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Abstract

We investigate the numerical solution of Poisson equations on dynamically adapted struc-
tured grids generated by multiresolution analysis, arising in the numerical simulation of time-
dependent problems modeled by evolutionary partial differential equations (PDEs) disclosing
propagating fronts such as streamer discharge phenomena. A multiresolution technique not
only involves important savings in computational costs, but we also prove that it guarantees
numerical approximations to the Poisson equation within an accuracy tolerance. In contrast
to most adaptive meshing approaches in the literature that solve such elliptic PDEs level-wise
and thus at uniform resolution throughout the set of adapted grids, we introduce a numeri-
cal procedure mainly based on inter-level operations to represent the elliptic operators on the
adapted grid. In this way the discrete Poisson equation can be solved at once over the entire
computational domain as a completely separate process, strongly coupling inter-grid relations
and independently of the mesh generation or any other grid-related data structure or geomet-
ric consideration. We investigate the validity of both the theoretical characterization as well
as the numerical construction of the discrete operators in the context of streamer discharge
simulations. Multiresolution error bounds are thus evaluated in a simpler configuration with
analytical solution that nevertheless mimics the spatial structure found in such physical con-
figurations. The complete model is then considered to simulate double-headed streamers with
photoionization mechanisms, for which we study the performance and capabilities of various di-
rect and iterative linear solvers. The numerical strategy is finally assessed by showing its ability
to accurately describe the complex interaction dynamics of two positive streamer discharges, a
problem especially relevant for applications.
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1 Introduction

In numerous scientific applications we have to deal with the numerical solution of elliptic PDEs such
as Poisson equation coupled with evolutionary PDEs in order to address the numerical simulation
of time-dependent physical processes. One major example is given, for instance, by the so-called
projection methods [13, 50], widely investigated, extended, and implemented in the literature to
solve the incompressible Navier-Stokes equations (see, e.g., [25] and references therein). Solving
Poisson equations is also very common in plasma physics simulations. As an example, in the
framework of a drift-diffusion model consisting of a set of continuity equations for charged species
coupled with a Poisson equation for the electric potential, non-linear ionization waves also called
streamers can be simulated. These ionization waves occur as a consequence of the high electric
field induced by the fast variations of the net charge density ahead of an electron avalanche with
large amplification [46]. Streamers are at the basis of the filamentary structure of discharges at
atmospheric pressure [4, 31] and are of interest for many low-temperature plasma applications.
In either situation Poisson-type equations must be solved often several times at every time-step
throughout the numerical simulation, a task that depending on the size and complexity of the
problem can easily become cumbersome in both CPU time and memory. In particular phenomena
characterized by propagating fronts, as considered in this work, commonly require a sufficiently fine
spatial representation and potentially large systems of equations need then to be solved. Therefore,
even though many dedicated software packages are available in the literature to solve this kind
of problem, supplementary work proves to be necessary to ease the corresponding computational
efforts.

In this regard, once the size of the finest resolved spatial scale is chosen, grid adaptation for time-
dependent problems disclosing localized fronts is specifically designed to yield high data compression
and hence important savings in computational costs (see, e.g., [7, 6]). The context of this work is
thus established by the numerical solution of elliptic PDEs of Poisson-type on time-varying adapted
grids, resulting from the use of adaptive gridding techniques for time-dependent problems modeled
by stiff PDEs. Among the many adaptive meshing approaches developed in the literature, we
consider in this work adaptive multiresolution schemes based on [26, 27], namely the multiresolution
finite volume scheme introduced in [17] for conservation laws. Besides the inherent advantages of
grid adaptation, multiresolution techniques rely on biorthogonal wavelet decomposition [16] and
thus offer a rigorous mathematical framework for adaptive meshing schemes [14, 39]. In this way not
only approximation errors coming from grid adaptation and thus data compression can be tracked,
but general and robust techniques can be built since the wavelet decomposition is independent of
any physical particularity of the problem and accounts only for the spatial regularity of the discrete
variables at a given simulation time. Adaptive multiresolution schemes have been successfully
implemented for the simulation of compressible fluids modeled by Euler or Navier-Stokes equations
(see, e.g., [40, 11, 19] and references therein), as well as for the numerical solution of time-dependent
parabolic [47, 12] and stiff parabolic PDEs [23, 22].

Having a set of equations discretized on an adapted structured grid a critical aspect throughout
the practical implementation is related to the way of working with non-uniform discretizations,
especially for elliptic operators that act simultaneously on the whole domain. In the context of em-
bedded structured grids with a given number of grid-levels a particular attention must be addressed
to the inter-grid interfaces in order to consistently define the discrete operations there. Otherwise
potential mismatches may lead to substantial differences in the numerical approximations as well
as loss of conservation (see [1] for a detailed discussion). The most common way of solving an
elliptic PDE on this type of adapted grid consists in solving the discrete system level-wise, that is,
considering one grid-level at a time followed by inter-level operations to synchronize shared inter-
faces at different grid-levels as well as overlapped regions. In this way the main idea is to perform
successive computations over partial regions of the whole domain at a uniform mesh resolution
until the problem is entirely solved on the adapted grid. Some examples can be found, for instance,
in [1, 51, 37, 36, 49]. Such a level-wise approach requires then a sufficiently accurate resolution
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at coarser levels since these solutions will be successively used for finer grid computations, for in-
stance, to define the boundary conditions of finer regions inside the computational domain. For
intensive computations iterative linear solvers based on geometric multigrid schemes are usually
implemented, taking advantage of the multi-mesh representation of the problem [1, 51, 36].

In this paper we consider the numerical solution of Poisson equations on adapted grids gener-
ated by multiresolution analysis. Based on the mathematical framework of wavelet decomposition
we investigate the influence of data compression on the accuracy of the approximations obtained
from the Poisson equations discretized on the adapted mesh, in the specific case of a multiresolution
finite volume scheme for time-dependent PDEs1. Instead of solving the discrete equations level-wise
throughout the set of embedded grids, we have conceived a numerical procedure to represent the
elliptic operators discretized directly on the adapted grid consisting of cells with different spatial
resolution. The algorithm relies on a local reconstruction of uniform-grid zones at inter-level in-
terfaces by means of multiresolution operations between consecutive grid-levels that guarantee the
conservation and accuracy properties of multiresolution schemes. This is a general approach that
not only yields a compact representation of the problem thanks to grid adaptation, but also results
in a separate algebraic system completely independent of any consideration related to the adaptive
meshing scheme or its corresponding data structure, as well as of the numerical integration of the
stiff time-dependent PDEs associated with the model. The resulting discrete systems can thus be
solved at once over the whole computational domain with no need of grid overlapping by considering
an appropriate linear solver.

In order to investigate the theoretical insights we have derived in the framework of multiresolu-
tion approximations and to validate the numerical construction of the discrete operators, we carry
out some numerical computations in the context of streamer discharge simulations at atmospheric
pressure. The detailed physics of these discharges reveals an important time-space multi-scale char-
acter [24]. Specifically a large variation of space scales needs to be taken into account since the
Debye length at atmospheric pressure can be as small as a few micrometers, while the inter-electrode
gaps where discharges propagate are usually of the order of a few centimeters. Grid adaptation
is therefore highly desirable and was already considered for streamer simulations, for instance, in
[37, 45, 52], where in particular the elliptic operator was directly discretized on the non-uniform grid
in [52] in a different context for an asynchronous time integration scheme. In [21] we introduced a
time-space adaptive numerical scheme to simulate propagating streamers on adaptive multiresolu-
tion grids with error control. Nevertheless, a simplified geometry was considered there in order to
avoid the numerical solution of the Poisson equation. The present work describes then the required
fundamentals and further developments needed to consider and solve the Poisson equations on the
adapted grids according to the approach established in [21], which aims at assuring a tracking ca-
pability of the numerical errors and a full resolution of the equations on the adapted grid without
the need of grid overlapping.

We consider first a simplified model with analytical solution that retains the spatial character-
istics of the complete model in order to assess the multiresolution error bounds. A more realistic
model of double-headed streamers with photoionization mechanisms is then studied, for which we
conduct a study on the numerical performance of some software packages available in the literature
to solve linear systems paying a particular attention to algebraic multigrid solvers. Finally, we show
how the numerical strategy developed in this work ensures a fine time-space resolution of a partic-
ularly relevant configuration in the field of plasma physics given by the complex interaction of two
positive streamers, the physics of which has been recently investigated in [8]. Even though the nu-
merical strategy remains perfectly valid for three-dimensional configurations, only two-dimensional
problems are simulated and described here which are complex enough to thoroughly evaluate the
numerical technique. In this way this paper aims at describing different aspects related to the

1In this paper we do not investigate the convergence rates of adaptive multiresolution techniques, but rather
consider a fixed finest grid for which the finest physical scales are known to be resolved and study the influence of
data compression. A detailed theoretical study on more general adaptive wavelet methods for elliptic equations can
be found in [15].
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numerical solution of Poisson equations on multiresolution grids for time-dependent problems, from
its mathematical description to its effective implementation along with additional theoretical and
practical considerations.

The paper is organized as follows. We present some theoretical principles of multiresolution
analysis in Section 2 before conducting a mathematical description of Poisson equations discretized
on multiresolution grids. In Section 3 we recall some key aspects of the multiresolution technique
considered here and then we describe the numerical procedure conceived to represent elliptic op-
erators on the adapted mesh. Numerical results coming from streamer discharge simulations are
investigated in Section 4.

2 Data compression errors for Poisson equation on multires-

olution grids

We carry out a mathematical description of a Poisson equation discretized on a multiresolution
adapted grid and in particular the influence of data compression on the numerical accuracy of the
approximations. However, we first need to briefly recall the general framework of biorthogonal
wavelet bases and multiresolution analysis. More details on wavelet decomposition and multireso-
lution techniques for grid adaptation can be found in [14, 39].

2.1 Biorthogonal wavelet decomposition

Let us consider an open domain Ω ⊂ R
d, and two sequences of nested subspaces of L2(Ω):

Vj ⊂ Vj+1, Ṽj ⊂ Ṽj+1, j ∈ N0, (1)

such that
⋃

j∈N0
Vj =

⋃
j∈N0

Ṽj = L2(Ω). For each pair of subspaces we introduce the sets of scaling

functions: (φj,k)k∈∆j
and (φ̃j,k)k∈∆j

, ∆j ⊂ Z
d, with compact supports of diameter proportional to

2−j , and with the biorthogonal property:

〈φj,k, φ̃j,k′〉 = δk,k′ , k, k′ ∈ ∆j , j ∈ N0, (2)

where the second subscript k indicates the localization 2−jk of φj,k (resp., φ̃j,k) within the subspace

Vj (resp., Ṽj). For a given f ∈ L
2(Ω), we can then define the following projector Pj onto Vj ⊂ L

2(Ω):

Pjf :=
∑

k∈∆j

〈f, φ̃j,k〉φj,k. (3)

It can thus be seen that the base (φj,k)k∈∆j
, together with (3), defines an approximation space Vj of

resolution 2−j in L2(Ω). The same follows for (φ̃j,k)k∈∆j
and Ṽj , considering the adjoint projector

P̃j onto Ṽj .

Based on the definition of (φj,k, φ̃j,k), we can construct a pair of biorthogonal wavelets: ψj,k

and ψ̃j,k, with the pairwise biorthogonality property:

〈ψj,k, ψ̃j′,k′〉 = δ(j,k),(j′,k′), k, k′ ∈ ∆j , j, j
′ ∈ N0,

such that
〈φj,k, ψ̃j,k′〉 = 〈φ̃j,k, ψj,k′〉 = 0. (4)

The pairs (φj,k, ψj,k) and (φ̃j,k, ψ̃j,k) are usually known as, respectively, the primal and the dual
scaling function and wavelet. The nestedness of the approximation spaces (1) involves that

PjPj+1 = Pj , P̃jP̃j+1 = P̃j ,
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and we can thus define the projection

Qjf = (Pj+1 − Pj)f =
∑

k∈∆j

〈f, ψ̃j,k〉ψj,k, (5)

onto the complement space Wj = Vj+1 ∩ Ṽ
⊥
j , known as the wavelet space, spanned by the base

(ψj,k)k∈∆j
. Projector Q̃j := P̃j+1 − P̃j onto W̃j = Ṽj+1 ∩ V

⊥
j is similarly defined.

The projection Pjf defined in (3) resolves function f up to the scale 2−j , while finer details
are discarded. For two successive spaces: Vj+1 and Vj , the representation at scale 2−(j+1): Pj+1f ,
can be thus reconstructed from a coarser one at 2−j : Pjf , by adding according to (5) the omitted
information when going from a coarse to a finer scale: Qjf . Iterating from a given J > 0 induces
then the following multi-scale representation:

PJf = PJ−1f + [PJf − PJ−1f ] = . . . = P0f +

J−1∑

j=0

Qjf, (6)

which similarly leads to the following wavelet decomposition of L2(Ω):

f = P0f +

∞∑

j=0

Qjf. (7)

2.2 Multiresolution analysis

Following the multiresolution finite volume scheme of [17], let us build a set of nested dyadic grids
over Ω ⊂ R

d. With the abbreviated notation: Ωγ := Ωj,k, we consider regular disjoint partitions

(Ωγ)γ∈Sj
of Ω such that

⋃
γ∈Sj

Ωγ = Ω, for j = 0, 1, . . . , J . Since each Ωγ , γ ∈ Sj , is in general the

union of a finite number of cells Ωµ, µ ∈ Sj+1, (2
d cells in the dyadic case) the sets Sj and Sj+1

represent consecutive embedded grids over Ω. We thus denote |γ| := j if γ ∈ Sj , while subscript
k ∈ ∆j corresponds to the position of the cell within Sj . For instance, in Cartesian coordinates we
consider the univariate dyadic intervals in R:

Ωγ = Ωj,k :=]2−jk, 2−j(k + 1)[, γ ∈ Sj := {(j, k) s.t. j ∈ (0, 1, . . . , J), k ∈ Z},

and the same follows for higher dimensions.
Defining the dual scaling function φ̃γ in (3) as

φ̃γ := |Ωγ |
−1χΩγ

, (8)

we denote fj := (fγ)γ∈Sj
, with fγ := 〈f, φ̃γ〉, as the spatial representation of f(x), x ∈ Ω, on

the grid Sj . Notice that fγ is no other than the cell-average of f : Ω → L2(Ω) in Ωγ , scaled by
|Ωγ |; fj is hence equivalent to a finite volume representation of resolution 2−j of f . For consecutive
grid-levels the following representations of fj+1 := Pj+1f ∈ Vj+1 are thus perfectly equivalent,

fj+1 =
∑

|µ|=j+1

fµφµ =
∑

|γ|=j

fγφγ +
∑

|γ|=j

dγψγ , (9)

following (5), where the set of details: (dγ)γ∈Sj
, dγ := 〈f, ψ̃γ〉, gathers the wavelet coefficients in

the wavelet space Wj .

Now, for a given scaling function φ̃λ at level j: |λ| = j, applying 〈·, φ̃λ〉 term-wise to (9) and
considering the biorthogonality properties (2) and (4) yield

∑

|µ|=|λ|+1

fµ〈φµ, φ̃λ〉 = fλ; (10)
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and we can hence define a fine-to-coarse operation given by

fλ = |Ωλ|
−1

∑

|µ|=|λ|+1,Ωµ⊂Ωλ

|Ωµ|fµ, (11)

as an immediate consequence of (8) into (10). Similarly, by applying 〈·, φ̃λ〉 term-wise to (9), this
time with |λ| = j + 1, a coarse-to-fine operation can be defined by evaluating

fλ =
∑

Σγ∩Σλ 6=∅

fγ〈φγ , φ̃λ〉+
∑

Σγ∩Σλ 6=∅

dγ〈ψγ , φ̃λ〉, |λ| = |γ|+ 1, (12)

where Σγ := suppψ̃γ . Data between consecutive levels are thus uniquely related by inter-grid
operations, (11) and (12), where the coefficients, known as masks, do not depend on data but only
on the definition of the compactly supported wavelets and scaling functions [14, 39].

Following [17], we can equivalently construct the details as

dµ = 〈f, ψ̃µ〉 = fµ − f̂µ, (13)

with
f̂µ :=

∑

Σγ∩Σµ 6=∅

fγ〈φγ , φ̃µ〉 =
∑

γ∈RI(µ)

βµ,γfγ , |µ| = |γ|+ 1, (14)

for a set of coefficients (βµ,γ)γ∈RI(µ) and RI(µ) := {γ s.t.(|γ| = |µ| − 1∧Σγ ∩Σµ 6= ∅)}, such that

fγ = |Ωγ |
−1

∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|f̂µ, (15)

as a result of applying the fine-to-coarse operation (11) to (12). The definition of (13)-(14) amounts

to consider a box wavelet ψ̃µ of order β resulting from the combination of B-splines of order 1
defined by the dual scaling function (8):

ψ̃µ := φ̃µ −
∑

γ∈RI(µ)

βµ,γ φ̃γ ,

after introducing (8) and (14) into (13). Hence, f̂µ is an approximation of order β to fµ in (14)
based on the values fγ , |γ| = |µ| − 1, contained in a stencil RI(µ) around Ωµ.

From (9), a one-to-one correspondence is obtained between fj+1 and fj by additionally consid-
ering the wavelet coefficients (dγ)γ∈Sj

, and the same holds for the multi-scale representation (6)
that considers f0 and the sets (dγ)γ∈Sj′

, j′ = 0, . . . , j, to obtain fj+1. However, based on the con-
struction (13) in [17] we consider instead the array dj+1 = (dµ)µ∈∇j+1

, where the set ∇j+1 ⊂ Sj+1

is obtained by removing for each γ ∈ Sj one µ ∈ Sj+1 such that Ωµ ⊂ Ωγ . In this way we keep
the one-to-one correspondence taking into account that the details involve the additional relation:∑

|µ|=|γ|+1,Ωµ⊂Ωγ
dµ = 0, according to (13) and (15). We can thus write that

fj+1 ←→ (fj ,dj+1),

and by iterating this decomposition, we finally obtain a multi-scale representation of fJ in terms of
mJ := (f0,d1,d2, · · · ,dJ):

M : fJ 7−→mJ , (16)

and similarly, its inverseM−1.
Given a set of indices Λ ⊂ ∇J , where ∇J :=

⋃J
j=0∇j with ∇0 := S0, we define a thresholding

operator TΛ that leaves unchanged the components dλ ofmJ if λ ∈ Λ, and replaces it by 0 otherwise.
Defining the level-dependent threshold values (ǫ0, ǫ1, . . . , ǫJ), the set Λ is given by

λ ∈ Λ if ‖dλ‖Lp ≥ ǫ|λ|. (17)
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Applying TΛ on the multi-scale decompositionmJ of fJ amounts then to building the multiresolution
approximation AΛfJ to fJ , where the operator AΛ is given by

AΛ :=M−1TΛM,

in which all details of a certain level of regularity have been discarded.

2.3 Multiresolution error estimate

Taking into account the wavelet decomposition (7),

f =

∞∑

j=−1

∑

|λ|=j

〈f, ψ̃λ〉ψλ,

where ψ−1,k := φ0,k and ψ̃−1,k := φ̃0,k, we can construct the array ΨJ,λ, |λ| ≤ J , that corresponds

to the primal wavelets ψλ cell-averaged at level J , i.e., ΨJ,λ := (〈ψλ, φ̃γ〉)γ∈SJ
. Based on [17], we

define the following normalized ℓ2-norm:

‖fJ‖
2
2 := 2−dJ

∑

λ∈SJ

(fλ)
2,

which corresponds to the L2-norm of a piecewise constant function. For compactly supported
wavelets, there is a constant C > 0 such that

‖ΨJ,λ‖2 ≤ C‖ψλ‖L2 ≤ C2−d|λ|/2,

and for the multiresolution approximation, we have that

‖fJ −AΛfJ‖
2
2 = ‖dλΨJ,λ|λ/∈Λ‖

2
2 ≤ C

∑

λ/∈Λ

‖dλ‖
2
L22−d|λ| = C

∑

‖dλ‖L2≤ǫ|λ|

‖dλ‖
2
L22−d|λ|,

since only some of the component of fJ−AΛfJ are non-zero, namely those corresponding to discarded
details, and hence the approximation error is bounded by their sum. Considering a level-wise
threshold parameter: ǫj := 2dj/2ǫ, the next bound follows (where #(·) returns the cardinality of a
set):

‖fJ −AΛfJ‖
2
2 ≤ C#(∇J)ǫ2 = C#(SJ)ǫ

2 ≤ C2dJǫ2,

with the cautious assumption that ‖dλ‖L2 = ǫ|λ| for all dλ such that λ /∈ Λ (even though they might
be much smaller than ǫ|λ|) as well as for the remaining components of fJ −AΛfJ (even though they

are zero). Choosing ǫ := 2−dJ/2ηMR then yields

‖fJ −AΛfJ‖2 ≤ CηMR, (18)

with the level-dependent threshold values:

ǫj = 2d(j−J)/2ηMR, j = 0, 1, . . . , J.

Bound (18) is similarly shown in [17] for both a uniform and ℓ1 norms.

2.4 Poisson equation discretized on multiresolution grids

Given V ∈ H2(Ω) and f ∈ L2(Ω) that verify the following Poisson equation:

∂2
x
V = f, (19)
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with x ∈ Ω, we have that
fJ = (〈f, φ̃γ〉)γ∈SJ

= (〈∂2
x
V, φ̃γ〉)γ∈SJ

. (20)

Considering that fJ ∈ R
n, n = #(SJ), and the space of square matrices of size n: Mn(R), let us

introduce an operator A ∈Mn(R) such that following (20),

fJ = AVJ +O ((∆x)α) , (21)

where ∆x := diam(Ωγ |γ∈SJ
) corresponds to the spatial resolution of the finest grid SJ , and

VJ := (〈V, φ̃γ〉)γ∈SJ
∈ R

n. Notice that this operator A is no other than a spatial discretiza-
tion of the Laplace operator. It is therefore a positive definite, and hence non-singular matrix
assuming appropriate boundary conditions at x ∈ ∂Ω for the Poisson equation (19). In particular
following (21), the unique solution Vd ∈ R

n of system AVd = fJ is an approximation of order α to
VJ . Within this framework, the next theorem can be proved.

Theorem 1. Let A be a positive definite matrix inMn(R) that verifies (21), and f ǫJ := AΛfJ . For
Vǫ ∈ R

n such that AVǫ = f ǫJ , there is a constant c > 0 for which

‖Vǫ −VJ‖2 ≤ c ((∆x)
α + ηMR) .

Proof. Proof follows straightforwardly by considering system Ax = b with x = Vǫ − Vd and
b = f ǫJ − f ǫJ , together with (21) and bound (18).

Given a spatial discretization of order α, the exact solution VJ of the Poisson equation can
be therefore approximated according to a prescribed tolerance ηMR, even if the multiresolution
analysis acts on the right-hand side function. In particular it follows that the exact solution Vd of
the discrete Poisson equation AVd = fJ is approximated by Vǫ in the same way f ǫJ does for fJ :

‖Vd −Vǫ‖2 ≤ CηMR.

Notice however that in a practical implementation the Laplacian will be discretized on an adapted
grid, and hence we will not be solving system AVǫ = f ǫJ . Nevertheless the next corollary establishes
a necessary condition to guarantee the same numerical behavior described in Theorem 1.

Corollary 1. Let Ã be a positive definite matrix inMn(R) such that for any x ∈ R
n,

‖(A− Ã)x‖2 ≤ CηMR. (22)

For Ṽ ∈ R
n such that ÃṼ = f ǫJ , there is a constant c > 0 for which

‖Ṽ −VJ‖2 ≤ c ((∆x)
α + ηMR) . (23)

Operator Ã corresponds to the Laplacian discretized on an adapted grid and projected onto
the SJ -grid. By applying the multiresolution analysis on the right-hand side function and solving
the discrete Poisson equation on the corresponding adapted grid, we obtain a solution Ṽ that also
verifies

‖Vd − Ṽ‖2 ≤ CηMR, (24)

as long as (22) is valid. Even though condition (22) seems to be quite strong, in practice we are only
interested in the set of arrays x ∈ R

n that reasonably approximate the solution V of a given Poisson
equation (19). In this case property (22) is very likely satisfied and perhaps even overestimated,

since the adapted grid and thus Ã have been built based on the less regular function f , with respect
to the actual solution V .
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3 Numerical implementation

We now describe the numerical technique conceived to construct a Poisson solver within the present
multiresolution framework. We consider the multiresolution implementation presented in [23]. For
the sake of completeness some key aspects of this particular implementation will be first recalled,
while more details and references can be found in [20].

3.1 Construction of multiresolution grids

The adapted grid is composed of a set of nested dyadic grids: Sj , j = 0, 1, . . . , J , from the coarsest
to the finest, generated by refining recursively a given cell depending on the local regularity of the
variables of a given time-dependent problem at a given time. Function f in the Poisson equation
(19) that depends directly on these variables (and hence varies also in time) may be additionally
considered if necessary, as well as the solution V corresponding to the previous time-step to generate
the grids. These grids are implemented in a multi-dimensional and Cartesian finite volume frame-
work. Data compression is achieved by discarding the cells whose details are not in Λ according
to (17). However, a graded tree Λǫ is considered in practice instead of Λ because a certain data
structure must be respected in order to carry out the multiresolution transformM in (16) (see [17]
for more details). Notice that Λ ⊂ Λǫ and error estimates like (18) follows straightforwardly with
AΛǫ

instead of AΛ. Nevertheless, for the ease of reading we will keep the notation Λ in the following
to refer to a graded tree.

A graded tree-structure is used to represent data in the computer memory (see also [47]). Re-
calling the standard tree-structure terminology: if Ωµ ⊂ Ωγ with |µ| = |γ|+ 1, we say that Ωµ is a
child of Ωγ and that Ωγ is the parent of Ωµ. We thus define the leaves L(Λ) of a tree Λ as the set of
cells Ωλ, λ ∈ L(Λ), such that Ωλ has no children in Λ. The sets ∇j , j = 0, 1, . . . , J , are distributed
in NR graded trees Λr, r = 1, . . . , NR, where NR := NRxNRyNRz, and NRx, NRy, and NRz stand
for the number of graded trees or roots per direction. Denoting by R(Λr) the set that contains the
graded tree Λr plus the missing cells Ωλ in the construction of sets ∇j , we similarly have that grid
indices Sj , j = 0, 1, . . . , J , are distributed in NR sets R(Λr). The adapted grid is thus given by

sets L(Λr), r = 1, . . . , NR, with a total number of cells: NL =
∑NR

r=1 #(L(Λr)). If no adaptation is
required: maxNL = #(SJ) = NRxNRyNRz2

dJ , that is, the size of the finest grid. Ghost cells called
phantoms are added to the adapted grid at level interfaces, in order to always compute numerical
fluxes at the highest grid-level between two neighboring cells [47].

Input parameters for the multiresolution implementation are: the maximum grid-level J cor-
responding to the finest spatial discretization; the number of roots per direction NRx, NRy, and
NRz; and the threshold parameter ηMR which defines the numerical accuracy of the compressed
representations following (18).

3.2 Construction of the discrete Laplace operator

Introducing the set IL := {1, 2, . . . , NL} ⊂ Z, we define a bijective function h : D(h)→ IL, with

D(h) :=

NR⋃

r=1

L(Λr).

The set ΘL := (Ωλ)h(λ)∈IL corresponds then to the adapted grid, defined by the leaves of the
tree representation. Taking into account the finite volume framework defined by the dual scaling
function φ̃γ in (8), let us consider for a given function u(x) ∈ H2(Ω) and for each γ such that
γ ∈ D(h) the following numerical approximation:

〈∂2
x
u, φ̃γ〉 = |Ωγ |

−1
∑

µ

|Γγ,µ|Fγ,µ +O ([diam(Ωγ)]
α
) , γ ∈ D(h),
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where the sum is made over all µ 6= γ such that the interface Γγ,µ := Ωγ ∩Ωµ is not trivial and Fγ,µ

accounts for the flux across each interface. Moreover, we can represent the flux computations by

|Ωγ |
−1|Γγ,µ|Fγ,µ =

∑

λ∈RF (γ)

αγ,λuλ, (25)

where the stencil RF (γ) ⊂ S|γ| and the set of coefficients (αγ,λ)λ∈RF (γ) establish the order α of
the approximation. If the same scheme is considered throughout a given Sj , then for any µ 6= γ
such that |γ| = |µ| = j the set of coefficients (αγ,λ)λ∈RF (γ) and (αµ,λ)λ∈RF (µ) are constant and
component-wise equal.

The discrete Laplacian A = (ai,k)i,k∈IL on a uniform grid SJ , #(SJ) = NL, is hence computed
by setting for each i ∈ IL, γ = h−1(i),

ah(γ),h(λ) = αγ,λ, ∀λ ∈ RF (γ), (26)

and
ah(γ),k = 0, ∀k ∈ IL s.t. h−1(k) /∈ RF (γ). (27)

The finite volume flux representation (25) establishes that for a given interface Γγ,µ the following
conservation property is verified: Fγ,µ + Fµ,γ = 0. Computing the flux Fγ,µ for Ωγ amounts to
evaluate also Fµ,γ for the neighboring cell Ωµ. Let us denote F

+
γ,µ as the right flux for Ωγ and F−

µ,γ

as the left flux for Ωµ along the normal direction to Γγ,µ. Similarly, R+
F (γ) stands for the stencil

required to compute F+
γ,µ and naturally R−

F (µ) ≡ R+
F (γ). Fluxes can therefore be computed only

once at each interface and the same property is exploited to save computations while constructing
operator A: for each i ∈ IL, γ = h−1(i),

ah(γ),h(λ) = αγ,λ, ∀λ ∈ R+
F (γ), (28)

instead of (26), and

ah(µ),h(λ) = −ah(γ),h(λ), Ωγ ∩ Ωµ 6= ∅, ∀λ ∈ R+
F (γ). (29)

The sparsity of the resulting matrix depends directly on the stencil R+
F (·) related to the flux com-

putation scheme, while the computational complexity of the procedure is of O(#(SJ)).

We are nevertheless interested in building the Laplacian Ã = (ãi,k)i,k∈IL represented on a
multiresolution adapted grid, meaning that NL < #(SJ). The principle is the same, as we construct

Ã by computing its elements following (27), (28), and (29) with ãi,k instead of ai,k. Notice that
for a given γ such that |γ| = j all fluxes are computed at the same grid Sj in (25). In the case
of adapted grids the latter involves that fluxes are computed on a locally uniform grid defined by
RF (γ). Ghost cells are thus locally introduced so that for a given γ all cells λ 6= γ such that
λ ∈ RF (γ) are available. Given an adapted tree Λr, let us denote by P(Λr) the set of phantoms
related to the tree Λr; that is, all cells with index λ such that for every leaf Ωγ in ΘL, λ ∈ RF (γ) but
λ /∈ R(Λr). Notice that by construction a phantom is always a child of a leaf. The variable values
on these ghost cells are then computed based on the cells contained in the adapted representation
R(Λr). Using the inter-level operation (14), variables at phantoms are defined by

ûµ =
∑

|µ|=|γ|+1,γ∈RI(µ)

βµ,γuγ , (30)

where the stencil RI(µ) ⊂ S|µ|−1 and the coefficients (βµ,γ)γ∈RI(µ) are defined by the β vanishing
moments of the compactly supported dual wavelet. In practice (30) corresponds to a polynomial
interpolation of order β with the particular property that the inter-level operation (11) is verified
[17]:

uγ = |Ωγ |
−1

∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ. (31)
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Recalling that a phantom stands at the place of a discarded cell whose detail was computed based
on the same inter-level operations, we have that ûµ involves an approximation error of O(ǫ|µ|)
(according to (13)) and the multiresolution error framework remains perfectly valid. Moreover, this
construction guarantees a consistent and conservative representation at inter-grid interfaces.

To summarize, given a certain leaf Ωγ , for each λ such that λ ∈ RF (γ) there are three possibil-
ities:

1. Cell Ωλ is a leaf and thus belongs to the adapted grid, i.e.,

λ ∈

NR⋃

r=1

L(Λr); (32)

2. Cell Ωλ is a phantom, i.e.,

λ ∈

NR⋃

r=1

P(Λr); (33)

3. Cell Ωλ belongs to the set of adapted grids but it is not a leaf, i.e.,

λ ∈

NR⋃

r=1

R(Λr) ∧ λ /∈

NR⋃

r=1

L(Λr). (34)

Operator Ã is then a matrix in Mn(R), n = NL, (with NL much smaller than #(SJ)) whose
coefficients (ãi,k)i,k∈IL are computed following (27)–(29) with ãi,k instead of ai,k whenever (32)
is verified, together with the coefficients defined by the inter-level operation (30) (resp., (11))
when (33) (resp., (34)) is verified. Additionally, if a leaf Ωγ shares an interface Γγ,µ with a leaf of
higher resolution, coefficients ãh(γ),k are defined considering the weighted sum (31) of the coefficients
computed for the corresponding phantoms, children of Ωγ , at Γγ,µ. The latter is equivalent to saying
that at inter-level interfaces the matrix coefficients are always evaluated at the highest resolution.
For the sake of completeness, the complete scheme to construct the discrete Laplacian is detailed
in A. The algorithm (with computational complexity O(NL)) considers several multiplications and
combinations of constant coefficients based on the ideas previously exposed in such a way that we
solve for the variables defined only on the adapted grid (the leaves) but strongly coupling inter-grid

relations. In practice operator Ã is stored using a standard CSR (Compressed Sparse Row) format
for sparse matrices.

4 Streamer discharge simulations

Classical fluid model for streamers in air at atmospheric pressure is given by drift-diffusion equations
consistently coupled with a Poisson equation [4, 31]:

∂tne + ∂x · (ne ve)− ∂x · (De ∂xne) = neνi − ne(νa2 + νa3)− nenpβep + nnγ + Sph,

∂tnp + ∂x · (npvp)− ∂x · (Dp ∂xnp) = neνi − nenpβep − nnnpβnp + Sph,

∂tnn + ∂x · (nnvn)− ∂x · (Dn ∂xnn) = ne(νa2 + νa3)− nnnpβnp − nnγ,





(35)

ε0 ∂x ·E = −qe(np − nn − ne), E = −∂xφ, (36)

where x ∈ R
d, ni is the density of charged species i (e: electrons, p: positive ions, n: negative ions), φ

and E stand, respectively, for the electric potential and field, and vi = µiE is the drift velocity. We
denote by Di and µi the diffusion coefficient and the mobility of charged species i, qe is the absolute
value of the electron charge, and ε0 is the permittivity of free space. Moreover, νi is the impact
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ionization coefficient, νa2 and νa3 are the two-body and three-body electron attachment coefficients,
βep and βnp are, respectively, the electron–positive ion and negative–positive ion recombination
coefficients, and γ is the detachment coefficient. All these coefficients depend on the local reduced
electric field E/Nair and thus vary in time and space, where E = |E| is the electric field magnitude
and Nair is the air neutral density. For test studies presented in this paper, the transport parameters
for air are taken from [38]; detachment and attachment coefficients, respectively, from [5, 30]; and
other reaction rates, also from [38]. Diffusion coefficients for ions are derived from mobilities using
classical Einstein relations. Our reference density for air is Nair = 2.688× 1019 cm−3.

For positive streamers a sufficient number of seed-electrons needs to be present in front of the
streamer head as the direction of electron motion is opposed to the streamer propagation (see [9]
and references therein). Photoionization is in general an accepted mechanism to produce such seed-
electrons in nitrogen-oxygen mixtures. It is therefore introduced into the drift-diffusion system (35)
as a source term (Sph) that needs to be evaluated in general at each time-step for all points of the
computational domain. Computation of Sph is detailed in B which requires the iterative solution of
six elliptic equations given by (41) with boundary conditions (42). Iterating three times amounts
then to solve 18 Poisson-like equations per time-step.

In what follows we will first assess the theoretical validity of the mathematical description con-
ducted in §2.4 and the numerical implementation described in §3.2 for Poisson equations discretized
on multiresolution adapted grids. This study will be conducted on a simplified model with known
analytical solution that mimics the spatial configuration typically found in streamer discharges. In
a second part we will present double-headed streamer simulations modeled by (35)–(36), for which
we will evaluate the performance of different linear solvers implemented to solve the Poisson equa-
tions discretized on multiresolution grids. Finally, dynamic grid adaptation will be analyzed for the
numerical simulation of two interacting positive streamers in a configuration that leads to streamer
merging [35, 8].

4.1 Numerical validation

We first investigate the validity of bound (23) and thus (24). That is, the solution of a Poisson
equation discretized on a multiresolution adapted grid is an approximation of O(ηMR) of the ex-
act solution computed on a uniform grid of equal (finest) resolution, where ηMR is the accuracy
parameter used by the multiresolution analysis on the right-hand side of the Poisson equation.
Given a set of constant parameters: a, b, and σ, let us consider the exponential function φ(x) on a
two-dimensional domain Ω ⊂ R

2,

φ(x) = g(x) + b = a exp
(
−|x|2/σ2

)
+ b, x = (x, y) ∈ Ω (37)

that verifies the following Poisson equation:

∂2
x
φ(x) = ρ(x), ρ(x) =

4

σ2

(
|x|2

σ2
− 1

)
g(x), x ∈ Ω, (38)

with boundary conditions,
φ(x) = g(x) + b, x ∈ ∂Ω. (39)

Using a standard, second-order centered scheme, we discretize equation (38) on the region: [−0.5, 0.5]×
[−0.5, 0.5], and we consider the set of parameters: a = 10, b = 20, and σ = 0.005. The value of σ has
been chosen such that function ρ(x) exhibits similar steep gradients as those found in a developed
streamer head modeled by (35)–(36). Since g(x) decays rapidly toward the boundaries, we consider
Dirichlet boundary conditions in (39): φ(x) = b, whereas symmetric boundary conditions are taken
at y = 0 in order to consider only half of the computational domain: [−0.5, 0.5]× [0, 0.5].

Figure 1 shows normalized L2-errors between the analytical solution (37) and the numerical
solution of the Poisson equation (38) discretized on an adapted grid, obtained with several threshold
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values ηMR. The resulting linear systems were solved using MUMPS [3, 2], a direct linear system
solver. The finest spatial discretization is denoted by ∆x, and it is set by the choice of the maximum
level J in the multiresolution analysis and the number of roots per direction: NRx and NRy. In
this case, ∆x = 1/(NRx2

J) with J = 5, 6, . . . , 13, NRx = 10, and NRy = 5. For streamer discharge
simulations an accurate resolution of the electric field: E = −∂xφ, is essential for good physical
descriptions. Therefore we have also computed E with a second order, centered approximation,
and compared it against its analytical counterpart: E = 2x g(x)/σ2. In both cases, for φ and
E, the numerical errors behave like a second order spatial approximation even if the solutions
are computed on an adapted grid, especially for relatively coarse discretizations or sufficiently
fine multiresolution threshold values. For finer resolutions, the numerical errors coming from the
adaptive multiresolution become more dominant and the numerical errors are effectively bounded
by the threshold parameter ηMR. Bounds (23) and (24) prove then to describe accurately the
behavior of the numerical approximations when solving a Poisson equation on a multiresolution
adapted grid.

Figure 1: L2-errors between analytical and numerical solutions φ of Poisson equation (38) (a) and
component Ex of E = −∂xφ (b) for several threshold values ηMR.

Figure 2: Matrix construction and solution: (a) discrete Laplacian Ã on a multiresolution grid; and

(b) CPU times to build Ã and solve the corresponding linear systems for several numbers of cells
(slopes of data fits are indicated).
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These tests allow us also to verify that the discrete Laplacian is consistently constructed following
the procedure established in §3.2, and correctly implemented in practice. The matrix representation
Ã is shown in Figure 2(a). Notice that matrix Ã cannot be symmetric, unless no grid adaptation

is performed. However Ã is in general quasi-symmetric. For instance, for this particular problem
approximately 89% of symmetry is retrieved in terms of non-zero elements of the matrix. Fig-
ure 2(b) illustrates the computational complexity of the matrix construction, which behaves like
O(NL). The different measures were obtained performing several computations with different finest
grid-levels J ∈ [9, . . . , 13], and multiresolution parameters ηMR ∈ [10−2, . . . , 10−9]. We have also
indicated in Figure 2(b) the CPU times to solve the resulting linear system with MUMPS, as well
as with an algebraic multigrid solver: AGMG [43, 41, 44] (with tolerances set to 10−9), which also
have computational complexity of O(NL). Finally, we have also verified that building the matrix
representation behaves the same way for the more complex streamer configuration presented in the
following.

4.2 Performance of linear solvers

We present in what follows a brief study on the performance of several software packages currently
available in the literature to solve linear systems of general type: Ax = b, stemmed in our case
from the discretization of a Poisson equation on a multiresolution adapted grid. Two groups of
linear solvers were considered: direct and iterative solvers. Direct methods to solve sparse linear
systems of type Ax = b involves in general two separate phases: 1) factorization of the system
matrix A, and 2) solution by forward elimination followed by backward substitution to obtain the
solution for a given right-hand side b. Main advantages of direct methods are their generality and
robustness. Furthermore, direct methods provide an efficient way to solve multiple systems sharing
the same system matrix A but different right-hand sides b, since the most expensive phase (the
factorization) needs to be computed only once. On the other hand the main limitation of direct
methods is the amount of memory required to store the factorization matrices that may have many
(10–100 times) more elements than the original matrix, and may become constraining for large
two-dimensional problems and even prohibitive for three-dimensional configurations.

The need of iterative solvers then naturally arises as they exhibit relatively modest memory
requirements. However the choice of appropriate algorithms, as well as a fine-tuning of solver
parameters to particular linear systems are essential for a satisfactory performance. The number
of iterations may also be substantially decreased with a good initial guess of the solution. This
feature is somehow exploited in this work in the context of time evolving problems because the
previous solution may serve well as an initial guess for the current time-step. Additionally, the
system matrix A changes practically every time-step due to grid adaptation. Iterative solvers are
hence favored over direct ones which would require costly factorizations of A at each time-step. A
promising class of iterative methods are multigrid solvers capable to solve sparse linear system of
size N with a computational complexity of O(N). In particular algebraic multigrid methods (AMG)
do not require an explicit grid geometry and work directly on matrix entries. They are therefore
well-suited to our purposes since system Ax = b (coming form a discrete Poisson equation on a
multiresolution grid) has completely lost any reminiscence of its original geometric layout.

4.2.1 Test configuration

Let us consider the propagation of a double-headed streamer at atmospheric pressure. In this
configuration positive and negative streamers emerge from an initial germ of charged species. Drift-
diffusion equations (35) together with Poisson equation (36) are solved following the time-space
adaptive scheme introduced in [21]. The latter is based on a decoupled numerical solution of
(35) and (36) in such a way that each problem is solved separately by a dedicated solver. Both
numerical approximations are assembled according to a second order scheme in time. The latter
also considers a time-stepping procedure with error control such that a prescribed accuracy ηT is
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attained. Variables are represented at cell centers except for the electric field and the velocities
which are staggered, while the entire problem is solved on an adapted grid dynamically obtained
by multiresolution analysis. The latter is performed on the species densities, variables of the time-
dependent transport equations (35). Notice that the right-hand side of the Poisson equation (36)
is a linear combination of the species densities so that the theoretical framework in § 2.4 remains
valid.

Figure 3: Double-headed streamer at 3.0 ns: (a) electron density ne; (b) net charged-species density
nch; (c) magnitude of the electric field E = |E|; and (d) grid-levels of the adapted mesh. Only part
of the computational domain is shown.

Numerical simulations in the present study were carried out for a space-time accuracy tolerance
of ηMR = ηT = 10−4 with a space resolution of 3.9µm corresponding to a finest grid level: J =
8 with NRx = 10, and NRy = 3. This set of parameters guarantees a sufficiently fine time-
space representation of the physics, and numerical results disclosing practically the same behavior
with higher spatial resolutions and tighter accuracy tolerances. The computational domain is
given by [−0.5, 0.5] × [0, 0.3] cm in a Cartesian configuration. A homogeneous electric field E =
(48.0, 0) kV/cm is introduced via Dirichlet boundary conditions for the Poisson equation at x =
±0.5 cm, whilst Neumann boundary conditions are applied at y = 0.3 cm. A plane of symmetry
is imposed at y = 0, thus only one half of the streamer is actually simulated. The double-headed
streamer is initiated by placing a Gaussian plasma cloud so that the initial conditions for the
transport equations (35) are given by

np(x, 0) = ne(x, 0) = nmax exp
(
−|x|2/σ2

)
+ n0p,e, nn(x, 0) = n0n,
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with σ = 0.02 cm, nmax = 1013 cm−3, and a small homogeneous pre-ionization background of
n0n,e = 5 × 10−5 cm−3 and n0p = 10−4 cm−3. All tests were conducted starting from the same
solution at 3.0 ns when the double-headed streamer is already well developed but no interference with
the boundaries is evidenced. The electron density, the net charge species density: nch = np−nn−ne,
the magnitude of the electric field, and the levels of the adapted grid for the double-headed streamer
at 3.0 ns are presented in Figure 3. The total number of cells is of 197784, distributed over five
grid-levels from a resolution of 62.5µm at level j = 4 up to 3.9µm at J = 8. A data compression
of about 10% is thus achieved with respect to a uniform grid with the finest spatial resolution.

4.2.2 Analysis of results

We have considered both direct and iterative solvers readily available in various software packages.
Some of the main characteristics of each one of them are described in C. Most of present day
linear solvers are developed with a special attention on enhanced parallel capabilities. Nevertheless,
thanks to significant data compression achieved by multiresolution adaptation, the linear systems
under consideration have typically about 105 unknowns with approximately 106 non-zero elements
in the system matrix. Therefore to simplify our study we have focused our attention on sequential
performance of these solvers. We have performed the numerical experiments on anila, a two-
processor computer installed at Masaryk University. Each processor is an Intel Xeon CPU E5410
@ 2.33GHz with a total available computer memory of 24 GB. The computer runs on a 64-bit
version of Fedora 18 GNU/Linux system. All codes with the various linear solvers were compiled
using compilers from GCC (version 4.7.2). Memory requirements of each solver were obtained by
tracing the memory profiles of running programs with top command, executed in batch mode with
a delay-time interval set to 0.01 s. In order to discriminate memory requirements for the linear
solvers from the overall program memory usage, a reference program was executed in which calls
to the solver were replaced by FORTRAN (GNU extension) SLEEP command.

Table 1: Direct solvers: CPU computing time, L2-error of φ and |E| with respect to solutions
computed with MUMPS, and memory requirements for each solver.

MUMPS Memory: 193 MB

CPU(s) L2-error φ L2-error |E|

3.96 0 0

PaStiX Memory: 259 MB

CPU(s) L2 error φ L2 error |E|

5.38 1.84×10−13 1.45×10−12

Table 1 gathers computation data obtained with two direct solvers: MUMPS [3] and PaStiX

[28] in terms of CPU time and memory usage. The total number of unknowns for the Poisson
equations considered in this problem is given by the number of cells considered, 197784 in this
case, while the discrete Laplacian has 1078534 non-zero entries. In what follows we consider as
reference solution the solution to the Poisson equation (36): φ, computed with MUMPS. As before
we also analyze the approximation to the electric field: E = −∂xφ. Both solvers yield practically
the same solution, while better performances are obtained with MUMPS in terms of both CPU
time and memory for this particular problem. Data for three iterative solvers are presented in
Table 2 for two algebraic multigrid solvers: AGMG and BoomerAMG [29] (contained in the hypre

library), and for GMRES [48] preconditioned with BoomerAMG (also contained in hypre ). In
all cases a fine-tuning of computing parameters have been previously carried out so that Table 2
includes the best performances obtained with each of these solvers for this particular problem. A
key parameter for iterative solvers is given by the relative and absolute tolerances that in particular
serve as stopping criteria to the iterative procedures. In this study we have set both tolerances
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Table 2: Iterative solvers: number of iterations (#iter) for relative tolerances: tol = 10−6, . . . , 10−14,
CPU computing time, L2-error of φ and |E| with respect to solutions computed with MUMPS, and
memory requirements for each solver.

AGMG Memory: 82 MB

tol #iter CPU(s) L2-error φ L2-error |E|

10−6 3 0.50 1.65×10−5 1.40×10−4

10−7 4 0.55 1.20×10−5 2.94×10−5

10−8 8 0.78 1.80×10−6 4.20×10−6

10−9 10 0.89 1.43×10−7 4.10×10−7

10−10 14 1.10 2.03×10−8 4.74×10−8

10−11 16 1.21 2.24×10−9 7.44×10−9

10−12 19 1.38 2.09×10−11 9.65×10−11

10−13 20 1.43 1.28×10−11 3.68×10−11

10−14 24 1.64 1.59×10−12 3.86×10−12

hypre BoomerAMG Memory: 100 MB

tol #iter CPU(s) L2 error φ L2 error |E|

10−6 3 1.23 7.36×10−4 2.46×10−3

10−7 6 1.51 1.81×10−5 5.99×10−5

10−8 8 1.71 3.97×10−6 1.63×10−5

10−9 11 1.98 9.56×10−8 7.44×10−7

10−10 14 2.27 9.04×10−9 9.87×10−8

10−11 17 2.55 5.45×10−10 5.18×10−9

10−12 20 2.83 6.24×10−11 1.02×10−9

10−13 24 3.21 6.28×10−12 2.58×10−11

10−14 27 3.52 4.73×10−13 3.84×10−12

hypre BoomerAMG + GMRES Memory: 146 MB

tol #iter CPU(s) L2 error φ L2 error |E|

10−6 2 1.24 9.09×10−4 2.36×10−3

10−7 5 1.57 2.65×10−5 1.28×10−4

10−8 8 1.90 1.15×10−6 1.49×10−5

10−9 10 2.13 6.19×10−8 8.56×10−7

10−10 12 2.34 4.32×10−9 6.09×10−8

10−11 14 2.58 5.77×10−10 3.33×10−9

10−12 15 2.69 3.58×10−10 8.20×10−10

10−13 17 2.93 3.57×10−11 7.10×10−11

10−14 19 3.15 3.13×10−12 7.73×10−12

equal to an accuracy tolerance, denoted as tol. To improve the numerical performances the initial
guess corresponds to the solution computed during the previous time-step. For tolerances higher
or equal to 10−5 convergence is attained right-away with the initial guess for all three solvers. In
all cases better performances are obtained with these iterative solvers with respect to direct ones
even with very fine accuracy tolerances tol. Even though GMRES converges in a less number of
iterations for different values of tol with respect to the algebraic multigrid solvers, it does not yield
faster computations taking into account that for this problem preconditioning is the most expensive
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part. BoomerAMG and GMRES/BoomerAMG therefore involve similar computing times.
Considering the solution obtained with MUMPS as the reference solution all these iterative

solvers scale well in terms of the accuracy of the approximations, set by the tolerance parameter
tol. Notice that these numerical errors must be taken into account when using iterative solvers, in
particular into bounds (23) and (24). The criterion adopted in this work is that numerical errors
coming from the solution of the linear systems must be smaller than the multiresolution ones so that
(23) and (24) remain valid. The latter could be enforced by setting in general: tol < ηMR, while
in this particular case a safer choice might be given by tol ≤ 10−3 × ηMR according to the values
contained in Table 2. Among the solvers tested in this study, AGMG revealed itself as the most
performing package both in terms of CPU time and memory requirements to solve this particular
problem. However it is important to remark that the overall performance of all these solvers are
clearly problem-dependent. In this regard the hypre library provides a user-friendly and unified
interface to various solution schemes, very appropriate to handle different types of problems.

4.3 Application to the study of the interaction of two positive streamers

While the previous illustrations have served to evaluate the performance of the numerical strategy,
we consider now an interesting application with more complex dynamics for which the present
technique can be further assessed. We study the interaction of two positive streamers initiated to
develop side by side. Because the heads of both streamers carry space charge of the same polarity,
their mutual interaction should essentially be an electrostatic repulsion. However, it was found that
streamers in such a configuration may attract each other and eventually merge [10, 18, 42]. This
attraction is mainly the result of the enhancement of photoionization source in the space between
the streamer heads [35, 8]. In particular, based on an extensive parametric numerical study, we have
shown in [8] that for initial separations of two streamers smaller or comparable to the absorption
length of photoionization, merging will start when the ratio of the streamer characteristic width and
their mutual separation attains a certain value. We describe here some numerical aspects omitted
in our previous study that illustrate how the numerical strategy developed in this work ensures a
fine time-space resolution of the complex interaction dynamics of both discharges.

Table 3: Data compression (DC) and number of cells at different grid-levels at sample time instances.

time(ns) DC(%) Number of cells at grid-levels
2 3 4 5 6 7 8

0.0 0.031 15240 162 272 527 1341 7728 169904
1.0 1.219 780 4671 61359 605154 22297 23160 49424
2.0 1.264 620 4440 57625 633483 23447 27668 47744
3.0 1.291 566 4346 56348 642443 26479 33016 48752
4.0 1.325 528 4528 54141 648333 34030 41660 50672
5.0 1.360 512 4712 51905 652364 42504 56536 47136
6.0 1.407 544 4768 49464 653958 61267 64120 51056
7.0 1.449 458 5288 47652 650502 93008 63196 51728
8.0 1.495 338 5791 46530 644986 131087 66656 45328
9.0 1.567 219 5388 48316 637538 188227 70380 35744

10.0 1.702 18 5296 48622 624126 294256 73264 25280

Let us consider two positive streamers modeled by (35)–(36) propagating in a homogeneous
electric field. As before the system of equations is solved with the time-space adaptive scheme in-
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Figure 4: Time evolution of the net charge density (a), magnitude of the electric field (b), and
dynamic grid adaptation (c) for two interacting positive streamers at ground pressure with an
applied electric field of Ebg = (0,−48) kV/cm at time instances: 4.0, 6.0 and 8.0 ns. Only part of
the computational domain is shown.
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troduced in [21] with the Poisson equation discretized on the adapted grid following the numerical
technique established in § 3.2. The resulting linear systems are solved with MUMPS. The com-
putational domain is given by [0, 3.0] × [−1.6, 1.6] cm in a Cartesian configuration. A space-time
accuracy tolerance of ηMR = ηT = 10−4 was chosen with a space resolution of 3.9µm correspond-
ing to a finest grid level of J = 8 with NRx = 30 and NRy = 32. The finest spatial resolution
is equivalent to that of a uniform grid with 8192 × 7680 cells. A homogeneous electric field of
Ebg = (0,−48) kV/cm is introduced via Dirichlet boundary conditions for the Poisson equation
(36) at y = ±1.6 cm, whilst Neumann boundary conditions are applied at x = 3.0 cm. A plane of
symmetry is imposed at x = 0. The positive streamer is initiated by placing a Gaussian seed with a
maximum of 1013 cm−3 and a characteristic width of 0.02 cm, centered at 0.1 cm from the symme-
try axis. The time evolution of the net charge density, the magnitude of the electric field, and the
dynamic grid adaptation at time instances: 4.0, 6.0, and 8.0 ns are shown in Figure 4. Population
of different grid-levels at sample times is detailed in Table 3 together with the corresponding data
compression (DC), defined as the percentage of active cells with respect to the equivalent number
of cells for the finest discretization, given in this case by 62914560. We recall that no grid overlap-
ping is considered in this implementation, that is, both the time-dependent PDEs as well as the
Poisson equations are solved on the adapted grid consisting of cells at different grid-levels as shown
in Table 3. The coarsest resolution allowed in this simulation (at grid-level j = 1) corresponds to a
spatial resolution of 0.05 cm (note that this level was actually not populated during the simulation,
therefore it is not listed in Table 3).

From Figure 4 and Table 3 we observe that the finest level is first populated at the vicinity of the
initial Gaussian seed and follows the propagation of onsetting streamers (see Figure 4 corresponding
to time 4 ns). At the next instance shown (Figure 4 at 6 ns), the propagating front is fully described
in a region contained within levels 6 and 7. This is because both streamer heads had expanded
and the finest scale is thus no longer necessary. Once the streamer heads have merged (Figure 4
at 8 ns) and therefore only one head is propagating, only level 6 is required. It is interesting to
notice that behind the head, i.e., inside the plasma channel where neither sharp gradients nor
strong discharge activity are present, the grid is coarsened down to level 4. Nevertheless, the finest
resolution is attained and kept throughout the simulation close to the initial Gaussian seeds where
we can observe persistence of highly localized space charge as well as strong spatial variation of the
electric field. Despite a decreasing population of the finest level after 7 ns (see Table 3) overall data
compression is slowly increasing due to the fact that discharge activity is gradually filling larger
regions of the computational domain.

5 Concluding remarks

We have presented a brief, yet complete study on the numerical solution of Poisson equations on
adapted grids generated by multiresolution analysis arising in the numerical simulation of multi-
scale propagating fronts. In this context we have recast numerical estimates on the multiresolution
errors introduced during the solution of Poisson equations on these adapted grids. On this basis we
have developed a numerical procedure to represent the discrete Laplace operator on the adapted
grid by reconstructing locally uniform-grid regions at inter-grid interfaces by means of ghost cells
and inter-level operations. This approach constitutes a new alternative to the standard level-wise
numerical solution of Poisson equations considered in most of the adaptive mesh refinement tech-
niques for time-dependent problems in the literature. In this way the numerical solution of a Poisson
equation amounts to considering a linear system completely independent of the grid generation or
any other grid-related data structure or geometric consideration, while the multiresolution frame-
work guarantees numerical approximations within an accuracy tolerance as well as consistency and
conservation properties throughout the set of grids. Here we have focused our attention on Poisson
equations, however the present technique remains valid for more general elliptic PDEs like Poisson
equations with time- and/or space-varying coefficients.
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To assess the validity of these theoretical and numerical developments we have investigated
them in the context of the numerical simulation of streamer discharges. This application involves
an intensive use of Poisson solvers and accurate solutions of Poisson equations are essential to
the correct reproduction of the physics. In a first step we have carefully evaluated the theoretical
bounds previously derived in a simpler configuration with analytical solution. A much more complex
and complete model was then considered to simulate the propagation of a double-headed streamer
discharge in air at atmospheric pressure. We have thus conducted a study on the performance
and capabilities of various direct and iterative linear solvers for this problem that allows us to
further validate the current implementation and serves as well as a guide for other applications. In
particular we have evaluated the potentialities of algebraic multigrid solvers, well-suited to this kind
of implementation with no geometric counterpart. The robustness of the numerical strategy has
been further assessed for the simulation of interacting positive streamers, an interesting application
in plasma physics. Further developments include optimizing the numerical construction of the
discrete Laplace operators by conceiving, for instance, better data structures or by updating only
the matrix entries modified by the grid adaptation. Taking into account that in this implementation
solving these linear problems becomes a separate aspect from the multiresolution analysis itself,
parallel computing capabilities may be directly inherited from the software packages available in
the literature. However, an intelligent conjunction with multiresolution parallelism must be sought
to achieve overall satisfactory results. These issues constitute particular topics of our current
research.
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A Pseudo-code of the algorithm

Computing the multiresolution representation f ǫJ ∈ R
n, n = NL, defines an adapted grid given by

the set of leaves: ΘL = (Ωλ)h(λ)∈IL of size NL. The algorithm to construct the discrete Laplacian:

Ã ∈Mn(R), can be schematically described as follows in a Cartesian framework where interfaces are
given by Γd′

γ,µ, d
′ = 1, . . . , d. This scheme supports space discretizations and compactly supported

wavelets of arbitrary order.

for i = 1→ NL do

Current leaf: Ωγ s.t. γ = h−1(i).
for d′ = 1→ d do

Current neighbor: Ωµ s.t. Γd′

γ,µ = Ωγ ∩ Ωµ.
if µ ∈ D(h) then {Ωµ is a leaf, i.e., (32).}
i′ = h(µ).
for λ ∈ R+

F (γ) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (32).}
k = h(λ).
ãi,k = ãi,k + αγ,λ.
ãi′,k = ãi′,k − αγ,λ.
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else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (33).}

for λ̂ s.t. λ̂ ∈ RI(λ) do

if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (32).}

k = h(λ̂).
ãi,k = ãi,k + βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − βλ,λ̂αγ,λ.

else {Ωλ̂ is within the tree, i.e., (34).}

for λ̂′ s.t. Ωλ̂′ ⊂ Ωλ̂ do

if λ̂′ ∈ D(h) then {Ωλ̂′ is a leaf, i.e., (32).}

k = h(λ̂′).
ãi,k = ãi,k + |Ωλ̂|

−1|Ωλ̂′ |βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − |Ωλ̂|
−1|Ωλ̂′ |βλ,λ̂αγ,λ.

else

for λ̂′′ s.t. Ωλ̂′′ ⊂ Ωλ̂′ do

if λ̂′′ ∈ D(h) then {Ωλ̂′′ is a leaf, i.e., (32).}

k = h(λ̂′′).
ãi,k = ãi,k + |Ωλ̂|

−1|Ωλ̂′′ |βλ,λ̂αγ,λ.

ãi′,k = ãi′,k − |Ωλ̂|
−1|Ωλ̂′′ |βλ,λ̂αγ,λ.

else

Continue up to leaves.
end if

end for

end if

end for

end if

end for

else {Ωλ is within the tree, i.e., (34).}
for λ′ s.t. Ωλ′ ⊂ Ωλ do

if λ′ ∈ D(h) then {Ωλ′ is a leaf, i.e., (32).}
k = h(λ′).
ãi,k = ãi,k + |Ωλ|

−1|Ωλ′ |αγ,λ.
ãi′,k = ãi′,k − |Ωλ|

−1|Ωλ′ |αγ,λ.
else

Continue up to leaves.
end if

end for

end if

end for

else if µ ∈
⋃NR

r=1 P(Λr) then {Ωµ is a phantom, i.e., (33).}
for λ ∈ R+

F (γ) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (32).}
k = h(λ).
ãi,k = ãi,k + αγ,λ.
for µ̂ s.t. Ωµ ⊂ Ωµ̂ ∧ Ωγ ∩ Ωµ̂ 6= ∅ do

i′ = h(µ̂).
ãi′,k = ãi′,k − |Ωµ̂|

−1|Ωµ|αγ,λ.
end for

else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (33).}

for λ̂ s.t. λ̂ ∈ RI(λ) do
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if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (32).}

k = h(λ̂).
ãi,k = ãi,k + βλ,λ̂αγ,λ.

for µ̂ s.t. Ωµ ⊂ Ωµ̂ ∧ Ωγ ∩ Ωµ̂ 6= ∅ do

i′ = h(µ̂).
ãi′,k = ãi′,k − |Ωµ̂|

−1|Ωµ|βλ,λ̂αγ,λ.
end for

else {Ωλ̂ is within the tree, i.e., (34).}
Continue up to leaves.

end if

end for

else {Ωλ is within the tree, i.e., (34).}
Continue up to leaves.

end if

end for

else {Ωµ is within the tree, i.e., (34).}
for γ̂ s.t. Ωγ̂ ⊂ Ωγ ∧ Ωγ̂ ∩ Ωµ 6= ∅ do

Current neighbor: Ωµ′ s.t. Ωµ′ ⊂ Ωµ ∧ Γd′

γ̂,µ′ = Ωγ̂ ∩ Ωµ′ .
Ωµ′ is a leaf: i′ = h(µ′).
for λ ∈ R+

F (γ̂) do
if λ ∈ D(h) then {Ωλ is a leaf, i.e., (32).}
k = h(λ).
ãi,k = ãi,k + |Ωγ |

−1|Ωγ̂ |αγ̂,λ.
ãi′,k = ãi′,k − αγ̂,λ.

else if λ ∈
⋃NR

r=1 P(Λr) then {Ωλ is a phantom, i.e., (33).}

for λ̂ s.t. λ̂ ∈ RI(λ) do

if λ̂ ∈ D(h) then {Ωλ̂ is a leaf, i.e., (32).}

k = h(λ̂).
ãi,k = ãi,k + |Ωγ |

−1|Ωγ̂ |βλ,λ̂αγ̂,λ.

ãi′,k = ãi′,k − βλ,λ̂αγ̂,λ.

else {Ωλ̂ is within the tree, i.e., (34).}
Continue up to leaves.

end if

end for

else {Ωλ is within the tree, i.e., (34).}
Continue up to leaves.

end if

end for

end for

end if

end for

end for

B Photoionization model

The photoionization source term Sph is evaluated using the three-group SP3 model developed in [9]
with Larsen’s boundary conditions [32, 33]. This model considers Ng = 3 effective monochromatic
radiative transfer equations. As no scattering of photons is taken into account and since the time
scale of photon propagation is considered short with respect to the streamer propagation, at each
instant of the streamer simulation the photon distribution function Ψl(x,Ω) at position x and
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direction Ω fulfills a radiative transfer equation of the form:

Ω · ∂xΨl(x,Ω) + λlpO2
Ψl(x,Ω) =

1

4π

pq
p+ pq

(
ξ
νu
νi

)
νine
c ξ

, (40)

where l ∈ {1, . . . , Ng} indicates discrete wavelengths, λl is the absorption coefficient, pO2
is the

partial pressure of molecular oxygen (150Torr at atmospheric pressure), p is the total pressure,
pq = 30Torr is the quenching pressure, ξ = 0.1 is the photoionization efficiency, νu is the effective
excitation coefficient for N2 states responsible for ionizing radiation, and νi and ne are previously
introduced ionization coefficient and electron density. The term (ξνu/νi) is given as a function of
the reduced electric field in [53, 34]. Finally, c stands for the speed of light. Let us emphasize
that monochromatic equations (40) have different absorption coefficients but they all have the same
source term that depends on the local reduced electric field E/Nair, varying therefore in time and
space.

The SP3 approximation of (40) leads to a set of two elliptic equations for functions φ1,l(x) and
φ2,l(x) [32]:

∂2
x
φ1,l(x)−

λ2l p
2
O2

κ21
φ1,l(x) = −

λlpO2

κ21

pq
p+ pq

(
ξ
νu
νi

)
νine

c ξ
,

∂2
x
φ2,l(x)−

λ2l p
2
O2

κ22
φ2,l(x) = −

λlpO2

κ22

pq
p+ pq

(
ξ
νu
νi

)
νine

c ξ
,





(41)

with κ1,2 = (1/7)(3± 2
√

6/5). Equations (41) are coupled through the boundary condition. On a
boundary surface with neither reflection nor emission, functions φ1,l(x) and φ2,l(x) must verify the
following conditions [32, 33]:

∂xφ1,l(x) · ns = −λlpO2
α1φ1,l(x)− λlpO2

β2φ2,l(x),

∂xφ2,l(x) · ns = −λlpO2
α2φ2,l(x)− λlpO2

β1φ1,l(x),

}
(42)

where ns is the outward unit normal to the boundary surface, α1,2 = (5/96)(34 ± 11
√
6/5), and

β1,2 = (5/96)(2±
√

6/5). Because 0 < β1,2 ≪ α1,2 the coupling in (41) is weak. A simple strategy to
solve (41) together with the boundary conditions (42) consist in solving the equations independently,
that is, with β1,2 = 0 to then iterate and correct the initial approximations with the inclusion of
the β1,2 coefficients. Convergence is attained very rapidly after few iterations (typically three). The
isotropic part of the photon distribution function Ψl(x) is then written as a linear combination of
φ1,l(x) and φ2,l(x) [32]:

Ψl(x) =
γ2φ1,l(x)− γ1φ2,l(x)

γ2 − γ1
,

with γ1,2 = (5/7)(1± 3
√
5/6). The photoionization source term Sph(x) can be finally calculated as

[9]:

Sph(x) =

Ng∑

l=1

AlξpO2
cΨl(x),

where parameters Al together with λl are given in Table 4.

C Software packages

In this paper we have considered the following packages:
MUMPS (release 4.10.0), direct solver: MUMPS stands for MUltifrontal Massively Parallel

Solver2 [3, 2], a package to solve linear systems of equations where the system matrix A is a square

2MUMPS home page: http://graal.ens-lyon.fr/MUMPS/
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Table 4: Parameters for three group photoionization model [9].

l Al [cm
−1 Torr−1] λl[cm

−1 Torr−1]

1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994

sparse matrix that can be either non-symmetric, symmetric positive definite, or general symmetric.
MUMPS implements a direct method based on a multifrontal approach which performs a direct
LU -factorization: A = LU, where L is a lower triangular matrix and U an upper triangular one.
If the matrix is symmetric then the factorization: A = LDLT is performed, where D is a block
diagonal matrix with blocks of order 1 or 2 on the diagonal. MUMPS is distributed as a public
domain software.

PaStiX (release 5.2), direct solver: PaStiX3 is a parallel multi-threaded library for the solution
of large linear systems of equations [28]. For non-symmetric matrices, an LU -decomposition is
performed If the system matrix A is symmetric positive-definite it uses Cholesky (A = LLT ) or
Cholesky-Crout (A = LDLT ) factorization. PaStiX is distributed under the CeCILL-C license4.

hypre (release 2.8.0b), iterative solver: hypre is a software library of high performance precon-
ditioners and solvers for the solution of large sparse linear systems of equations on massively par-
allel computing architectures5. The library provides advanced parallel preconditioners and parallel
multigrid solvers for both structured and unstructured grid setups through a variety of conceptual
interfaces, each of them appropriate to a different class of problem. Through the Linear-Algebraic
System Interface we have access to BoomerAMG [29], an algebraic multigrid solver that may be
also used as a preconditioner for GMRES [48]. hypre is a free software, distributed under the terms
of the GNU Lesser General Public License6.

AGMG (release 3.1.1), iterative solver: AGMG7 is an implementation of the algebraic multigrid
method developed in [43, 41, 44]. This method solves systems of linear equations and it is in
particular expected to be efficient for large systems arising from the discretization of scalar second
order elliptic PDEs. It is purely algebraic, no information has to be supplied besides the system
matrix and the right-hand side array. Version 3.1.1 (11/2011) was released under GNU GPLv3 (or
later) license.
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schemes for strongly degenerate parabolic equations in one space dimension. ESAIM: Math.
Model. Numer. Anal., 42:535–563, 2008.

[13] A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762,
1968.

[14] A. Cohen. Wavelet Methods in Numerical Analysis, volume 7. Elsevier, Amsterdam, 2000.

[15] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for elliptic operator equa-
tions: Convergence rates. Math. Comp., 70:27–75, 2001.

[16] A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal bases of compactly supported
wavelets. Comm. Pure Appl. Math., 45(5):485–560, 1992.

[17] A. Cohen, S.M. Kaber, S. Müller, and M. Postel. Fully adaptive multiresolution finite volume
schemes for conservation laws. Math. Comp., 72:183–225, 2003.

[18] S.A. Cummer, N. Jaugey, J.B. Li, W.A. Lyons, T.E. Nelson, and E.A. Gerken. Submillisecond
imaging of sprite development and structure. Geophys. Res. Lett., 33(4):L04104, 2006.

[19] M. Domingues, S. Gomes, O. Roussel, and K. Schneider. Adaptive multiresolution methods.
ESAIM: Proc., 34:1–96, 2011.
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