
−ω2+jω

ωk
Qk

·∆P (ω)(with k an

integer such as k ∈ [1; p − 1]). In the same way,
we define Vac0(ω) =

a0
b0jω+c0

·∆P (ω), such as one

finally obtains Vac = Vac0 +
∑p−1

k=1 Vack .
System (24) can thus be written as:

η(t) =
h

Uj
eαiW vac(t− τ)

∆p(t) =
ρδdbUj

W

d

dt

[
tanh

(
η(t)− y0

b

)]

− ρ

2

(
vac(t)

αvc

)2

sgn(vac(t))

Vac(ω) =

p−1∑

k=0

Vack(ω)

Vac0(ω) =

(
a0

b0jω + c0

)
·∆P (ω)

Vac1(ω) =

(
a1jω

ω2
1 − ω2 + jω ω1

Q1

)
·∆P (ω)

...

Vac(p−1)
(ω) =


 a(p−1)jω

ω2
(p−1)

− ω2 + jω
ω(p−1)

Q(p−1)




·∆P (ω)

(25)

Through an inverse Fourier transform, each ex-
pression Vack (with k ∈ [1; p − 1]) can be written
as:

d2vack(t)

dt2
+

ωk

Qk

· dvack(t)
dt

+ ω2
kvack(t)

= ak
d∆p(t)

dt

(26)

and the expression of Vac0 becomes:

b0 ·
dvac0(t)

dt
+ c0vac0(t) = a0∆p(t) (27)

The reinjection of the expressions of ∆p(t) and
η(t) leads to:

vac(t) =

p−1∑

k=0

vack(t)

dvac0(t)

dt
=
a0ρδdbUj

b0W

d

dt

{
tanh

[
heαiW

bUj

·vac(t− τ)− y0
b

]}

− a0ρ

2b0

(
vac(t)

αvc

)2

sgn(vac(t))−
c0
b0
vac0(t)

d2vack(t)

dt2
=
akρδdbUj

W

d2

dt2

{
tanh

[
heαiW

bUj

·vac(t− τ)− y0
b

]}

− ak
d

dt

[
ρ

2

(
vac(t)

αvc

)2

sgn(vac(t))

]

− ωk

Qk

dvack(t)

dt
− ω2

kvack(t).

(28)

To improve numerical conditioning of the prob-
lem, we define the following dimensionless vari-
ables:

t̃ =ω1t

ṽk(t̃) =
heαiW

bUj
vack(t̃)

(29)

Noting ˙̃v(t̃) and ¨̃v(t̃) respectively the first and
second order derivative of ṽ(t̃) with respect to the
dimensionless time t̃, one finally obtains:

16



˙̃v0(t̃) =
a0ρδdhe

αiW

Wb0

p−1∑

i=0

˙̃vi(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− a0ρbW

2b0α2
vche

αiWγτ̃

p−1∑

i=0

ṽi(t̃)

abs

[
p−1∑

i=0

ṽi(t̃)

]
− c0

b0ω1
ṽ0(t̃)

¨̃vk(t̃) =
akρδdhe

αiW

W

p−1∑

i=0

¨̃vi(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− 2akρδdhe
αiW

W

(
p−1∑

i=0

˙̃vi(t̃− τ̃)

)2

tanh

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− akρbW

2α2
vche

αiW γτ̃

p−1∑

i=0

˙̃vi(t̃)

abs

[
p−1∑

i=0

ṽi(t̃)

]
− akρbW

2α2
vche

αiWγτ̃

p−1∑

i=0

ṽi(t̃)

p−1∑

i=0

˙̃vi(t̃)

sgn

[
bWω1

heαiW γτ̃

p−1∑

i=0

ṽi(t̃)

]
−
(
ωk

ω1

)2

ṽk(t̃)

− ωk

ω1Qk

˙̃vk(t̃)

(30)

∀k ∈ [1; 2; ...; p − 2; p − 1].

The definition of the variables: z̃k(t̃) = ˙̃vk(t̃)
finally allow to reduce system (30) to a first-order
system:

˙̃v0(t̃) =
a0ρδdhe

αiW

Wb0

p−1∑

i=0

z̃i(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− a0ρbW

2b0α2
vche

αiW γτ̃

p−1∑

i=0

ṽi(t̃)

abs

[
p−1∑

i=0

ṽi(t̃)

]
− c0

b0ω1
ṽ0(t̃)

˙̃vk(t̃) =z̃k(t̃)

˙̃zk(t̃) =
akρδdhe

αiW

W

p−1∑

i=0

˙̃zi(t̃− τ̃)

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− 2akρδdhe
αiW

W

(
p−1∑

i=0

z̃i(t̃− τ̃ )

)2

tanh

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]

{
1− tanh2

[
p−1∑

i=0

ṽi(t̃− τ̃)− y0
b

]}

− akρbW

2α2
vche

αiWγτ̃

p−1∑

i=0

z̃i(t̃)

abs

[
p−1∑

i=0

ṽi(t̃)

]
− akρbW

2α2
vche

αiW γτ̃

p−1∑

i=0

ṽi(t̃)

p−1∑

i=0

z̃i(t̃)

sgn

[
bWω1

heαiWγτ̃

p−1∑

i=0

ṽi(t̃)

]
−
(
ωk

ω1

)2

ṽk(t̃)

− ωk

ω1Qk

z̃k(t̃)

(31)

∀k ∈ [1; 2; ...; p−2; p−1], with p the total number
of modes.
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